
Sparse Rewards Reinforcement Learning:

Addressing Vanishing Intrinsic Rewards in

Change-Based Exploration Transfer

Bachelor’s Project Thesis

Diana-Maria Arapu, s4729722, d.arapu@student.rug.nl,

Supervisor: R. Fernandes Cunha

Abstract: Exploration is one of the main challenges in sparse rewards reinforcement learning.
The Change-Based Exploration Transfer (C-Bet) method leverages intrinsic motivation to learn
an exploration policy that mitigates the lack of external rewards and guides exploration. The
agent receives a higher intrinsic reward when visiting less frequented areas and while performing
actions that change the environment. However, because these intrinsic rewards are solely relied
upon to learn the exploration policy, they diminish over time and eventually vanish. This study
proposes a novel approach to address this issue by introducing a time-variant component to the C-
Bet intrinsic reward. The modified algorithm was evaluated in various MiniGrid environments,
procedurally-generated gridworlds that present exploration challenges due to sparse rewards.
The results indicate that the modified algorithm improves exploration in some environments
compared to the original C-Bet algorithm. However, its performance depends on the structure of
the environment, showing limited generalization. Nonetheless, this improvement highlights the
potential for more effective exploration strategies that rely on intrinsic motivation.

1 Introduction

Exploration is one of the main challenges in re-
inforcement learning (RL) as it requires building
an agent that behaves human-like when interacting
with an environment (Parisi et al., 2021). This may
be difficult, especially regarding real-world prob-
lems, where rewards are sparse or nonexistent. Sev-
eral exploration-based algorithms inspired by hu-
man learning have been employed to solve tasks
in such settings. Human behavior is influenced by
two distinguished processes, namely extrinsic and
intrinsic motivation (Ryan and Deci, 2000). While
extrinsic motivation refers to acting in a certain
way due to an externally provided reward, intrinsic
motivation denotes “doing something because it is
inherently interesting” (Dohare et al., 2023). In the
context of RL, extrinsic motivation is represented
by well-defined rewards received by the agent as
it is approaching a specified goal, therefore engag-
ing in task-driven exploration (Parisi et al., 2021).
However, such rewards may be lacking in sparse
reward environments. One way to solve this issue

is to use intrinsic motivation to encourage explo-
ration in a task-agnostic manner (Barto, 2012). The
first uses of intrinsic rewards in RL involved imple-
menting forms of curiosity or exploration bonuses
(Schmidhuber, 1991; Sutton, 1991). In later ap-
plications, the intrinsic reward may be charac-
terized based on two components of exploration:
an agent-centric component and an environment-
centric component (Parisi et al., 2021).

Agent-centric exploration relies on the agent’s
own beliefs to encourage the visitation of unseen
and surprising states in the environment. Count-
based exploration methods employ an agent-centric
component, namely the visit counts, guiding the
agent towards less visited state-action pairs (Tang
et al., 2017). However, Bellemare et al. argue that
visit counts are ineffective in practical settings, as
states are hardly ever revisited (2016). They pro-
pose an alternative, the Count algorithm, which
introduces an intrinsic reward based on pseudo-
counts. Pseudo-counts are derived from a density
model over the state space, which outputs proba-

1



bility distributions representing the likelihood of a
state to be visited. When a state is encountered, the
density model’s prediction for that state increases,
corresponding to a unit increase in pseudo-count.
On the other hand, environment-centric explo-

ration directs the agent towards inherently inter-
esting states within the environment. Emphasiz-
ing changes in the environment rather than visi-
tation counts may aid the agent in learning a pol-
icy that effectively generalizes across an extensive
state space. This approach is particularly useful
in procedurally-generated environments (PGEs),
where the agent faces the same task but en-
counters a different environment layout in each
episode(Raileanu and Rocktäschel, 2020).
While these algorithms aim to mitigate the ab-

