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Abstract

Scattering amplitudes play a critical role in understanding fundamental interactions in
quantum field theory. This thesis delves into the unifying relations for these amplitudes
and applies the BCJ bootstrap method to construct kinematic numerators that respect
the colour-kinematics duality. We began with a detailed analysis of Yang-Mills (gluon)
and pion (NLSM) amplitudes, investigating their duality and behaviour under specific
kinematic conditions. We then applied the BCJ bootstrap method to derive amplitudes for
the gauged nonlinear sigma model, observing a hybrid soft degree where some amplitudes
conform to σ − 0 while others exhibit pion contact terms with σ = 1.

In this work we have developed of a generalised transmutation (GT) operator, which al-
lowed us to generate and analyze mixed amplitudes of scalars and pions interacting through
gluons. The GT operator was validated by computing 6-point amplitudes and tracking
Mandelstam variables, revealing correct results for Yang-Mills-Scalar (YMS) and Nonlin-
ear Sigma Model (NLSM) amplitudes, and uncovering unexpected terms like the 4-point
φ4 amplitude.

We found that while the GT operator reconstructs some interactions observed in the BCJ
bootstrap method, there are contributions to the σ = 0 amplitude that are not generated
by the BCJ bootstrap. We therefore conclude that the BCJ bootstrap does not uniquely
determine amplitudes based solely on the soft degree σ = 0.

Future work could examine how the GT operator acts on higher-derivative corrections in
Yang-Mills theory in order to investigate their compatibility with CK-duality. We also
suggest the possibility of applying GT to other theoretical frameworks, which could land
on mixed theories such as Born-Infeld photons interacting with Maxwell theory photons
through graviton exchange.
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Introduction

The study of quantum field theory has been an active area of research since the 1920s.
One of the first fields to be successfully quantised was the electromagnetic field [1], which
led to the development of the theory of quantum electrodynamics (QED). This theory
was able to explain the existence of relativistic particles, namely photons, which appear
as quantisations of the electromagnetic field. Such an explanation was not possible in the
ordinary theory of quantum mechanics at the time.

With quantum field theory, a new method of calculating the scattering matrix, or S-matrix,
of particle interactions was formulated. The S-matrix relates the initial and final state of
particle processes, allowing for the calculation of interaction probabilities. The elements
of this matrix are known as scattering amplitudes, which can be pertubatively computed
using the famous Feynman diagram approach [2]. These diagrams are a diagrammatic
representation of the scattering process, where each line and vertex can be associated to
a mathematical expression. These associations are called the ‘Feynman rules’, and their
specific form is based on the theory on is studying, as the Feynman rules can be derived
from the interaction Lagrangian Lint.

There are two types of theories that are fundamental to our understanding of particle
interactions. The first is gauge theory, which is a core part of the Standard Model of
particle physics. In this model, three of the four fundamental forces of the universe are
described as interacting particles exchanging gauge bosons, which are referred to as the
‘force carriers’. There are three kinds of gauge bosons, the first being the photon that
mediates the electromagnetic interactions. The second are the W and Z bosons, which are
responsible for mediating the weak interaction. Finally, there are gluons, which mediate
the strong interaction between quarks that are described in quantum chromodynamics
(QCD).

The different interactions above arise from different symmetry groups under which the
gauge field transforms. The standard model interactions are defined by the gauge symmetry
U(1)×SU(2)×SU(3)[3], where each indiviual group is responsible for the electromagnetic,
weak and strong interaction respectively. Associated to each symmetry group is a number
of colours or flavours that dictate the interactions of the theory through the structure
constants of the group fabc.
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Figure 1: Diagrams of the types of self-interactions of gluons (curly lines) and gravitons (double
wavy lines). The self interaction of gravitons arise at every other in the pertubative expansion of
the theory, while gluons are restricted to cubic and quartic self-interactions.

The other fundamental theory is that of gravity, which describes the interactions of the
fourth fundamental force of the universe. Gravity is not incorporated in the standard
model of particle physics due to the fact that it is not straightforward to correctly quantise
the gravitational field. The best theory of gravity that we do have is general relativity,
but a quantisation of this theory leads to divergences of the S-matrix for high energies
(the so-called UV divergences)[4]. Nevertheless, it is possible to formulate these theories
of quantum gravity [5] to study the interactions that arise from it in the hopes of ironing
out these UV divergences [6]. Moreover, the amplitudes of the particles that arise from
the quantisation of the gravitational field are called gravitons. It is also possible to use
graviton scattering amplitudes to aid in the calculations of inspiraling binary black holes
and neutron stars that produce gravitation waves [7, 8].

Gauge theory and gravity are fundamentally different theories. The first describe the
interactions of elementary particles, while the second shapes the curvature of spacetime
and dictates the evolution of the large scale structure of the universe. At a mathematical
level these QFTs give rise to very different types of interactions. It can be shown that
(non-Abelian) gauge theory allows for cubic and quartic self-interactions of gluons through
the Yang-Mills Lagrangian

LYM = −1

4
F a
µνF

aµν , with F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (1)

Gravitons on the other hand, arise from a pertubative expansion of the Einstein-Hilbert
action

L = − 1

16πG

√
−gR, with gµν = ηµν + hµν , (2)

where the amplitudes are typically built from an expansion in hµν [9]. Due to this expan-
sion, we find that there are self-interaction at every order. The self interactions of gluons
and gravitons are displayed in Figure 1.

While in theory it is possible to calculate the scattering amplitudes of gravitons from their
Lagrangian, it is in practice a computational nightmare. Not only do we have to consider
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all the possible self-interactions, but already for each cubic graviton vertex we have to
account for 171 terms [10, 11]. Regardless of this, a great number of simplifications occurs,
which immensely reduces the expression for the resulting amplitude. This behaviour hints
at hidden symmetries at the level of the amplitude that are not visible in the Lagrangian
of the theory. These types of features that are hidden at the level of the Lagrangian, are
the main motivation of the modern S-matrix programme, where scattering amplitudes are
built from first principles such as symmetries, factorisation, and infrared behaviour.

There is a particularly interesting hidden connection in the amplitudes of gauge theory
and gravity. The story starts in gauge theory, where the tree-level amplitudes Atree

m can be
formatted as sums over distinct cubic diagrams

Atree
m ∼

∑
i∈cubic

cini

Di

, (3)

where each diagram is assigned a colour factor ci, a kinematic numerator ni and a denom-
inator Di. It was presented by Zvi Bern, John Joseph Carrasco and Henrik Johansson
[12] that a general property of gauge theory amplitudes is that the kinematic numerators
satisfy the same algebraic identity as the colour factors

ci + cj + ck = 0, ni + nj + nk = 0, (4)

which is known as the colour kinematics (CK) duality. The CK-duality allows for a re-
placement of colour factors by another copy of kinematic numerators

Atree
m ∼

∑
i∈cubic

cini

Di

ci→ñi−−−→
∑

i∈cubic

ñini

Di

∼ Mtree
m . (5)

The objects Mtree
4 that are constructed through this replacement turn out to be the tree-

level graviton amplitudes. This procedure is known as the double copy, which lends its
name to the fact that we are creating a copy of the kinematic numerators, and doubling
it in the expression for the amplitude [13].The relation between the two theories is often
referred to as gravity being the ‘square’ of Yang-Mills, summarised as

Gravity = (Yang-Mills)2. (6)

Remarkably, CK-duality is not limited to gauge and gravity theories; it extends to a
whole web of theories, ranging from effective scalar field theories to supersymmetric field
theories.[14, 15].

The fact that there exist numerators that satisfy the same algebra as the colour factors
is quite remarkable. The search for a kinematic algebra, analogous to the Lie algebra of
the colour factors, is an active area of research [16, 17]. Equally important is the effort to
understand this duality at the level of the Lagrangian [18].

Given a class of field theory, it is not immediately clear that such numerators even exist.
If they do exist, finding expressions for the numerators ni that satisfy CK-duality is a
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nontrivial task, as standard methods like Feynman rules generally do not automatically
produce such numerators. A recent publication by Li, Roest and Ter Veldhuis [19] ap-
proaches the construction of numerators of scalar field theory amplitudes from a group
theory perspective, categorising the representations of the symmetric group Sn that satisfy
the CK-duality conditions and relating them to the representations that the kinematics
live in.

This classification allows for the construction of ‘kinematic building blocks’, out of which
numerators at any order in Mandelstam invariants can be bootstrapped. From these numer-
ators it is possible to construct amplitudes of the gauged nonlinear sigma-model (gNLSM)
that describes pions interacting with gluons. We will refer to this bootstrapping of numer-
ators and amplitudes from the BCJ classifications as the ‘BCJ bootstrap’. The full theory
that is constructed obeys to a soft degree of σ = 0, which indicates that the amplitude
scales as A ∼ p0 in infrared (IR) regime, where p is tuned to 0. However, there is a sub-
sector of amplitudes that can be constructed from this theory that obey a soft degree of
σ = 1.

This hybrid soft behaviour is interesting, as typically theories have a singular soft degree. In
the case of the NLSM and other exceptional effective field theories, it is possible to uniquely
define the theory based on the soft degree of the amplitudes. The soft degree is then
strongly related to the symmetries of these theories. The uniqueness of a theory through
its symmetries and soft theorems makes theories with a hybrid soft degree particularly
intriguing to study [20].

The idea of a relationship between gauge theory and gravity amplitudes first emerged from
string theory through the Kawai-Lewellen-Tye (KLT) relations [21]. These relations show
how closed string (graviton) amplitudes can be expressed in terms of products of open
string (gauge theory) amplitudes.

A different approach of relating the amplitudes within the double copy framework was
proposed by Cheung, Shen and Wen [22]. These Unifying Relations are a set of differential
operators, referred to as transmutation operators T that act on the tree-level amplitudes
of one theory (Aa) to produce (partial) amplitudes of a different theory (Ab)

T · Aa → Ab. (7)

This is a top-down approach that reduces the spin of the particles in the amplitudes to
construct (mixed) amplitudes of a variety of theories. Of particular interest to this work
are the amplitudes of scalar fields coupled to pion fields through gauge interactions, which
can be constructed from a transmutation of Yang-Mills gluon amplitudes.

The aim of this thesis will be to use the framework of unifying relations to construct a new
type of transmutation operator that lands on the amplitudes of the gNLSM constructed
using the BCJ bootstrap. Through this construction, we aim to answer several questions
on transmutations of amplitudes and the amplitudes of the BCJ bootstrap:
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1. How can we construct a transmutation operator that generates amplitudes
for comparison with those derived from the BCJ bootstrap?

2. What types of amplitudes can be derived from a generalised transmutation
operator?

3. How can generalised transmutation operators inform us about the uniqueness
of the theory developed via the BCJ bootstrap?

To answer these questions, we first need a solid understanding of the amplitudes we will be
studying. We begin by analysing Yang-Mills amplitudes in section 1.1, where we will ex-
plain the details of the colour factors and how they can be used to decompose amplitudes.
After the discussion on Yang-Mills amplitudes we turn our attention to pion amplitudes,
described by the nonlinear sigma-model section 1.2. We conclude chapter 1 with a discus-
sion on two topics from the modern amplitudes programme, where we will see that both of
the amplitudes of Yang-Mills theory and the NLSM have interesting properties in certain
kinematic regimes.

Following this, we will take a closer look at the BCJ double copy in section 1.5. Here
we explore the objects that can be constructed using the CK-duality, such as graviton
amplitudes and amplitudes of the so-called ‘biadjoint scalar theory’. Furthermore, we will
discuss how higher-derivative operators can be added to the Lagrangians of gluons and
pions and what this means for the duality between colour and kinematics.

After we have discussed the details of scattering amplitudes and the double copy, we address
the challenge of constructing duality-satisfying numerators in chapter 2. In this section,
we elaborate on the approach of Li, Roest and Ter Veldhuis to construct amplitudes that
contain the hybrid soft degree using the BCJ bootstrap.

Keeping in mind our goal of constructing these amplitudes using transmutation operators,
we dedicate section chapter 3 to discuss the details of the unifying relations of Cheung
and collaborators. We will see how we can construct operators that transmute gluons into
pions scalars coupled to gluon, which will be generalised in chapter 4 with the aim of
landing on the same amplitudes of the BCJ bootstrap. Finally, chapter 5 will be dedicated
to comparing the amplitudes of these two methods and addressing the above research
questions.



Chapter 1

Scattering Amplitudes

We have seen that gluon amplitudes play a fundamental role in the double copy formalism.
The amplitudes are made up of both elements that are essential in the formalism: colour
and kinematics. In the first section of this chapter, we will discuss the theory behind gluon
amplitudes, which is known as Yang-Mills theory. In this discussion, we will take a closer
look at the colour factors and algebra that dictate the theory and its amplitudes.

After discussing gluons, we will turn our attention to the theory and amplitudes of a
different type of particle: pions. This theory, part of a class of particle models known as
Nonlinear Sigma Models (NLSM), is also governed by symmetry groups. However, instead
of focusing on the colour structure as we did with gluons, we will examine the flavour
structure of pions. We will explore how these amplitudes exhibit interesting properties,
such as a flavour-kinematics decomposition and exceptional behaviour in the infrared (IR)
regime.

The properties of scattering amplitudes in the IR regime are then further studied in the
following section on soft theorems.. We find that by tuning the momenta of our external
legs to vanish, we can not only recover general properties of physics such as conservation
of charge and the equivalence principle, but also build up higher-point amplitudes from
lower point amplitudes and heavily constrain the amplitudes of pions.

Throughout this entire work, when talking about scattering amplitudes, we will refer to
tree-level amplitudes of massless, on-shell particles (obeying the EOM of the respective
field with pµp

µ = 0), unless stated otherwise. Many of the properties of amplitudes that
we derive do not easily generalise to loop-level amplitudes, and have sometimes only been
proven to hold at low loop orderS.
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1.1 Gluons - Yang-Mills Theory
1.1.1 Gauge Theories
When studying physics, the first field theory we are introduced to is that of electrody-
namics. After we have familiarised ourselves with Maxwell’s equations, we encounter the
relativistic formulation of this theory that describes a four-potential Aµ whose components
relate to the electric and magnetic field. We discover that different four-potentials can
give rise to the same electromagnetic fields, which introduces us to the concept of gauge-
freedom. The four-potential gives rise to the formulation of the electromagnetic tensor

Fµν = ∂µAν − ∂νAµ. (1.1)

The Lagrangian for Maxwell’s equations (in the absence of any sources) is then given by

L = −1

4
FµνF

µν . (1.2)

In a quantum field theory description, we can quantise the field Aµ after choosing a specific
gauge [2]. The quantisation gives rise to a photon with two polarisation states, as required.
The gauge invariance of electrodynamics is one example of a gauge symmetry.

The generalisation of such field theories is called Yang-Mills theory [23]. These theories
describes massless, spin-1 vector fields Aµ in D dimensions that transform according to
the adjoint representation of a gauge goup G. The above example of such a gauge group
is U(1) which gives rise to the dynamics of the photon field. The group U(1) is an Abelian
group, but we will be investigating non-Abelian gauge groups, such as SU(N). Examples
of interactions that arise from non-Abelian groups are the electroweak interactions which
are described by the gauge group SU(2) × U(1) and QCD, which is described by SU(3).
This last example describes the theory of gluons that we are interested in, but we will keep
our discussion generalised to the group SU(N). The Yang-Mills Lagrangian is denoted as

LYM = −1

4
F a
µνF

aµν , with F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.3)

where g denotes the coupling strength, the index a = 1, 2, . . . , dimG denotes the colour
index of the field Aµ and we use notation where summation over repeated indices is implied.
The structure constants fabc are derived from the defining Lie algebra of SU(N)[

ta, tb
]
= ifabctc, (1.4)

where ta denote the generators of the Lie group.

The Lagrangian (1.3) is invariant under gauge transformations of the fields [24]

Aa
µ → Aa

µ +
1

g
∂µθ

a − fabcθbAc
µ. (1.5)
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To construct amplitudes from this theory we first have to remove the gauge redundancy
through the process of gauge-fixing1. We will choose to work in the Feynman- ’t Hooft
gauge ξ = 1. The scattering amplitude, sometimes referred to as the S-matrix, of the
theory will also be invariant under gauge transformations.

As a consequence of this gauge invariance, for external on-shell particles the polarisation
eµ(k) of some gluon with momentum k can be decoupled from the amplitude. A gauge
transformation eµ(k) → eµ(k) + kµ then leads to the vanishing of the amplitude

A(k) = eµ(k)Aµ(k)
eµ(k)→eµ(k)+kµ−−−−−−−−−→ kµAµ(k) = 0. (1.6)

This vanishing of the amplitude is referred to as the Ward identity [25].

1.1.2 Interactions and Amplitudes
Now that the Lagrangian of Yang-Mills theory has been properly defined, we look towards
creating the amplitudes that arise from it. The type of interactions that arise from the
Lagrangian are cubic and quartic interactions. The Feynman rules of these interactions
are given by [2]

a, µ

b, νc, ρ

= gfabc [gµν(k1 − k2)
ρ + gνρ(k2 − k3)

µ + gρµ(k3 − kν
1)] , (1.7)

a, µ

d, σ

b, ν

c, ρ

= −ig2


fabef cde (gµρgνρ − gµσgνρ)
+facef bde (gµνgρσ − gµσgνρ)
+fadef bce (gµνgρσ − gµρgνσ)

 . (1.8)

With these Feynman rules, we can construct an m-point amplitude by considering the
different possible topologies that can be constructed from the 3- and 4-point diagrams. For
reasons that will be explained shortly, we will specifically be looking to create diagrams
out of the 3-point vertex, which we call cubic diagrams.

At tree level, there are (2m− 5)!! possible cubic distinct diagrams. This number is found
by considering that we can construct higher-point diagrams by attaching a new external

1A thorough method of gauge-fixing is the Faddeev-Popov method. The treatment requires introducing
new fields to the Lagrangian, whose excitations are called Faddeev-Popov ghosts. Luckily (or by design of
the universe) the contribution of these ghosts exactly cancel other unwanted/unphysical contributions.[24]
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leg to a lower-point diagram. Given an n-point diagram, there are (2n − 3) edges onto
which we can attach a new leg. Therefore the number of cubic diagrams at a given order
is given by

1× 3× 5× · · · × (2n− 3) = (2m− 5)!!. (1.9)
An example that we will consider shortly is the m = 4-point amplitude, which will have 3
distinct cubic diagrams, constructed out of the three possibilities of attaching a fourth leg
to a 3-point diagram. The three distinct diagrams are shown in Figure 1.1.

s

1

2 3

4

t

2

3 1

4

u

3

1 2

4

Figure 1.1: Feynman diagrams that depict the three possible 4-point cubic diagrams. The
momenta of the propagators are indicated by the Mandelstam invariants s, t and u.

The term ’distinct’ means that each diagram has a unique propagator contribution Di.
Moreover, each diagram has its own colour factor ci made out of contractions of structure
constants and kinematic numerator ni that contains information about the momenta pi
and the polarisations ei of the external legs.

After assigning a colour factor, kinematic factor, and propagator to each distinct diagram,
the total amplitude can then be organised as a summation over all diagrams given by

Atree
m = −igm−2

(2m−5)!!∑
i=1

cini

Di

, (1.10)

where the sum runs over the possible cubic diagrams. A useful example is the 4-point
gluon amplitude. There are two topologies that contribute to the amplitude, namely the
s, t and u exchange diagrams and a 4-point contact diagram. The full tree-level 4-point
amplitude can be written as

iAtree
4 = g2

(nscs
s

+
ntct
t

+
nucu
u

)
, (1.11)

where the Mandelstam variables indicate the exchange channels depicted in Figure 1.1 and
which are defined as s = (p1+p2)

2, t = (p2+p3)
2 and u = (p1+p3)

2. You may wonder what
happened to the 4 point contact diagram of equation (1.8). Such diagrams are reformatted
in terms of cubic vertices by multiplying and dividing the numerator of the contact diagram
by one of the propagators, i.e. s

s
. This already implies that the formulation of the kinematic

numerators is not unique, as the contact vertex can be absorbed into each of the ni.

We will return to the example of the 4-point gluon amplitude in our discussion of the BCJ
double copy in subsection 1.5.1, but first we will need to deepen our understanding of the
details of the colour algebra and structuring of the theory.
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1.1.3 Colour factors and algebra
When we are discussing the duality between colour and kinematics, the colour factors ci
and their associated algebra are fundamental. To fully understand their significance, let’s
delve into some of the essential details and key concepts that will be referenced throughout
this work.

We first start with the statement that for gauge theories the fields transform according
to representations of a gauge-group G. Inherent to this Lie group is the (Lie) algebra of
it’s generators ta and the structure constants fabc. The structure constants are defined
through the Lie product, which for us physicist is the commutator of the matrices of the
generators [

ta, tb
]
= ifabctc, (1.12)

where the summation over the index c is implied. The elements of the Lie algebra satisfy
a Jacobi identity [

ta,
[
tb, tc

]]
+
[
tb, [tc, ta]

]
+
[
tc,
[
ta, tb

]]
= 0, (1.13)

which can be rewritten in terms of structure constants as

fadef bcd + f bdef cad + f cdefabd = 0, (1.14)
(ta) k

i (t
b) j

k − (tb) k
i (t

a) j
k = ifabc(tc) j

i . (1.15)

It should be noted that the generators can be normalised in different ways. The above
follows the normalisations of Tr

[
tatb
]
= δab/2, but when calculating amplitudes this leads

to cumbersome factors of 2 that can be avoided when renormalising the generators and
structure constants as

T a ≡
√
2ta. f̃abc ≡ i

√
2fabc. (1.16)

The identities of equation (1.14) are then redefined as

f̃adef̃ bcd + f̃ bdef̃ cad + f̃ cdefabd = 0, (1.17)
(T a) k

i (T
b) j

k − (T b) k
i (T

a) j
k = f̃abc(T c) j

i . (1.18)

Note that the summation over the index k equates to taking the trace of these products of
matrices, Tr

(
T aT b

)
.

When we construct the amplitude, each diagram has an associated colour factor ci which
is constructed out of contractions of representations of structure constants fabc that are
associated to the vertices of the diagrams. In the next section, we will construct the colour
factors explicitly and see how these allow us to remove some of the redundancy in the
number of diagrams that we have to sum over in order to construct amplitudes.
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1

2

3 4 5

6 7

m− 1

m

Figure 1.2: Feynman diagram of m-point gluon amplitude. The colour factor can be deduced
by following a path from leg 1 through leg m. [15]

1.1.4 Colour-Ordered Partial Amplitudes
The number of diagrams at a given multiplicity can be reduced by employing relations
between diagrams such as the Jacobi identity. At m-point, the (2m − 5)!! diagrams each
have their own colour factor ci, but there are (2m− 5)!!− (m− 2)! independent Jacobi
relations of the form (1.17).

Besides the Jacobi identities, through the definition of the algebra
[
ta, tb

]
= ifabctc we see

that the interchanging of a and b will result in a sign flip for the structure constant. Take
for example the four point diagram gs that indicates the s-channel exchange. This specific
ordering of the external legs leads to a colour factor of c(gs) = f̃a1a2bf̃ ba3a4 . Flipping legs
1 and 2 still results in an s-channel diagram, g′s, but with a new colour factor c(g′s) =
f̃a2a1bf̃ ba3a4 . We therefore realise that there is an anti-symmetry under the exchange of
these two legs c(g′s) = −c(gs).

For an adjoint-only theory, any colour factor can be written as a product of adjoint gen-
erator matrices (f̃a)bc ≡ f̃ bac. By following a path from leg 1 to leg m of a given diagram
and denoting the corresponding (commutators of) f̃a’s of the vertices we encounter along
the path, we can denote the colour factor of any diagram. For example, the diagram in
Figure 1.2 results in the colour factor(

f̃a2
[
f̃a3 , f̃a4

] [
f̃a5
[
f̃a6 , f̃a7

]]
· · · f̃am−1

)
a1am

, (1.19)

where we have used the Lie-algebra identity f̃abcf̃ c = [f̃a, f̃ b]. The colour factor of (1.19)
can be generalised to any permutation σ of external legs, giving

ci =
∑

σ∈Sm−2

biσ

(
f̃aσ(2) f̃aσ(3) f̃aσ(4) · · · f̃aσ(m−1)

)
a1am

, (1.20)

where the prefactor biσ ∈ {0,±1} depends on the specific permutation and colour factor.
There are (m− 2)! permutations of σ, as indicated by the permutation group Sm−2.

Returning to the summation over colour factors to obtain the total amplitude in (1.10),
we find that this transforms into a sum over (m− 2)! ordered partial amplitudes

Atree
m (1, σ(2), σ(3), . . . , σ(m− 1),m), (1.21)
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where leg 1 and m are fixed. These define a basis called the Kleiss-Kuijf (KK) basis. The
summation over partial amplitudes and their corresponding colour trace is then given by

Atree
m = gm−2

∑
σ∈Sm−2

Atree
m (1, σ(2), σ(3), . . . , σ(m− 1),m)

(
f̃aσ(2) f̃aσ(3) · · · f̃aσ(m−1)

)
a1am

,

(1.22)
and is referred to as the Del Duca-Dixon-Maltoni (DDM) colour decomposition [26].

The partial tree amplitudes Atree
m (1, 2, . . . ,m) in Yang-Mills theory have several useful prop-

erties. The following properties will be of relevance to our discussion of gluon amplitudes:

1. Gauge invariance: Individually each partial amplitude is invariant under gauge
transformations.

2. Functions of kinematic variables ei and pi only. Specifically, they are functions
of the Lorentz invariant dot products of ei and pi; (ei · ej), (ei · pj), and (pi · pj).
This will become a key aspect of the Unifying Relations between different theories
discussed in chapter 3.

3. Cyclicity: partial amplitudes are invariant under cyclic permutations.
Atree

m (1, 2, . . . ,m) = Atree
m (2, . . . ,m, 1). (1.23)

4. Reflectivity: partial amplitudes exhibit a sign flip under reversal of the ordering
Atree

m (m, . . . , 2, 1) = (−1)mAtree
m (1, 2, . . . ,m). (1.24)

5. A Photon-decoupling identity2 is satisfied by the partial amplitudes.∑
σ∈cyclic

Atree
m (1, σ(2), . . . , σ(m)) = 0, (1.25)

where we sum over cyclic permutations of all-but-one external leg.

6. Obey (fundamental) BCJ relations which take the form
m−1∑
i=2

p1 · (p2 + . . .+ pi)A
tree
m (2, . . . , i, 1, i+ 1, . . . ,m) = 0. (1.26)

For example, at four point such a relation is tA4(1324)− sA4(1234) = 0.

