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Abstract: Sparse reward environments present significant challenges in reinforcement learning
due to the infrequency of feedback, making it difficult for agents to learn effective policies. This
thesis explores the performance of the DreamerV3 agent, enhanced with CBET, in comparison
to the IMPALA agent within such environments. By leveraging a world model to internalize en-
vironment dynamics, DreamerV3 achieves superior sample efficiency and faster convergence. The
CBET variant of DreamerV3 further improves performance by incorporating intrinsic motivation
to guide exploration, proving especially beneficial in the challenging minigrid and crafter environ-
ments. Despite a brief anomaly in the minigrid transfer experiment where IMPALA outperforms
DreamerV3, the overall results demonstrate the efficacy of DreamerV3 and its CBET variant
in optimizing extrinsic returns and accelerating learning processes in sparse reward settings.
Future research should address the limitations observed in policy transfer methods to enhance
the robustness and generalizability of these findings. Additionally, exploring the interpretability
of reinforcement learning algorithms is crucial to understand the decision-making processes of
agents and the impact of intrinsic rewards. Reducing the computational resources required for
DreamerV3 without compromising performance will also be a key focus, aiming to make these
advanced techniques more accessible and practical for a wider range of applications.

1 Introduction

In Reinforcement Learning (RL), an agent’s abil-
ity to efficiently discover and optimize reward-
generating behaviors is crucial. Yet, conventional
RL algorithms often struggle in sparse reward en-
vironments (Sutton & Barto, 2018). The lack of fre-
quent feedback in these settings complicates learn-
ing, leading to extended exploration phases and
slow convergence towards optimal solutions. This
challenge has become a significant focus in recent
years, driving the development of increasingly so-
phisticated exploration strategies.

Various methods have been proposed to ad-
dress this issue, including visitation counts (Belle-
mare et al., 2016), curiosity empowerment (Pathak
et al., 2017), differences in state representation
(Raileanu & Rocktäschel, 2020), and view-based
exploration (Guo et al., 2022). These approaches
center on using intrinsic rewards to encourage ex-
ploration alongside the environment’s extrinsic re-

wards. However, a key limitation lies in their pri-
marily ‘agent-centric’ focus. They prioritize explo-
ration based on the agent’s individual history and
beliefs, potentially missing out on universally in-
teresting or actionable elements within an environ-
ment.

This contrasts with human exploration, where we
recognize an inherent ‘environment-centric’ compo-
nent – some objects or interactions are simply more
likely to elicit curiosity regardless of our individual
experiences. The algorithms mentioned above may
struggle to transfer this kind of generalized explo-
ration knowledge across similar environments, ne-
cessitating additional learning in each new setting.
This impracticality highlights a key area for im-
provement in real-world scenarios.

Transfer learning offers a promising solution to
the retraining problem. By reusing skills or knowl-
edge acquired previously, an agent can potentially
accelerate the exploration process in a new but re-
lated setting. This allows agents to exploit com-
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monalities between environments, minimizing the
need for exhaustive exploration from scratch (tab-
ula rasa). C-BET (Changed Based Exploration
Transfer) exemplifies this paradigm shift in explo-
ration (Parisi et al., 2021), leveraging knowledge
gained in prior environments to guide exploration
more effectively.
In C-BET, a pre-trained model first explores

an environment to identify interesting interactions.
This pre-trained model then guides a task-specific
model to optimize extrinsic rewards by incentiviz-
ing those interesting actions. The authors demon-
strated encouraging results across various sparse re-
ward environments, highlighting transfer learning’s
potential in RL. However, C-BET was evaluated
solely with the IMPALA RL algorithm (Espeholt
et al., 2018). Since its publication, significant ad-
vancements have been made in RL, resulting in
more sophisticated algorithms (Hessel et al., 2022;
Kapturowski et al., 2022). It is unclear how C-BET
would perform with these newer techniques.
DreamerV3 (Hafner et al., 2023), in particular,

is of great interest in the field of RL due to its
feat of being the first algorithm to craft a diamond
in Minecraft, a notoriously challenging sparse re-
ward environment. This approach makes use of an
Actor-Critic setup which operates on state repre-
sentations obtained from a learned world model.
The world model is trained to predict future states
and rewards, enabling the agent to plan ahead and
make informed decisions. We hypothesize that C-
BET’s exploration mechanisms could be integrated
with DreamerV3, leading to superior performance
in sparse reward environments.
Therefore, we aim to investigate whether combin-

ing C-BET’s exploration mechanisms with Dream-
erV3 yields superior cumulative reward and faster
convergence compared to a baseline of C-BET and
IMPALA in sparse reward environments. We will
evaluate the performance of these algorithms across
a suite of sparse reward environments, including
Minigrid worlds (Chevalier-Boisvert et al., 2023)
and Crafter (Hafner, 2021).