sence of extrinsic rewards, Parisi et al. argue that
the commonly-used task-agnostic exploration setup
is impractical and inconsistent with human-like
exploration (2021). This approach assumes that
agents do not utilize experience from previous en-
vironments when exploring new ones. In contrast,
humans use their prior knowledge to develop new
and improved strategies. The authors propose a
novel algorithm, Change-Based Exploration Trans-
fer (C-Bet), which employs a more realistic setup
composed of two phases. In the first phase, the ex-
ploration phase, the agent interacts with one or
many environments without an extrinsic goal, thus
engaging in task-agnostic exploration and learning
an exploration policy based on intrinsic rewards.
In the second phase, the agent explores new, un-
seen environments in a task-specific manner, using
the knowledge transferred from the exploration pol-
icy along with extrinsic rewards. This setup con-
siders exploration from a continual lens, as the
agent’s experience is retained across multiple envi-
ronments. Moreover, the authors introduce a new
intrinsic reward mechanism that includes both an
agent-centric and an environment-centric compo-
nent. The agent-centric component is the visitation
state count, which encourages the exploration of
unseen states, similar to Count-based algorithms.
The environment-centric component is the environ-
ment change count. Specifically, when in a certain
state, the agent may choose an action that alters
the environment, which can be identified by com-
paring the next state to the current state. The au-
thors emphasize that rare changes are inherently in-
teresting, so actions leading to such changes should

be favored, while actions that don’t affect the envi-
ronment should be penalized (Parisi et al., 2021).

This intrinsic reward presents an issue when uti-
lized independently during the exploration phase.
As the agent explores, the counts grow, causing the
intrinsic rewards to decrease until they vanish, pro-
viding no further guidance to the agent. Parisi et al.
propose a solution, to reset the counts with a small
probability. Using random resets instead of episodic
resets ensures that the initial states are not always
favored.

While this implementation has effectively re-
solved the problem of vanishing rewards, there may
be more ways to tackle this issue. For instance,
multiplying the intrinsic reward by a specific factor
could significantly slow down its gradual decrease
over time. Therefore, it would be beneficial for this
factor to be a dynamic function that adjusts over
time. Introducing a time-varying function into the
intrinsic reward may solve the problem of vanish-
ing rewards in the exploration phase. Furthermore,
the counts do not have to be reset. This allows the
agent to keep track of all visited trajectories, mim-
icking how humans rely on their past experience to
benefit exploration.

The primary goal of this study is to assess how
scaling up the intrinsic reward function by a time-
variant component affects the performance and
speed of convergence of C-Bet with no count re-
sets. Hypothetically, the modified algorithm would
improve exploration and outperform the original
C-Bet method, showing a higher extrinsic return
at transfer to new environments. To evaluate the
modified algorithm’s performance, we compare it to
the original C-Bet algorithm with count resets, as
well as the Count algorithm, which demonstrated a
comparable performance in the original study. Ad-
ditionally, we include two environments not previ-
ously used in C-Bet experiments. These environ-
ments are particularly interesting because taking
actions that produce changes in the environment
may be harmful in these settings. This challenges
the intuition behind the advantage of considering
environment change counts in the intrinsic reward
to enhance exploration.(Nahirnyi, 2022).

2



2 Methods

2.1 Proposed approach

The intrinsic reward used in the C-Bet algorithm,
denoted by ri, is defined as such:

ri(s, a, s
′) =

1

N(s′) +N(c)
, (2.1)

where c(s, s′) is the environment change given a
transition (s, a, s′) and N is the count of changes
and states. A change in the environment is repre-
sented as the difference between 360◦ panoramic
views. These are preferred as they are regarded as
rotation-invariant representations of the states, de-
signed to represent the environment changes rather
than the agent’s state.
The first step in modifying this reward function

is deciding on a time-variant function. We consid-
ered two possible functions: a linear function t or a
logarithmic function ln(t). To decide between these
two functions, we considered the shape of the de-
nominator of the intrinsic reward, N(s′)+N(c). In-
tuitively, in the limit, both functions are linear, as
each count increases by a constant value. However,
taken at an arbitrary timestep, they are not linear,
as the agent may visit the same state or change af-
ter different periods of time. Therefore it would be
more appropriate to use ln(t) in this reward func-
tion. Taking this into consideration, the Modified
C-Bet’s intrinsic reward, denoted by r̂i, is defined
as such:

r̂i(s, a, s
′) =

1 + ln(t)