These properties describe linear relations between partial amplitudes, allowing us to reduce
the summation over all possible diagrams to a summation over the independent partial
amplitudes. After considering all permutations of the above BCJ relation, there are only
(m − 3)! independent partial tree amplitudes. The position of the three consecutive legs
can be fixed in the cyclic ordering; for example Atree

m (1, σ(2), . . . , σ(m)) can be chosen as
the independent BCJ basis.

2This can be seen by replacing one generator in the trace decomposition of the next section by a U(1)
generator TU(1) = I. Gluons do not couple directly to photons because photons have no colour charge.
Explicitely f̃abU(1) = Tr

([
T a, T b

]
1
)
= 0, implying that the amplitude vanishes for one photon.
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1.1.5 Trace basis decomposition
By relating the structure constants to traces of the generators,

f̃abc ≡ i
√
2fabc = Tr

([
T a, T b

]
T c
)
= Tr

(
T aT bT c

)
− Tr

(
T bT aT c

)
. (1.27)

We can decompose the product of f̃ ’s that is present in the decomposition of the total
amplitude into partial amplitudes as a summation over permutations of trace structures.

Let’s continue with one of our four point colour factors, c(gs) = f̃a1a2bf̃ ba3a4 . We can use
the SU(N) Fierz completeness relations,

(T a) ji (T
a) lk = δliδ

j
k −

1

N
δji δ

l
k, (1.28)

to derive the trace decomposition of the colour factor. We can perform this calculation
explicitly for the four-point colour factor, but for higher multiplicities it is convenient to
employ an algorithm for the decomposition. For the colour factor c(gs) we find

f̃a1a2bf̃ ba3a4 = Tr
[
(T a1T a2 − T a2T a1)T b

]
× Tr

[
T b (T a3T a4 − T a4T a3)

]
=
(
T a1
ij T

a2
jk − T a2

ij T
a1
jk

)
T b
ki × T b

lm (T a3
mnT

a4
nl − T a4

mnT
a3
nl )

=
(
T a1
ij T

a2
jk − T a2

ij T
a1
jk

)(
δkmδli −

1

N
δkiδlm

)
(T a3

mnT
a4
nl − T a4

mnT
a3
nl ) (1.29)

=
(
T a1
ij T

a2
jk T

a3
knT

a4
ni − T a1

ij T
a2
jk T

a4
knT

a3
ni − T a2

ij T
a1
jk T

a3
knT

a4
ni + T a2

ij T
a1
jk T

a4
knT

a3
ni

)
= Tr (T a1T a2T a3T a4)− Tr (T a1T a2T a4T a3)

− Tr (T a1T a4T a3T a2) + Tr (T a1T a3T a4T a2) .

Note that implicit summation over repeated indices is implied. The terms proportional to
1/N cancel out. Each trace factor occurs uniquely in every permutation, and will belong
to the partial amplitude of its permutation. In other words, the partial tree amplitude
Atree

4 (1, 2, 3, 4) is the kinematic coefficient of Tr (T a1T a2T a3T a4) and so forth for other
permutations. The total amplitude is then denoted as

Atree
m = g2 (A4(1, 2, 3, 4)Tr (T a1T a2T a3T a4) + perm(2, 3, 4)) . (1.30)

Combining this decomposition with (1.11) we find the following expressions for the partial
amplitudes in terms of the kinematic numerators

iAtree
4 (1, 2, 3, 4) =

ns

s
− nt

t
, (1.31)

iAtree
4 (1, 3, 2, 4) =

nt

t
− nu

u
, (1.32)

iAtree
4 (1, 2, 4, 3) =

nu

u
− ns

s
, (1.33)
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From these relations we can confirm that the partial amplitudes indeed satisfy the funda-
mental BCJ relations of (1.26)

stAtree
4 (1, 2, 3, 4) = utAtree

4 (1, 3, 2, 4) = suAtree
4 (1, 2, 4, 3). (1.34)

The trace-decomposition of 4-point can be generalised to m-point. The decomposition of
any colour factor permutation can be written as(

f̃aσ(2) f̃aσ(3) · · · f̃aσ(m−1)

)
a1am

= Tr (T a1T a2 · · ·T am) + (−1)m (Tm · · ·T a2T a1) + . . . ,

(1.35)
and the trace basis decomposition of the total amplitude can be denoted as

Atree
m = gm−2

∑
σ∈Sm−1

Atree
m (1, σ(2), σ(3), . . . , σ(m− 1),m)Tr (T a1T aσ(2)T aσ(3) · · ·T aσ(m)) .

(1.36)
This is a sum over (m− 1)! terms, which is a larger basis than the (m− 2)! basis of (1.22).
The two are mapped into one another using the KK relations

Atree
m (1, {α},m, {β}) = (−1)|β|

∑
σ∈{α}tt{β}T

Atree
m (1, σ,m). (1.37)

The notation appears cumbersome, but an example at five-point should clarify what is
happening. For starters, {α} and {β} are lists of the external legs. If we wish to denote
the partial amplitudes related to for example A5(1, 2, 5, 4, 3), we construct the sets {α} = 2
and {β} = 3, 4. The object {β}T represents reverse ordering of the list {β}, which is
therefore {4, 3}. Next, {α} tt{β}T denotes the shuffle product, or ordered permutations,
of these lists which in our case will be {α} tt{β}T = {2} tt{4, 3} and gives rise to the
permutations σ = {243}, {423}, {432}. Finally, the exponent |β| denotes the number of
elements in the list {β}. The KK relations for this ordering are then

A5(1, 2, 5, 4, 3) = A5(1, 2, 4, 3, 5) + A5(1, 4, 2, 3, 4) + A5(1, 4, 3, 2, 5). (1.38)

These linear relations reduce the basis at five-point from 24 partial amplitudes down to six
independent partial amplitudes, as desired.
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1.2 Pions - Nonlinear Sigma Model
Now that we have discussed the detail of gauge theories, we will turn our attention to a
different particle sector: scalars. Such theories typically offer a great introduction to the
principles of QFT and scattering amplitudes due to their simple properties such as the
absence of colour structure and being spin-0.

In this section we will investigate how we can extend and refine scalar theories to derive a
more comprehensive and intriguing theory of pions. Pions we originally thought to be the
mediator of the strong force, before the discovery of the gluons of section 1.1 [27]. However,
it turned out that pions were only an effective description of these interactions at short
distances. Their field theory description is therefore formulated in the form of an effective
field theory (EFT).

Effective field theories describe the dynamics of a field theory in a certain energy regime
such as the infrared (IR) or the ultraviolet (UV) regime. Typically, the ‘effective’ behaviour
comes from additional derivative terms in the Lagrangian, which at the level of the ampli-
tude induce higher-order momentum dependence, and therefore energy dependence.

A familiar example of an EFT are the Nambu-Goldstone bosons (NGSB’s) which arrises
due to spontaneous symmetry breaking, e.g. the Higgs boson [24]. The effective field
theory of pions is often referred to as the nonlinear sigma model (NLSM) [28]. In this
model, pions arise due to the spontaneous breaking of the chiral-flavour symmetry [29]
in QCD. In reality they are "pseudo" NGSb’s because they obtain small masses from the
underlying quarks, but for our purposes we will treat them as massless scalar fields.

1.2.1 Lagrangian
Qualitatively, the NGSb arise from the symmetry breaking of a global group G into a
subgroup H. Every broken generator of G gives rise to a NGSb. These NGSb’s are then
said to live in the coset space3 G/H. In the context of the NLSM we will be using the
symmetry breaking pattern U(N) × U(N) 7→ U(N) or more specifically we can discuss
SU(Nf )× SU(Nf ), where Nf denotes the number of quark flavours of the theories in the
context of low-energy QCD [30]. The discussion is the same, keeping in mind that SU(N)
has one fewer generator than U(N) which has N2 generators.

The unitary matrix U(φ) can be used to represent the Goldstone field, which contains the
scalar field φ that transforms according to the adjoint representation of G as φ = φaT a.
One of such parametrisations, along with the Lagrangian that describe it’s dynamics is

3‘If you want to show off your mastery of mathematical jargon you can say that the Nambu-Goldstone
bosons live in the coset space G/H’ - A. Zee [24]
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given by

L =
F 2

4
Tr
(
∂µU∂µU

†) , U = exp
(
iφ

F

)
, (1.39)

where F is the NLSM coupling strength, which can be seen as an expansion parameter.
Expanding

The symmetry of the group is spontaneously broken by a a non-linear shift of the field,
φ → φ+a at first order in the field (not considering terms of O(φ2)). It can be shown that
the Lagrangian in (1.39) is invariant under this non-linear shift, which is where the name
‘non-linear sigma model’ comes from.

Being an effective field theory, the full Lagrangian in (1.39) can be written as a progressive
expansion in F that contains only an even number of fields.

L =
∞∑
n=1

L2n. (1.40)

Each derivative of φ will contribute a factor of p at the level of the amplitude, as can
be seen from a fourier transformation of the derivative in momentum-space. Every L2n

contains 2n derivatives and is therefore of O(p2n). As an effective field theory, we can
therefore consider only terms up to a certain order in p, or equivalently, a certain order in
n.

Typically, we consider the O(p2) Lagrangian L2 and it’s expansion in terms of the scalar
fields φ:

LNLSM
2 = −1

2
∂µφa∂

µφa +
1

6F 2
fabef

cdeφa∂µφ
bφc∂µφd + . . . . (1.41)

From this Lagrangian, we can construct the amplitudes of the NLSM, which has interesting
properties in soft limit due to it’s momentum scaling.

1.2.2 Amplitudes
Similarly to the colour ordering in YM theory, due to their flavour structure, the NLSM
amplitudes can be decomposed using the familiar trace structure of Equation 1.36 as

ANLSM
n =

∑
σ∈Sn/Zn

Tr (T a1T aτ(1) · · ·T aσ(n))An(σa1 , σa2 , . . . , σan). (1.42)

The colour stripped amplitudes of the NLSM are cyclically symmetric and contain poles
only in adjacent factorisation channels. This is a property we will explore in more detail
for a different scalar theory, namely the bi-adjoint scalar in subsection 1.5.2.

The first non-vanishing amplitude of the NLSM can be found at n = 4. The 3-point
amplitude vanishes, due to the fact that momentum conservation all Mandelstam invariants
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sij must vanish at 3-point. The four-point partial amplitude is generated by a single type
of diagram, namely the 4-point contact diagram.

The 4-point partial amplitude with the trace ordering [1234] can be denoted as

A4(1, 2, 3, 4) =
i

2F 2
(s+ t), (1.43)

where in most literature only the kinematic part of this amplitude is of interest, as the
constant factors can be conveniently redefined.

It can be seen that even though the NLSM has two derivatives per vertex, the amplitudes
of the NLSM are linear in all momenta and scale as p1, which would typically be observed
if all fields in the Lagrangian contain a derivative. This is what is called an ‘enhanced soft
limit’, which is defined by the soft degree that is higher than what we would expect from
the number of derivatives per field [31].

The p1-scaling of the NLSM amplitudes was first found by Stephen Adler and it implies the
vanishing of the amplitudes of the NLSM in the soft limit [32]. Specifically, the amplitude
vanishes in the IR regime with a soft degree of σ = 1 which we will further investigate in
section 1.4. This is widely known as the Adler zero condition, or Adler’s zero:

lim
p→0

ANLSM ∝ p1. (1.44)

The Adler zero turns out to be an incredibly strong constraint on the amplitudes, and is
sometimes regarded as a ‘gauge symmetry’ for such scalar EFTs [33]. One of the useful
properties that can be derived from the Adler zero is the fact that the NLSM amplitudes
can be unique formulated by imposing Adler’s zero [34], similarly to how YM and gravity
amplitudes can be uniquely formulated by imposing gauge invariance.

Moreover, higher-point NLSM amplitudes can be constructed from lower-point amplitudes
through the process of soft recursion [35], which will be discussed in subsection 1.4.4.
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1.3 Factorisation - Recursion relations
In a typical amplitude Feynman-diagram calculation of amplitudes, we construct the di-
agrams out of the basic vertices of the theory. At the level of diagrams, it is clear that
higher-point diagrams can be built from lower-point diagrams. However, this is not a
statement about amplitudes. In this section we will see that lower-point amplitudes recur-
sively appear in higher-point amplitudes. There are different approaches to deriving this
recursive behaviour of amplitudes. In this section we will describe the method of on-shell
recursion [36].

On-shell recursion relies on the fact that tree-level amplitudes exhibit specific pole struc-
tures that are limited to forms such as 1

s
. Physically, this singularity can be interpreted as

an intermediate state propagating over a physical distance in spacetime, hence the term
’propagator’. Imagine a scenario where the initial and final states are separated by a
significant distance in spacetime, as illustrated for a four-particle diagram

7→ . (1.45)

In this limit, the intermediate state must be on-shell, and the initial and final vertices
can be interpreted as separate, lower-point diagrams. This decomposition of higher-point
amplitudes into lower-point amplitudes is known as ’factorisation’. We will see that the
four point amplitude factorizes into a sum over products of 3-point amplitudes for the s, t
and u factorisation channels.

1.3.1 On-Shell Recursion
A concise formulation of on-shell recursion was presented by Britto, Chachazo and Feng
and Witten (BCFW)[37, 38]. The proposed BCFW recursion relations were derived by
shifting two external legs by some complex factor z:

pi → pi + zq, pj → pj − zq. (1.46)
This shift preserves the total momentum conservation as both momenta are oppositely
shifted. By construction the vector q is defined such that q2 = pi · q = pj · q = 0. Now that
the momenta have been shifted onto the complex plane, the amplitude becomes dependent
on the complex factor, implying A → A(z). We can then apply Cauchy’s formula

f(a) =
1

2πi

∮
f(z)

z − a
dz, (1.47)

to find an expression for the original unshifted amplitude by integrating around the pole
at z = 0. We then apply Cauchy’s residue theorem to find

A(z = 0) =
1

2πi

∮
A(z)

z
dz = −

∑
I

Res
z=zI

[
A(z)

z

]
+B∞. (1.48)
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Here I denotes a subset of external particles. Their sum of momenta is given by

PI(z) =
∑
i∈I

pi(z). (1.49)

The sum over zI denotes a summation over the residues at all other poles. These poles
are the kinematic singularities (propagators) of the amplitude and hence indicated by the
external legs I that contribute to the propagator. At such a singularity (z → zI), the
propagator and the sub-amplitudes that connect to it are on-shell. The amplitude should
therefore factorize into a product of lower-point amplitudes

lim
z→zI

P 2
I (z)A(z) = AL(zI)AR(zI). (1.50)

The sum over all possible factorisation channels I then gives rise to the general formula
for on-shell recursion, which denotes that the amplitude decomposes into the summation
over all possible decompositions of lower-point amplitudes that have shifted momenta on
both sides of the factorisation channel

A(z = 0) =
∑
I

AL(zI)
1

P 2
I

AR(zi) +B∞. (1.51)

The boundary term that denotes the residue at ∞̂ can cause problems for the on-shell
constructibility of a theory. A theory is considered on-shell constructible if a momentum
shift can be found such that B∞ = 0 for every tree-level scattering amplitude. In [38] it was
proven that A(z) vanishes at infinity for Yang-Mills, but the story is a bit more complicated
for the NLSM [39]. For pions, it is then more convenient to use a different method, namely
soft recursion. To explore this, we will have to investigate the IR behaviour of amplitudes,
which will be done in the next section.

Now that we are equipped with shell-on-shell recursion relations, it is possible to start with
a seed amplitude such as a 3-particle amplitude and build higher multiplicity amplitudes
by imposing factorisation. For example, a 4-point amplitude can be seen to split up into
the product of two 3-point amplitudes.
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1.4 Soft Theorems and Soft Factors
In the discussion of recursion we have seen that shifting the external legs of the amplitude
gives rise to the factorisation of the amplitude in the limit of the internal propagators
becoming on-shell. It would also be interesting to probe what would happen if we tune
one, or more, of the external legs to vanish. Such a limit is called the soft limit, and is
explored by assigning a dimensionless parameter λ to the momentum as λpµ, and sending
λ → 0. When probing this limit, the amplitude will behave according to a specific soft
degree σ as

lim
p→0

A ∝ pσ, (1.52)

where σ = −1, 0, 1, . . . .

An amplitude is said to satisfy a soft theorem when the right-hand side of the equation
features a universal structure, such as vanishing of the amplitude or as some factor mul-
tiplied by a lower-point amplitude [40]. It is possible to find an amplitude to satisfy a
soft theorem as a byproduct of the action, but the inverse is also possible: impose the soft
theorem in order to derive the S-matrix of the theory that satisfies this constraint.

We will start our discussion by exploring amplitudes that exhibit the soft degree σ = −1. It
turns out that gauge theory and graviton amplitudes have this scaling. The soft behaviour
of these theories has been famously studied by Steven Weinberg in the 1960s [41, 42],
resulting in the soft factors of the amplitudes being named in his honour. We will examine
both of these and see how, together with the other symmetries of the theories, we can find
interesting soft theorems.

1.4.1 Soft factor of gauge theory
We will analyse the behaviour of gauge theory amplitudes by looking at scalar QED inter-
actions, following the arguments of [3] to demonstrate the soft factors conceptually. The
scalar QED derivation can be straightforwardly extended to QED interactions by denoting
the electrons as spinors with the correct contractions of γµ. The (relevant) Feynman rules
of scalar QED are

p1

p2

e−

e−

= −iQe(p1 + p2)
µ and

p1

p2

e−

e−

= +iQe(p1 + p2)
µ, (1.53)

where Qie denotes the electric charge of the scalar particle (= ±1 for e+/ e−).

There are two scenarios to consider. The first describes an outgoing photon attached to one
of the incoming external legs (e− or e+), while the second will have the photon attached
to one of the outgoing legs. This is depicted in figure Figure 1.3.
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Figure 1.3: Attaching the soft photon to incoming or outgoing e+/e−.

In the first scenario, taking the external leg to be an e− for now, the electron leg is
attached to some scalar QED process, possibly involving many external legs and even
loops. The total amplitude for the entire process is then denoted by iM0(pi). Next, we
attach an outgoing photon of momentum q and polarisation εµ to this e− leg and describe
the amplitude as iMi(pi, q). Diagrammatically this is shown as

iM0(pi) =

pi

e− =⇒
pi

q

(pi − q)

e−

εµ

= iMi(pi, q). (1.54)

Explicitly the amplitude now receives an additional contribution from the 3 point vertex
and an additional propagator contribution

Mi(pi, q) = (−iQ)
i (pµi + (pµi − qµ))

(pi − q)2 −m2
εµM0(pi − q). (1.55)

After applying the on-shell conditions for the external legs p2i = m2 and q2 = q · e = 0,
equation (1.55) simplifies to

Mi(pi, q) ≈ −Q
pi · ε
pi · q

M0(pi), (1.56)

at leading order in the soft limit where the photon momentum is taken to be much smaller
than the external electron/position momenta, |q · pi| � |pj · pk|.

A similar derivation can be performed for incoming e+ and outgoing e−/e+. For the total
amplitude we have to sum over all possible incoming/outgoing external electron/positron
legs that the external photon can be attached to, giving

M ≈ eM0

[ ∑
i∈incoming

Qi
pi · ε
pi · q

−
∑

i∈outgoing

Qi
pi · ε
pi · q

]
. (1.57)
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By the Ward identity (1.6) this amplitude should be invariant under the transformation
εµ → εµ + αqµ, which implies that total charge should be conserved∑

i∈incoming

Qi =
∑

i∈outgoing

Qi. (1.58)

Gauge invariance therefore requires the conservation of whatever coupling constant, like
electric charge, governs the interaction of these particles at low energies for all amplitudes
involving a massles spin-1 particle.

The pre-factor that is multiplied by the lower-point amplitudes of (1.57) is called the
Weinberg soft factor [42]

Sµ
QED =

n∑
i

Qi
pµi

pi · q
. (1.59)

This soft factor is the leading order contribution to the amplitude in the soft limit and
allows us to relate higher point amplitudes at higher points to lower point amplitudes.

For Yang-Mills theories the soft factor is given by

S
(ijk)
YM =

piej
pipj

− pkej
pkpj

, (1.60)

where we take leg i to be the soft leg. Note that the soft factor explicitly depends on the
momenta of the adjacent particles i and k.

Subleading gluon soft factor
It is interesting that at leading order, the soft factor does not depend on the spin of the
soft particle. This is not the case for the subleading soft factor, where explicit dependence
on angular momentum appears. For gluons in Yang-Mills theory this subleading factor is
given by [43, 44]

S
(ijk)
YM,sl =

pjJkej
pkpj

− pjJiej
pipj

= −pjJiej
pipj

+ (i ↔ k), (1.61)

where particle j is taken to be the soft particle. Here Ji denotes the total angular momen-
tum of the particle i and the notation pjJiej = pµj (Ji)µν eνj denotes the summation over the
Lorentz indices. It can be seen that the factor depends on the angular momentum of the
legs adjacent to the soft leg.

1.4.2 Soft gravitons
Although graviton amplitudes are not the main focus of this thesis, we would like to
emphasise the interesting soft theorems that can be derived from the soft behaviour of
gravity. Instead of describing the interaction of spin-1 particles, we can examine a soft
spin-2 particle by substituting the polarisation εµ for εµνi . The deduction relies on the
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same arguments, however the coupling of the interaction is different than scalar QED, it
is governed by the gravitational coupling κi. The soft factor is then given by [45]

Sµν =
∑
i

κi
pµi p

ν
i

pi · q
. (1.62)

The argument based on gauge invariance has an analogue in gravity amplitudes, which
are invariant under diffeomorphisms of the form εµν → εµν + Λµqν + Λνqµ. Just as gauge
invariance ensures that electromagnetic or Yang-Mills fields remain consistent under local
transformations, diffeomorphism invariance ensures that the equations governing gravity
are consistent under arbitrary smooth changes of the spacetime coordinates. Applying this
argument we can derive the following soft theorem from soft gravitons∑

in

κip
µ
i =

∑
out

κip
µ
i . (1.63)

This equation is severely constrained by the conservation of momentum,
∑

in p
µ
i =

∑
out p

µ
i .

There can be no more constraints on the momenta pi, as this would give only a trivial
solution pi = 0. Therefore, the only possible amplitudes all have κi = κ. Hence, the
soft theorem of massless spin-2 particles implies that gravity is universal, which is the
foundation of the theory of general relativity.

Subleading graviton soft factor
As discussed, the soft factor is a pertubative expansion relating higher multiplicity ampli-
tudes to lower-point amplitudes. For graviton amplitudes this expansion can be written as
[45]

Mn+1(k1, k2, . . . , kn, q) =
(
S(0) + S(1) + S(2)

)
Mn(k1, k2, . . . , kn) +O

(
q
2
)
. (1.64)

With S(0) being the leading soft factor, S(1) the subleading factor and so forth. We have
already seen the leading order S(0) in our analysis. The subleading soft factors require a
more complicated analysis, as shown in [45] and are given by

S(1) ≡ −i

n∑
i=1

eµνk
µ
i qρJ

νρ
i

ki · q
, (1.65)

S(2) ≡ −1

2

n∑
i=1

eµν (qρJ
µρ
i ) (qσJ

νσ
i )

ki · q
, (1.66)

With eµν = eµeν being the soft graviton polarisation tensor satisfying eµνq
ν = 0 and Ji

being the total angular momentum of the i-th particle.
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1.4.3 Higher-spin soft theorem
Can we go one step higher and examine the soft factor of some massless spin-3 particle?
Certainly! The equation in (1.63) will transform into∑

in

βip
ν
i p

µ
i =

∑
out

βip
ν
i p

µ
i , (1.67)

where βi corresponds to the coupling of a generic spin-3 form vertex.

Consider the µ = ν = 0 index of the momentum vectors, which are equal to the energy of
the particles p0i = Ei. The soft theorem on conservation changes to∑

in

βiE
2
i =

∑
out

βiE
2
i , (1.68)

which tells us that the sum of ’charge’×E2 is conserved. However, this is too many con-
straints! The only possible solution would be if all βi = 0, resulting in a boring non-
interacting theory.

The soft theorem then tells us that there are no interacting theories of massless particles
with s > 2 [42]. Theories of massive spin-3 particles, e.g. composite particles, are allowed
and have been observed at collider experiments [46].

1.4.4 Soft recursion
The above exceptional scalar EFT are constructible via on-shell recursion. This can be
shown through a soft shift of one of the external legs, by making use of the soft degree σ
of the theory. The shift that we consider,

pi → pi(1− zai), (1.69)

conserves the on-shell kinematics only if the number of particles n > d + 1, where d is
the dimension in which we are scattering. The dimensionality gives us a constraint on the
number of particles in order to make ai distinct for each leg. This constraint arises from
the fact that if n = d, then the momenta pi are linearly independent and total momentum
conservation is not preserved. The case where n = d + 1 is not interesting, as the only
solution would be to have all legs equally rescaled with ai = 1 which does not probe any
interesting features.

To probe the soft limit where the momentum pi goes to zero we send z → 1
ai

. Given the
soft degree σ, the amplitude then scales as

lim
z→1/ai

A(z) ∝

(
z − 1

ai

)σ

. (1.70)
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By construction, A(z) now contains multiple zeros of degree σ in the complex plane and
we can apply Cauchy’s residue theorem, as before in the discussion of on-shell recursion;

A(z = 0) =
1

2πi

∮
A(z)

z
dz = −

∑
I

Res
z=zI

[
A(z)

z

]
+B∞. (1.71)

Next we construct a function F (z) which vanishes in the soft limit, but whose unshifted
value is equal to 1, so that we can relate it to the unshifted amplitude A(0).

F (z) =
n∏
i

(1− aiz)
σ, F (0) = 1. (1.72)

We will insert this function into the denominator of (1.71) which would in general introduce
new poles into the expression, which are not the factorisation channels responsible for the
original poles. However, by clever construction of (1.72) these poles are cancelled by the
zeroes that arise from the soft degree of (1.70).

A(z = 0) =
A(z = 0)

F (0)
=

1

2πi

∮
A(z)

zF (z)
dz = −

∑
I

Res
z=zI

[
A(z)

zF (z)

]
+B∞. (1.73)

The recursion into a summation over factorisation channels of lower-point amplitude then
occurs, in a similar manner as the BCFW recursion relations. There is still the crucial
detail of the boundary term B∞ which occurs for the limit z → ∞, which sends our
momenta to the high-energy spectrum. In general, the UV behaviour of EFTs is poor, as
they are nonrenormalisable theories. The only way for B∞ to vanish is for F (z) to grow
faster

lim
z→∞

A(z)

F (z)
= 0. (1.74)

This will vanish precicely for the theories with an enhanced soft limit. First, as F (z) is a
polynomial of at most degree nσ, it will scale as znσ for large z. The amplitude A(z) scales
at most as zm, where m is the number of derivatives for the n particle vertex. Therefore
B∞ vanishes for σ > m/n, proving that the exceptional EFTs are on-shell constructible.