2 Background

This work builds upon several concepts and tech-
niques discussed in the literature. We provide an
overview of these topics to establish a foundation

for our research.

2.1 Counts and Pseudocounts

One of the fundamental techniques for intrinsic
reward-based exploration is the use of visitation
counts. A state’s visitation count increases each
time the agent enters that state, offering a met-
ric of exploration frequency. The intrinsic reward is
then designed to be inversely proportional to this
count, incentivizing exploration of unvisited or less-
frequented states. As outlined by Bellemare et al.
(2016), the intrinsic reward can be utilized in a
bonus reward:

R+
n (s, a) = β(Nn(s) + 0.01)−1/2 (2.1)

where R+
n (s, a) is the bonus reward for state-

action pair (s, a), Nn(s) is the visitation count for
state s at time step n, and β is a scaling factor.

A key limitation of regular counts is their re-
liance on an exact match of the state representa-
tion. In environments with vast state spaces (e.g.,
millions of pixels), even minor variations in a few
pixels would cause the count-based system to treat
these as entirely different states. This hinders ex-
ploration, as the agent would perpetually perceive
the environment as novel even if the changes are
insignificant.

To mitigate this issue, Bellemare et al. (2016)
introduced pseudocounts, generalizing visitation
counts to large state spaces. Their approach em-
ployed density models to estimate counts using un-
certainty, but this method carries high computa-
tional costs and implementation complexities.

Tang et al. (2017) proposed an alternative so-
lution by using a hashing-based method for ap-
proximating visitation counts in complex state
spaces. This technique transforms high-dimensional
data into discrete hash codes for count estimation.
Specifically, a multidimensional hash code ϕ(s) is
generated for each state s:

ϕ(s) = sgn(Ag(s)) ∈ {−1, 1}k (2.2)

whereA is a k×D matrix of random values drawn
from the standard Gaussian distribution, D is the
number of dimensions in the pre-processed state,
g(s) is a pre-processing function for state s, and
k is the hash code’s dimensionality. Increasing k
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improves the algorithm’s ability to differentiate be-
tween states that are proximal in the original state
space.
Upon obtaining the hash code, a state’s visi-

tation count is obtained by the frequency with
which its hash code has previously appeared. Unlike
simple counts, this method ensures similar visita-
tion counts for closely related states, encouraging
broader exploration of the state space.

2.2 C-BET

Parisi et al. (2021) introduce the Change Based
Exploration Transfer technique to extend the foun-
dation of visitation counts by incorporating a met-
ric of ‘interestingness’ to drive the intrinsic reward
calculation. Interestingness, in this context, quanti-
fies the number of times a change has been detected
in the environment. This change is typically calcu-
lated as the difference between the agent’s current
and previous state representations. The intrinsic re-
ward is then formulated as:

ri(s, a, s
′) = 1/(N(s′) +N(c)) (2.3)

where ri(s, a, s
′) denotes the intrinsic reward for

transitioning to state s’ after taking action a in
state s, N(s′) is the visitation count for state s’,
and N(c) represents the visitation count for the de-
tected change c.

C-BET further proposes a novel transfer learn-
ing evaluation paradigm for RL algorithms. This
process involves two phases:

• Pre-training: An ‘intrinsic’ agent is trained in
an exploratory environment, guided solely by
intrinsic rewards.

• Transfer: The intrinsic agent’s policy is trans-
ferred to a slightly modified ‘task’ environ-
ment. A newly initialized ‘extrinsic’ agent
leverages this transferred policy for guidance
while learning from extrinsic rewards.