N(s′) +N(c)
, (2.2)

where t >= 1 represents the time-step since the
beginning of training.
This approach is based on the assumption that

the intrinsic rewards in Eq. 2.1 decrease over time
to the point that they reach zero given enough sam-
ples. The proposed modification in Eq. 2.2 aims to
significantly slow down this decrease to the point
where this would allow for any realistic training
setup to be executed without having the issue of
vanishing rewards. Moreover, this would be done
without resetting the state count or the change
count functions. Hypothetically, keeping track of all
counts in the pre-training phase would allow the
agent to rely on all past experiences, which may
benefit exploration. Moreover, a good exploration

policy may improve the performance of the task-
specific policy at transfer to new environments

2.2 Architectural details

The code is built on the C-Bet implementa-
tion, which is open-sourced and available at
https://github.com/sparisi/cbet/. The C-Bet
algorithm uses IMPALA (Espeholt et al., 2018), an
off-policy actor-critic RL method, both in the pre-
training phase to learn the exploration policy πEXP

and in the transfer phase to learn the task-specific
policy πTASK . The exploration policy is of the form
πEXP (s, a) = σ(fi(s, a)), where σ is the softmax
function and fi a function representing the value of
states V (s) trained on the intrinsic rewards, sug-
gested by the subscript “i”. The task-specific pol-
icy has a similar form, but it additionally integrates
fi as a bias: πTASK(s, a) = σ(fe(s, a) + fi(s, a)),
where fe is trained using extrinsic rewards re, indi-
cated by the subscript “e”. IMPALA distinguishes
itself from other actor-critic methods by employ-
ing multiple actors that operate in parallel, opti-
mising resource utilisation. The actors follow a be-
haviour policy µ to generate trajectories of expe-
rience, which are then fed to a central learner re-
sponsible for learning the value function V π under
the target policy π. Given that the behaviour and
target policies differ, this setup corresponds to an
off-policy learning framework. At the outset of each
trajectory, each actor updates its policy to match
the most recent learner policy and interacts with
the environment over several steps. However, the
learner’s policy may be way ahead of the actor’s
policy, which causes a “policy-lag” between the ac-
tors and learners. Espeholt et al. implemented the
V-trace algorithm to address this issue. This al-
gorithm computes the V-trace targets, which use
truncated importance sampling ratios to correct for
the difference between the two policies. The impor-
tance sampling ratio is given by:

ρt =
π(at|st)
µ(at|st)

, (2.3)

where π represents the target policy and µ denotes
the behaviour policy. The ratios are truncated using
a predetermined threshold to prevent them from
becoming excessively large and potentially destabi-
lizing the training process.

3



The modified C-Bet algorithm shares a nearly
identical implementation with the original, with a
few minor differences. Firstly, the intrinsic reward
is defined by Eq. 2.2. Secondly, the counts in the
intrinsic reward feature a count reset probability of
0. Thirdly, the intrinsic reward coefficient has a dif-
ferent value. This coefficient is used to scale down
the rewards for numerical stability. In the original
C-Bet, this coefficient is set to 0.005. Running the
modified C-Bet with this coefficient shows a big
discrepancy in the intrinsic rewards compared to
C-Bet, notably higher due to scaling by the time-
variant component.To maintain a similar reward
range as the original algorithm, the coefficient for
the modified C-Bet is adjusted to 0.000625. This
specific value was determined by analyzing the in-
trinsic rewards of both algorithms when trained in
one of the environments (see Appendix A).