As an example of soft recursion for EFTs, we will calculate the 6-point NLSM amplitude
from the 4-point amplitudes [47]. First we note that odd-multiplicity pion amplitudes
always vanish, therefore there is no 5-point amplitude to build from. We saw that the
4-point flavour-ordered amplitude ANLSM

4 (1234) is given by

A4(1, 2, 3, 4) = s+ t = s12 + s23, (1.75)

up to a normalisation. We can identify three factorisation channels, namely s123, s234
and s345, which are depicted in Figure 1.4. The three factorisation channels are cyclic
permutations of eachtother. The total 6-point, flavour-ordered amplitude is the sum over
these three channels. We can calculate this amplitude to be

ANLSM
6 (123456) =

[
(s12 + s23)(s45 + s56)

s123
+ cyclic

]
− (s12 + cyclic), (1.76)
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s123

π2

π1

π3 π4

π5

π6

s234

π3

π2

π4 π5

π6

π1

s345

π4

π3

π5 π6

π1

π2

Figure 1.4: The three possible factorisation channels of the 6-point NLSM amplitude into 4-
point amplitudes.

where the second term comes from the residue
6∑

i=1

Res
z=zI

s12 + cyclic
zF (z)

= −(s12 + cyclic). (1.77)

It can be clearly seen that the amplitude splits up into the left-side amplitude AL(123x)
and the right-side amplitude AR(x456) over the exchange channel s123, in agreement with
the calculation from Feynman diagrams [47].
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1.5 The Double Copy
Now that we have familiarised ourselves with the properties of colour factors and the
decompositions of amplitudes, we are prepared to dive deeper into the concept of colour-
kinematics duality.

In this chapter, we will investigate the BCJ double copy method, which is one of the meth-
ods used to construct graviton amplitudes from gluon amplitudes by utilising the duality
between the colour and kinematic numerators. We will elaborate on the 4-point gluon
amplitude, as an example that can be extended to higher-multiplicity gluon amplitudes.

During our investigation of the double copy, we will also encounter the ‘single copy’ and
the scalar amplitudes it creates. We will also briefly touch upon a different approach to
the BCJ double copy, namely the KLT double copy.

Finally, we will investigate how adding higher-derivative correction terms to the Lagrangians
of the theories under consideration can break the duality between colour and kinematics
of the amplitudes, and what needs to be done to fix this.

1.5.1 BCJ Duality between Colour and Kinematics
The Four-Point Gluon Amplitude
One example that beautifully demonstrates the BCJ duality is the 4-gluon amplitude
described in Yang-Mills theory. The formulation of this amplitude is compact enough to
manipulate by hand such that we are able to understand what is going on before we dive
into m-point amplitudes. Moreover it is a familiar amplitude for those of us who have
studied QFT before.

As we have seen in the previous chapter, the full tree-level amplitude at 4-point can be
written as a sum over the three exchange channels s, t and u

iAtree
4 = g2

(nscs
s

+
ntct
t

+
nucu
u

)
. (1.78)

These channels are shown diagrammatically in figure. The Mandelstam variables are
defined as s = (p1 + p2)

2, t = (p2 + p3)
2 and u = (p1 + p3)

2. We have seen that the
colour factor for the s-channel is constructed from the product of structure constants that
correspond to the vertices of the diagram:

cs = −2fa1a2bf ba3a4 , (1.79)

where the structure constants are normalised as
[
ta, tb

]
= ifabctc .

Through Feynman rule computations, we can also find the expression for the kinematic
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numerator for the s-channel, ns,

ns = −1

2
{[(e1 · e2)pµ1 + 2(e1 · p2)eµ2 − (1 ↔ 2)] [(e3 · e4)p3µ + 2(e3 · p4)e4µ − (3 ↔ 4)]

+ s[(e1 · e3)(e2 · e4)− (e1 · e4)(e2 · e3)]}, (1.80)

where ei denotes the polarisation of the external gluon legs.

The other combinations of colour and kinematic factors are obtained through cyclic per-
mutations:

ctnt = csns|1→2→3→1 cunu = csns|1→3→2→1. (1.81)

The contribution of the contact vertex is absorbed into the kinematic numerators as dis-
cussed in subsection 1.1.2.

s

1

2 3

4

t

2

3 1

4

u

3

1 2

4

Figure 1.5: Feynman diagrams that depict the three possible 4-point cubic diagrams. The
momenta of the propagators are indicated by the Mandelstam invariants s, t and u.

The colour factors of the 4-gluon amplitude
The colour factors are fully encoded by the Lie-algebra associated to the gauge group under
which the field transform. In the case of gluons, the Lie-algebra we are considering is su(3),
of which the fabc’s are the structure constants. These structure constant satisfy the Jacobi
identity:

cs + ct + cu = −2
(
fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4

)
= 0. (1.82)

This identity also appears as a requirement for the amplitude to be invariant under lin-
earised gauge transformations. By utilising the Ward identity of (1.6), upon replacing for
example e4 → p4 we find

ns|e4→p4 = −s

2
[(e1 · e2)((e3 · p2)− (e3 · p1)) + cyclic(1, 2, 3)] ≡ sα(e, p). (1.83)

Applying this transformation to the t and u channel, we find that the total amplitude
transforms as

nscs
s

+
ntct
t

+
nucu
u

∣∣∣
e4→p4

= (cs + ct + cu)α(e, p). (1.84)

Therefore, in order for the amplitude to be invariant under gauge transformation, the
Jacobi identity must be satisfied.
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A kinematic Jacobi identity
If, we would decide to calculate the sum of the kinematic numerators ni, we would see that
under the on-shell conditions this sum gives rise to an identity analogous to the Jacobi
identity for colour factors. This is also known as the ’kinematic Jacobi identity’ :

ns + nt + nu = 0. (1.85)

This analogy between the colour factors and kinematic numerators is referred to as the
’duality between colour and kinematics’ and the ni that together satisfy this duality are
referred to as BCJ numerators. In literature, the shorthand ’CK duality’ or similar terms
are often used to refer to this statement.

Gravitons from Gluons
Knowing that these factors satisfy the same algebraic relations, a natural question to ask
would be "what would happen if we swap out one for the other?". It turns out that by
swapping colour factors for kinematic factors in the Yang-Mills four-point amplitude, we
obtain a new gauge-invariant object:

iAtree
m = g2

(nscs
s

+
ntct
t

+
nucu
u

)
ci→ñi−−−−→
g→κ/2

(κ
2

)2(n2
s

s
+

n2
t

t
+

n2
u

u

)
≡ iMtree

4 . (1.86)

This new amplitude, Mtree
4 , effectively ’doubles’ the kinematic numerators, which is where

the term "double copy" originates. This expression has several key properties that indicate
that this amplitude is in fact a valid graviton amplitude. First of all, the external states
are described by symmetric polarisation tensors eµν = eµeν . Secondly, the interactions
involve two derivatives. Furthermore, the amplitude remains invariant under linearised
diffeomorphism transformations

δhµν = ∂µξν + ∂νξµu, (1.87)

which is the analog of gauge theory amplitudes being invariant under linearised gauge
transformations. In momentum space, this implies that the amplitude should vanish upon
the transformation eµν → pµeν + pνeµ. Calculating this explicitally gives:

n2
s

s
+

n2
t

t
+

n2
u

u

∣∣∣∣
eµν4 →pµ4 e

ν
4+pν4e

µ
4

= 2(ns + nt + nu)α(e, p) = 0. (1.88)

Finally, when we choose the inital gluon polarisation vectors to be circularly polarised,
implying e2 = 0, the resulting polarisations eµν are traceless. All of this brings us to
the conclusion that this amplitude describes the scattering of four gravitons in Einsteins
general relativity, up to an overall normalization factor.
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The example at 4-point can be generalised to higher-multiplicity amplitudes. Here the
crucial argument is that it is always possible to find and relate a triplet of diagrams (i, j, k)
that satisfy Jacobi relations of the form

ci + cj + ck = 0, (1.89)

and similarly for the kinematic numerators ni [15]. The identification of these triplets
follow from the investigation of diagrams discussed in section 1.1.

1.5.2 Zeroth Copy - Biadjoint Scalar (BAS) Theory
So far, we have seen that the duality between colour and kinematics allows us to replace
the colour factors ci of tree-level YM amplitudes by another kinematic numerator ñi to
produce tree level graviton amplitudes. This double copy procedure is denoted as

iAtree
m ∼

∑
trivalent

nici
Di

ci→ñi−−−→
∑

trivalent

niñi

Di

∼ iMtree
4 . (1.90)

By the same logic, we should be able to do the inverse; replace the kinematic numerator by
a colour factor that obeys the same algebraic identities. This is known as the zeroth copy
and the amplitudes that we land on are that of the exotic biadjoint scalar (BAS) theory

iAtree
m ∼

∑
trivalent

nici
Di

ni→c̃i−−−→
∑

trivalent

cic̃i
Di

∼ iABAS,tree
m . (1.91)

This theory consists of a scalar field with two charges, φ = φaaT aT̃ a, that transforms
according to adjoint representation of 2, possibly different gauge groups G and G̃ whose
generators are T a and T̃ a [48]. The Lie algebras of these groups define the structure
constants:

ifabcT c =
[
T a, T b

]
, ifabcT̃ c = Tr

[
T̃ a, T̃ b

]
. (1.92)

The Lagrangian of this theory is denoted by

L =
1

2
∂µφ

aa∂µφaa +
λ

3!
fabcf̃abcφaaφbbφcc, (1.93)

and results in φ3 interactions. The principle of a bi-adjoint scalar that transforms according
to two gauge group can be generalised beyond double colour ordering to a higher number
of colour orderings. An extensive discussion of this topic can be found in [49].

At tree level, the amplitudes contain only (massless) propagators, as there are no kinematic
factors in the decomposition of equation (1.91), nor can they arrise from the Lagrangian.
The amplitudes of BAS theory can also be decomposed in a similar manner to (1.36). Due
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to the dual colour charge, the amplitudes decompose into partial amplitudes which obey
a dual trace structure, denoted as

ABAS
m =

∑
σ

∑
σ′

Tr [T aσ(1) · · ·T aσ(n) ]Tr
[
T aσ′(1) · · ·T aσ′(n)

]
ABAS(σ1, · · · , σn|σ′

1, · · · , σ′
n).

(1.94)
The two orderings σ and σ′ are seperated in the double colour-ordered partial amplitudes
ABAS by a vertical | and refer to the specific ordering of the trace structures that accompany
this specific ordering.

A convenient method of calculating these partial amplitudes can be found in [50] and is
briefly summarised in Appendix A.

1.5.3 Higher Derivative Corrections
We have extensively discussed the BCJ double copy, but there is another formulation of
the double copy, namely the Kawai-Lewellen-Tye (KLT) formulae [21]. Similar to the
BCJ formulation, it allows us to construct tree-level gravity amplitudes Mtree by taking
the (KLT) product of purely-adjoint gauge theory amplitudes. For 3- and 4-point they
explicitly give the graviton amplitudes in the form of

Mtree
3 (1, 2, 3) = iAtree

3 (1, 2, 3)Ãtree
3 (1, 2, 3), (1.95)

Mtree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Ãtree

4 (1, 2, 3, 4), (1.96)

where the amplitudes Atree and Ãtree are the colour-ordered partial amplitudes discussed
in subsection 1.1.4. As the KLT double copy is not the main focus of this work, we leave
a brief discussion of this formalism to Appendix B.

Originally the KLT relations were derived in the field of string theory as relations between
colour-stripped disk amplitudes of open-strings. In these relations, there is an explicit
dependence on the string tension α′. In the low energy limit, where α′ goes to zero, the
string-theory KLT kernel reduces to the field theory KLT kernel described. Interestingly
the string tension α′ can be used to formulate a pertubative expansion of higher-order
corrections to the field theories. In the following sections we will explore constructing such
higher-order order corrections by starting from field theory amplitudes instead of string
theory amplitudes.

We now return to the discussion of QFTs, where we can improve the UV behaviour of a
theory by adding higher-derivative corrections, in order to create an effective action, in
the spirit of section 1.2. The ultimate goal is to remove UV divergences that occur in
loop amplitudes. We can do a pertubative expansion in some parameter α′ and investigate
the properties of the amplitudes. Specifically we are interested whether or not the colour-
kinematics duality is still present after adding such terms. We will see that in order to
satisfy CK-duality for some order in α′ at a specific multiplicity it will be necessary to
include an operator at one order higher in α′ [51].
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CK-Duality of Higher Order Yang-Mills
For a pure-gluon Yang-Mills theory we need to consider that the higher order corrections
that we include are gauge-invariant and conserve locality. The simplest operator, i.e. lowest
order in derivatives, that can then be constructed for YM is a correction to the familiar
F 2 operator of subsection 1.1.2 and is denoted by the F 3 operator

F 3 ≡ Tr
(
F ν
µF

ρ
ν F

µ
ρ

)
=

1

2
Tr
(
[T a, T b]T c

)
F aν
µ F bρ

ν F cµ
ρ =

1

2
f̃abcF aν

µ F bρ
ν F cµ

ρ . (1.97)

The effective Lagrangian produced by this deformation then contains the first order in α′

correction
LYM+F 3 =

1

4
Tr
(
F 2
)
+

α′

3
Tr
(
F 3
)
, (1.98)

From which gluon amplitudes can be constructed. Double copy consistent means that the
amplitudes obey the CK duality and consistently factorize into the correct lower-point
amplitudes.

The Lagrangian in (1.98) has been shown to produce amplitudes that satisfy the colour-
kinematics (CK) duality for specific multiplicities, but not universally. Specifically, at
n = 3, the amplitudes satisfy CK duality at O (α′0) and O (α′1). Additionally, at n = 4,
the operator satisfies CK duality at O (α′1). However, at the four-point level, there is also a
contribution from an amplitude that arises from a combination of two cubic α′F 3 vertices.
To ensure that the amplitude maintains colour-kinematics duality at this order in α′, an
additional term, Tr (F 4), is required [52].

It was shown by Carrasco and collaborators that this pattern continues [51]. Double copy
consistency at any given multiplicity and order in α′ requires the addition of an operator
that is one order higher in α′. This results in an infinite tower of higher-order corrections.
This is different from a scalar theory, such as the NLSM, which only requires a finite number
of higher-derivative operators in order for a specific multiplicity to satisfy CK duality.

An Infinite Tower of Higher Derivative Corrections
Consider the five-point amplitude. Similar to the example at n = 4 we note that this
amplitude can be constructed out of combination of 3- and 4-point amplitude factorisation.

A5(12345)|(k4+k5)2−cut =
∑
states

A4 (123l
s)A3

(
−ls45

)
. (1.99)

This is schematically depicted in Figure 1.6. As explained before, the amplitude A3 comes
from both F 2 and F 3 contributions through A3 ≡ AYM

3 + α′AF 3

3 . The five-point will then
consist of a combination a four-point at O (α′n) combined with the three point at O (α′1)
resulting in O (α′n+1) for the five-point. This contribution can only be colour dual by
addition of specific ’four-field operator’ of order O (α′n+1) that combines with the Tr (F 2)
term. This new O (α′n+1) term then also has to be contracted with the α′ Tr (F 3) term,
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Figure 1.6: Contributions to the factorisation of the five-point tree-level amplitude at O(α′n).
[51].

inducing a contribution at O (α′n+2). We can continue this pattern to construct a ladder
of higher-order terms, and it has been proven up to order O (α′5) by [51].

Given that the CK-duality holds for these parameters, we can apply the double copy
procedure by replacing the colour factors with a set of kinematic numerators. As before,
this result in gravity amplitudes, which in this case also arise from an effective action.
Specifically, the amplitudes of bosonic closed strings at order O(α′) and O (α′2). At the
level of the action these higher order contributions come partly from a R2 and R3 operator
respectively. Through KLT relations the double copy procedure can be denoted as

AF 3

n

KLT
⊗ AYM

n 7→ MR2

n at O(α′), (1.100)

AF 3

n

KLT
⊗ AF 3

n 7→ MR2

n at O
(
α′2) , (1.101)

where the details are left to [53].

Resummation to (DF )²+YM
Carrasco and collaborators went back to the four-point amplitude and constructed a
double-copy compatible (dcc) numerator of the s channel up to order O(α′5) in terms
of kinematic building blocks σ that are permutation invariant such that

ndcc
s = nYM

s + α′nYM+F 3

s + α′2n(F 3)2+F 4

s

+ α′3
[
a3

(
nD2F 4

s + σ2n
YM+F 3

s

)
+ a3,YMσ3n

YM
s

]
+ α′4

[
a4,1

(
n(DF )4

s + σ2n
(F 3)2+F 4

s

)
+ a4,2n

(DF )4

s + a4,F 3σ3n
YM+F 3

s

]
+O(α′5).

(1.102)

Here σ2 and σ3 denote quadratic and cubic kinematic building blocks consisting of Man-
delstam invariants and the ai’s are unfixed coefficients.

The question then arises whether the infinite tower resums into a known theory. It was
shown that by setting a3,YM = 0 that A4 and A5 precisely match the O (α′4) expansion of
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the ’B-amplitudes’ in [54]. These amplitude correspond to a YM theory with an additional
(DF )2 operator deformed by a massive gauge theory whose mass is set by 1/α′ [55, 56]
and which contains propagators that are constructed from the higher-order operators. This
indicates that, by imposing double-copy consistency, the infinite tower of higher-order terms
resums into (DF )2 + YM.

Higher Derivative NLSM
In section 1.2, the NLSM Lagrangian we consider is the O(p2) Lagrangian of (1.41). It is
also possible to consider the terms with a greater amount of derivatives, such as the L4 or
L6 which are of O(p4) and O(p6) respectively.

It was calculated that for 6-point amplitudes, up to O(p10), additional terms are also
required in order to satisfy CK-duality due to the contact term not allowing for duality
[57]. It is argued here that requiring DC consistency to arbitrary multiplicity involves
adding an infinite chain of operators with fixed coefficients.

Another candidate for calculating the higher-derivative corrections for the NLSM ampli-
tudes can be found in string theory [58]. Specifically, in a double-copy-like approach, it was
found that it was possible to replace the Yang-Mills factors of Abelian open-string ampli-
tudes by gauge theory colour factors. This replacement gives rise to Abelian Z-amplitudes
[59]. A bief overview of these Z-theory amplitudes can be found in Appendix C.

In the field theory limit, the leading order α′ contributions then give rise to NLSM ampli-
tudes of the O(p2) Lagrangian:

ANLSM(1, 2, . . . , n) = lim
α′→0

(α′)2−n
∑

σ∈Sn−1

Z1σ(2,3,...,n)(1, 2, . . . , n). (1.103)

These amplitudes then denote the flavour-ordered NLSM amplitudes. Explicitely at n = 4
and n = 6 for example they give rise to the correct NLSM amplitudes:

ANLSM(1, 2, 3, 4) = π2(s12 + s23), (1.104)

ANLSM(1, 2, . . . , 6) = π2

[
s12 −

1

2

(s12 + s23)(s45 + s56)

s123
+ cyclic(1, 2, 3, 4, 5, 6)

]
, (1.105)

up to a normalisation factor. It is also possible to calculate the subleading terms. These
correspond to the higher-derivative corrections of the NLSM.



Chapter 2

BCJ Bootstrap - Hybrid Soft Behaviour

In the previous chapters, we explored the BCJ double copy and observed that the color
factors exhibit interesting identities and properties derived from the Lie algebra of the
theory under consideration. However, this raises the question: What about the kinematic
numerators ni? In the 4-point example, we noted that there is no unique formulation of the
numerators due to gauge invariance and the possibility of redistributing the contribution
of the 4-point contact term into the numerators of the cubic exchange diagrams.

The aim of this chapter is to investigate whether there is a general formulation for the
kinematic numerators, specifically for scalar theories. To achieve this, we will delve into
the novel approach developed by Yang Li, Diederik Roest, and Tonnis ter Veldhuis, which
classifies kinematic numerators that satisfy the BCJ colour-kinematics duality [19]. In this
approach, they classify the irreducible representations (irreps) of the symmetric group Sn

that meet the conditions of CK duality. With these irreps established, one can match them
to the irreps of (products of) Mandelstam invariants out of which kinematic numerators are
built. The constructed kinematic numerators will be used to construct amplitudes of the
Gauged Nonlinear Sigma Model (GNLSM). The amplitudes of the full theory derived in this
context will exhibit a hybrid soft behaviour, producing amplitudes that are characterised
by a soft degree of σ = 0 and σ = 1.

2.1 A group Theory Approach to Numerators
As stated in subsection 1.5.1, we can formulate amplitudes as a sum over distinct cubic
diagrams as

An =
∑

trivalent

NÑ

D
, (2.1)

where the numerator factors N and Ñ can be referred to as BCJ numerators. These
numerators satisfy the CK duality. In this notation, the numerator factors can be choosen
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to be either a color or kinematic numerator. As an example we have extensively considered
the colour factors consisting of a product of structure constants:

Nabc... = f x1
ab f x2

x1c
fx2...

· · · . (2.2)

These colour numerators N are subject to the following constraints if they are to satisfy
the CK duality [60]:

1. Anti-symmetric under the exchange of the first two indices Nabcd... = −Nbacd....

2. Even and odd under reflections Nabcd... = (−1)nN...dcba.

3. The numerators satisfy Jacobi-like nested commutator identities

−Nabcd... = Nbacd... = Nc[ab]d... = Nd[[ab]c].... (2.3)

By satisfying the above properties, the colour numerators can then be associated with some
of the representations of the symmetric group Sn. In fact, the factors then correspond to
several irreducible representations (irreps) of Sn. In order to classify these specific irreps,
Young diagrams can be used, which schematically depict the irrep as a collection of boxes
with a specific number of rows and columns. Let us go over a brief overview of what these
diagrams are and how they are used to characterise the symmetric group.

2.1.1 Young Diagrams and Representations of Sn

The symmetric group Sn is the group of all permutations of a set. The group can tell us how
objects such as tensors transform under permutations of the tensor indices. Because the
BCJ conditions on numerators discuss properties of numerators, that can be seen as tensors
with indices a, b, . . . , we can view them from a group theory perspective. Specifically, we
are interested in the group’s irreducible representations.

To classify the irreducible representation of Sn, we first define young diagrams by specifying
a partition λ = (λ1, λ2, . . . , λr) of the natural number n to be a sequence of positive integers
with

r∑
i=1

λi = n and λi ≥ λi+1. (2.4)

Young diagrams can then be used to depict partitions graphically, as a collection of n boxes
arranged in r rows that are left-aligned. The ith row then consists of λi boxes. Left-aligned
means that diagrams are structured such that the boxes within each row are non-increasing
as you move downward, and similarly, non-increasing within each column as you move to
the right. These diagrams are also known as "legitimate" diagrams.

Each legitimate diagram corresponds to a unique irreducible representation. Distinct dia-
grams represent inequivalent irreps, regardless of whether the dimensions of the irreps are



42 A group Theory Approach to Numerators

identical. For n = 4, there are 5 distinct partitions:

. (2.5)

Each partition for n is equal to the number of conjugacy classes1 of Sn and is therefore
equal to the number of distinct irreducible representations. We will use the shorthand
notation [3, 2, 1] to describe a diagram with 3 boxes in the first row, 2 boxes in the second
row, and 1 box in the third row:

[3, 2, 1] = . (2.6)

The dimension of an irrep Sλ can be calculated using the hook length formula. The hook
length hi of a box i in a Young tableau is the number of boxes either below or to the right
of that box in the Young diagram, including the box itself. The dimensionality is then
given by

dimSλ =
n!∏
i hi

. (2.7)

If the diagram in (2.6) were to correspond to an irrep, its dimensionality would be dim[3, 2, 1] =
6!

5·3·1·3·1·1 .

There are two noteworthy 1-dimensional representations, namely the singlet and the sign
representation. The singlet representation, whose Young-diagram [n] is displayed in Fig-
ure 2.1a, is commonly referred to as the ’trivial’ representation of Sn due to the fact that
it is a one-dimensional representation that sends every element of the group to the identity
matrix of order 1.

The sign representation, sometimes referred to as the ‘alternating’ representation, is de-
noted by the Young diagram [1, 1, . . . , 1] in Figure 2.1b. It sends all even number of
permutations of two elements to 1 and all odd number of permutations to −1.

Returning to the discussion of the BCJ conditions on numerators, the irreps of Sn which
satisfy these constraints have been classified by [19] and are denoted in Table 2.1. For
convenience we display the irreps of S4, S5 and S6 that satisfy the constraints explicitely:

. (2.8)

n = 4 n = 5 n = 6

1A conjugacy class characterises a cycle structure for permutations. For example, cyclic permutations
in S3 are denoted by the conjugacy class (abc → bca, abc → cab).
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. . . n

(a)

· · ·
n

(b)

. . . n−1

(c)

Figure 2.1: Young diagrams of the trivial irrep [n], the sign irrep [1, 1, . . . , 1] and the standard
representation [n− 1, 1].

n Young diagram
4 [2, 2]
5 [3, 1, 1]
6 [4, 2], [3, 1, 1, 1], [2, 2, 2]
7 [5, 1, 1], [4, 2, 1], [3, 3, 1], [3, 2, 1, 1], [2, 2, 1, 1, 1]

[6, 2], [5, 2, 1], [5, 1, 1, 1], [4, 4], [4, 3, 1],
8 2 × [4, 2, 2], [4, 2, 1, 1], [4, 1, 1, 1, 1], 2×[3, 3, 2, 2],

[3, 2, 2, 1], [3, 2, 1, 1, 1], [2, 2, 2, 2], [2, 2, 1, 1, 1, 1]

Table 2.1: Irreps of Sn that obey the BCJ constraints. [61]

Now we know from a group theory perspective what the irreps are that correspond to
objects that satisfy the BCJ constraints. From here, we would like to see how these relate
to numerators that are made out of kinematic objects such as Mandelstam invariants.

2.1.2 Mandelstam Representations
We have seen that the kinematic numerators ni of YM theory are made up of products
of momenta and polarisations. For this discussion, we instead consider the numerators for
(coloured) scalars. The reason is that for scalar field theories the only information of the
external legs are the momentum vectors. There is no polarisation to consider and therefore
the kinematic numerator can only consist out of Mandelstam invariants. These are then
purely constructed through Lorentz invariant products of momenta pipj. We define these
Mandelstam invariants as

sij...k = (pi + pj + · · ·+ pk)
2 = 2pipj + 2pipk + 2pjpk + . . . , (2.9)

where contraction of the Lorentz indices of the momenta is implied pipj = (pi)µ(pj)
µ.