The authors posit that this transfer learning ap-
proach aligns with human learning, where knowl-
edge from one domain can accelerate learning in
a related domain. In the case of CBET, the agent
learns environment centric knowledge during pre-
training which it can transfer to the task environ-
ment. The transferred intrinsic agent’s policy influ-

ences the extrinsic agent’s policy according to the
following equation:

πTASK(s, a) = σ(fe(s, a) + fi(s, a)) (2.4)

where πTASK(s, a) is the policy used in the task
environment, σ is the softmax function, fe(s, a) is
the extrinsic agent’s policy network, and fi(s, a)
is the intrinsic agent’s policy network. During task
environment training, the exploratory intrinsic net-
work remains fixed while the extrinsic network is
updated. Initially, the exploratory behavior domi-
nates, but as the extrinsic network learns to opti-
mize for rewards, its actions gradually gain influ-
ence.

The original C-BET experiments pitted an IM-
PALA agent guided by C-BET intrinsic rewards
against IMPALA agents using alternative intrinsic
reward strategies. This comparison was conducted
across a diverse set of environments. In several of
these environments, C-BET demonstrated signifi-
cantly higher success rates and extrinsic returns in
both transfer learning and the regular tabula rasa
approaches. These results strongly indicate that
C-BET facilitates effective exploration and policy
transfer to new but related environments, making
it a valuable tool for RL.

2.3 IMPALA

The IMPALA algorithm (Importance Weighted
Actor-Learner Architecture) created by Espeholt
et al. (2018) is a distributed RL algorithm which
utilizes resources efficiently and easily scales up to
thousands of machines. It utilizes an Actor Critic
architecture where the process of learning the pol-
icy π and value function V π is decoupled from the
generation of experiences. This implies that IM-
PALA is an off-policy algorithm where the target
policy π is updated using data collected by a be-
havior policy µ.

2.3.1 Actor-Critic Setup

In IMPALA, a set of actors update their behaviour
policy µ to the latest target policy π from a learner
and interact for n steps in the environment. The
trajectories for these n steps are then sent back
to the learner along with the policy distributions
µ(a|s) through a queue. The learner then uses these
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trajectories to update the policy π and the value
function V π.
Due to the asynchronous nature of the algorithm,

the behaviour policy of an actor can lag behind the
target policy. This discrepancy can lead to an insta-
bility in the calculation of policy gradients which
the authors address using their V-TRACE tech-
nique. This algorithm utilizes importance sampling
to correct for the difference in the behaviour and
target policy.

2.4 DreamerV3

DreamerV3 (Hafner et al., 2023) is a state-of-the-
art RL algorithm that implements model-based
RL using world models. The algorithm develops a
model of the world by learning a state represen-
tation from the environment’s observations. This
state representation is then used to predict fu-
ture states and rewards, enabling the agent to plan
ahead and make informed decisions. Unlike tradi-
tional model-based algorithms like Dyna (Sutton,
1991), the agent never observes the true state of
the environment, instead relying solely on the world
model’s predictions.
When compared to its predecessors (Hafner et

al., 2020, 2022) DreamerV3 introduces several im-
provements, including a better transformation to
handle the large scale of rewards across environ-
ments, discretization of the critic’s value function,
and an entropy bonus to encourage exploration.
Additionally, DreamerV3 uses λ returns which keep
track of the reward across a series of steps which
helps in stabilizing the learning process. All these
changes contribute to the algorithm’s ability to
learn more efficiently across numerous environ-
ments without any environment-specific hyperpa-
rameter tuning.

2.4.1 World Model

The dreamer family of algorithms is built around
the concept of a world model which is implemented
as a Recurrent State-Space Model (RSSM) (Hafner
et al., 2019). In contrast to the traditional Markov
Decision Process (MDP), the RSSM formulates RL
control as a Partially Observable Markov Decision
Process (POMDP) and assumes that the environ-
ment is governed by a latent state ht which is
not directly observable. In order to maintain the

Markov property, the agent must maintain a belief
over the latent state ht given the previous encoded
observations zt−1, actions at−1 and the latent state
ht−1. This belief is parameterized by a determin-
istic recurrent neural network m which is used to
model the latent state ht across several time steps:

ht = m(ht−1, zt−1, at−1) (2.5)