2.3 Environments

MiniGrid is a library featuring procedurally-
generated environments (PGE) where agents solve
various tasks by interacting with objects in a 2D
gridworld (Chevalier-Boisvert et al., 2023). Each
environment includes objects like keys, doors, and
boxes. Exploration in these environments is chal-
lenging due to the varied layout of each PGE upon
reset and sparse rewards. Specifically, agents only
receive rewards upon reaching the goal, based on
the number of steps taken. Figure 2.1 illustrates
the environments used in this study, corresponding
to the environments proposed by Parisi et al., with
two additions: LavaCrossing and DynamicObsta-
cles. These environments are included because ac-
tions that induce changes may lead to detrimental
outcomes.

2.4 Experimental setup

To ensure a fair comparison between the modified
C-Bet and the original C-Bet algorithm, the ex-
periments closely follow the structure proposed by
Parisi et al.. They analyzed two sets of results, eval-
uating the two policies. For the exploration policy,
they presented three setups, but this research fo-
cuses on two due to specific research objectives.
Moreover, due to limited computational resources,
the number of environments used at transfer is re-
stricted to four instead of ten. The two setups are:

Figure 2.1: The MiniGrid Environments Used in
the Experiments. In most environments, the agent
has to interact with the objects in order to solve the
task. In LavaCrossing and DynamicObstacles, the agent
should avoid the objects in the environment, as inter-
acting with these objects would result in termination.

4



• MultiEnv: The agent is pre-trained on three
environments, namely KeyCorridorS3R3,
BlockedUnlockPickup, and MultiRoom-N4-
S5, sharing one policy across the environments.

• SingleEnv: The agent is pre-trained on a sin-
gle environment, DoorKey8x8 or KeyCorri-
dorS3R3. The exploration policy is learned
separately for each environment.

In each setup, the agent is pre-trained over 25 mil-
lion frames. It is noteworthy that the original ex-
periments used 50 million frames for pre-training.
Due to limited computational resources, this study
employs only 25 million frames, which may impact
the overall performance of the agents. To determine
whether the pre-training policy improves the explo-
ration of the task-specific policy, they transferred it
to three new environments: Unlock, UnlockPickup,
and ObstructedMaze1Dlh. At transfer, the agent
is trained using extrinsic rewards only, while the
exploration policy acts as a fixed bias to promote
interaction. The duration of training varies depend-
ing on the specific transfer environment and it is
illustrated in 2.1.

Environment Frames
Unlock 4 million
UnlockPickup 20 million
ObstructedMaze1Dlh 20 million

Table 2.1: Duration of Extrinsic Rewards Train-
ing (in frames) for Different Environments

The policies are evaluated by the following crite-
ria:

• Unique interactions: Actions that result in
novel environment changes, such as picks,
drops, or toggles. Interactions are computed
by converting the environment state to its
string representation and comparing the cur-
rent string with the previous one. A change in
the state representation indicates an interac-
tion that alters the environment. To identify
unique interactions, a dictionary is employed
to log all observed changes. Following the pre-
training phase, the agent’s exploration policy
is applied during transfer to monitor unique in-
teractions over 100 episodes across twelve en-
vironments. This evaluation includes ten en-

vironments from the original study and intro-
duces two new environments, Crossing and Dy-
namic Obstacles, to assess the impact of the in-
trinsic reward formulation in scenarios where
rare environmental changes may have adverse
effects.

• Task success rate: The number of episodes
in which the exploration policy reaches goal
states, indicating task completion. This metric
is also recorded over 100 episodes at transfer
to twelve environments, after pretraing.

• Extrinsic return: recorded during training with
extrinsic rewards only.

3 Results

3.1 Pre-training results

Figures 3.1 and 3.2 depict the results after pre-
training in the MultiEnv setup. We choose to focus
on this setup as the Modified algorithm performed
best here. The results from the SingleEnv setup are
reported in Appendix B . Modified C-Bet interacts
less than C-Bet and Count in all environments, as
shown in Figure 3.1. Moreover, none of the algo-
rithms interact in the LavaCrossingS9N2 environ-
ment.