For the theories we consider in this section, the colour factors are all contained in either N
or Ñ , leaving the other numerator to solely depend on momentum Mandelstams. Similarly
to the colour numerators, the kinematic numerators can be constructed to obey symmetries
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of permutations of the external legs. The same language of the symmetric group can then
be applied to the kinematic numerators.

For starters, due to momentum conservation, the sum of all momenta vanishes. This
summation is invariant under permutation of the momenta and can be said to live in the
singlet representation [n], indicating that anything we build with this irrep gives rise to
vanishing contributions.

The set of all n external momenta, {p1, . . . pn}, lives in the standard representation of Sn

denoted by [n− 1, 1] and shown in Figure 2.1c. There are (n− 1) independent momentum
vectors due to conservation of momentum, which is consistent with the dimension of the
representation dim = n!

n·(n−2)·(n−3)···1 = n− 1.

Mandelstam invariants are products of momenta pipj. This product can be translated to
representation language to the tensor product of standard [n− 1, 1] representations

. . . n−1
⊗

. . . n−1
' . . . n ⊕

. . . n−1
⊕

. . . n−2
, (2.10)

which produces the singlet irrep [n] in addition to another [n − 1, 1] irrep and the irrep
[n−2, 2]. The contribution of the singlet [n] vanishes due to momentum conservation, while
the second leads to vanishing contributions due to the on-shell conditions pµp

µ = 0. We
can therefore associate the Mandelstam invariants consisting of pipj to the irrep [n− 2, 2].

Now that we have identified the irrep corresponding to Mandelstam invariants, we note that
the kinematic numerators N can be made out of any combinations of (different) powers p
of these Mandelstam invariants. We therefore also need to find how the tensor product of
[n− 2, 2] irreps decomposes.

Before we construct the tensor product of Mandelstam irreps, we note that there are certain
numerators that satisfy the BCJ conditions, but which result in vanishing amplitudes.
These were classified as ’gauge solutions’ and have in common the property that they can
be written as the product of Mandelstam variables si...j and a specific irrep of Sn. The
shape of this gauge irrep depends on the multiplicity of the amplitude. The example is
given that at n = 4 the gauge numerator is denoted as

Nabcd = sabGabcd, (2.11)

where Gabcd is a fully anti-symmetric tensor which transforms according to the adjoint
[1, 1, 1, 1] irrep of Sn. For n = 4 through n = 7 the irreps that give rise to a vanishing
amplitude are denoted in Table 2.2.

2.1.3 Powers of Mandelstam Invariants
The construction of kinematic BCJ numerators has been translated into a representation
theory problem by investigating the irreps that arise from tensor products of the [n− 2, 2]
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n Gauge irreps
4 [1, 1, 1, 1]
5 [2, 2, 1]
6 [3, 2, 1], [3, 1, 1, 1]
7 [4, 3], [4, 2, 1], [4, 1, 1, 1], [3, 2, 2], [3, 2, 1, 1], [3, 1, 1, 1, 1], [2, 2, 2, 1]

Table 2.2: Irreps of Sn that give rise to a vanishing (gauge) contribution to the amplitude [62].

irreps. This product can be taken p times, corresponding to taking a Mandelstam variable
to the power p:

sp ∼=

(
. . . n−2

)p

=
. . . n−2

⊗ · · · ⊗
. . . n−2

. (2.12)

The specific calculation of these irrep products starts at n = 4 due to the fact that there
exist no Mandelstams for n = 3 scalars. For n = 4 and n = 5 the decomposition of
the product has been shown to obey a systematic classification, as we will see shortly.
However, this classification does not prove useful for n ≥ 6 due to intricate relations
between invariants referred to as syzygys2 [63, 64]. Nevertheless, by imposing that higher
multiplicity amplitudes are bootstrappable from 4-point interactions it remains possible to
characterize these amplitudes through powers of Mandelstam invariants.

2.2 Numerators for 4-point Interactions
2.2.1 Linear Order s1 BCJ parameter
Out of the four external momenta pi there are only 3 independent momenta. These mo-
menta live in the [3, 1] representation of S4. The Mandelstam invariants then live in the
[2, 2] irrep, which is the so-called "window" irrep. Upon comparison of this irrep to the
irreps of S4 that are compatible with the BCJ constraints in Table 2.1 it becomes clear
that the [2, 2] irrep allows for BCJ compatible expression of Mandelstam invariants linear
order s1. The combination of Mandelstams given by

N
(1)
4 = N

(1)
abcd = sbc − sac = t− u, (2.13)

is linear in Mandelstam variables and satisfies the same BCJ constraints as the colour
factors. At the level of the amplitude, this kinematic numerator will give rise to exchange

2A mathematical description of syzygys goes beyond the scope of this work, but a heuristic argument of
such relations would be that, as you increase the number of momentum vectors at some point not all of the
vectors are linearly independent. The point at which this happens would depend on the number spacetime
dimensions D that these momenta live in. When the momenta are no longer linearly independent there are
relations between momenta that, in the context of Mandelstams sij could result in complicated relations
between invariants.
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diagrams, it is therefore called the ’exchange factor’. This can be seen by the the fact that
the amplitude A ∼ N/D will have D ∼ s1 for any trivalent 4 point amplitude. Explicitely,
the s-channel exchange diagram will give rise to an amplitude proportional to t−u

s
. We

will explore the construction of amplitudes from the numerators we find in this section in
more detail in section 2.5.

2.2.2 Quadratic Order s2 BCJ Parameter
At quadratic order in Mandelstams, s2, we need to take the symmetric product of 2 [2, 2]
irreps. This product decomposes as

⊗
'

⊕ ⊕
(2.14)

Here the [1,1,1,1] irrep is again the gauge factor which does not contribute to the four-
point amplitude. The [4] irrep is the the trivial representation which does not satisfy the
BCJ conditions. This leaves us with another contribution by the [2, 2] window again. We
already saw that this is compatible with the BCJ conditions, therefore we can denote

N
(2)
4 = sab(sbc − sac) = s(t− u) (2.15)

as the quadratic order factor. Note that it is the same as the exchange factor of (2.13)
multiplied by a propagor of the half ladder diagram. It therefore gives rise to contact
interactions at the level of the amplitude as we will see in section 2.5.

2.2.3 Higher-Order Mandelstam Invariants: Series Expansions
At higher orders in p the [2, 2] window irrep will continuously appear as the only contribut-
ing irrep in the decomposition of the product of irreps. For this reason, a pattern occurs;
the BCJ factor N can be written as the product of an invariant Mandelstam expression
and one of the two building blocks N

(1)
4 and N

(2)
4 .

It is not immediately clear how often the BCJ irrep will appear in the irrep decomposition.
We can use the Molien series given by

M(x) =
1

n!

∑
g∈Sn

det (1− xg|V ∗)−1 , (2.16)

to count the number of invariants for a specific order [65]. Here the term 1/n! comes from
the cardinality of Sn, which is n!. We therefore sum over the determinants of the (1− xg)
for some complex representation V of Sn.
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The expression will result in a product of factors
(
1− xbi

)
in the denominator due to the

inverse determinant,

M(x) =
1

(1− xb1) · · · (1− xbr)
, (2.17)

which can be expanded using the properties of the geometric series to obtain a polynomial
whose coefficients ai correspond to the number of independent symmetric polynomials in
n variables.

M(x) =
∞∑
n=0

ai,nx
n = a0 + a1x+ a2x

2 + . . . . (2.18)

This then corresponds to the number of invariants of Sn at a specific order in irrep products.

Returning to our 4-point interactions, for S4 the Molien series is denoted as

M4(x) =
1

(1− x2) (1− x3)
. (2.19)

From (2.19) we can already heuristically infer that there are two ’primary’ invariants of
order x2 and x3 out of which higher order invariants can be made. These are primary,
because when M(x) is expanded through use of a geometric series (2.18), we will find new
invariants at higher orders in primary invariants

M4(x) =
1

(1− x2) (1− x3)
=
(
1 + a2x

2 + a4x
4 + a6x

6 + . . .
) (

1 + b3x
3 + b6x

6 + . . .
)
(2.20)

= 1 + a2x
2 + b3x

3 + a4x
4 + a2b3x

5 + (a6 + b6)x
6 + . . . . (2.21)

The two primary invariants are referred to as the ’quadratic’ and ’cubic’ primary invariants,
I
(2)
4 and I

(3)
4 respectively. In terms of Mandelstams, these are given by

I
(2)
4 = sabsbc + sacsbc + sabsac = st+ ut+ su, (2.22)
I
(3)
4 = sabsadsac = stu. (2.23)

Specifically, the number of times the window irrep [2, 2] occurs at any order in powers of
Mandelstams is given by [64]

HBCJ
4 (x) =

(
x+ x2

)
M4(x) =

(x+ x2)

(1− x2) (1− x3)
, (2.24)

which in turn implies that all BCJ invariants are written as N (1)
4 or N (2)

4 multiplied by any
combination of primary invariants I

(2)
4 and I

(3)
4 .
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2.2.4 Gauge Parameters at 4-point
Similar to the BCJ window irrep factor, we can calculate the number of times the gauge
parameter irrep [1, 1, 1, 1] occurs in the expansion. This is given by the Hilbert series

HGauge
4 (x) = x3M4(x) =

x3

(1− x2) (1− x3)
. (2.25)

The coefficients of the expansion then count the number of gauge parameters at one order
higher. In this Hilbert series we recognise the two primary invariants and a cubic secondary
invariant. Explicitely, the higher order combination

2N
(2)
4 I

(2)
4 − 3N

(1)
4 I

(3)
4 , (2.26)

is of the order of s4. In terms of Mandelstams this term can be written as

2N
(2)
4 I

(2)
4 − 3N

(1)
4 I

(3)
4 = 2s(t− u)(st+ ut+ su) + 3(t− u)(stu)

= s(t− u)(5tu+ 2s(t+ u)). (2.27)

This term satisfies the BCJ conditions, but when we construct amplitudes from this nu-
merator we will find that it vanishes.

2.3 Numerators for 5-point Interactions
The Mandelstam invariants live in the [3, 2] irrep. A quick glance at Table 2.1 reveals
that there are therefore no BCJ compatible irreps at the linear order in mandelstam for
interactions of 5 scalar legs. At quadratic order we find the decomposition of the product
of Mandelstams [66]

[3, 2]⊗ [3, 2] ∼= [5] + [4, 1] + 2[3, 2] + [3, 1, 1] + 2[2, 2, 1] + [2, 1, 1, 1]. (2.28)

Therefore the matching BCJ irrep is ’hook’ tableau[3, 1, 1], which is present in the de-
composition. It turns out that the gauge parameter irrep [2, 2, 1] occurs twice in this
decomposition. For higher order invariants the Hilbert series are given by

H Inv
5 (x) =

(
1 + x6 + x7 + x8 + x9 + x15

)
/D5(x) (2.29)

HBCJ
5 (x) =

(
x3 + 2x4 + 4x5 + 5x6 + 6x7 + 6x8 + 5x9 + 4x10 + 2x11 + x12

)
/D5(x)

(2.30)
HGauge

5 (x) = (x2 + x3 + 3x4 + 3x5 + 3x6 + 4x7 + 4x8 + 3x9 + 3x10 + 3x11 + x12 + x13)/D5(x)
(2.31)

D5(x) =
(
1− x2

) (
1− x3

) (
1− x4

) (
1− x5

) (
1− x6

)
. (2.32)

As before, the denominator terms
(
1− xbi

)
indicate the presence of primary invariants and

the numerator terms point to the presence of secondary invariants. Therefore at 5-point
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there are primary invariant from quadratic order to quintic order for H Inv
5 . The sextic

order invariant appears in both the denumerator and numerator, pointing to the syzygys
at this order that were mentioned before.

Such relations also occur for HBCJ
5 , but it is stated that there are 29 independent [3, 1, 1]

hooks which generate all BCJ compatible solutions. Other hooks that appear in the Molien
series can be written as products of these independent hooks with primary and secondary
inariants. For HGauge

5 it is argued that due to the fact that the [2, 2, 1] irrep shows up
multiple times in the decomposition of the product of BCJ irreps, the number of distinct
irreps at one order higher is given by:
HGauge, dist

5 =
(
x3 + x4 + 2x5 + 3x6 + 2x7 + 3x8 + 4x9 + 3x10 + 2x11 + 2x12 + x13

)
/D5(x).

(2.33)
The resulting series for the number of physical BCJ parameters at every order is then given
by

HPhys
5 (x) =

(x4 + 2x5 + 2x6 + 4x7 + 3x8)

D5(x)
+

(x9 + x10)

(1− x2) (1− x4) (1− x5) (1− x6)
, (2.34)

which presents 14 different hook structures, out of which 13 are independent as one of them
can be written as the product of a secondary invariant. These 13 hook structures can be
used as seed interactions for 5-point amplitudes.

2.4 Numerators for 6-point and Higher: BCJ Bootstrap
The Molien series methodology of 4-point and 5-point interactions can in theory be used
to construct the independent BCJ structures for 6-point interactions, but in practice this
is a cumbersome approach. For starters, there are 3 possible BCJ structures are 6-point
and their Molien series contain terms up to O

(
x24
)

in the numerator. This would require
explicit irrep product decompositions of these secondary invariants with products of 24 BCJ
irreps. While the calculation of the irreps is cumbersome, the counting of the parameters
was done by [19] and is shown in Table 2.3.

Alternatively, it is much more convenient to consider the 6-point amplitudes which can be
constructed out of 4-point seed interactions similar to the approach of [67]. This utilises the
factorization property of the amplitude discussed in section 1.3, which can be schematically
depicted as

A6 =
∑
sabc

q
b

c

a d

e

f

=⇒ A =
∑
sabc

AL
1

sabc
AR. (2.35)
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p BCJ Gauge Phys Inv Bootstrap
1 1 0 1 0 0
2 3 0 3 1 1
3 9 1 8 2 2
4 23 5 18 4 3
5 54 16 38 6 8
6 121 42 79 13 24
7 246 95 151 19 53

Table 2.3: Overview of the classification of 6-point irrep counting for the BCJ, gauge, physical
and bootstrap-compatible parameters up to O(s7) [62].

Such a factorisation condition can then be imposed on the 6-point numerator, giving rise
to the following condition for the BCJ numerator at order sp

lim
sabc→0

N
(p)
6 =

∑
q

cqN
(p−q)
4 (abcx)N

(p+q)
4 (xdef), (2.36)

where the summation runs over all possible factorization combinations as sp can be written
as a product of sp−q with sq, cq is some coefficient specific to the channel and x denotes
the internal propagator.

2.4.1 Quadratic Order Numerator
The first possible 6-point BCJ factor will consist of a product of two linear N

(1)
4 and is

therefore of O
(
s2
)

denoted by:

lim
sabc→0

N
(2)
6 = N

(1)
4 N

(1)
4 = (sac − sbc)(sde − sdf ). (2.37)

The general numerator that satisfies this factorization is the above expression plus an
expression of the form sabc multiplied by a factor Labcdef that is linear in all 15 possible
Mandelstams. Later when we calculate our amplitudes we can express these into the basis
of 9 independent Mandelstam invariants. We can make a generic ansatz for such a linear
factor as

Labcdef = c1sab + c2sac + · · ·+ c14sdf + c15sef . (2.38)

We then require that Labcdef satisfies the generalised Jacobi identity conditions of (2.3)
which impose

−Labcdef = Leabcdf − Lebacdf − Lecabdf + Lecbadf (2.39)
− Ledabcf + Ledbacf + Ledcabf − Ledcbaf , (2.40)

−Labcdef = Lfedcba. (2.41)
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This system of equations can be solved the coefficients ci, which reduces the system to one
overall coefficient, e.g. c5, for four of the 15 Mandelstams while the rest of the coefficients
vanish. This leads to the reduced expression for the linear term

Labcdef = −c5(sae − saf − sbe + sbf ). (2.42)

Through this term, the quadratic 6-point amplitude is thereby uniquely fixed with the
numerator

N
(2)
6 = (sac − sbc)(sde − sdf ) +

1

2
(sae − saf − sbe + sbf ). (2.43)

2.4.2 Cubic Order Numerator
Next, we turn our attention to the numerator at O

(
s3
)
. While N

(2)
6 is unique, this is not

the case for N
(3)
6 and N

(4)
6 as is shown in Table 2.3. In this case there are two possible

combinations that contribute through factorization, explicitly

lim
sabc→0

N
(3)
6 = c1N

(2)
4 N

(1)
4 +c2N

(1)
4 N

(2)
4 = c1(sac−sbc)sab(sde−sdf )+c2(sac−sbc)(sde−sdf )sef .

(2.44)
The solution for N

(3)
6 will be the above factor plus sabc multiplied by some factor that is

a linear combination of quadratic Mandelstams denoted by Qabcdef . We can construct a
generic ansatz for Qabcdef as a sum over all possible products of sij

Qabcdef = c1,1sabsab + c1,2sabsac + · · ·+ c15,15sefsef , (2.45)

where the coefficients are related to elements of our basis of Mandelstams {sab, sac, . . . , sef}
are multiplied together.

After constraining the ansatz with the generalised Jacobi identities of (2.3) we find that
there are a total of 3 unfixed parameters, c5,9, c6,6 and c6,8. We can further constrain this
equation by imposing a soft limit of σ = 0 or σ = 1 on the amplitude.

The final generalised numerator N (3)
abcdef with σ = 0 imposed is then given by the expression

N
(3)
abcdef = (sac − sbc)sab(sde − sdf ) + (sac − sbc)(sde − sdf )sef + sabcQabcdef . (2.46)

These numerators can then be used to construct amplitudes, as we will see shortly in
section 2.5.

2.4.3 Quartic and Higher Order Numerators
Finally at O (s4) the factorization can be denoted as

lim
sabc→0

N
(4)
6 = c1N

(3)
4 N

(1)
4 + c2N

(2)
4 N

(2)
4 + c3N

(1)
4 N

(3)
4 . (2.47)
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We recall that the BCJ numerators can be constructed out of linear and quadratic invariant
building blocks, therefore higher order numerators such as N

(3)
4 can be constructed from

the building blocks I(2)4 and I
(3)
4 . However it is stated that higher order combinations only

factorize in the combinations N
(1)
4 (I

(3)
4 )n and N

(2)
4 I, where I is an invariant of arbitrary

power. It has not been verified that this behaviour continues at higher order in Mandelstam.
For this reason the terms with N

(3)
4 = N

(1)
4 I

(2)
4 do not contribute to the numerator of the

quartic order. The resulting expression is therefore

lim
sabc→0

N
(4)
6 = N

(2)
4 N

(2)
4 = c2(sac − sbc)sab(sde − sdf )sef . (2.48)

We can use a similar method to finding the full expression of the numerator as for the
cubic numerators; starting with an ansatz that is cubic in Mandelstam invariants and then
constraining the coefficients of this ansatz using the BCJ conditions and imposing the soft
degree of σ = 1 to fully determine the theory.

We have constructed the numerators N (2)
6 , N (3)

6 and N
(4)
6 , which contain the three possible

combinations of N
(1)
4 and N

(2)
4 . Due to the property that the higher-order numerators

at 4-point are built up out of these building blocks, we can construct higher-order N
(p)
6

recursively.

2.5 Colour x Kinematics: The Gauged NLSM
Now that we have found expressions for kinematic numerators at 4- and 6-point that satisfy
the BCJ constraints, we return to the starting point of the discussion. The aim is to use
the constructed numerators to build amplitudes. Using the amplitude decomposition

An =
∑

trivalent

NÑ

D
, (2.49)

amplitudes for different theories can be considered by filling in N and Ñ with colour and
(or) kinematic numerators.

We will consider the single copy amplitude for a gauged scalar field, where one numerator
describes a colour factor C and the other a kinematic numerator N . The scalar Gold-
stone field φa transforms according the adjoint representation a of gauge group G, whose
generators give rise to the colour factor C.

We will see that by imposing the soft limit σmin = 0 and σmax = 1 at 6-point, the resulting
amplitudes describe amplitudes of the gauged NLSM pions interacting with gluons.

2.5.1 4 Point Interactions
Starting with the 4-point kinematic numerator in terms of (2.13) and (2.15) we see that the
total amplitude of the theory separates into two terms of different powers in Mandelstam
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invariants

AGNLSM
4 =

∑
trivalent

C4N4

D
=

∑
trivalent

C4N
(1)
4

D
+
∑

trivalent

C4N
(2)
4

D
. (2.50)

We will treat these terms seperately, beginning with the term ’linear term’ generated by
N

(1)
4 . This term generates the three possible 4-point gluon exchange channels:∑

trivalent

C4N
(1)
4

D
= Cs

4

(t− u)

s
+ Ct

4

(u− s)

t
+ Cu

4

(s− t)

u
, (2.51)

with Cs
4 = f̃abxf̃xcd, Ct

4 = f̃ bcxf̃xad and Cu
4 = f̃ caxf̃xbd satisfying the usual Jacobi identity

for colour factors. The Feynman diagrams depicting this exchange are shown in Figure 2.2.

sab

a

b c

d

sbc

b

c a

d

sac

c

a b

d

Figure 2.2: The three distinct gluon exchange channels produced by N
(1)
4 .

The derivative dependence of the amplitudes can be used to determine a Lagrangian that is
able to produce these exchange diagrams. Firstly, the numerator scales as N

(1)
4 ∼ s1 ∼ p2,

which indicates the contribution of a (∂φ)2 term. The interaction Lagrangian that is able
to produce the diagrams of Figure 2.2 can then be denoted as

L(1)
int ∼ f 2φ(∂φ)Aµ. (2.52)

Since we are considering a theory of gauged scalars, we will later use the covariant derivative
(Dµφ)a = ∂µφa − igfabcAb

µφ
c in order for the total Lagrangian to be gauge invariant.

Equation (2.51) can be rewritten by using t = −s − u. After this, we can set pa → λpa,
recalling that s = 2papb and u = 2papc to find

−Cs
4λ(s+ 2u)

λs
+

Ct
4λ(s− u)

λ(s+ u)
+

Cu
4λ(2s+ u)

λu
, (2.53)

where it is clear that the dependence on λ cancels. This indicates a soft degree of σ = 0.
Identical analysis can be done for the other external legs.

Next, we turn our attention the quadratic numerator N
(2)
4 . The contribution to the total

amplitude in (2.50) generated by this numerator is given by∑
i

Ci
4N

(2)
4

Di

= Cs
4

s(t− u)

s
+ Ct

4

t(u− s)

t
+ Cu

4

u(s− t)

u
(2.54)

= Cs
4(t− u) + Ct

4(u− s) + Cu
4 (s− t). (2.55)
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Remarkably, the exchange channels have been removed through the introduction of the
addition order in Mandelstams, leaving us with only contact interactions. The Feynman
diagram for such a contact term is denoted in Figure 2.3.

b

d

c

a

Figure 2.3: The contact term produced by N
(2)
4 . The other two contact terms can be found

through cyclic permutations of a, b and c.

The introduction of the additional factor of sab that cancels the gluon exchange in the
amplitude indicates an extra derivative coupling at the Lagrangian level. From this, we
can deduce that the contact interaction term can be associated with the interaction term

L(2)
int ∼ f 2φ2(∂φ)2, (2.56)

which corresponds to the a familiar 4 point interaction of the NLSM, with the addition of
structure constants that indicate the colour structure similar to (1.41). Further confirma-
tion of NLSM-like behaviour can be seen from from the fact that the amplitude contains
the Adler zero property, as the amplitude generated by N

(2)
4 is linear in all four momenta

pi, indicating a soft degree of σ = 1.

Both scalar interactions can be combined into the total Lagrangian

LGNLSM
4 = −1

2
(Dφ)2 − 1

4
F 2 +

1

6
f 2φ2(Dφ)2, (2.57)

which includes the free Lagrangians of both the adjoint scalars and the gauge fields. This
theory then satisfies gauge invariance, the nonlinear shift symmetry of the NLSM and
produces CK-duality satisfying amplitudes at 4-point. The specification at four point will
become apparent when we analyse the the 6-point amplitudes, where we will need to add
additional terms in order to produce a theory that satisfies these same properties, which is
familiar from Equation 1.5.3. The difference here is that only a finite number of correction
terms are needed.

2.5.2 6-Point Interactions
We can go one step further and describe the amplitudes generated by the six-point numer-
ators of section 2.4. The amplitude can then be constructed as

AGNLSM
6 =

∑
trivalent

C6N6

D
=

∑
trivalent

C6

(
N

(2)
6 +N

(3)
6 +N

(4)
6

)
D

. (2.58)
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When we are considering cubic interactions, there are two types of diagram structures that
can occur at 6-point. The first is the half-ladder diagrams we encountered in our discussion
of gluon amplitudes and the second are ‘snowflake’ diagrams, both types of diagramsare
displayed in Figure 2.4. There are a total of (2 · 6− 5)!! = 105 possible cubic diagrams at
6-point. Out of these, there are 90 half-ladder diagrams and 15 cubic diagrams [60]. The
snowflake diagrams have distinctly different amplitude contributions. For starters, both

a

b c d e

f

sab sabc sabcd
sab

sefscd

b

a e

f

d c

Figure 2.4: Half-ladder and snowflake diagram for a 6-point amplitude.

types of diagrams have denominators D ∼ s3, but they are made up of different interal
propogators. The half-ladder diagrams will have propagators of the form

DHL =
1

sabsabcsabcd
, (2.59)

where it is possible to use momentum conservation to relate sabcd = sef . The snowflake
diagrams have denominators of the form

Dsnowflake =
1

sabscdsef
. (2.60)

Secondly, the colour factors for both diagram types are product of 4 structure constants, e.g.
CHL

6 = f̃abxf̃xcyf̃ ydzf̃ zef and Csnowflake
6 = f̃abxf̃xyzf̃ ycdf̃ zef for the diagrams in Figure 2.4.

Finally, we turn our attention to the numerators of the two diagrams. Initially, one might
think that our assumption of the factorization of the numerator N6 into a product of
four-point numerators N4N4 does not allow for snow-flake diagrams, as these cannot be
factorised in this way. However, the numerators of the snowflake diagrams are related to
the numerators of the half-ladder diagrams through Jacobi identities by

N snowflake
abcdef = Nhalf-ladder

abcdef −Nhalf-ladder
abdcef , (2.61)

The total amplitude can then be said to be a sum over half-ladder and snowflake diagrams

A6 =
∑

half-ladder

NabcdefC
hl
abcdef

sabsabcsef
+

∑
snow-flake

(Nabcdef −Nabdcef )C
snowflake

sabscdsef
. (2.62)
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Now that we have determined how to construct amplitudes from the numerators, we will
investigate the properties of these amplitudes. The quadratic numerator gives rise to
amplitudes of the form ∑

trivalent

C6N
(2)
6

D
, (2.63)

which are completely fixed by the BCJ conditions on the numerators. In terms of degree
of Mandelstams these amplitudes scale as s−1 due to the cubic propagators of (2.59) and
(2.60). Due to the pole structure of these amplitudes, we can identify them with gluon
exchange diagrams similar to Figure 2.2.