To facilitate the planning process, the world
model also outputs an expected reward rt and
continuation flag ct which indicates whether the
episode has terminated. These variables along with
the latent state ht permit the agent to solely rely
on the world model’s predictions to make deci-
sions. Aside from the recurrent neural network used
to predict the latent state, the world model uses
stochastic neural networks to introduce an element
of randomness in its predictions (Rezende et al.,
2014; Kingma & Welling, 2022). This is perhaps
most pertinent in the encoder q which is a Convolu-
tional Neural Network (CNN) (LeCun et al., 1989)
that processes the input observation xt and model
hidden state ht into an encoded state zt through
reconstruction:

zt ∼ q(zt|ht, xt) (2.6)

The introduction of stochasticity is crucial for
exploration as it allows the agent to sample differ-
ent trajectories and learn from the resulting expe-
riences.

2.4.2 Actor-Critic Setup

DreamerV3 utilizes an actor-critic architecture.
However, unlike traditional setups, the agent re-
ceives input exclusively from the world model’s la-
tent state representation ht, and encoded obser-
vation zt. In order to promote continued explo-
ration within environments characterized by sparse
reward signals, the actor incorporates entropy regu-
larization (Williams & Peng, 1991). This technique
penalizes deterministic policies which could poten-
tially arise in unstable environments.

The critic, in turn, produces an estimate of the
value function which is used to evaluate the quality
of the actor’s policy. The authors make use of two-
hot encoding to discretize the value function which
allows the critic to capture more complex distri-
butions of rewards across environments. Two-hot
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encoding extends the concept of one-hot encoding
to continuous values. A fixed-size array is initial-
ized with zeros; the two entries nearest to the con-
tinuous value being encoded are set to values that
sum to one, with the closer entry receiving a higher
weight.

3 Methods

The original C-BET framework introduced a policy
transfer mechanism for model-free agents, leverag-
ing intrinsic rewards to guide learning. We propose
extending this work to model-based agents, specif-
ically DreamerV3, and assess the transfer learning
approach’s efficacy in environments with sparse re-
wards. IMPALA will serve as our baseline model-
free agent for a performance comparison.

Our hypothesis is that DreamerV3’s world model
will enhance the modeling of environmental inter-
estingness compared to IMPALA, leading to a more
efficient exploration and policy transfer. This hy-
pothesis builds upon the following key points:

• DreamerV3’s world model explicitly represents
the latent state of the environment and its evo-
lution. This grants the agent a deeper under-
standing of environmental dynamics than IM-
PALA, which learns primarily from observa-
tions and rewards.

• DreamerV3’s model-based nature allows it to
simulate the environment without direct inter-
action. This translates to significantly higher
sample efficiency compared to IMPALA, which
necessitates extensive environment interac-
tions for policy learning.

As suggested by Parisi et al. (2021), we will test
our agents in two configurations: a tabula rasa set-
ting where the agent learns from scratch in the tar-
get environment using both intrinsic and extrin-
sic rewards, and a transfer learning setting where
the agent leverages the intrinsic reward learned in
the source environment to accelerate learning in
the task environment with extrinsic rewards. These
two approaches will demonstrate the efficacy of our
transfer learning strategy in sparse reward environ-
ments.

3.1 Intrinsic Rewards

We adopt the intrinsic reward mechanism based
on interestingness proposed by Parisi et al. (2021)
as formulated in Equation 2.3 and utilize pseudo-
counts to estimate the novelty of states. Similar to
the original C-BET paper, we hash the states as
proposed by Tang et al. (2017) to account for sim-
ilar states in complex environments.

Mirroring the C-BET approach, we also ran-
domly reset the counts with a probability of p ≤
1−γi where γi is the discount factor of the intrinsic
reward. This is done to prevent the intrinsic reward
from vanishing as the visitation count increases.
Importantly, these resets occur randomly during
exploration instead of solely at episode bound-
aries. This prevents an artificial bias where initial
states consistently yield higher intrinsic rewards
compared to later states. It’s crucial to acknowledge
that this formulation results in a non-stationary in-
trinsic reward, where the reward for a particular
state can vary over time. Since the intrinsic reward
is used solely for encouraging exploration, this non-
stationarity is not a concern.