Environment Modified C-Bet C-Bet Count
Unlock-v0 Higher Lower Highest
UnlockPickup Higher Lower Highest
BlockedUnlockPickup Higher Lower Highest
KeyCorridorS3R3 Lower Higher Highest
ObstructedMaze-1Dlh Higher Lowest Lower
LavaCrossingS9N2-v0 Low Low Low
Dynamic-Obstacles-6x6 Higher Lower Higher

Table 3.1: Task Success Rates Comparison be-
tween Different Algorithms in Specific Environ-
ments

Despite having fewer unique interactions, Modi-
fied C-Bet demonstrates a competitive performance
with regard to the task success rate, surpassing
C-Bet and occasionally Count in several cases, as
shown in Figure 3.2. Table 3.1 provides a compar-
ison of task success rates among the algorithms,
highlighting the environments where Modified C-
Bet performs well. This algorithm has a higher task
success rate than C-Bet in five environments. How-
ever, Count outperforms Modified C-Bet in three

5



of these environments, namely Unlock-v0, Unlock-
Pickup, and BlockedUnlockPickup. Furthermore,
Modified C-Bet shows a low task success rate com-
pared to the other algorithms in KeyCorridorS3R3,
which is one of the environments used during pre-
train. Finally, Modified C-Bet outperforms both C-
Bet and Count in the ObstructedMaze-1Dlh when
it comes to task success rate. As for the two ad-
ditional environments, LavaCrossingS9N2-v0 and
Dynamic-Obstacles-6x6, all algorithms have a rel-
atively low success rate, especially in LavaCross-
ingS9N2. Count and Modified C-Bet have a com-
parable performance in terms of success rate in the
Dynamic-Obstacles environment, outperforming C-
Bet.

3.2 Transfer results

The policies learned during pre-training are trans-
ferred to three environments, as described in Sec-
tion 2.4. Figure 3.3 shows the moving average of the
extrinsic return at training using the task-specific
policy with the exploration policy as a bias. Firstly,
the results in the Unlock environment show that the
Modified algorithm has a faster convergence than
C-Bet in the Multienv setup and a comparable per-
formance in the Corridor setup. However, in the
Doorkey setup, the Modified algorithm has a slower
convergence than both C-Bet and Count. More-
over, all three algorithms have a chaotic perfor-
mance in the UnlockPickup and ObstructedMaze-
1Dlh environments, as the lines fluctuate irregu-
larly. Although these results are unstable, it can
be observed that the Modified algorithm is slower
to converge than C-Bet and Count in four out of
the six setups. Only in the Multienv setup of the
ObstructedMaze environment does Modified C-Bet
outperform C-Bet in terms of speed of convergence,
as it is illustrated in Figure 3.3.

4 Discussion

The pre-training results were designed to evaluate
the exploration policy learned during pre-training
with intrinsic rewards. The transfer results aim to
determine whether the exploration policy improves
the task-specific policy at transfer to new environ-
ments. We will discuss the results obtained in Sec-
tion 3.

4.1 Pre-training results

Modified C-Bet showed a higher task success rate
than C-Bet in five environments, suggesting an im-
provement over the original algorithm. Moreover,
in three of these environments, namely Unlock, Un-
lockPickup and BlockedUnlockPickup, Modified C-
Bet’s performance is closer to Count’s performance
rather than C-Bet’s. This observation hints to a
potential similarity between Modified C-Bet and
Count. To explore this idea further, we analyze the
intrinsic reward defined in 2.2. In this formulation,
the state counts (N(s′)) increase faster than the
change counts (N(c)). For every action, the state
changes, leading to an increase in the state count.
However, not all actions lead to a change in the en-
vironment (e.g. forward). Unlike C-Bet, which re-
sets both counts, Modified C-Bet omits resets, re-
sulting in N(s′) >> N(c) over time, such that the
change counts become irrelevant. Consequently, in
the long run, Modified C-Bet behaves similarly to
Count.