The cubic numerators had unfixed constraints after requiring factorization, but these are
fixed by imposing the soft degree σ = 0 on the amplitudes.

Finally, the quartic numerators N
(3)
4 are completely fixed by imposing the soft degree

σ = 1, leading to the 6-point NLSM pion contact amplitude, whose diagram is shown in
Figure 2.5.

a

f

b

e

d

c

Figure 2.5: The 6-piont GNLSM contact diagram produced by N
(4)
6 .

As indicated before, we need to add addition terms to the Lagrangian in order to gen-
erate the above amplitudes. Requiring the conditions of gauge inariance, nonlinear shift
symmetry and BCJ compatibility, the Lagrangian can be denoted as

L6 = L4 +
1

45
f 4φ4(Dφ)2 − 2f 2F 3 +

1

6
f 2φ2F 2. (2.64)

The coefficients of these additional terms are tuned to satisfy the symmetry conditions.

The new terms include the higher derivative F 3 operator discussed in Equation 1.5.3, the
six-pion contact term φ4(∂φ)2 and a new type of interaction between gluons and pions
through f 2φ2F 2. This term generate a 5-point interaction of the form φ2(∂A)φ that does
not contribute to the 6-point amplitude, a 6-point amplitude of the form φ2A4 that can not
contribute to a 6-point amplitude with only scalar external legs at tree level, and a 4-point
interaction of the form φ2(∂A)2. This last interaction can contribute to the amplitudes
through diagrams of the form shown in Figure 2.6. However, these amplitudes do not
conform to the requirement of factorising in 4-point amplitudes on sabc → 0.
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Figure 2.6: The additional 6-point interaction type generated by the interaction f2φ2F 2 that
contributes to A6.

2.5.3 Higher Multiplicities
Moving on to higher-point amplitudes, it is expected that the above pattern continues;
the Lagrangian will consist of the lower point Lagrangians plus additional terms. This is
still subject to current research by Yang Li and colleagues and could potentially be an
interesting thesis topic for future students reading this work.

As we have seen at 4- and 6-point, the numerator with lowest order in Mandelstam gener-
ates the gluon exchange channel and the highest order in Mandelstam generates the pion
contact term (after imposing the soft limit). For general (even) multiplicity n, it is ex-
pected that the numerator of O(s(n−2)/2) will generate the gluon exchange channels, while
the term with the highest order in derivatives, which is O(sn−2) generates the pion contact
term. The expected pattern of degrees of sp is depicted in Table 2.4.

n
p 4 6 8 10 12
1 GE
2 PC GE
3 x GE
4 PC x GE
5 x x GE
6 PC x x
7 x x
8 PC x
9 x
10 PC

Table 2.4: Schematic depiction of the amplitudes generated at every order in Mandelstam sp.
The gluon exchange (GE) and pion contact (PC) terms follow the pattern of the soft degree of
the amplitude. The gluon exchange amplitudes all obey σ = 0 while the pion contact terms obey
the Adler zero of σ = 1. The amplitudes with ambiguous soft degree are in between these lines,
and are denoted by x’s.

We would like to emphasise the fact that the above Lagrangian describes a theory of
gauged NLSM pions amplitudes with a hybrid soft degree. This is quite unusual compared
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to ‘regular’ theories such as YM and the NLSM, where the entire theory has a singular
fixed soft degree. Instead, the theory described by (2.64) has a minimum soft degree of
sigmamin = 0, while a section of the theory has σ = σmin + 1.

2.6 Key Findings and Implications
The initial goal of this chapter was to find a general expression for colour-kinematics (CK)
duality satisfying numerators in scalar theories. We explored the existence of such numera-
tors from a group theory perspective and successfully constructed the 4-point numerators,
which served as the building blocks for higher-multiplicity numerators. In the final sections,
we investigated the amplitudes arising from the single copy of these numerators.

These amplitudes can be interpreted as those of the Gauged Nonlinear Sigma Model
(GNLSM) with lower derivative corrections, generated by a theory exhibiting a hybrid
soft degree. The theory and the resulting amplitudes are highly non-trivial, and the cor-
rection terms required in the Lagrangian are also uncommon.

This raises an interesting question about the uniqueness of these amplitudes and whether
alternative Lagrangians could yield similar results. Addressing this question is key to
better understanding the underlying structures and seeing if there are other theories that
can produce the amplitudes we discussed in this chapter.

To further our investigation, we will now turn our attention to a different method for
generating CK-duality satisfying amplitudes: Unifying Relations. This approach enables
the generation of amplitudes for various interacting fields, including biadjoint scalars, pions,
and gluons. In the following chapter, we will thoroughly explore this subject to determine
if and how we can construct amplitudes akin to those produced by the BCJ bootstrap
method discussed here. This exploration will provide further insights into the versatility
and applicability of the CK-duality framework in scalar theories.



Chapter 3

Unifying Relations - Transmutation Operators

The approach of this chapter is based on the concept of ‘Transmutation Operators’, which
was initially proposed by Clifford Cheung, Chia-Hsien Shen and Congkao Wen in [22]. In
this work, the authors proposed a set of differential operators which ‘transmute’ tree-level
scattering amplitudes of one type of theory, (a), into amplitudes of a different theory, (b).
In an abstract schematic sense we can depict this as follows:

T · Aa → Ab. (3.1)

With these operators, a web of theories related through transmutation of amplitudes can be
created. At the heart of this unified web are the scattering amplitudes of extended gravity,
which describes gravitons coupled to a dilaton and two-form1. By applying different types
of transmutation on these amplitudes, we can derive the amplitudes of several theories,
including:

• Yang-Mills (YM): Gluon self interaction as describe in section 1.1.

• Maxwell: Photons described by Maxwell’s equations.

• Born-Infeld (BI): An effective field theory describing a nonlinear generalisation of
electromagnetism.

• Special Galileons (SG): Derivatively coupled scalar effective field theory characterised
by an enhanced soft limit of σ = 3.

• Dirac-Born-Infeld (DBI): Derivatively coupled scalar effective field theory charac-
terised by an enhanced soft limit of σ = 2.

• Nonlinear sigma-model (NLSM): Pion self interactions as described in section 1.2.
1The tensor product of two polarisation eiµe

j
ν can be decomposed into three combinations representing

a graviton polarisation ehµν , a B-field polarisation eBµν and the dilaton polarisation eφµν . Respectively, these
are the symmetric-traceless, the antisymmetric, and the scalar part of the polarisation tensor. The theory
describing these field coupled together is sometimes referred to as N = 0 supergravity.
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• Biadjoint scalar (BAS) theory: Scalars with two colour indices that arises in the
zeroth copy of YM and GR in subsection 1.5.2.

During the process of transmuting amplitude we can find ‘hybrid’ or ‘mixed’ amplitudes
of all of the above theories, for example

• Einstein-Yang-Mills (EYM); describing gluons coupled to (extended) gravitons,

• Einstein-Maxwell (EM); photons coupled to (extended) gravitons

• Yang-Mills-Scalar (YMS): gluons coupled to scalars

We will extensively discuss the construction of transmutation operators, starting with a
discussion on the necessary conditions and the basis of operators that arise from this. Using
this basis, we create specific combinations of operators that take us to the amplitudes we
desire, e.g. pion amplitudes from gluon amplitudes and amplitudes of scalars interacting
with gluons. We will use the 3- and 4-point gluon amplitudes as an example of this process.
Finally, we discuss the transmutation of important properties of the amplitudes, such as
the soft factors, factorisation, and UV completion.

While the Unifying Relations are incredibly useful relations for building the partial ampli-
tudes of a wide web of theories, the physical meaning of transmutation is still unclear. Two
of the operators we will construct, namely the ‘trace’ and the ‘longitudinal’ operator, can
also be seen as a dimensional reduction, where the kinematics of the external legs of e.g.
gluons can be constructed as higher-dimensional objects, which reduce to D-dimensional
pions by construction. A discussion on this dimensional reduction can be found in sec-
tion D.3.

3.1 Conditions and Basis for Transmutation Operators
The main reasoning in the construction of transmutation operators is that amplitudes
are functions of Lorentz-invariant products of the external, on-shell, kinematic data; eiej,
piej and pipj [40]. In this formulation we use a shorthand notation for summations over
Lorentz-indices eiej = ei · ej where i 6= j. With the idea that amplitudes are functions of
these kinematic products, we can construct operators that take derivatives with respect to
these objects. The next step is to consider that it is not very useful to build operators that
trasnsmute amplitudes into nonphysical amplitudes which violate momentum conservation
and gauge invariance. Therefore there are two conditions these operators need to satisfy:

1. Transmutation operators need to preserve the on-shell kinematics.

2. Transmutation operators need to preserve the gauge invariance.

These conditions can also be translated into differential operators. It can be shown that a
vanishing commutator with respect to these differential operators then guarantees condi-
tions 1 and 2. Here we will simply define these operators, and the basis of transmutation
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operators that follow from them. An in-depth discussion of how these operators satisfy the
claims of condition 1 and 2 and how to form the basis can be found in Appendix D.

The momentum conservation can be enforced by defining a total momentum operator Pv:

Pv≡
∑
i

piv = (p1 + p2 + . . .+ pn)v, (3.2)

where the summation runs over all external legs i and v denotes any momentum or po-
larisation vector. The requirement for momentum conservation can then be cast into the
following requirement:

[Pv, T ] = 0. (3.3)

The condition of gauge invariance is translated into a differential operator through the
Ward identity of (1.6). The differential Ward operator can therefore be defined as:

Wi ≡
∑
v

piv∂vei . (3.4)

The summation over v runs over all external momentum and polarisation vectors in the
amplitude. The polarisation of leg i appears in the amplitude in the Lorentz invariants eipj
and eiej. What this operator essentially does is replace every ei → pi wherever it appears
in the amplitude, turning eipj → pipj and eiej → piej.

Any gauge invariant amplitude satisfies the Ward identity and is therefore annihilated by
the Ward operator:

Wi · A = 0. (3.5)

Requiring that gauge invariance be preserved for a transmuted amplitude then implies a
vanishing result when the commutator [T ,Wi] acts on an amplitude:

[Wi, T ] = 0. (3.6)

Starting from the most general form that a transmutation can take, we can apply our
condition for momentum conservation and gauge invariance to constrain the general form
to form basic elements for the transmutation operators. The operators take the form of
first-order differential equations which act on the objects eiej, eipj and pipj. The general
form can be written as:

T ≡
∑
i,j

Aij∂pipj +Bij∂piej + Cij∂eiej . (3.7)

Here, Aij, Bij and Cij are general functions of external kinematic data.

We then impose the constraint of momentum conservation upon this ansatz. In terms of
transmutation operators this leaves a set of commuting operators which will form the basic
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building blocks for more complicated operators. The operators are denoted as

Tij ≡ ∂eiej , (3.8)
Iijk ≡ ∂piej − ∂pkej , (3.9)
Tijkl ≡ ∂pipj − ∂pkpj + ∂pkpl − ∂pipl . (3.10)

These operators have the following symmetry properties:

Tij = Tji, (3.11)
Iijk = −Ikji, (3.12)
Tijkl = −Tkjil = Tklij = −Tilkj. (3.13)

Next, we turn our attention to the constraint of gauge invariance. We can see that Tij is
intrinsically gauge invariant, as [Tij,Wk] =

∑
v[∂eiej , piv∂vei ] = 0.

Furthermore, we can see that Iijk is not intrinsically gauge invariant. However, this does
not pose a problem for as it can be shown to be effectively gauge invariant. The commutator
is [Iijk,Wl] = δilTij − δklTjk, which can be combined with supplementary operators that
allow the vanishing of the amplitude.

The third operator strips of pairs of polarisation vectors and will therefore give rise to
an object with double poles in momenta. The object generated after transmutation is
therefore not a physical scattering amplitude. Regardless, this operator does appear in the
calculation of the subleading soft factor of Born-Infeld theory.

In the next sections, we will see how these operators are the building blocks to connecting
the amplitudes of various theories in a unified web.

3.2 Trace and Insertion Operators
3.2.1 Trace Operator Tij = ∂eiej
First we will turn our attention to the effect of one Tij operator on the amplitude: Tij ·A.
What this effectively does is strip the amplitude of the polarisations ei and ej except for
the combination eiej which transforms as eiej → 1. Therefore, it reduces the spin of
particles i and j by one. Moreover, these particles are placed within a new ’dual colour’
trace structure, hence the name ’trace operator’. This trace structure will become more
apparent with the next operator Iijk.

The reduction of spin by one unit turns spin-2 particles into spin-1 particles, which in turn
can be turned into spin-0 particles by applying another trace operator. For example, the
trace operator transmutes gluons into biadjoint scalars:

Tij · A(· · · , gi, gj, · · · ) = A(· · · , φiφj, · · · ). (3.14)
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We should take a moment to unpack the notation used in this equation. The scalars φi

and φj that have been created carry the original colour index from their origin as gluons,
plus an additional ’dual colour index’ obtained from the transmutation. This is denoted
through the use of commas to indicate sets of particles which are ordered according to this
dual colour. The gluons carry only the single colour index and are therefore all separated
by commas.

Finally, the ellipses · · · denote any ’spectator’ particles present in the scattering process
which we leave untouched. Using this operator, at the level of the amplitude, we can
transmute gravitons into photons, gluons into (biadjoint) scalars and BI photons into DBI
scalars.

3.2.2 Insertion Operator: Iijk = ∂piej − ∂pkej
As mentioned before, the insertion operator Iijk is not intrinsically gauge invariant. Luckily
we can combine it with the trace operator to create a combination which is effectively gauge
invariant. We calculate

[Tik · Iijk,Wl] = δilTik · Tij − δklTik · Tjk, (3.15)

which vanishes upon hitting the amplitude because of the multi-linearity of the amplitude in
ei and ek. By multi-linearity we mean that the polarisation ei only exists in the combination
of one pair eiel for example.

This transmutation reduces the spin of the particle j by one unit and inserts this particle
between the particle i and k in the dual-colour trace structure. At the level of colour-
ordered amplitudes. This is denoted as

Iijk · A(· · ·φiφk · · · , gj, · · · ) = A(· · ·φiφjφk · · · , · · · ). (3.16)

This operator then extends the dual colour ordering of the resulting amplitude. Repeated
application of the insertion operator allows us to transmute all the remaining gluons into
scalars and place them in the dual colour trace.

3.2.3 Combination of Trace and Insertion Operators T [α]

The repeated use of the insertion operator Iijk after initial application of a trace operator
Tik can be denoted by use of the following single-trace operator. The name is earned by
creating a new trace-ordering [α] in the resulting amplitude, this operator is defined as

T [α]≡ Tα1αn ·
n−1∏
i=2

Iαi−1αiαn . (3.17)

Here it is important to note when dealing with a product of transmutation operators such
as T [α] we should read this as the operators acting from left to right: first we apply the
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trace operator to particles α1 and αn, then we insert particle α2 between α1 and αn followed
by particle α3 between α2 and αn and so forth. Applied to a Yang-Mills amplitude we will
find the following resulting amplitude

T [i1 · · · in] · A(gi1 , · · · , gin , · · · ) = A(φi1 · · ·φin , · · · ). (3.18)

Because this is an amplitude of biadjoint scalars interacting with gluons (denoted by the
· · · ) through gauge interactions, the theory this amplitude corresponds to is called ’gauged
biadjoint scalar theory’.

On the other hand, if α is the set of all gluons in the initial amplitude then all gluons are
transmuted and the amplitude is purely a biadjoint scalar amplitude.

The operator can also be applied to extended gravity amplitudes to form amplitudes of
Einstein Yang-Mills theory which describes gravitons coupled to gluons [68]:

T [i1 · · · in] · A(hi1 , · · · , hin , · · · ) = A(gi1 · · · gin , · · · ). (3.19)

It is essential to note that the amplitudes that are created are the partial amplitudes of
subsection 1.1.4, which do not contain the associated trace factor. As an example, the four-
particle graviton amplitude does not have any colour structure and, therefore, does not
have a decomposition into colour-stripped partial amplitudes. When we apply the single
trace operators for a to this amplitude we create the colour-ordered amplitude A[1234]

T [1234] · AG(hi1 , hi2 , hi3 , hi4) = AYM[1234], (3.20)

which in the trace decomposition of the full amplitude AYM
4 would be accompanied by the

factor Tr[T a1T a2T a3T a4 ]. During the process of transmutation we do not add any colour
factors, but we only act on and construct the (kinematic) partial amplitudes.

3.2.4 Multi-Trace Amplitudes
Naturally, the single-trace operator can be extended to multi-trace transmutation oper-
ators which generate multiple colour-trace structures in the resulting amplitudes. These
operators and amplitudes are formed through the products of the operators T [αi].

We denote an amplitude which is colour ordered with ordering β as A(β) . Such an
amplitude can be constructed through the single trace operator of (3.17):

T [β] · A = A(β). (3.21)

Next we can introduce a dual colour-ordering by acting with T [α] on the amplitude such
that

T [α] · A(β) = A(α|β). (3.22)



Trace and Insertion Operators 65

Furthermore we can act with multiple different trace operators to find

T [α1] · · ·T [αm] · A(β) = A(α1, . . . , αm|β). (3.23)

A particularly interesting combination of trace operators consist of ordering all particles
into pairs by acting with T [i1j1] · · · T [imjm] =

∏
i,j∈pairs Tij on an amplitude such as a gluon

amplitude:

T [i1j1] · · · T [imjm] · A(gi1 , gj1 , · · · , gim , gjm , · · · ) = A(φi1φj1 , · · · , φimφjm , · · · ). (3.24)

Due to the absence of insertion operators in this case, the dual colour ordering trace
reduces to products of δij’s corresponding to the pairs [ij] through the structure constant
identity Tr

(
T aT b

)
= δab. This Yang-Mills amplitude is transmuted into a Yang-Mills-

Scalar amplitude, describing gluons coupled to scalars.

3.2.5 Examples: Transmutation of YM into BAS and YMS aApli-
tudes.

Three Point Gluon Amplitude
As an example of the above transmutations, let us consider the three point colour-ordered
partial Yang-Mills amplitude:

A(g1, g2, g3) =
1
2
e1e2(p2e3 − p1e3) + cyclic(123), (3.25)

where the colour ordering {123} is implied for the gluon amplitude.

We can apply Tij to the partial amplitude in order to turn a pair of gluons into scalars:

T [12] · A(g1, g2, g3) = T12 · A(g1, g2, g3) =
1

2
∂e1e2(e1e2(p2e3 − p1e3) + cyclic(123)),

= A(φ1φ2, g3) =
1
2
(p2e3 − p1e3), (3.26)

T [23] · A(g1, g2, g3)= A(φ2φ3, g1) =
1
2
(p3e1 − p2e1), (3.27)

T [31] · A(g1, g2, g3)= A(φ3φ1, g2) =
1
2
(p1e2 − p3e2). (3.28)

The transmuted amplitudes A(φiφj, gk) correctly correspond to the three-point amplitude
of YMS theory, as can be seen by the vertex rule of YMS theory:

p2
p1

(p2 − p1)
µ

2

1

∝ gYM(p2 − p1)
µ. (3.29)
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We can also transmute all three gluons and place them in a specific dual colour ordering
of our choice to obtain a BAS amplitude:

T [123] · A(g1, g2, g3) = A(φ1φ2φ3) = 1, (3.30)
T [321] · A(g1, g2, g3) = A(φ3φ2φ1) = −1. (3.31)

Here, the anti-symmetry factor for the reverse ordering of the biadjoint scalar colour factors
is correctly represented in the anti-symmetry of the BAS amplitude.

Four Point Gluon Amplitude
The four gluon amplitude with implied colour ordering {1234} can be denoted as

A(g1, g2, g3, g4) =
n[12][34]

p1p2
+

n[23][41]

p2p3
− 1

2
[(e1e2)(e3e4) + (e2e3)(e4e1)] + (e1e3)(e2e4), (3.32)

where n[12][34] = n1234 − n2134 − n1243 + n2143 and

n1234 =
1

4
(e1e2)(e3e4)(p1p3)−(e2e3)(p3e4)(p2e1)−

1

2
(e1e2)(p2e3)(p1e4)−

1

2
(e3e4)(p4e1)(p3e2).

(3.33)
Upon usage of the multi-trace operator which orders all gluons into pairs and transforms
them into scalars we find the following three combinations of orderings into pairs for 4
gluons:

A(φ1φ2, φ3φ4) = T12 · T34 · A(g1, g2, g3, g4) =
p1p3
p1p2

=
u

s
, (3.34)

A(φ1φ3, φ2φ4) = T13 · T24 · A(g1, g2, g3, g4) = 1, (3.35)

A(φ1φ4, φ2φ3) = T14 · T23 · A(g1, g2, g3, g4) =
p1p3
p2p3

=
u

t
. (3.36)

Which correspond to the three scattering diagrams that contribute to the 4-point colour-
stripped YMS amplitude. This would be accompanied by the trace structure of the initial
YM partial amplitude we started with, which is Tr[T a1T a2T a3T a4 ]

A(φ1φ2, φ3φ4) + A(φ1φ3, φ2φ4) + A(φ1φ4, φ2φ3) = −
(
t

s
+

s

t
+ 1

)
=

u

s
− s

t
. (3.37)

When using the insertion operator we can transmute 3 and 4 gluons into scalars that are
adjacent in both single and dual colour trace. These are the partial amplitudes of the BAS.
for example:

T [123] · A(g1, g2, g3, g4) = A(φ1φ2φ3, g4) =
p3e4
p1p2

− p1e4
p1p4

, (3.38)

T [1234] · A(g1, g2, g3, g4) = A(φ1φ2φ3φ4) =
1

p1p2
+

1

p2p3
=

1

s
+

1

t
. (3.39)

The latter will have the dual-colour trace structure of Tr[T a1T a2T a3T a4 ]Tr[T a1T a2T a3T a4 ].
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(d) A(φ1φ2φ3φ4)

Figure 3.1: Feynman diagram depiction of the transmutation of the partial gluon amplitude (a)
into the YMS amplitude (b) by use of the operator T12, the YMS amplitude c which is created by
use of the combination T12T34 and a pure BAS amplitude (d) created by T [1234]. The particles
φi and gi that are not seperated by a ‘,’ are adjacent in both the original and the dual-colour
ordering.

3.3 Longitudinal Operators
3.3.1 Definition and gauge invariance of Li and Lij

Now that we have a firm grasp on the trace and insertion operator we can turn our attention
to more exotic transmutation operators. We consider the longitudinal operators Li and Lij

which Cheung et. al. define as:

Li≡
∑
j

pipj∂pjei and Lij≡ −pipj∂eiej . (3.40)

These operators replace polarisations by polarisations by momenta by acting on the object
pjei and eiej. Effective this number of derivatives per transmuted particle, converting the
states to a longitudinal mode. The resulting particles are, for example, pions and (special)
Galileons.

We will not be combining these operators with the insertion operator, and hence not placing
particles in a specific dual-colour trace. We do, however, transmute pairs of polarisations
eiej which will introduce the same δij that were discussed for the YMS amplitudes.

The longitudinal operators (3.40) are not guaranteed to conserve the on-shell conditions
and gauge invariance of the amplitude due to the new momentum pair pipj introduced.
We will explain how to deal with the gauge invariance of these operators in section D.4.

After this discussion, we can extend the longitudinal operator that acts on pairs to a
longitudinal operator L that conserves the on-shell condition and the gauge-invariance of
the amplitudes on which it acts. This operator acts on all the particles present in a partial
amplitude and is defined as

L ≡
∏
i

Li =
∑
ρ

∏
i,j∈pairs

Lij + · · · . (3.41)

Here the summation i runs over all gluons in the amplitude and ρ denotes the partitions
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into pairs. The ellipses denote terms that vanish upon acting on any amplitude as discussed
in section D.4.

3.3.2 Remedying Vanishing Amplitudes
There is one caveat to the procedure of transmuting all the gluons in the initial amplitude:
it gives rise to a vanishing amplitude. We will show this explicitly for 3- and 4- point gluon
amplitudes in the example section of this chapter.

Luckily all our work is not for nothing and we can still connect the derivatively coupled
theories to our web of transmutation amplitudes. The way around this problem is found
in recursion. The recursion relations of the ‘extended NLSM’ [35] which describes mixed
amplitudes of biadjoint scalars φ interacting with NLSM pions π give rise to the property
that the amplitude described by 2 biadjoint scalars interacting with (n − 2) pions are
exactly equal to a pure n-point pion amplitude:

An(φi, φj, π1, . . . , πn−2) = An(πi, πj, π1, . . . πn−2). (3.42)

This property of the mixed amplitudes was also separately shown in [69], where it was
deduced that this property had to be satisfied for any mixed theory of Nambu-Goldstone
bosons and biadjoint scalars. Furthermore they deduce that no vertices containing only
one biadjoint scalar φaā can exist.

While we have used the example of transmuting gluons into pions for the discussion of
longitudinal operators, the same operators can be applied to an amplitude of Born-Infeld
photons. When transmuted, this amplitude becomes an amplitude describing derivatively
coupled Special-Galileons. The equality of a pure SG amplitude and an amplitude of SG
coupled to two NLSM pions is also proven in section 3.2 of [35].

More recently, several other relations for mixed amplitudes of coloured scalars with and
NLSM amplitudes were found by Arkani-Hamed and collaborators in [70, 71, 72]. For
starters, in their 2024 paper entitled ‘NLSM ⊂ Tr (φ3)’ the authors employ kinematic
shifts of planar propagators to show that mixed amplitudes with an odd number of pions
vanishes. Moreover, mixed amplitudes with a single coloured scalar leg φ also vanish due
to the Adler zero property of taking any of the pion momentum to zero. They also derive
the property of amplitudes with two φ’s combined with an even number (n = 2m) of π’s
gives rise to a (2m+ 2)-point pure NLSM amplitude.