3.2 Transfer Learning Architecture

We employ a two-stage transfer learning process
as outlined in Section 2.2. For our IMPALA agent,
we directly replicate the C-BET approach, applying
the softmax operator to the logits of the intrinsic
and extrinsic agent’s actor networks.

However, DreamerV3’s reliance on its world
model necessitates a distinct transfer approach. In-
stead of solely transferring the actor network logits,
we propose a novel method where both the world
model and actor network are transferred for use in
the policy of the agent in the task environment:

πTASK(s,a) = σ(fi(wi(x), a) + fe(we(x), a)) (3.1)

where fi and fe are the actor networks of the
intrinsic and extrinsic agents, x is the observation
of the environment and a are the available actions.
We utilize abstract functions wi and we to denote
the output of the respective agents, which is then
fed into their actor network to determine the policy.

This strategy leverages the world model’s learned
environmental dynamics to guide the policy trans-
fer process. Crucially, our modification operates at
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a high level of abstraction, allowing its application
across diverse world model architectures. We theo-
rize that this modification will enhance the transfer
learning process, resulting in superior performance
within the task environment.

3.3 Environments

To test our agents, we will evaluate their perfor-
mance on the Minigrid worlds (Chevalier-Boisvert
et al., 2023) and Crafter (Hafner, 2021) environ-
ments. These environments are known for their
sparse reward structures, making them ideal for as-
sessing the efficacy of our tabula rasa and transfer
learning approaches.

3.3.1 Minigrid Worlds

The Minigrid suite offers a collection of procedu-
rally generated, grid-based environments designed
to evaluate the generalization abilities of RL agents
(Chevalier-Boisvert et al., 2023). Agents operating
in these environments must navigate rooms, gather
keys, and unlock doors in an orthogonal maze to
complete their goal. These environments pose a
significant challenge for traditional RL algorithms
since rewards are only provided upon goal comple-
tion. Furthermore, the agent has limited visibility
with only the region in front of it visible necessitat-
ing a robust exploration strategy.

Figure 3.1: Minigrid environments: Doorkey
(left) and Unlock (right). The agent’s observa-
tions (light coloured squares) consist of a 7 × 7
grid infront of it.

Our main task environment will be ‘Unlock’.
Here, the agent must locate a key within a two-
room layout and unlock a door. This environment
will be used for evaluating both the tabula rasa

agent and the transfer agent after pre-training. The
exploration environment will be ‘Doorkey’. While
retaining the key and door elements, the objective
shifts. The agent must additionally reach the green
square in the bottom-right of the maze. Moreover,
the color of the key and door remain fixed to yellow
and the middle wall can shift locations. This envi-
ronment will be used for pre-training the transfer
agent to assess its ability to generalize to novel con-
figurations.

3.3.2 Crafter

Crafter presents a procedurally generated envi-
ronment where agents must demonstrate complex
planning and execution to gather resources, craft
items, fend off hostile entities, and construct struc-
tures to achieve specific goals (Hafner, 2021). Suc-
cess in Crafter requires the ability to handle multi-
step tasks effectively. The agent’s action space is
limited to a discrete set including movement, re-
source gathering, and item crafting. The episode
only ends when the agent reaches zero health
points. Rewards are sparse, granted only upon
achievement completion, with smaller rewards for
health gains or losses to promote survival. Crafter
offers 22 achievements in total, with a spectrum of
difficulty ranging from crafting basic tools to at-
taining diamonds. The environment provides par-
tial observability, with the agent’s view confined to
a small grid centered on its position. Notably, this
view is direction-independent, reducing the number
of unique states to be accounted for.

A significant strength of the Crafter environment
is its standardized budget of one million environ-
ment frames. This allows for direct performance
comparisons across research papers, streamlining
the evaluation of different agents. For our exper-
iments, we will pre-train transfer learning agents in
a single environment (fixed seed) and subsequently
assess their performance in environments with ran-
domized seeds. We believe this approach sufficiently
tests the agents’ ability to generalize their acquired
knowledge to novel configurations, providing a mea-
sure of their transfer learning capabilities.