Count prioritizes state convergence in familiar
environments, as noted by (Parisi et al., 2021),
leading to high success rates in environments like
Unlock, UnlockPickup, and BlockedUnlockPickup
but struggles in unfamiliar environments such
as ObstructedMaze-2Dlh and ObstructedMaze-
2Dlhb.The Modified C-Bet algorithm shows a re-
semblance to Count in the Unlock, UnlockPickup
and BlockedUnlockPickup environments, having
low interactions and a high task success rate. How-
ever, in environments like ObstructedMaze-2Dlh
and ObstructedMaze-2Dlhb, Modified C-Bet di-
verges from Count.

In this scenario, Modified C-Bet shows results
that differ from Count, having low interactions and
a low success rate. These differences can be at-
tributed to the initial influence of change counts
in the intrinsic reward. Additionally, Modified C-
Bet’s performance differs from Count in KeyCor-
ridorS3R3 and ObstructedMaze-1Dlh. Although
KeyCorridor is among the environments used for
pre-training, Modified C-Bet shows a notably lower
task success rate compared to both C-Bet and
Count. This disparity may stem from KeyCorri-
dor’s complex structure with numerous objects rel-
ative to the state space. In such an environment,
the change counts are more important, and their
diminished impact on the reward may undermine

6



Figure 3.1: Unique Interactions at the Beginning of Transfer to 12 Environments, after Pre-training
in Multienv using C-Bet, Count, and Modified C-Bet. At transfer, a random agent was tested as well.

7



Figure 3.2: Task Success Rate at the Beginning of Transfer to 12 Environments, after Pre-training
in Multienv using C-Bet, Count, and Modified C-Bet. At transfer, a random agent was tested as well.

8



Figure 3.3: Extrinsic Return during Task-specific Learning Using Transferred Policies from three
Setups: Multienv, Doorkey, and Corridor. The subplots show the moving average of the extrinsic return
for three algorithms: C-Bet, Count, and the Modified algorithm.

9



Modified C-Bet’s performance. Conversely, in en-
vironments with a lower ratio of objects to states,
such as ObstructedMaze-1Dlh, Modified C-Bet out-
performs both C-Bet and Count, indicating that
the initial impact of change counts can be advan-
tageous.
Furthermore, introducing new environments like

LavaCrossing and Dynamic-Obstacles reveals in-
teresting insights. In LavaCrossing, there are no
unique interactions for any algorithm due to the
way these interactions are defined and the environ-
ment structure. This environment consists of six
lava tiles, which terminate the episode in failure,
and a goal state. Therefore the agent cannot pick
up, drop, or toggle any objects, which would be the
only possible way to change the environment and
have a unique interaction. The task success rate in
LavaCrossing is low for all algorithms, making it
inconclusive whether change counts in the intrin-
sic reward are detrimental. In Dynamic-Obstacles,
where the optimal strategy involves minimal object
manipulation to avoid interactions, Modified C-Bet
aligns closely with this behavior, exhibiting low in-
teractions and high task success rates. This behav-
ior contrasts with C-Bet’s lower task success rate,
suggesting that actively changing the environment
might not be advantageous in Dynamic-Obstacles.

4.2 Transfer results

In the Transfer phase, particularly in the Unlock
environment within the Multienv setup, Modified
C-Bet has faster convergence compared to C-Bet.
This trend corresponds with their respective per-
formance in task success rates as described in the
pre-training results. Similar observations hold for
other setups, specifically, DoorKey and KeyCorri-
dor, detailed in Figures B.3 and B.4 in Appendix
B. These findings suggest that Modified C-Bet’s ex-
ploration policy enhances extrinsic return during
transfer in environments where it previously exhib-
ited high task success rates.
However, the results in environments like Unlock-

Pickup and ObstructedMaze exhibit erratic per-
formance across all algorithms. Fluctuations ob-
served in the Multienv and DoorKey setups indi-
cate instances of policy collapse, characterized by
the worsening of the agent’s performance as it con-
tinues to interact with the environment (Dohare
et al., 2023). The agents seem to suffer from catas-

trophic forgetting, as they forget the good policy
they learned, which is shown by the sudden de-
crease in the extrinsic return. Despite these set-
backs, the agents retain their plasticity, demon-
strating the ability to re-learn optimal policies af-
ter performance dips. Various factors, including ex-
ploration policy duration, model architecture such
as Impala’s off-policy learning, and environment
stochasticity, may contribute to this behavior. De-
spite the instability, Modified C-Bet shows slower
convergence than C-Bet and Count in DoorKey and
KeyCorridor setups in these environments. How-
ever, it outperforms C-Bet in scenarios where its
exploration policy previously led to higher task suc-
cess rates, such as the Multienv setup of Obstruct-
edMaze.