The identities of mixed amplitudes can be used to construct pure pion amplitudes from
gluons amplitudes in the following way. First, we transmute two gluons into biadjoint
scalars using the trace operator Tij. Next, we apply L on the obtained YMS amplitude
to transmute the remaining gluons into NLSM pions. The final object will be a mixed
amplitude with two scalars and (n− 2) gluons. This procedure can be denoted as

L · Tij · A(g1, . . . , gn) = A(π1, . . . , πn). (3.43)
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As the specific pair of gluons i, j does not influence the outcome, we will use the shorthand
notation TL for this operation. The resulting amplitude is a permutation invariant pion
amplitude, therefore it is not important which pair of gluon we choose to transmute into
biadjoint scalars. We can also choose to create more than two biadjoint scalar to more
general mixed amplitudes of the extended NLSM. The same discussion can be applied to
Born-Infeld amplitudes transmuted into (mixed) Special-Galileon amplitudes.

3.3.3 Examples: Transmuting Gluons into Pions
3-Point amplitudes
For starters, we recall that any odd-point NLSM amplitude vanishes. Especially at 3-
point , where there are no non-zero Mandelstam variables due to the on-shell conditions
combined with momentum conservation. For these reasons, we expect the transmuted
gluon amplitude to also vanish.

Starting again from the 3 point, colour-ordered gluon partial amplitude

A(g1, g2, g3) =
1

2
e1e2(p2e3 − p1e3) + (cyclic). (3.44)

First we check that transmutation of all gluons into pions directly gives rise to a vanishing
amplitude. This can be shown explicitly through summation of the different orderings of
the transmutation:

L3 · L12 · A(g1, g2, g3) = −1

2
(p3p1∂p1e3 + p3p2∂p2e3) (p1p2(p2e3 − p1e3))

=
1

2
(p1p2)(p3p1)−

1

2
(p1p2)(p3p2), (3.45)

(1 → 2 → 3 → 1) =
1

2
(p2p3)(p1p2)−

1

2
(p2p3)(p1p3), (3.46)

(1 → 3 → 2 → 1) =
1

2
(p3p1)(p2p3)−

1

2
(p3p1)(p2p1), (3.47)

(L3 · L12 + L2 · L13 + L1 · L23)·A(g1, g2, g3) = 0. (3.48)

We note that this summation over the different pair arrangements of transmutation directly
into pions is corresponds to a gauge transformation where all the polarisation vectors are
set to their corresponding momentum vector, i.e. ei → pi:

A(g1, g2, g3)
ei→pi−−−→ 1

2
p1p2(p2p3 − p1e3) + cyclic

=
1

2
[(p1p2)(p2p3)− (p1p2)(p1e3) + (p2p3)(p3p1)

− (p2p3)(p2e1) + (p3p1)(p1p2)− (p3p1)(p3e2)]

= 0. (3.49)
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As stated before in section subsection 3.3.2, we get around this gauge transformation by
first transmuting a pair of gluons into biadjoint scalars before applying the longitudinal
operator Li to transmute the third gluon into a pion

L · T [12] · A(g1, g2, g3) =
1

2
L3 · (p2e3 − p1e3)

=
1

2

∑
j

p3pj∂pje3 (p2e3 − p1e3)

=
1

2
(p3p2 − p3p1) = p3p2, (3.50)

where we have used that p1 = −p2 − p3, p2i = 0 and p3p2 = 1
2
(p2 + p3)

2. Depending on
which initial pair of gluons is chosen to be transmuted into gluons we will find the identical
result for the three-point pion amplitude:

L · T [12] · A(g1, g2, g3) = A(φ1φ2, π3)

L · T [23] · A(g1, g2, g3) = A(φ2φ3, π1)

L · T [31] · A(g1, g2, g3) = A(φ3φ1, π2)

 = A(π1, π2, π3) = 0. (3.51)

This is in agreement with fact that odd-point pion amplitudes should vanish and in agree-
ment with the findings of [72] that mixed amplitudes with an odd number of π’s should
vanish.

4-Point amplitudes
We start by naively applying a transmutation of all four gluon legs into pions by using
using the product of pairs of Lij. For convenience, we can utilise our earlier result of the
multi-trace amplitude, such as

T [12] · T [34] · A(g1, g2, g3, g4) =
p1p3
p1p2

, (3.52)

seeing as the longitudinal operator Lij = −pipjTij is a linear combination of these trace
operators.

In this naive calculation for the complete pion amplitude, we sum over all distinct order-
ings of 4 particles into pairs: L = L12L34 + L13L24 + L14L23. Explicitely, these different
arrangements are given by

L12L34 · A(g1, g2, g3, g4) = (−p1p2)(−p3p4)T [12] · T [34] · A(g1, g2, g3, g4)

= (−p1p2)(−p3p4)
p1p3
p1p2

= (p3p4)(p1p3)

= −1

4
u(u+ t) =

1

4
us, (3.53)

L13L24 · A(g1, g2, g3, g4) =
1

4
uu, (3.54)

L14L23 · A(g1, g2, g3, g4) =
1

4
ut, (3.55)
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where we have used the notation s = s12 = (p1+ p2)
2 = 2p1p2, t = s23 = (p2+ p3)

2 = 2p2p3
u = s13 = (p1 + p3)

2 = 2p1p3 for the Mandelstam invariants.

The summation over these three arrangements into pairs then results in

L · A(g1, g2, g3, g4) =
1

4
u(s+ t+ u) = 0, (3.56)

where we have used momentum conversation to show that p3p4 = p3(−p1 − p2 − p3) =
−p1p3 − p2p3. In the last equality we use the fact that the Mandelstams sum to zero:
s + t + u = 0. Therefore, this naive application of the transmutation operator on all
gluon legs results in a vanishing amplitude, which we already conjectured due to the gauge
invariance of the Yang-Mills amplitude.

To obtain the correct 4-point gluon amplitude we thus resort to utilising the property of
the mixed BAS and NLSM amplitudes. We apply the operator TL to first transmute a
pair of gluons into biadjoint scalars before transmuting the remaining gluons to pions. The
final result will be a permutation invariant pure pion amplitude:

T12L34 · AYM = (−p3p4)T [12] · T [34] · A(g1, g2, g3, g4) = p1p3 =
u

2

=
(−p3p4)u

s
=

(p3p1 + p3p2)u

s
=

(u+ t)u

2s
=

−su

2s
= −u

2
. (3.57)

For completeness we also explicitely calculate the other permutations2

T [13] · L· · A(g1, g2, g3, g4) = (−p2p4) · 1 = p2p1 + p2p3 =
s+ t

2
= −u

2
, (3.58)

T [14] · L· · A(g1, g2, g3, g4) = (−p2p3)
p1p3
p2p3

= −u

2
. (3.59)

We can therefore conclude that this procedure generates the correct pion amplitude

L·T [12] · A(g1, g2, g3, g4) = A(φ1φ2, π3, π4) = p1p3

L·T [13] · A(g1, g2, g3, g4) = A(φ1φ3, π2, π4) = p1p3

L·T [14] · A(g1, g2, g3, g4) = A(φ1φ3, π2, π4) = p1p3

 = A(π1, π2, π3, π4). (3.60)

The result is a permutation invariant pion amplitude, which is identical regardless of the
choice of initial pair of biadjoint scalars that is created.

3.4 Web of theories connected through transmutation
In the above chapter, we have identified several building blocks with which we can trans-
mute amplitudes:

2Recall the ordering of the transmutation operators, we should read this as the operators acting from
left to right. First the trace operator acts on the amplitude followed by the longitudinal operator
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• The single trace transmutation T [i1 · · · in] which introduces a new colour ordering to
the resulting partial amplitude.

• The multi trace transmutation T [α] · · ·T [β] which results in multiple colour traces in
the obtained amplitude. Specifically the transmutation of all particles ordered into
pairs with the operator combination T [i1j1] · · ·T [injn] is interesting as it results in a
special colour structure of products of δij’s.

• The combination of a trace and longitudinal operators TL, which adds derivatively
coupled interactions to the amplitude.

There are therefore three pure objects (of interactions of only 1 type of particle) we can
construct out of given a starting spin-1 or spin-2 amplitude. If we choose to not transmute
all of the external legs, we land on a mixed theory of transmuted legs interacting with
untransmuted legs. Starting from a extended gravity amplitudes we can find the following
pure amplitudes:

AYM = T [α] · AEG, (3.61)
ABI = TL · AEG, (3.62)
AEM = T [i1j1] · · ·T [injn] · AEG (3.63)

The hybrid theory amplitudes of external gravitons coupled to external gluons/photons/BI
photons can be computed by leaving some external graviton legs untouched by transmu-
tation. Applying transmutation to Yang-Mills amplitudes gives

ABAS = T [α] · AYM, (3.64)
ANLSM = TL · AYM, (3.65)
AYMS = T [i1j1] · · ·T [injn] · AYM. (3.66)

Finnaly we can find the following amplitudes from Born-Infeld amplitudes

ANLSM = T [α] · ABI, (3.67)
ASG = TL · ABI, (3.68)
ADBI = T [i1j1] · · ·T [injn] · ABI. (3.69)

The theories that are connected through transmutation are depicted in the tetrahedron of
Figure 3.2. In this visualisation it is clear that transmutation is a type of ’top-down’ process
which creates lower spin partial amplitudes from the spin-2 extended gravity amplitudes.

The tetrahedron also reinstates that the order of applying transmutation operators does
not matter, as these lead to the partial amplitudes of the same theory. This was already
apparent from the fact that the operators commute. As an example, we can calculate the
NLSM amplitudes from the extended gravity amplitudes through the combination T [α]·TL
and TL · T [α] as indicated by the red and orange arrows in Figure 3.2.
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Figure 3.2: Visualisation of Unifying Relations between amplitudes of different theories, based
on the tetrahedron of [60] that displays the theories that are connected through the BCJ double
copy of different combination of BCJ numerators.

3.5 Infrared properties of Transmutation
As discussed in subsection 3.5.1, the amplitudes of gluon and graviton scattering take
special form when taking one of the external particles to be soft; pi → 0. The amplitude
factorises as a soft factor multiplied by a lower point amplitude

A(n) pi→0−−−→ S(i) · A′(n−1). (3.70)

The soft factor is a pertubative expansion and can be computed to different orders. At
leading order in this expansion the gluon and graviton soft factors are simple factors [42].
However, at higher orders these factors will become more elaborate; depending on momenta
and polarisations of adjacent legs and containing higher order differential operators with
respect to these variables [45]. We are therefore interested whether transmutation preserves
the soft factorisation of the amplitude at all, or perhaps only at leading order.

To investigate whether this behaviour persists, we apply transmutation on the soft factor
relation by first factorising a general product of transmutation operators as T (n) = T (i) ·
T (n−1), where the operator T (i) is the operator responsible for transmuting leg i, which
will be taken to be soft and T (n−1) transmutes the remaining (n−1) external legs. We can
show that then show that upon transmutation we can find an expression for the transmuted
soft factor S̃(i) which acts on the transmuted lower point amplitude denoted by Ã(n−1) by
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calculating

T (n) · A(n) pi→0−−−→ T (i)T (n−1)S(i)A(n−1)

=
[
T (i)T (n−1), S(i)

]
A(n−1)

= T (i)
[
T (n−1), S(i)

]
A(n−1) +

[
T (i), S(i)

]
T (n−1)A(n−1) (3.71)

=
[
T (i), S(i)

] (
T (n−1)A(n−1)

)
=
[
T (i), S(i)

]
Ã(n−1).

This indicates that the transmuted soft factor can be denoted as

S̃(i) ≡
[
T (i), S(i)

]
. (3.72)

The necessary arguments in this derivation are as follows. In the second line we can denote
the commutator identity due to the fact that the commutator is defined as[

T (i)T (n−1), S(i)
]
A(n−1) = T (i)T (n−1)S(i)A(n−1) − S(i)T (i)

(
T (n−1)A(n−1)

)
, (3.73)

where the second term vanishes because T (i) depends on derivatives with respect to ei and
pi, whereas T (n−1)A(n−1) by construction is independent of the variables of leg i.

Next we argue that the commutator
[
T (n−1), S(i)

]
vanishes for the trace operator Tjk and

the insertion operator Ijkl due to the dependence of T (n−1) on combination ejek, ejpk or
pjpk where j, k 6= i while S(i) only depends on combinations eiej, eipj or pipj at leading
and subleading order as we will see shortly.

This condition also holds at leading order for the Longitudinal operator Ljk, however we
will need to revise this statement for the subleading order soft factor due to the dependence
of the soft factor on adjacent legs.

We will calculate explicitly the transmutation of the leading order soft factor for the theories
that originate from gravity and Yang-Mills amplitudes, as these lead to the leading order
soft factors YM, YMS and the NLSM. The transmutation of the subleading soft factors is
left to section D.5 of the appendix.

These soft factors are interesting to us because we aim to create amplitudes with inter-
actions of scalars, pions and gluons similar that may align with the amplitudes that have
σ = 0 created by the cubic numerator N

(3)
6 of section 2.4.

3.5.1 Transmutation of the leading order soft factors
Extended Gravity
Recall that the leading-order soft graviton factor given by Weinberg is given by [45]

S
(i)
G =

∑
j 6=i

piejpiẽj
pipj

. (3.74)
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As stated in the definition of the web of related theories, we are able to transmute the
extended gravity amplitudes into EM, YM and BI amplitudes through our three different
transmutation operators Tij, Iijk and Lij. By the fact that the graviton soft factor is
independent of products of polarisation eiej it is straightforward that the soft factor of
Einstein-Maxwell vanishes:

S
(ij)
EM =

[
Tij, S

(i)
G

]
= 0. (3.75)

The same argument holds for the computation of the leading order soft factor of BI am-
plitudes

S
(i)
BI =

[
Li, S

(i)
G

]
= 0. (3.76)

This vanishing leading order soft factor is in agreement with the fact that Born-Infeld
photons are derivatively coupled which should lead to vanishing amplitudes when this leg
is taken to be soft. Finally, the soft factor of Yang-Mills amplitudes can be found through
the commutator with the insertion operator,

S
(ijk)
YM =

[
Iijk, S

(j)
G

]
=

[
∂piej − ∂pkej ,

∑
j 6=i

piejpiẽj
pipj

]
, (3.77)

where in this case the leg j is taken to be soft with legs i and k adjacent to leg j. This
then gives rise to the familiar leading order soft factor

S
(ijk)
YM =

piej
pipj

− pkej
pkpj

, (3.78)

which is consistent with the original soft factor by Weinberg [41].

Yang-Mills
Continuing with the leading order soft factor of Yang-Mills we can calculate commutators
of (3.78) with the transmutation operators to find the soft factors of Yang-Mills-Scalar,
biadjoint scalar and NLSM amplitudes.

When denoting leg j as the soft leg, the commutator with the trace operator results in the
soft factor of YMS theory:

S
(ijk|jl)
YMS =

[
Tjl, S

(ijk)
YM

]
= 0. (3.79)

the vertical bar indicates that particle j is in the same dual colour trace as particle l. Next
the commutation with the insertion operator gives the soft factor of BAS theory

S
(ijk|ljm)
BAS =

[
Tljm, S

(ijk)
YM

]
=

δli − δim
pipj

− δlk − δkm
pkpj

. (3.80)

Finally, at leading order the commutation with the longitudinal operator results in the
vanishing of the NLSM soft factor

S
(ijk)
NLSM = 0, (3.81)

as is to be expected from the Adler zero property exhibited by pion amplitudes.
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3.6 On-shell recursion, factorisation and the Double Copy
It is further investigated by Cheung and collaborators whether the objects obtained after
transmutation are in fact always scattering amplitudes which obey the appropriate prop-
erties of physical scattering amplitudes: on-shell construction, proper factorisation the
Double Copy prescription. This section briefly touches upon the argumentation of these
properties.

3.6.1 On-shell Constructibility
For starters, the discussion of the on-shell constructibility of the obtained amplitudes
investigates whether higher-point amplitudes can be constructed recursively from lower-
point amplitudes, as discussed in section 1.3.

By use of the BCFW recursion relation [38], it was shown through an -all-line shift that
for amplitudes with more than four particles the deformed amplitude goes to zero in the
case of large shifts z as a consequence of dimensional analysis.

It is further argued that for the insertion operator Iijk, the resulting amplitude will have
fewer derivatives as momenta are stripped off, and by using a power counting method this
transmuted amplitude will be on-shell constructable.

This argumentation does not apply to the longitudinal operator Lij, as it increases the
number of derivatives of the amplitude. The on-shell constructibility of these theories is
then saved if the resulting amplitude has suitable IR properties such as the Adler zero,
which was shown in subsection 3.5.1.

3.6.2 Factorisation
In general, on the residue where the factorisation channel is propagator 1/pI is tuned to 0,
the the original amplitude will factorise as

A(· · · ) ∼
∑
I

AL(· · · IL)A(IR · · · ). (3.82)

We can investigate what happens to the factorisation of gluon amplitudes after transmu-
tation. The summation over I runs over all possible internal gluon and scalar states. The
discussion of proper factorisation is different for each transmutation operator and is dis-
cussed in [22]. Here we will simply state in what manner the amplitudes factorise depending
on the initial amplitude.

The factorisation that will later be relevant to our discussion is that of the longitudinal
operator and trace operators in pairs. The latter of these transmutes gluon amplitudes into
YMS amplitudes, leaving the intermediate state unaltered (gluon exchange) and therefore
needs no seperate discussion.
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The factorisation of the longitudinal operator L = LL·LR knows two scenario’s. In the first,
the amplitude that is transmuted has scalars on both sides of the factorisation channel,
requiring the internal particle to also be a scalar. The amplitude then factorises as

L · A(· · ·φiφl · · · , gj, gk, · · · ) ∼ LL · AL(· · ·φiφL, gj, · · · )LR · AR(φRφl · · · , gk, · · · ) (3.83)
∼ AL(· · ·φiφL, πj, · · · )AR(φRφl · · · , πk, · · · ). (3.84)

This is consistent with the factorisation of how the amplitude A(· · ·φiφl · · · , πj, πk, · · · )
would factorise. The residue of the factorisation can be schematically depicted at 6-point
as

φ

gj

φ gk

φ

φ

L−→ φ

φ

π

φL φR φ

πk

φ

. (3.85)

If the gluons are on the opposite side of the factorization channel from the all scalars, then
the only possible internal state of the original amplitude is a gluon, and the transmuted
amplitude factorises with an internal pion

LL · A(· · ·φiφl · · · , gj, gk, · · · ) ∼ LL · LR · AL(· · ·φiφl · · · , gj, gL, · · · )AR(gR, gk, · · · )
(3.86)

∼ AL(· · ·φiφl · · · , πj, πL, · · · )AR(πR, πk · · · ). (3.87)

We can display this schematically as

φ

gj

φ gk

g

g

L−→ φ

φ

π

πL πR g

πk

g

. (3.88)

We will later use these factorisation properties to analyse the amplitudes that we construct
from generalised transmutation, where we define a new type of transmutation operator with
the aim of landing on the amplitudes of BCJ bootstrap of section 2.4.

3.6.3 Transmutation and The Double Copy
As we have seen in subsection 1.5.1, we can use the double copy to relate the amplitudes of
different theories. Specifically, the BCJ double copy relates all the amplitudes in the tetra-
hedron of Figure 3.2, which therefore solidifies the unifying relations of between different
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these theories. The transmutation of amplitudes can be shown to preserve the duality of
the amplitudes through the use of the KLT relations.

The application of transmutation operators on the double copy amplitudes can be done in
the KLT representation (Appendix B), due to the fact that the transmutation operators
commute with the KLT relations.

In general, the KLT product allows for the crossing of amplitudes of different duality-
satisfying theories. In general we can then find the following amplitudes from the KLT
product of YM amplitudes with other theories:

GR = YM
KLT
⊗ YM, (3.89)

EM = YMS
KLT
⊗ YM, (3.90)

EYM = gBAS
KLT
⊗ YM, (3.91)

BI = NLSM
KLT
⊗ YM. (3.92)

Furthermore, the double copy of NLSM amplitudes results in the following amplitudes:

BI = YM
KLT
⊗ NLSM, (3.93)

DBI = YMS
KLT
⊗ NLSM, (3.94)

BI + NLSM = gBAS
KLT
⊗ NLSM, (3.95)

SG = NLSM
KLT
⊗ NLSM. (3.96)

Due to the fact that transmutation operators commute with the KLT relations, transmuta-
tion can be applied to either of the amplitudes in the product. For example, the amplitudes
of BI theory can be constructed through by applying the longitudinal operator to extended
graviton amplitudes. Applying this operator to either of the amplitudes in the double copy
KLT product we find

ABI = TL · AEG = AYM
KLT
⊗ TL · AYM (3.97)

= AYM
KLT
⊗ ÃNLSM, (3.98)

which agrees with (3.93). The same argument can be applied for the different types of
transmutation operators and different combinations of amplitudes in the KLT product.

3.7 UV completion
The process of transmutation extends to the UV completion of theories within the inter-
connected web of theories related by transmutation. However, it’s important to note that
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the resulting amplitudes might not always be consistent since the consistency check of
section 3.6 assumed a massless spectrum for the intermediate particles.

As discussed in Equation 1.5.3, the UV completion of Yang-Mills is obtained through di-
mensionful α′ corrections in the Lagrangian. Because the YM +α′ amplitude is gauge
invariant, after transmutation, the object will remain gauge invariant. The single trace op-
erator produces BAS amplitudes from YM, therefore we can speculate that the amplitudes
created by

T [i1 · · · in] · AYM+α′(gi1 , · · · , gin) = ABAS+α′(φi1 · · ·φin), (3.99)

where ABS+α′(φi1 · · ·φin) are amplitude obtained through some theoretical UV completion
of BS theory with α′ corrections.

It would be interesting if we could relate these amplitudes to some known theory or descrip-
tion. An example candidate for the UV complete YM theory is said to be open superstring
theory [73]. The details of this theory go beyond the scope of this work, but we can
nevertheless relate the amplitudes as

AYM+α′ ∼ Aopen. (3.100)

Applying transmutation on this open superstring amplitude is then argued to result in

T [i1 · · · in] · Aopen(gi1 , · · · , gin) = AZ(φi1 · · ·φin), (3.101)

where AZ denotes an amplitude of biadjoint scalars described by the framework of Z-
theory. A short description of these amplitudes is found in Appendix C, which is based on
[58, 59, 74].

A more explicit application of transmutation of amplitudes of UV-completed theories can
be done in the KLT representation. In this framework, the amplitudes of open superstrings
can be described as the product of amplitudes in Z-theory and YM theory through the
KLT relations:

Aopen = AZ

KLT
⊗ AYM. (3.102)

Here ⊗ denotes the KLT product of the amplitudes. The single trace operator can then
be applied to the product (with which it commutes), giving

T [i1 · · · in] · Aopen = T [i1 · · · in] · (AZ ⊗ AYM) (3.103)
= AZ ⊗ T [i1 · · · in] · AYM (3.104)
= AZ ⊗ ABAS. (3.105)

Since BAS amplitudes function as an ‘identity’ element in the KLT framework, the single
trace operator therefore produces

T [i1 · · · in] · Aopen = AZ . (3.106)
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Similarly, applying the longitudinal transmutation procedure result in the KLT product of
Z-theory amplitudes and NLSM amplitudes:

L · T [i1in] · Aopen = L · T [i1in] · (AZ ⊗ AYM) (3.107)
= AZ ⊗ (L · T [i1in] · AYM) (3.108)
= AZ ⊗ ANLSM. (3.109)

The amplitudes AZ ⊗ANLSM describe a scalar amplitude which corresponds to the ampli-
tudes of the NLSM at low energies. It does not correspond to Abelian Z-theory [59].

Finally we note that the original paper on transmutation relations [22] does not comment
on the UV completion of YMS amplitudes obtained through the pair-wise application of
trace operators such as T [i1i2] · · ·T [in−1in]. Presumably the reason for this is that the
UV completion of YM+φ amplitudes is not as well-defined as the above theories. More
information on higher derivative corrections to these theories can be found in e.g. [75]
and [76]. The transmutation of open-string amplitudes could therefore be an interesting
approach to investigating the UV completion of such theories.



Chapter 4

Generalised Transmutation of Yang-Mills

In chapter 2, we demonstrated the generation of hybrid amplitudes through the use of
BCJ numerators, which specifically led to interactions involving adjoint scalars mediated
by gauge interactions. On the other hand, chapter 3 introduced hybrid scalar amplitudes
derived from the application of transmutation operators. This chapter aims to explore the
intersection of these methodologies to address several key questions: Do these approaches
yield the same amplitudes? Are the resulting amplitudes governed by interactions originat-
ing from analogous Lagrangians? Regardless of whether the methods converge or diverge,
understanding the underlying reasons for their (dis)connection is of significant interest.

4.1 Defining the Generalised Transmutation Operator
The proposed amplitudes of the NLSM gauged described in section 2.5 are found by defin-
ing the kinematic numerator N through the powers of Mandelstam invariants sp. The
numerators at different orders give rise to scalars interacting with gluons and derivatively
coupled scalars, therefore giving rise to YMS and NLSM amplitudes. In 3.2.4 and 3.2.5 it
was discussed that the multi-trace amplitudes that transmute gluons into pairs of scalars
through the differential operator Tij also give rise to YMS amplitudes. Furthermore, the
longitudinal operator combined with a trace operator T · L was shown to transmute the
colour-ordered gluon amplitudes into NLSM amplitudes in 3.3.

Therefore, a combination of these two transmutations would be expected to land on mixed
theories describing scalars coupled to gluons and possibly gluons depending on whether or
not all the external legs are transmuted and whether gluons will show up as intermediate
particles. More importantly, we will construct the new operator to keep track of the order
of Mandelstam invariants, allowing us to construct an amplitude with σ = 0. We would
like to know whether the amplitude constructed through this method coincides with the
amplitude generated by N

(3)
6 .
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To achieve this, the polarisations of the gluons need to be stripped off through the trace
operator in pairs. When this is applied to all legs, we get a pure YMS amplitude. In
order to transmute create derivatively coupled scalar modes, some pairs of polarisations
are replaced by pairs of momenta pipj. Each pair that is transformed contributes an
additional factor of Mandelstams s1 to the numerator of the amplitude.

The proposed generalised transmutation (GT) operator, designed to lead us to the afore-
mentioned hybrid amplitudes, is as follows. Consider the operator T(1...n), which transmutes
the external leg 1 through n. When this operator acts on an n-point Yang-Mills amplitude
AYM

n , it transforms all external legs and outputs a non-trivial scalar amplitude:

T(1...n) · AYM
n = Ascalar

n . (4.1)

This operator will be constructed out of a new type of longitudinal operator that strips off
pairs of polarisations (eiej) and replaces them by (1 + sij) is denoted by

Lij ≡ (1 + τpipj)∂eiej = Tij + τLij. (4.2)

The dimensionless parameter τ will keep track of number of pairs of gluons that have been
transformed into pions. Where we use the original definitions Tij = ∂eiej for the trace
operator and Lij = pipj∂eiej for the longitudinal operator modulo a sign difference to split
the operator into its component parts.