3.4 Experimental Setup

Our tabula rasa agents will be receive a computa-
tional budget of one million steps for training in the
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Figure 3.2: Crafter environment. The agent is
provided a top down view of the game with
statistics at the bottom.

task environment. Conversely, our transfer learning
agents will be pre-trained in the exploratory en-
vironment for one million steps before being fine-
tuned in the task environment for an additional one
million steps.

We do not perform any hyperparameter tuning
for our agents, opting to use the default settings
provided by the original C-BET and DreamerV3
papers. Nonetheless, we still need to tune the in-
trinsic strength coefficient for tabula rasa agents.
This coefficient controls the balance between intrin-
sic and extrinsic rewards, influencing the agent’s ex-
ploration behavior. Refer to the Appendix for our
tuning methodology and findings.

3.5 Evaluation Metrics

For both Minigrid and Crafter environments, we
will evaluate our agents based on their cumulative
extrinsic reward also known as the return. This
metric allows us to determine the agent’s overall
performance in the environment, capturing its abil-
ity to complete tasks and maximize returns. We uti-
lize several evaluation episodes to assess the agent’s
performance over time as it progressively trains in
the environment.

4 Results

Our results can be observed in Figure 4.1 for both
tabula rasa and transfer learning experiments. We
observe that the minigrid environments are quite
challenging for the agents as all algorithms strug-
gle initially. This phenomenon occurs as a reward
is only issued upon goal completion which makes
feedback sparse. Conversely, performance in the
crafter environments rise steadily as rewards are
provided for every achievement completed. There-
fore, the agent can obtain several rewards in an
episode which provides ample feedback for learning
despite the higher complexity of tasks compared to
the minigrid environments.

Examination of the tabula rasa experiments re-
veals that all DreamerV3 agents outperform the
IMPALA baselines at every timestep. Addition-
ally, CBET appears to be beneficial to Dream-
erV3 as its modified CBET variant obtains slightly
higher returns compared to the original. In mini-
grid, this gap is more pronounced towards the be-
ginning of training. However, the difference dimin-
ishes as training progresses. In contrast, the crafter
environments show a more consistent performance
gap between DreamerV3 and and its CBET vari-
ant. We can thus conclude that CBET is beneficial
for DreamerV3 in both tabula rasa environments.

The transfer learning results paint a similar pic-
ture. The DreamerV3 agents outperform IMPALA
in both environments at nearly all stages of train-
ing. Interestingly, there is a moment towards the
beginning of the minigrid experiment where IM-
PALA outperforms DreamerV3. This phenomenon
is not observed in the crafter environment. This re-
sult might suggest that either the policy transfer
method proposed in Equation 3.1 is ineffective or
the CBET intrinsic reward is not aligned with the
extrinsic reward in the minigrid environment.

Overall, our results suggest that DreamerV3 ob-
tains superior extrinsic return and faster conver-
gence compared to IMPALA. The CBET variant
of DreamerV3 also shows a slight improvement over
the original DreamerV3 in the tabula rasa experi-
ments. We can thus conclude that the DreamerV3
agent is more sample efficient and performs better
in sparse reward environments compared to IM-
PALA. The CBET variant of DreamerV3 further
enhances its performance in these environments by
providing an additional intrinsic reward signal to
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Figure 4.1: Results of the experiments. Mean extrinsic return plotted with standard error. Transfer
learning experiments only contain the CBET variants of the algorithms.

guide exploration and search for interesting states.

5 Discussion

DreamerV3’s performance, particularly its supe-
riority over IMPALA, underscores its impressive
sample efficiency. The enhanced sample efficiency
is largely attributable to DreamerV3’s ability to
learn and simulate the environment dynamics inter-
nally through its world model, which significantly
reduces the need for extensive interaction with the
environment for policy learning. This is in contrast
to IMPALA, which relies heavily on direct envi-
ronment interactions, thus necessitating a greater
number of samples and computational resources.

The CBET variant of DreamerV3 demonstrates
an additional performance boost over the standard
variant. This improvement suggests that the intrin-
sic rewards provided by the CBET mechanism in-
troduce valuable knowledge to the model, knowl-
edge that is otherwise challenging for the world
model to acquire through extrinsic rewards alone.
The intrinsic rewards effectively guide the agent to

explore novel states, thereby enriching the learn-
ing process with diverse experiences that the world
model may not capture without such motivation.