5 Conclusions

This research aimed to determine whether modify-
ing the C-Bet algorithm by adding a time-variant
component to the intrinsic reward would improve
the algorithm’s performance in terms of explo-
ration. Modified C-Bet showed improved perfor-
mance over C-Bet in several environments during
pre-training, particularly aligning with the Count
algorithm’s behavior. It performed well in environ-
ments with fewer objects and larger state spaces
but struggled in visually rich environments. During
the transfer phase, Modified C-Bet demonstrated
faster convergence in setups where it had a high
task success rate during pre-training, but exhibited
instability in others, likely due to policy collapse
and catastrophic forgetting.

Limitations A few limitations are related to how
the experiments were set up. Due to the computa-
tional complexity of the algorithm, we completed
only a single run for the transfer results. Multi-
ple runs could have provided more stable results
and a better analysis of overall behavior. Addition-
aly, the exploration policies were pre-trained for less
than described in the original paper. Increasing the
number of frames used at pre-training may have
improved the exploration policy of the Modified al-
gorithm. Another limitation concerns the general-
ization abilities of the Modified algorithm. The di-
minishing impact of the change counts over time
appears to have influenced the algorithms’ success.

10



Consequently, its performance is highly dependent
on the structure of the environments, having a
lower success rate in visually rich environments and
a higher success rate in environments with a large
state space and few objects. Therefore, Modified C-
Bet does not generalize effectively, which may result
in poor adaptability to new environments.

Future research One idea for future research is
to ensure that the change counts remain a relevant
component in the intrinsic reward over a longer
time. Assuming that, in the limit, the counts will
increase almost linearly, but at different rates, there
may be a parameter that would scale these counts
accordingly. The intrinsic reward could be reformu-
lated as such:

r̃i(s, a, s
′) =

1 + ln(t)

ρN(s′) +N(c)(1− ρ)
, (5.1)

where ρ ⊆ (0, 1). This adjustment would scale down
state counts while scaling up change counts, main-
taining their importance over time. Finding this
hyperparameter may improve the performance of
Modified C-Bet, especially in environments with a
high proportion of objects to states, and enhance
its generalization and overall applicability. How-
ever, we acknowledge that adding such a param-
eter will only delay the point at which state counts
overtake change counts; ultimately, change counts
will still become irrelevant. Nonetheless, this may
be beneficial, as the similarity between Modified C-
Bet and Count showed that using only state counts
may sometimes be an advantage.
Another proposal for future investigations in-

volves the time-variant component of the intrinsic
reward. Instead of relying on mathematical intu-
ition to choose this function, one may first analyze
the shape of the intrinsic reward over training and
use this information to formulate an appropriate
function.
In conclusion, the Modified C-Bet algorithm in-

troduces valuable enhancements to the intrinsic re-
ward mechanism, resulting in improved exploration
in specific contexts. However, its limitations high-
light the need for further refinement to achieve con-
sistent performance across diverse environments.
Nevertheless, introducing time functionality as a
way to navigate vanishing intrinsic rewards may be
worth exploring in the context of sparse rewards
reinforcement learning.

References

Barto, A. G. (2012). Intrinsic motivation and rein-
forcement learning. Intrinsically motivated learn-
ing in natural and artificial systems, pages 17–47.

Bellemare, M., Srinivasan, S., Ostrovski, G.,
Schaul, T., Saxton, D., and Munos, R. (2016).
Unifying count-based exploration and intrinsic
motivation. Advances in neural information pro-
cessing systems, 29.