Similarly to the process of the original longitudinal operator, Lij is applied for all arrange-
ments ρ of the particle legs into distinct pairs. The full transmutation is therefore defined
as

T(1...n) ≡
∑
ρ

∏
i,j∈pairs

Lij =
∑
ρ

Lρ(1)ρ(2) . . .ρ(n−1)ρ(n) (4.3)

When applied to a gluon amplitude, this transmutation spits out two new amplitudes

Lij · AYM
n (g1, . . . , gi, gj, . . . gn) = A(φiφj, g1, . . . , gn) + τA(g1, . . . , πi, . . . , πj, . . . gn). (4.4)

Because it contains the product of n
2
Lij operators, the total transmutation T(1...n) which

transmutes all external legs contains contributions starting at τ 0 which will be the pure
YMS amplitudes of subsection 3.2.4 up to order τn/2. At this order the longitudinal
operator Lij has been applied to all legs. However, in subsection 3.3.2 we saw that this
O
(
τn/2

)
transmutation will result in a vanishing amplitude and that the actual NLSM

pion amplitude is constructed by first setting one pair (eiej) to 1. Fortunately, this is
exactly what happens at O

(
τn/2−1

)
.

The amplitudes in between these orders will therefore be non-trivial scalar amplitudes of
pions interacting with scalars. Due to the vanishing amplitudes, the first encounter with
these mixed amplitudes will be at 6-point.
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The spectrum of contributions can then be depicted as

L12L34 · · ·L(n−1)(n) · AYM
n = τ 0A (φn) (4.5)

+ τ 1A
(
φn−2, π2

)
(4.6)

+ τ 2A
(
φn−4, π4

)
(4.7)

+ . . . (4.8)
+ τn/2−1A (πn) (4.9)
+ τn/2 · 0, (4.10)

where we have used superscript notation to indicate the number of scalars and pions. In
the following sections we will perform explicit calculations of the transmutation applied to
different multiplicities.

Pair ordering and computational analysis
Although at four points there exist only three distinct arrangements of pairs of polarisation,
at n-point the number of distinct combinations of divisions of n numbers into pairs is

n!(
n
2

)
!2(n/2) . The order in τ ranges from τ 0 to τn/2, where the latter again results in a vanishing

amplitude. This results in 15 arrangements at 6-point, 105 arrangements at 8-point and
945 at 10-point. The pattern is that if we go from n point to n + 2 point, the number of
arrangements increases by a factor of n+ 1. For example, the number of arrangements at
12-point will be 945 ∗ 11 = 10395 distinct arrangements.

In the next section, we will explicitly apply the GT operator analytically for only one
specific arrangement of the 4-point amplitude. The other arrangements can be calculated
analogously and will be performed using a Mathematica algorithm. First of all Mathemat-
ica will be used to calculate the distinct arrangements into pairs. After this, an algorithm
can be written that applies the GT-operator. Computationally this can be done either
through the application of derivatives, but it was quickly seen that taking these nested
derivatives with Mathematica was computationally heavier than simply setting pairs of
polarisation of eiej → 1 using a simple replacement rule and thereafter multiplying by the
pairs of momenta pipj in the needed arrangement. Due to the linearity of the amplitudes
in polarisation pairs, there is no ambiguity as to whether this replacement is identical to
(4.1).

As input we will use colour-stripped partial amplitudes of pure Yang-Mills provided by
[77]. Along with this publication, the authors Song He, Linghui Hou, Jintian Tian, and
Yong Zhang provided a Mathematica package that contains an algorithm that makes use
of the calculation of the so-called Cayley functions [78] in the CHY formalism of amplitude
calculations. This algorithm is able to compute all tree-level amplitudes of YM, GR and
BI. Through use of the double copy and dimensional reduction (in the CHY formalism [79])
the algorithm can also calculate all tree-level amplitudes of the NLSM, SG, YMS, EYM
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and DBI theories. This package also allows for the generation of kinematic numerators
that satisfy Jacobi identities by default.

4.2 Generalised transmutation at 4-point
We begin our investigation with the tree-level colour-ordered Yang-Mills amplitude AYM

4 [1234]
given by (3.32). There are 3 distinct arrangements of 4 particles into pairs, namely (12)(34),
(13)(24) and (14)(23). The GT-operator therefore leads to the summation of three ordered
contributions.

T(1234) · A(g1, g2, g3, g4) =
∑
ρ

∏
i,j∈pairs

Lij · A(g1, g2, g3, g4) (4.11)

= (L12L34 + L13L24 + L14L23) · A(g1, g2, g3, g4). (4.12)

Let us first consider only one of the arrangements, namely the first ordering into pairs
L12L34. This produces three amplitudes, two of which are non-vanishing:

L12L34 · A(g1, g2, g3, g4) = (T12 − τL12)(T34 − τL34)A(g1, g2, g3, g4)

=
(
T12 · T34 + τT12 · L34 + τL12 · T34 + τ 2L12 · L34

)
· A(g1, g2, g3, g4)

= A(φ1φ2, φ3φ4) + τA(φ1φ2, π3, π4) + τA(π1, π2, φ3φ4)

+ τ 2L12 · L34 · A(g1, g2, g3, g4). (4.13)

The calculations of these 4 point transmutations were already determined in (3.52), (3.53)
and (3.57):

τ 0T12T34 · AYM = A(φ1φ2, φ3φ4) =
p1p3
p1p2

=
u

s
, (4.14)

τT12L34 · AYM = A(φ1φ2, π3, π4) = ANLSM(π1, π2, π3, π4) = p1p3 = u/2, (4.15)
τ 2L12L34 · AYM = us/4. (4.16)

It was explicitly shown in (3.53) that the sum of all τ 2 contributions transforms all po-
larisations into momenta, which is a gauge transformation and therefore this contribution
vanishes. In the same section we also calculated the other arrangements of Tij. The final
transmutation at the different orders in τ are therefore

O
(
τ 0
)
: τ 0[A(φ1φ2, φ3φ4) + A(φ1φ3, φ2φ4) + A(φ1φ4, φ2φ3)] = τ 0

[u
s
− s

t

]
, (4.17)

O
(
τ 1
)
: 3τ 1 · ANLSM(π1, π2, π3, π4) = τ 1[3u], (4.18)

O
(
τ 2
)
: 3τ 2 · 0 = τ 2[0]. (4.19)

These results were verified computationally using Mathematica, up to an overal minus sign,
due to the difference in definition between the original longitudinal operator Lij = −pipjTij

and the GT-operator which has Lij. The YMS partial amplitude at O (τ 0) is also the
correct YMS amplitude, as it agrees with the YMS amplitude from the provided package
up to a total sign difference.
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Soft limit of generalised transmutation at 4-point
We are interested in whether the amplitudes adhere to familiar behaviour in the limit where
one of the external legs is taken soft. Based on the results of (4.17), the soft behaviour of
the amplitude at different orders in τ is denoted as follows:

O (τ 0): The contributions at this order for 4-point are purely Yang-Mills scalar ampli-
tudes. All polarisations pair have been set to 1, resulting in the soft σ = 0. Similar
calculations can be applied to the other arrangements in (3.52) and have been confirmed
to adhere to the same soft limit using Mathematica. O (τ 1): The amplitudes at this
order are the pure 4-point pion amplitudes. Explicitely the soft limit at this order is
limpi→0ANLSM(π1, π2, π3, π4) ∼ p1, which corresponds to the Adler zero as expected for
such amplitudes. Finally, the O (τ 2) amplitudes will individually have a soft limit of one
order higher, ∼ p2. However, when all terms are collected the total amplitude at this order
vanishes.

As expected, the GT-operator at four point holds relatively few suprises. The non-trivial
hybrid amplitudes we are interested in will first be encountered in the six-point calculation.

4.3 Generalised Transmutation at 6-point
Transmutation of a 6-point Yang-Mills partial amplitude will lead to more interesting
results as this is where the mixed theories with ambiguous soft behaviour start to appear.
This is due to the fact that there are three pairs of polarisations in each arrangements to
consider when splitting into pairs. The distinct arrangements are calculated to be

(12)(34)(56), (12)(35)(46), (12)(36)(45),

(13)(24)(56), (13)(25)(46), (13)(26)(45),

(14)(23)(56), (14)(25)(36), (14)(26)(35), (4.20)
(15)(23)(46), (15)(24)(36), (15)(26)(34),

(16)(23)(45), (16)(24)(35), (16)(25)(34).

We start by consider one of such arrangements into pairs, the ordering (12)(34)(56). The
contribution to the transmutation of this ordering is L12L34L56. When applied to the 6-
point gluon amplitude we find contributions of O (τ 0) to O (τ 3), where the latter gives rise
to a vanishing amplitude per the gauge transformation argument when all contributions
of this order in τ are summed. We have explicitely verified that this vanishes for n = 6 by
computational analysis.

L12L34L56 · AYM
6 = (T12T34T56 − τT12T34L56 − τT12L34T56 − τL12T34T56

+ τ 2T12L34L56 + τ 2L12T34L56 + τ 2L12L34T56 − τ 3L12L34L56) · AYM
6 (4.21)
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At the amplitude level, the GT-operator then creates the following amplitude contributions.

T12T34T56 · AYM
6 = AYMS(φ1φ2, φ3φ4, φ5φ6) (4.22)

τTijTklLmn · AYM
6 = τ(A(π1π2, φ3φ4, φ5, φ6) + A(φ1φ2, π3π4, φ5, φ6) + A(φ1φ2, φ3φ4, π5, π6))

(4.23)
τ 2T12L34L56 · AYM

6 = τ 2(A(φ1φ2, π3, π4, π5, π6) = ANLSM(π1, π2, π3, π4, π5, π6)) (4.24)
τ 3L12L34L56 · AYM

6 + ( permutations) =⇒ 0 (4.25)

For the complete amplitude we must take into account that the complete transmutation
sums over different pair arrangements of these transmutations.

4.3.1 τ 0: Yang-Mills-Scalar
Starting from O (τ 0), we find the 6 point YMS amplitude. An example calculation of
one such an arrangement is given by the arrangement (12)(34)(56) which results in the
contribution

4AYMS(φ1φ2, φ3φ4, φ5φ6) =
s2,3

s1,2s1,2,3
+

s4,5s2,3
s1,2s1,2,3s1,2,3,4

+
1

s1,2,3
+
−s2,4s3,5 + s2,3s4,5 + s2,5s4,5

s1,2s3,4s3,4,5

+
s2,3s4,5 + s2,5s4,5

s1,2s4,5s3,4,5
+

−s1,4s2,5 − s2,4s2,5 − s2,4s3,5 + s2,3s4,5
s1,2s3,4s1,2,3,4

+
s4,5

s1,2,3s1,2,3,4
+

s4,5
s2,3,4s1,2,3,4

+
−s2,4s2,5 − s2,4s3,5 + s2,3s4,5

s3,4s2,3,4s1,2,3,4
+

1

s2,3,4,5
+

s4,5
s2,3,4s2,3,4,5

+
−s2,4s2,5 − s2,4s3,5 + s2,3s4,5

s3,4s2,3,4s2,3,4,5

+
−s2,4s3,5 + s2,3s4,5 + s2,5s4,5

s3,4s3,4,5s2,3,4,5
+

s2,3s4,5 + s2,5s4,5
s4,5s3,4,5s2,3,4,5

(4.26)

up to a factor of 4 due to the replacement of the momentum factor pipj that was present
in numerator of the gluon amplitude to pipj → sij/2. The complete amplitude is the
summation over all 15 arrangements and is given in Appendix E.

4.3.2 Mixed Amplitudes
We then turn our attention to the O (τ 1) contribution, supposedly describing pions coupled
to scalars. The arrangement (12)(34)(56) contributes the following types of amplitudes to
the full amplitude

τ [A(φ1φ2, φ3φ4, π5, π6) + A(φ1φ2, π3, π4, φ5φ6) + A(π1, π2, φ2φ3, φ5φ6)], (4.27)

and similarly for the other 14 arrangements of the 6 legs. These are calculated starting
from the YMS amplitude of every arrangement. For every arrangement of legs, there are
three possible mandelstams sij with which the YMS can be multiplied. This results in a
total of 45 contributions at this order in τ . This calculation requires an algorithm in order
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to correctly keep track of the combinatorics. The full expression is too large to display
here. We can however analyse the contributions that appear in the amplitude, e.g. by
collecting terms that share a propagator.

The propagators for 6-point diagrams are products of the Mandelstams that enter the cubic
vertices. As an example we consider the half-ladder and snowflake diagrams of Figure 4.1.
The half-ladder diagram will have a propagator of the form Dhl = sabsabccsabcd and the

a

b c d e

f

sab sabc sabcd
sabsef

scd

b

a e

f

d c

Figure 4.1: Half-ladder and snowflake diagram for a 6-point amplitude.

snowflake diagram will have a propagator contribution of the form Dsnowflake = sabscdsef .
The terms that share the propagator Dhl can be collected, note that we have to be mindful
that we also have to account for terms that contain D = s1234s123, as these are the result
of a cancellation of the term s12/(s12s1234s123). Collected these give

s45 (s
2
12 + s23(s34 + s56) + s12(s23 − 2s13 − s24 + s34))

s12s123s1234
. (4.28)

For the snowflake diagrams we have to consider that by construction of the initial YM am-
plitudes there are Mandelstams present of the form si6. However, the package that provides
the YM amplitudes will have replaced the momentum p6 using momentum conservation
p6 = −(p1 + p2 + p3 + p4 + p5). We have to use a similar replacement fo the propagators
of the snowflake diagrams. These will be altered to Dsnowflake = sabscdsef = sabscdsabcd. As
an example, the terms that share the propagator D = s12s34s1234 are

−(s14s25 + s24(s25 + s35)− s23s45)s56
s12s34s1234

= −s14s25 + s24(s25 + s35)− s23s45
s12s34

. (4.29)

In order to compare all the terms of the the 6 point partial amplitude to the amplitude
obtained from the BCJ bootstrap, we will compare the factorization channels of the partial
amplitude. This comparison will be done in section 5.1.

4.3.3 Mandelstam Order of 6-point Amplitude
The counting paramater τ allows us to keep track of how many orders of Mandelstam
invariants we introduce in the generalised transmutation process. Here we summarise the
order of Mandelstams at different orders in τ :
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O (τ 0): The contributions at this order for 6-point are purely Yang-Mills scalar amplitudes.
All polarisation pairs have been set to 1 according to the arrangements of (4.3). The
resulting soft limit limpi→0AYMS(φ1φ2, φ3φ4, φ5φ6) ∼ s−1. This is in agreement with theory,
where every vertex contributes ∝ p and every propagator contributes ∝ s−1. The half-
ladder diagrams contain 4 vertices and 3 propagators, together this makes 1/s scaling of
the amplitude.

O (τ 1): The amplitudes of this order are created from the above YMS amplitude by mul-
tiplying with one Mandelstam sij. By this reasoning and by inspection of the amplitude
the resulting scaling in Mandelstams can be seen to be combination of s3/s3, leading to a
scaling of s0.

O (τ 2): These amplitudes gain an additional mandelstam sij to the above, therefore the
scaling is of one order higher, s1. we have explicitly checked that the amplitude generated
by T at this order give rise to the correct NLSM amplitude, up to a rescaling factor of −16

5

that arises from the fact that the same permutation invariant amplitude arises multiple
times in the amplitude and some factors of 2 from the definitions of sij = 2pipj.

O (τ 3): The composite amplitudes of each arrangement will have a scaling of s2. We
have verified explicitly that the summation over the GT of all arrangements results in a
vanishing amplitude.



Chapter 5

Discussion

5.1 Partial 6-point Amplitude of BCJ Bootstrap
We wish to compare the amplitude obtained from the GT-operator with the amplitude
that is obtained from the BCJ bootstrap of chapter 2. The latter however, contains colour
factors in the amplitude, while the former does not. In order to make our comparison, we
recall that we applied the GT-operator on a colour-ordered partial Yang-Mills amplitude
AYM

6 [123456]. Each partial amplitude is the kinematic weight of a specific trace colour
factor according to the trace decomposition

Atree
m = gm−2

∑
σ∈Sm−1

Atree
m (1, σ(2), σ(3), . . . , σ(m− 1),m)Tr (T a1T aσ(2)T aσ(3) · · ·T aσ(m)) .

(5.1)
Due to this decomposition we therefore know that in the full amplitude, this partial ampli-
tude AYM

6 [123456] was initially accompanied by the colour trace Tr [T a1T a2T a3T a4T a5T a6 ].
We can therefore compare the resulting partial amplitude T(123456) · AYM

6 [123456] to the
partial amplitude from the BCJ bootstrap that has the same colour trace ABCJ

6 [123456].

In order to to calculate this partial amplitude, we first need to calculate an expression for
the BCJ numerators in the latter method. To do this, we only need to find one numerator,
Nabcdef , and the other numerators will be permutations of the indices. The numerator
Nabcdef can be found by decomposing the total amplitude into partial amplitudes in the,
by now familiar, way

A6 =
c123456N123456

D123456

+
c123465N123465

D123465

+ . . . . (5.2)

However we know that c123456 is not the only colour factor that will contain trace ordering
[123456] in it’s decomposition. Therefore we first decompose the total amplitude in terms
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of the partial amplitude in the trace decomposition of the colour factors. :

A6 = Tr [T a1T a2T a3T a4T a5T a6 ]

[
N123456

D123456

+ . . .+
N123465

D123465

+ . . .

]
+ . . . . (5.3)

To calculate which diagrams contribute to the partial amplitude, we start from the possible
6-point colour factor for a half ladder diagram.

c1 = f̃a1a2bf̃ ba3cf̃ ca4ad f̃da5a6 . (5.4)

We have written a Mathematica algorithm that performs the process of (1.29) at n point.
This decomposes the colour factor c1 into following 16 trace contributions:

c1 =Tr [T a1T a2T a3T a4T a5T a6 ]− Tr [T a1T a2T a3T a4T a6T a5 ]− Tr [T a4T a1T a2T a3T a5T a6 ]

+ Tr [T a4T a1T a2T a3T a6T a5 ] + Tr [T a3T a1T a2T a4T a5T a6 ]− Tr [T a3T a1T a2T a4T a6T a5 ]

− Tr [T a4T a3T a1T a2T a5T a6 ] + Tr [T a4T a3T a1T a2T a6T a5 ]− Tr [T a2T a1T a3T a4T a5T a6 ]

+ Tr [T a2T a1T a3T a4T a6T a5 ] + Tr [T a4T a2T a1T a3T a5T a6 ]− Tr [T a4T a2T a1T a3T a6T a5 ]

− Tr [T a3T a2T a1T a4T a5T a6 ] + Tr [T a3T a2T a1T a4T a6T a5 ]− Tr [T a4T a3T a2T a1T a5T a6 ]

+ Tr [T a4T a3T a2T a1T a6T a5 ] . (5.5)

We can perform permutations of the indices of the structure constants of c1 to get the trace
decomposition of all other possible colour factor. We then construct the total amplitude
in terms of the unspecified numerators and denominators and extract the coefficient of the
terms that contain Tr [T a1T a2T a3T a4T a5T a6 ] and it’s cyclic permutations and reflections
in order to obtain all the combination of N/D that contribute to the partial amplitude. A
similar analysis needs to be done for the colour factors of the snowflake diagrams. Finally,
we would need to consider that these diagrams are not all distinct, but linked by Jacobi
relations. Therefore, there is a redundancy in the above calculation.

An alternative method is to use FeynCalc to calculate the full amplitude, which already
takes care of the redundancy and output the amplitude in terms of the master colour
factors. After this, we need to calculate the trace decomposition of these colour factors to
calculate the partial amplitude 1.

1Kind regards to Yang Li for providing us with this partial amplitude.
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The partial amplitude we are interested in is then denoted as

A6[123456] =
Nabcdef

sabsef (sab + sac + sbc)
+

Nabcdef −Nabdcef

sabscdsef
+

Nafbecd

safscd (scd + sce + sde)

+
Nafebcd

safscd (sbc + sbd + scd)
+

Ncdefab

sabscd (scd + sce + sde)
+

Ndefabc

sbcsde (sab + sac + sbc)

+
Nefabcd

scdsef (sbc + sbd + scd)
− Nbcdeaf

safsbc (sbc + sbd + scd)
− Nafbcde −Nafcbde

safsbcsde

− Nabcfde

sabsde (sab + sac + sbc)
− Nabfcde

sabsde (scd + sce + sde)
− Nafbcde

safsde (scd + sce + sde)

− Nefdabc

sbcsef (sab + sac + sbc)
− Nefadbc

sbcsef (sbc + sbd + scd)
, (5.6)

where the numerators of the snowflake diagram are clearly taken into account.

The cubic 6-point numerator N (3)
6 is obtained through the methodology of subsection 2.4.2,

where the general expression for N
(3)
6 is given by the expression

N
(3)
abcdef = (sac − sbc)sab(sde − sdf ) + (sac − sbc)(sde − sdf )sef + sabcQabcdef , (5.7)

where Qabcdef is the ansatz of a term that is quadratic in Mandelstams. As discussed,
after imposing the BCJ conditions there are 3 unfixed parameters. The resulting Qabcdef

is used to construct the numerator N
(3)
abcdef with which te partial amplitude is calculated.

We scale the momentum of leg a through scaling of the Mandelstams sai 7→ xsai. The
resulting amplitude will have contain terms that are of O(x−1). We impose the soft limit
of σ = 0 by requiring that the coefficients of these terms are tuned such that the O(x−1)
contribution vanishes. This leaves an amplitude with leading soft behaviour of O(x0. This
imposing of the soft limit fixes all of the remaining coefficients.

Using these numerators we can construct the partial amplitude of (5.6) by summing over
all the permutations of the indices abcdef . We should check that this amplitude correctly
factorises into the desired 4-point partial amplitudes on the imposed factorisation channel
sabc → 0. On this factorisation channel, the amplitude factorises as

A6[123456] → A
(1)
4 [123x]

1

sabc
A

(2)
4 [x456] + A

(2)
4 [123x]

1

sabc
A

(1)
4 [x456], (5.8)

where A(p)[ijkl] denotes the 4-point partial amplitude constructed from the numerator
N

(p)
4 . These partial amplitudes are given by Equation 1.31 as

A
(p)
4 [1234] =

N
(p)
s

s
− N

(p)
t

t
. (5.9)

We have checked that the residue of the partial amplitude on the factorisation channel
reduces to (5.8) up to a minus-sign. Computationally it is beneficial to calculate the
residue by setting sabc → λ and doing a series expansion around λ = 0. Once this is done,
the coefficient of the O(λ−1) term is equal to the residue.



92 Factorization Comparison

5.2 Factorization Comparison
The amplitude obtained from the generalised transmutation has been denoted in terms of
the 9 independent Mandelstam basis {sa,b, sa,c, sa,d, sa,e, sb,c, sb,d, sb,e, sc,d, sc,e}. The residue
of this amplitude on the factorisation channel sabc = sab + sac + sbc is given by

lim
sabc→0

sabcA
GT
6 = −3 (sab + sbc) (sae + sbe + sce)

sad + sbd + scd
− scd (sab + sbc) (sae + sbe + sce)

sab (sad + sbd + scd)

− sad (sab + sbc) (sae + sbe + sce)

sbc (sad + sbd + scd)
+

3 (sab + sbc) (sae + sbe + sce)

sad + sae + sbd + sbe + scd + sce

+
(sab + sbc) (sae + sbe + sce) (sab − scd − sce)

sab (sad + sae + sbd + sbe + scd + sce)
− (sab + sbc) (sae + sbe + sce) (sad + sae − sbc)

sbc (sad + sae + sbd + sbe + scd + sce)

+
sbd (sae + sbe + sce)

sad + sbd + scd
+

(sae + sbe + sce) (sab + sbc + sbd + sbe)

sad + sae + sbd + sbe + scd + sce
− sce (sab + sbc)

sab
−

3 (sab + sbc) (sae + sbe + sce)

sab
− sae (sab + sbc)

sbc
− 3 (sab + sbc) (sae + sbe + sce)

sbc
+ 3 (sae + sbe + sce)− 3 (sab + sbc) + sbe. (5.10)

The amplitude from the BCJ bootstrap ABC
6 was confirmed to factorise as (5.8). Explicitly

the residue is denoted as

lim
sabc→0

sabcA
BCJ
6 = −(sab + 2sbc) (sad − sae + sbd − sbe + scd − sce)

sab

−(2sab + sbc) (sad − sae + sbd − sbe + scd − sce)

sbc
+
(2sab + sbc) (sad − sae + sbd − sbe + scd − sce)

sad + sae + sbd + sbe + scd + sce

+
(sab + 2sbc) (sad − sae + sbd − sbe + scd − sce)

sad + sae + sbd + sbe + scd + sce
+
(2sab + sbc) (sad + 2sae + sbd + 2sbe + scd + 2sce)

sbc

+
(sab + 2sbc) (sad + 2sae + sbd + 2sbe + scd + 2sce)

sab
+
(2sab + sbc) (sad + 2sae + sbd + 2sbe + scd + 2sce)

sad + sbd + scd

+
(sab + 2sbc) (sad + 2sae + sbd + 2sbe + scd + 2sce)

sad + sbd + scd
, (5.11)

where it can be seen that there are multiple contributions with the same denominator, but
which cannot be expressed together as this would not fit on the page. In total there are
4 terms, which corresponds to the four terms obtained from the product of (5.9). We can
distinctly identify the four-point

On the factorsiation pole sabc these residues differ. There are several key aspects that
can be identified. The first being that there are more exchange channels present in AGT

6

that are not present in ABCJ
6 . check factorisation into YMS partial amplitude times pion

amplitude
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We also note that there are some similarities, which become clearer once we take further
take the residue on the channel sab → 0,

lim
sab→0

lim
sabc→0

AGT
6 = −sbcscd (sae + sbe + sce)

4 (sad + sbd + scd)
− (scd + sce) sbc (sae + sbe + sce)

4 (sad + sae + sbd + sbe + scd + sce)

− 3

4
sbc (sae + sbe + sce)−

1

4
sbcsce, (5.12)

lim
sab→0

lim
sabc→0

ABCJ
6 = 6sbc (sae + sbe + sce) . (5.13)

In this limit, it becomes apparent that both partial amplitudes have a common contribution
sbc (sae + sbe + sce) up to a factor. The BCJ-bootstrap amlitude has no remaining exchange
channels, but the GT amplitude clearly does.