A notable observation in the minigrid transfer
experiment is the brief period where IMPALA out-
performs DreamerV3. This anomaly hints at poten-
tial issues with the proposed policy transfer mecha-
nism. It is plausible that the current approach does
not adequately facilitate the transfer of learned
policies. Future investigations could explore frac-
tional transfer methods, selectively resetting and
retraining components of the world model while
keeping others fixed (Sasso et al., 2021). This strat-
egy might enhance the effectiveness of policy trans-
fer by maintaining stability in parts of the model
that generalize well across tasks.

Despite DreamerV3’s overall superior perfor-
mance, both the standard and CBET variants fall
short of the extrinsic rewards reported in the origi-
nal DreamerV3 paper (11.7 ± 1.9). This discrep-
ancy can be attributed to the constrained plan-
ning ratio used in our experiments, compared to the
original paper’s. The higher planning ratio allows
the model to spend more time simulating the en-
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vironment per step, leading to better performance.
Hardware limitations precluded us from employing
such high planning ratios, thereby impacting the
agents’ learning efficacy.
Comparing IMPALA and DreamerV3, while the

latter achieves better performance, it does so at
the cost of significantly increased training time and
parameter count. DreamerV3’s sophisticated world
model demands more computational resources and
longer training periods. In contrast, IMPALA’s
simpler architecture allows for faster training com-
pletion given equivalent computational resources.
This trade-off between performance and computa-
tional efficiency is a critical consideration in choos-
ing between these models for practical applications.
The use of intrinsic rewards and the CBET mech-

anism, despite their benefits, come with limitations.
Tuning the intrinsic strength coefficient is challeng-
ing; if set too high, the agent may focus excessively
on exploration at the expense of task completion,
while if set too low, the intrinsic rewards fail to
sufficiently drive exploration. Furthermore, CBET
might not be suitable for all environments. For
instance, in tasks requiring stable behavior, such
as autonomous driving, CBET-induced exploration
could lead to unsafe actions.
Future research directions include developing

an intrinsic strength coefficient scheduler akin to
learning rate schedulers. This scheduler would start
with a high intrinsic motivation to encourage explo-
ration and gradually reduce it to promote exploita-
tion. This approach, potentially coupled with the
ADAM optimizer (Kingma & Ba, 2014), could mit-
igate the need for extensive tuning. Additionally,
examining the interaction of intrinsic reward tech-
niques with various transfer learning methods, such
as fractional transfer, could provide deeper insights.
Testing these approaches in more complex environ-
ments, such as Minecraft or robotics, and improv-
ing the interpretability of reinforcement learning al-
gorithms to better understand the agents’ decision-
making processes are also promising avenues for
further investigation.

6 Conclusion

Ultimately, while DreamerV3 and its CBET vari-
ant demonstrate significant advantages in sample
efficiency and performance in sparse reward en-

vironments, they also present challenges in com-
putational demands and applicability across dif-
ferent tasks. Our experiments show that Dream-
erV3 outperforms IMPALA in terms of learning ef-
ficiency and overall performance, particularly when
enhanced with intrinsic rewards through the CBET
mechanism. However, this improved performance
comes at the cost of significantly increased training
time and computational resources due to the com-
plex world model architecture. Furthermore, the
brief superior performance of IMPALA in the min-
igrid transfer experiment suggests potential issues
with the current policy transfer approach, high-
lighting the need for more effective transfer learning
techniques.

Addressing these issues through advanced trans-
fer learning methods, such as fractional trans-
fer, could enhance the robustness of policy trans-
fer. Additionally, developing a scheduler for intrin-
sic reward strength can optimize the exploration-
exploitation balance over time, reducing the need
for extensive parameter tuning. Future research
into the interpretability of reinforcement learn-
ing algorithms is crucial for understanding the
decision-making processes and the impact of in-
trinsic rewards on agent behavior. Moreover, efforts
to reduce the computational resources required for
DreamerV3 without compromising its performance
will make these advanced techniques more accessi-
ble and practical for a wider range of applications.
Through these improvements, we can pave the way
for more robust and versatile reinforcement learn-
ing models that can effectively tackle complex, real-
world problems.
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A Computational Resources

We thank the Center for Information Technology
of the University of Groningen for their support
and for providing access to the Hábrók high per-
formance computing cluster. All experiments men-
tioned in the main report were conducted for 1 mil-
lion steps. Our DreamerV3 models were run on a
single node with an Intel Xeon Gold 6150 CPU and
Nvidia V100 GPU for approximately 12 hours. Our
IMPALA models used a single node with 8 Intel
Xeon Gold 6150 CPUs and an V100 GPU for ap-
proximately an hour and a half.