Chevalier-Boisvert, M., Dai, B., Towers, M.,
de Lazcano, R., Willems, L., Lahlou, S., Pal, S.,
Castro, P. S., and Terry, J. (2023). Minigrid
& miniworld: Modular & customizable reinforce-
ment learning environments for goal-oriented
tasks. CoRR, abs/2306.13831.

Dohare, S., Lan, Q., and Mahmood, A. R. (2023).
Overcoming policy collapse in deep reinforce-
ment learning. In Sixteenth European Workshop
on Reinforcement Learning.

Espeholt, L., Soyer, H., Munos, R., Simonyan,
K., Mnih, V., Ward, T., Doron, Y., Firoiu, V.,
Harley, T., Dunning, I., et al. (2018). Im-
pala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. In
International conference on machine learning,
pages 1407–1416. PMLR.

Nahirnyi, O. (2022). Reinforcement learning
agents in procedurally-generated environments
with sparse rewards.

Parisi, S., Dean, V., Pathak, D., and Gupta, A.
(2021). Interesting object, curious agent: Learn-
ing task-agnostic exploration. Advances in Neu-
ral Information Processing Systems, 34:20516–
20530.

Raileanu, R. and Rocktäschel, T. (2020). Ride:
Rewarding impact-driven exploration for
procedurally-generated environments. arXiv
preprint arXiv:2002.12292.

Ryan, R. M. and Deci, E. L. (2000). Intrinsic and
extrinsic motivations: Classic definitions and new
directions. Contemporary educational psychol-
ogy, 25(1):54–67.

11



Schmidhuber, J. (1991). A possibility for im-
plementing curiosity and boredom in model-
building neural controllers.

Sutton, R. S. (1991). Reinforcement learning archi-
tectures for animats.

Tang, H., Houthooft, R., Foote, D., Stooke, A.,
Xi Chen, O., Duan, Y., Schulman, J., DeTurck,
F., and Abbeel, P. (2017). # exploration: A
study of count-based exploration for deep rein-
forcement learning. Advances in neural informa-
tion processing systems, 30.

12



A Hyperparameter details:
Intrinsic reward coefficient

To find an appropriate coefficient for the modified
algorithm, We looked at the intrinsic reward value
of both C-Bet and the modified version after 12
million frames at pre-training in KeyCorridorS3R3.
First, we estimated the average intrinsic reward af-
ter 12 million frames for both algorithms. Then we
calculated the multiplicative difference and used it
for a factor, leading to a value of 0.00625.

Figure A.1: Moving Average of the Intrinsic Re-
wards achieved by C-Bet and the Modified C-
Bet at Pre-training over 12 million Frames in
the Environment KeyCorridorS3R3.

B Extended results

Figures B.2, B.1, B.4, B.3 illustrate the unique in-
teractions and task success rate from the two Sin-
gleEnv setups, DoorKey and KeyCorridor. Mod-
ified C-Bet consistently exhibits fewer unique in-
teractions compared to C-Bet across all environ-
ments in both setups. Regarding task success rates
in the KeyCorridor setup, Modified C-Bet outper-
forms both C-Bet and Count in four environments.
The lower performance observed in these setups un-
derscores the limitation of pre-training in a single
environment.

13



Figure B.1: Unique Interactions at the Beginning of Transfer to 12 Environments, after Pre-
training in DoorKey8x8 using C-Bet, Count, and Modified C-Bet.

14



Figure B.2: Unique Interactions at the Beginning of Transfer to 12 Environments, after Pre-
training in KeyCorridorS3R3 using C-Bet, Count, and Modified C-Bet.

15



Figure B.3: Task Success Rate at the Beginning of Transfer to 12 Environments, after Pre-training
in DoorKey8x8 using C-Bet, Count, and Modified C-Bet.

16



Figure B.4: Task Success Rate at the Beginning of Transfer to 12 Environments, after Pre-training
in KeyCorridorS3R3 using C-Bet, Count, and Modified C-Bet.

17