B Model and Experiment
Hyper-parameters

For DreamerV3, we used the implementation pro-
vided by the authors. Conversely, we used the
TorchBeast implementation for IMPALA (Küttler
et al., 2019). We mainly utilize the same hyper-
parameters as described in the original DreamerV3
and IMPALA papers (Hafner et al., 2023; Espeholt
et al., 2018). The number of actors which interact
with the environment in IMPALA were reduced to
8 due to the limited resources available to us. Like-
wise, we had to carefully select the planning ratio in
DreamerV3 which determines the amount of time
the model spends simulating the environment. We
used a planning ratio of 32 in Minigrid and a higher
value of 64 in the more complex Crafter environ-
ment. Both algorithms share the same evaluation
strategy. 8 Evaluation episodes were scheduled ev-
ery 10000 steps and the mean extrinsic return was
recorded to obtain the results presented in the main
report.

C Equivalent Training Time
Comparison

We were curious how IMPALA would compare to
DreamerV3 if we were to train them for an equiv-
alent amount of time. We conduced an experiment
in Crafter where both DreamerV3 and IMPALA
were augmented with CBET and given a time bud-
get of 15 hours. As seen in Figure C.1, DreamerV3
still manages to outperform IMPALA in terms of
extrinsic reward. These findings attest to the high

Figure C.1: Equivalent Training Time Compar-
ison between IMPALA and DreamerV3.

Figure D.1: Impact of Planning Ratio on Dream-
erV3 with CBET in Crafter.

sample efficiency of DreamerV3. Nonetheless, it is
important to note that IMPALA can be efficiently
scaled to use more resources and potentially out-
perform DreamerV3 in the same time frame. The
best choice of algorithm will depend on the avail-
able computational resources and the desired train-
ing time.

D Impact of Planning Ratio

We wished to determine the effect of the interaction
between the planning ratio and the use of CBET
on the performance of DreamerV3. We hypothe-
sized that as the planning ratio increases, the gap
between the performance of DreamerV3 with and
without CBET would decrease. We arrived at this
conclusion because a higher planning ratio allows
the model to spend more time simulating and un-
derstanding the environment per step, potentially
making the intrinsic rewards redundant.

To test our hypothesis, we performed a grid
search in the Crafter environment using Dream-
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erV3 with and without CBET. As the training time
drastically increases with higher planning ratio, we
applied a time limit of 24 hours for each configu-
ration along with a limit of 1 million steps. The
results of this experiment are shown in Figure D.1.
We observe that the gap between returns appears
to decrease as the planning ratio increases. With
a planning ratio of 1024, there is no substantial
difference between the performance of DreamerV3
with and without CBET. However, we refrain from
drawing definitive conclusions from this experiment
due to our lack of data points and computational re-
sources. We severely underestimated the real world
time required during the planning phase of the
model. As a result, the experiments were forced to
terminate before reaching the desired number of
steps.

E Intrinsic Reward Scaling

To prevent the agent from focusing excessively on
exploration at the expense of task completion, we
needed to scale the intrinsic reward before adding
it to the extrinsic reward. If this constant factor c
is set too high, the agent will neglect its task. Con-
versely, if c is set too low, the intrinsic rewards may
not sufficiently drive exploration. We performed a
grid search to find the optimal scaling factor among
our candidates across both environments and algo-
rithms. Figure E.1 shows the results of this process.
We selected the scaling factor that yielded the best
performance in each case at the end of the training
period. The best scaling factors were:

1. IMPALA in Minigrid: 0.0025

2. DreamerV3 in Minigrid: 0.0025

3. IMPALA in Crafter: 0.005

4. DreamerV3 in Crafter: 0.001
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Figure E.1: Results of the grid search for the optimal intrinsic reward scaling factor c. Extrinsic
returns plotted with standard errors.
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