It would be interesting to investigate what kind of diagrams contribute to these factorisa-
tion limits. We first note that we can recognise two partial amplitudes in the factorisation
procedure. The first is the 4-point Yang-Mills-Scalar gluon exchange channel

AYMS
4 (φaφb, φcφx) =

(sab + sbc)

sab
, (5.14)

which is can be found in both (5.10) and (5.11). The diagram corresponding to this
amplitude is shown in Figure ?? Specifying leg x is not necessary due to momentum
conservation. We will therefore identify leg x as an internal leg.

The second type of contribution we encounter in both of the residues is the 4-point NLSM
amplitude consisting of the legs d, e and f and an ‘internal’ leg x

ANLSM
4 (πd, πe, πf , πx) = (sde + sef ) = (sae + sbe + sce). (5.15)

Note that this type of amplitude is equal to an amplitude of 2 scalars interacting with 2
pions of the form A(φ, φ, π, π) that is shown in Figure 5.1c.

The only factor that remains to be identified is the factors of sbc in (5.13). We find that
this factor is precisely the residue of the YMS amplitude in (5.14) on the channel sab → 0

lim
sab→0

sabA
YMS
4 (φaφb, φcφx) = sbc. (5.16)

We can therefore conclude that a diagram such as the diagram displayed in Figure 5.1a
is responsible for the residue in (5.13) and for a section of the residue of (5.12). It is not
suprising that these are the factorisation structures that occur. After all, one of the key
assumptions that we imposed on the numerator N

(3)
6 is that it factorises into the product

of two four-point amplitudes. The 4-point numerators that are combined to make the
cubic order numerator are N

(1)
4 and N

(2)
4 , which individually created the 4-point gluon

exchange channel and the 4-point NLSM contact term respectively. This exactly matches
the factorisation we have found.
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sab sabc

φa

φb

φc

πe

φd

πf

(a)

sab
φa

φb φc

φx

(b)

φd

πf

πe

φx

(c)

Figure 5.1: Figure (a) shows the type of diagram that can contribute to the residue of both
AGT

6 and ABCJ
6 . On the factorisation limit where sabc → 0 this diagram splits into the product

of the 4-point YMS amplitude shown in (b) and the 4-point NLSM amplitude shown in (c).

The remaining contributions to the residue of AGT
6 are interesting to study aswell, as these

are apparently not produced through the BCJ bootstrap method. We can see that after
imposing the factorisation of sabc there are a few terms that do not have any remaining
propagation channels. These contributions can also be seen to of the form of the 4-point
NLSM amplitudes in (5.15) multiplied by a constant, which could indicate a φ4 scalar
contact term. Such contributions could then potentially arise from the factorisation of the
diagram in Figure 5.2.

φ

φ

φ π

π

φ

Figure 5.2: Diagram that factorises into a quartic φ4 contact term amplitude and a 4-point
NLSM contact term.

It is interesting that such contact terms would arise through transmutation for multiple
reasons. The first being that such contact terms do not arise during the transmutation at
4-point partial amplitudes that we discussed in subsection 3.2.5.

The second reason is that such φ4 contact terms are not discussed in the original publication
by Cheung and collaborators [22], presumably because they do not occur in typical YMS
formulations [18, 80]. However, these are explicitly mentioned to occur when discussing
transmutation operators in the CHY representation [81]. It should be noted that these
contact terms also deviate from the ‘extended NLSM’ described in [35] and [69], where
mixed amplitudes of pions and scalar are obtained by extending the U(N) NLSM to include
a cubic biadjoint scalar self-interaction. It should be noted that these theories do not
include gauge interactions.
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It is not a suprise that these quartic contact terms do not arise from the BCJ bootstrap
method. The numerator in this framework that gives rise to a contact diagram at four
point is N (2)

4 , but this gives rise to a NLSM φ2(∂φ)2 contact term, not a φ4 term. The only
other 4-point amplitudes that we can construct in this framework are the gluon exchange
amplitudes.

There is another combination of factorisation channels that is interesting to check. We will
again investigate the limit where two internal propagators go on-shell, but this time we
will set sab → 0 and sef → 0. The residue of both approaches on these limits is

lim
sab→0

lim
sef→0

AGT
6 =

sb,csc,d (sa,e + sb,e + sc,e)

sa,d + sb,d + sc,d
− sb,c (sa,e + sb,e + sc,e) ,

− sa,dsb,e − sb,dsc,e − sb,dsb,e, (5.17)

lim
sab→0

lim
sef→0

ABCJ
6 =

3 (sa,d + sb,d) (sa,e (sb,c + sb,d) + sb,e (sb,c + sb,d + sc,d))

sc,d
. (5.18)

We find that there on this limit, both amplitudes still allow for an exchange channel. As
the only exchange channel left in the BCJ amplitude is of the form sij, we conclude that
this residue is derived from a snowflake diagram that has D ∼ 1

sabscdsef
.

For the amplitude obtained through generalised transmutation, there is also a contribution
to the residue with no exchange channels left, identical to the contributions to the residue
of (5.11) and a new type of residue that could arise from a diagram factorised on two
4-point YMS exchange channels in a snowflake diagram. The remaining amplitude should
contribute no additional momenta. This is possible if the contributions from the pions
cancel the remaining exchange pole, similar to how the longitudinal operator turns an
amplitude with an exchange channel of the form A(φ, φ, g, g) into a contact diagram of the
form A(π, π, π, π). A proposal for such a diagram is shown in Figure 5.3. This interaction
would require a Lagrangian that includes the interaction (Dφ)2F 2, hinting at a higher-
derivative correction to the gNLSM theory that differs from the correction considered in
section 2.4. It would be interesting to study this in more detail, but we leave this for future
work.

φ

φ

g g

φ

φ φ

φ

π π

φ

φ

Figure 5.3: Proposed diagram before (left) and after (right) longitudinal transformation, that
gives rise to the sijskl residues on the factorisation limits sab → 0 and sef → 0



Chapter 6

Conclusion and Outlook

In conclusion, this thesis provides an in-depth investigation into the Unifying Relations
for scattering amplitudes and the recent BCJ bootstrap that can be used to construct
kinematic numerators that conform to the duality between colour and kinematics. Prior to
this, we performed an extensive analysis of gluon (Yang-Mills) amplitudes and pion (NLSM)
amplitudes, exploring the duality between colour and kinematics, as well as examining the
behaviour of these amplitudes in special kinematic limits.

We have extensively discussed the construction of amplitudes of the gauged nonlinear
sigma-model using the BCJ bootstrap method. This theory appeared to have a hybrid soft
degree, where a subsector of the amplitudes generated from the theory obey a soft degree
of σ = 0, and another subsector generates pion contact terms that obey the Adler zero of
σ = 1.

Using the BCJ bootstrap, we have constructed the σ = 0 amplitude that occurs at 6-
point. To perform this derivation, we have imposed the BCJ conditions on an ansatz
for numerators composed of Mandelstam variables in a specific order. The coefficients of
the ansatz were fixed by imposing the soft degree of σ = 0. The amplitudes that are
constructed describe adjoint Goldstone scalars φa interacting with gluons.

We aimed to answer the question

How can we construct a transmutation operator that generates amplitudes for
comparison with those derived from the BCJ bootstrap?

This was achieved by generalising the transmutation relations proposed by Cheung et al.
such that we were able to generate mixed amplitudes of scalars and pions that exchange glu-
ons through transmutation of Yang-Mills amplitudes. This generalised transmutation (GT)
operator was constructed such that we were able to keep track of the order of Mandelstam
variables that were introduced to the transmuted amplitudes, allowing us to determine
whether we had achieved the σ = 0 soft degree that we aimed to construct.
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Using this GT-operator, explicit calculations of the transmutation of 6-point Yang-Mills
partial amplitude were performed using computational tools. At different orders in Man-
delstam invariants, tracked by the parameter τ , these gave rise to the correct expressions
for Yang-Mills-Scalar (YMS) at O(τ 0) and Nonlinear Sigma Model (NLSM) amplitudes at
O(τ 2). The vanishing of the amplitude at O(τ 3),when the longitudinal operator L is ap-
plied to all external gluons, i.e., when all pairs of polarisations are set to pairs of momenta,
was also verified computationally at 6-point.

This leaves the O(τ 1) amplitude that contains the σ = 0 soft degree to be analysed, which
brings us to our second research question

What types of amplitudes can be derived from a generalised transmutation?
operator?

The answer to this question can be found by studying the factorisation of the resulting
amplitude. In the limit where the internal exchange particles are taken to be on-shell we
found the GT-amplitudes to mostly adhere to familiar lower point amplitudes. Examples
of these lower-point amplitudes are the 4-point YMS amplitude, where two pairs of scalars
exchange a gluon and the 4-point NLSM contact term. Beyond this, we unexpectedly
encountered the 4-point φ4, which does not typically occur in YMS theories but which can
occur in the CHY formalism. We also interpreted that a (∂φ)2A2 contact term is necessary
for the factorisation of 6-point snowflake-diagrams.

How can generalized transmutation operators inform us about the uniqueness
of the theory developed via the BCJ bootstrap? operator?

In generality the generalised transmutation operator fails to land on the same partial
amplitude as the amplitude obtained from the BCJ bootstrap method. However, there are
common structures in the amplitudes of the two different methods. This indicates that
generalised transmutation is able to reconstruct some of the interactions that occur in the
BCJ bootstrap in the σ = 0 sector, namely the set of amplitudes that factorise into the
4-point YMS exchange channel and the 4-point pion contact term. The snowflake diagrams
of the 6-point BCJ bootstrap-amplitude were also identified, but cannot be matched to
amplitudes obtained from GT due to the cancellation of one of the gluon exchange channels
when two external gluons are transmuted into pions.

This leads us to conclude that the amplitudes of the BCJ bootstrap are not uniquely fixed
by their soft degree of σ = 0, as opposed to amplitudes such as the NLSM and SG that
are fully determined through its soft behaviour.

It would be interesting to study how the amplitudes obtained from GT compare to the
higher-derivative corrections to Yang-Mills discussed in Equation 1.5.3. Investigating the
behaviour of generalised transmutation on these higher-derivative corrections could also
provide valuable insights into CK-duality compatibility between numerators of different
theories. It would also be intriguing to explore the transmutation of these amplitudes and
see if this contributes additional terms to the σ = 0 GT amplitude. Finally, comparing
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the obtained amplitudes to the field theory limit of the amplitudes of Z-theory [59] could
strengthen the approach.

On a broader scale, it would be valuable to extend the investigation of transmutation oper-
ators. First, extending the transmutation calculations to include higher-order Mandelstam
variables, i.e. a transmutation of (eiej) 7→ (1 + s+ s2 + . . . ) instead of purely (1 + s)
would be an interesting avenue to explore. Additionally, applying generalised transmuta-
tion techniques to the amplitudes of the other theories in Figure 3.2 presents an intriguing
possibility for further study. Such transmutations could lead to mixed amplitudes of Born-
Infeld photons interacting with Maxwell photons that interact through graviton exchange
through GT of graviton amplitudes.
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Appendix A

Diagrammatic calculation of double color or-
dered BAS amplitudes

A convenient method proposed by Cachazo, He and Yuan [82] to calculate the double color
use diagrams with the partial orderings from which we can read off the propagators sij
that make up the partial amplitudes. The 5-point partial amplitude ABAS(12345|14235)
serves as a good example to demonstrate this method [83].

We construct a disk with the first ordering (12345) depicted counter-clockwise on it’s
boundary. Next we draw aloop of lines from point to point following the second ordering
(14235), as one would with a ’connect the dots’ drawing. The result is depicted in figure
Figure A.1.

1

2

3 4

5

A

B

(a)

1

2

3 4

5

A

(b)

Figure A.1: Diagrams for A5(1, 2, 3, 4, 5|1, 4, 2, 3, 5) and A5(1, 2, 3, 4, 5|1, 2, 4, 3, 5)

This diagram is the only such diagram that can contribute to this partial amplitudes.
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Different diagrams, such as figure Figure A.1 correspond to different partial amplitudes.
To calculate the amplitude, we consider the borders that are shared by both the outer disk
and the internal lines. For figure Figure A.1b the borders {1, 5} and {2, 3} indicate the
exchange channels s15 and s23. These shared borders are also present in the ordering of
ABAS. The partial amplitude is then the product of these two channels

ABAS(12345|14235) =
1

s23

1

s51
, (A.1)

up to an overall sign. Similarly, for the diagram in Figure A.1b, the amplitude ABAS(12345|12435)
shares the boundaries {3,4} and {5,1,2}. These indicate the channel 1/s34 and 1/s512 =
1/(s12 + s51), which gives us (up to an overall sign)

ABAS(12345|12435) =
1

s34

(
1

s12
+

1

s51

)
. (A.2)

In the diagrammatic approach, the sign is determined through the following rules

• For polygons with an odd number of vertices, a positive sign is assigned when their
orientation aligns with that of the disk, and a negative sign when it does not.

• Polygons with an even number of vertices consistently receive a negative sign.

• Every intersection point results in the addition of a negative sign.

It should be noted that different assignment of signs can be used, as long as we stay
consistent in applying the same rules to all amplitudes. This way, the relative signs are
conserved. The resulting double-ordered amplitudes are then given by

ABAS(12345|12435) = − 1

s23

1

s51
, (A.3)

ABAS(12345|14235) = − 1

s34

(
1

s12
+

1

s51

)
. (A.4)



Appendix B

KLT double copy

We have extensively discussed the BCJ double copy, but there is another formulation of
the double copy, namely the Kawai-Lewellen-Tye (KLT) formulae [21]. Similar to the
BCJ formulation, it allows us to construct tree-level gravity amplitudes Mtree by taking
the (KLT) product of purely-adjoint gauge theory amplitudes. For 3- and 4-point they
explicitly give the graviton amplitudes in the form of

Mtree
3 (1, 2, 3) = iAtree

3 (1, 2, 3)Ãtree
3 (1, 2, 3), (B.1)

Mtree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Ãtree

4 (1, 2, 3, 4), (B.2)

where the amplitudes Atree and Ãtree are the colour-ordered partial amplitudes discussed
in subsection 1.1.4. Through the double copy, there exists a mapping between the on-shell
gluon polarisation vectors eiµ and the polarisations of the fields corresponding to the resut-
ing amplitude eiµejν . Namely, these can be decomposed into three combinations representing
a graviton polarisation ehµν , a B-field polarisation eBµν and the dilaton polarisation eφµν . Re-
spectively these are the symmetric-traceless, the antisymmetric and the scalar mode. An
action that describes these three fields is

S =

∫
dDx

√
−g

[
−1

2
R +

1

2(D − 2)
∂µφ∂µφ+

1

6
e−4φ/(D−2)HλµνHλµν

]
, (B.3)

where Hλµν is field strength of the two-index antisymmetri tensor Bµν that describes the
B-field. This action can be truncated to Einstein gravity by requiring Z2 symmetries. If we
wish to describe graviton amplitudes as a product of gluon amplitudes through the KLT
product instead of from the action, we will have to pick the gluon polarisations such that
they are in the symmetric-traceless combination.

At m-point, the KLT product between gauge theory amplitudes is given by

Mtree
m = −i

∑
σ,ρ∈Sm−3

Atree
m (1, σ,m− 1,m)S[σ|ρ]Ãtree

m (1, ρ,m,m− 1). (B.4)
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The constituent tree-level amplitudes are colour-ordered with leg 1, leg m and leg (m− 1)
fixed. This fixing then leaves (m − 3)! permutations of external legs (specified by σ and
ρ) that are summed over. The permutation also specify the elements of the ’KLT kernel’
S[σ|ρ] that are the amplitudes are multiplied with. These elements are polynomials of
products of pi’s, which produce the factors of sij seen in (B.1).

The KLT kernel solves several problems that would occur in a naive product of gauge
theory amplitudes. Firstly it cancels the double poles that occur, which would make for
an unphysical amplitude. Secondly it provides the ’missing’ poles that have to be included
due to the gravity amplitude not being colour-ordered. Consider the 4 point example.
The colour-stripped gluon tree amplitude A4[1234] has simple poles in s12 and s14, but
none in s13 as these legs are not adjecent in the colour-ordering. Naively squaring results
in A4[1234]

2 which has double poles in s12 = 0 and s14 = 0. However, the 4-graviton
tree amplitude M4(1234) has a pole in all three channels s12, s13 and s14 (the s, t, and u
channel). The double copy can be written as the KLT copy in the following way:

M4(1234) = A4[1234]S4[1234|1234]A4[1234]. (B.5)

The KLT kernel S4[1234|1234] can be calculated to be

S4[1234|1234] = −s12s14
s13

, (B.6)

which provides exactly the cancellation of the double poles in s12 and s14 and introduces
the new pole in s13.

Originally the KLT relations were derived in the field of string theory as relations between
colour-stripped disk amplitudes of open-strings. In these relations, there is an explicit
dependence on the string tension α′. In the low energy limit, where α′ goes to zero, the
string-theory KLT kernel reduces to the field theory KLT kernel described. Interestingly
the string tension α′ can be used to formulate a pertubative expansion of higher-order
corrections to the field theories. In the following sections we will explore constructing such
higher-order order corrections by starting from field theory amplitudes instead of string
theory amplitudes.
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Z-Theory

It was found that the amplitudes of the open-superstring can be written as the double copy
of color-ordered YM amplitudes together with certain functions F σ [58, 84]

A(1, . . . , N)=
∑

σ∈SN−3

AYM(1, 2σ, . . . , (N − 2)σ, N − 1, N) F σ
(1,...,N)(α

′) (C.1)

The F functions are later re-named as Z functions ZP that give rise to the name Z-theory.
The function is an integral over the boundary of a disk worldsheet1 with two orderings Q
and P . The first denotes the ordering in the integrand and is responsible for dictating which
color-ordering of subamplitude is being computed. The latter the defines the ordering of
the integration domain. Explicitely the functions are denoted as

ZP (q1, . . . , qn) ≡ (α′)n−3

∫
D(P )

dz1dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij|α

′pipj

zi1i2zi2i3 · · · zini2
, (C.2)

where zij = zi − zj give rise to the propagators as seen in the denominator. The domain
D = {−∞ < z1 < z2 < · · · < zn < +∞}. The functions behave like scalar amplitudes, and
exhibit a double ordering. The Z-function obey KK-relations similar to (1.21) and BCJ
relation similar to (1.26) along the ordering Q. Additionally they obey the string-theory-
monodromy relations along integration domain P

0 =
n−1∑
j=2

exp
[
iπα′(kp1 · kp2p3...pj)

]
Zp2p3...pjp1pj+1...pn(Q), (C.3)

which leaves a basis of (n− 3)! integration domains.
1In string theory, a worldsheet is the two-dimensional surface traced out by a string as it propagates

through spacetime. This concept generalizes the idea of a particle’s worldline to higher dimensions, pro-
viding a framework for analyzing the dynamics and interactions of strings.
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After applying all these relations we are left with the Q-ordered functions that simply obey
field-theory relations. [59] conjectures that the resulting functions are the color-ordered
scattering amplitude for some EFT.

The fact that Z-functions obey the Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ)
relations suggests they correspond to scattering amplitudes for a conjectural, yet unidenti-
fied, doubly-colored theory, hereby referred to as Z-theory. Consequently, the Z-functions
will be referred to as Z-amplitudes.

It is also shown [85] that the α′ → 0 limit of Z-functions aligns with the inverse of the KLT
matrix

lim
α→0

ZP (Q) = m[P |Q] (C.4)

This is later demonstrated to correspond to the (doubly-partial) tree-level amplitudes of
Born-Infeld-Skyrme (BAS) theory.

Mφ3 =
∑

σ,ρ∈Sn−1

Tr
(
T1Tσ(2) . . . Tσ(n)

)
Tr
(
T̃1T̃ρ(2) . . . T̃ρ(n)

)
m[1, σ(2, . . . , n)|1, ρ(2, . . . , n)]

(C.5)

It is intriguing that even though string theory does not include a BAS, the tree-level
amplitudes of this theory are nevertheless contained within string tree-level amplitudes.

Z-amplitudes serve as double-copy factors for open-superstring scattering amplitudes, con-
taining all orders in α′ and obeying field-theory scattering amplitude relations. The low-
energy α′ expansion should be identifiable as the scattering amplitudes of known theories.

NLSM from Abelian Z-theory
It was then shown that it is possible to replace Yang-Mills factors of Abelian open-string
amplitudes by gauge-theory colour factors. This replacement gives rise to Abelian Z-
amplitudes. In the field theory limit the leading order α′ contributions then give rise to
NLSM amplitudes

ANLSM(1, 2, . . . , n) = lim
α′→0

(α′)2−n
∑

σ∈Sn−1

Z1σ(2,3,...,n)(1, 2, . . . , n). (C.6)

Unlike the amplitudes in BAS ar theories, NLSM amplitudes come from specific nonzero
orders (α′)n−2. These amplitudes then denote the color-ordered NLSM amplitudes. Ex-
plicitely at n = 4 and n = 6 for example they give rise to the correct NLSM amplitudes.

ANLSM(1, 2, 3, 4) = π2(s12 + s23) (C.7)

ANLSM(1, 2, . . . , 6) = π2

[
s12 −

1

2

(s12 + s23)(s45 + s56)

s123
+ cyclic(1, 2, 3, 4, 5, 6)

]
(C.8)

Besides the leading order surviving contributions in α′ there are also the subleading terms.
These correspond to the ’stringy’ higher-derivative corrections to NLSM amplitudes.
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Transmutation operators

D.1 Kinematics
The initial amplitude A which we will be transforming is defined with the on-shell con-
ditions pipi = piei = eiei0 and conserves momentum

∑
i pi = 0. The on-shell conditions

are already preserved by defining the amplitude to strictly be a function of the kinematic
data eiej, piej and pipj. The momentum conservation can be enforced by defining a Total
momentum operator Pv:

Pv≡
∑
i

piv = (p1 + p2 + . . .+ pn)v,, (D.1)

where the sum runs over all external legs i and v denotes any momentum or polarisation
vector. The inclusion of the somewhat arbitrary vector v is necessary for the operator
to be Lorentz invariant. This total momentum operator annihilates the amplitude due to
the presence of a momentum-conserving delta-function δ(D)(p1 + . . . + pn). Momentum
conservation of the transmuted amplitude then has to satisfy:

Pv · (T · A) = 0 = T · (Pv · A) (D.2)

The requirement for momentum conservation can then be cast into the following require-
ment:

[Pv, T ] = 0. (D.3)

This is not satisfied for every possible differential operator which contains derivatives with
respect to pipj and piej, therefore the condition constraints the spectrum of possible oper-
ators. The total momentum operator satisfies the condition [Pv, Pw] = 0 .
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D.2 Gauge invariance
The condition of gauge invariance is translated into a differential operator through the
Ward identity. Recall that for a given scattering amplitude with an external gauge boson
of momentum k, the amplitude can be written as A(k) = eµ(k)A

µ. The ward identity
then gives rise to a vanishing amplitude when replacing the polarisation vector eµ by
the corresponding momentum vector: kµA

µ(k) = 0. The differential Ward operator can
therefore be defined as:

Wi ≡
∑
v

piv∂vei . (D.4)

The summation over v runs over all external momentum and polarisation vectors in the
amplitude. The polarisation of leg i appears in the amplitude in the Lorentz invariants eipj
and eiej. What this operator essentially does is replace every ei → pi wherever it shows
up in the amplitude, turning eipj → pipj and eiej → piej. To demonstrate this operator
we explicitely denote the Ward operator for a three point amplitude:

W1= p1(p1∂p1e1 + p2∂p2e1 + p3∂p3e1 + e1∂e1e1 + e2∂e2e1 + e3∂e3e1) (D.5)

Any gauge invariant amplitude then satisfies the Ward identity and is therefore annihilated
when the Ward operator acts on it:

Wi · A = 0. (D.6)

Requiring that gauge invariance be preserved for a transmuted amplitude then implies a
vanishing result when the commutator [T ,Wi] acts on an amplitude:

Wi(T · A) = T (Wi · A) = 0 (D.7)

In the case of Wi, we can check that the operator itself preserves the gauge invariance of
the amplitude as seen by calculating

[Wi,Wj] =
∑
v,w

[piv∂wei , pjw∂wej ] = 0. (D.8)

Moreover, it can be shown to satisfy our previous requirement of momentum conservation:

[Wi, Pv] · A =
∑
j,w

[piw∂wei , pjv] · A = δveiPpi · A = 0. (D.9)

D.2.1 Basis for Transmutation Operators
Starting from the most general form that a transmutation can take we can apply our con-
dition for momentum conservation and gauge invariance in order to constrain the general
form to form basic elements for the transmutation operators. The operators take the form
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of first order differential equations which act on the objects eiej, eipj and pipj. The general
form can be written as:

T ≡
∑
i,j

Aij∂pipj +Bij∂piej + Cij∂eiej (D.10)

Here, Aij, Bij and Cij are general functions of external kinematic data and for later notation
it is useful to choose Aii = Bii = Cii = 0. We then impose the constraints of momentum
conservation and gauge invariants upon this ansatz. First, momentum conservation implies

[T, Pv]=
∑

i,j,k[Aij∂pipj +Bij∂piej , pkv] = 0, (D.11)

where we can choose either v = p or v = e respectively to optain:∑
i Aij + Aji=

∑
i Bij = 0 (D.12)

This in turn implies that the rows and colums of Aij sum to zero, the columns of Bij sum
to zero and Cij remains unconstrained. In terms of transmutation operators this leaves a
set of commuting operators which will form the basic building blocks for more complicated
operators. The operators are denoted as

Tij ≡ ∂eiej (D.13)
Iijk ≡ ∂piej − ∂pkej (D.14)
Tijkl ≡ ∂pipj − ∂pkpj + ∂pkpl − ∂pipl (D.15)

These operators have the following symmetry properties:

Tij = Tji (D.16)
Iijk = −Ikji (D.17)
Tijkl = −Tkjil = Tklij = −Tilkj (D.18)

Next we turn our attention to the constraint of gauge invariance. We can see that Tij is
intrinsically gauge inviariant, as [Tij,Wk] =

∑
v[∂eiej , piv∂vei ] = 0.

Furthermore, we can see that Iijk is not instrinsically gauge invariant. However, this does
not pose a problem for as it can be shown to be effectively gauge invariant. The commutator
is [Iijk,Wl] = δilTij − δklTjk, which can be combined with supplemental operators allowing
the vanishing of the amplitude.

The third operator strips of pairs of polarisation vectors and will therefore give rise to
an object with double poles in momenta. The object generated after transmutation is
therefore not a physical scattering amplitude. Regardless, this operator does appear in the
calculation of the subleading soft factor of Born-Infeld theory.

In the next sections, we will see how these operators are the buiding blocks to connecting
the amplitudes of various theories in a unified web.
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D.3 Dimensional Reduction: Pions from higher dimen-
sional gluons

The processes of the trace operator T [α] and the Longitudinal operator TL also have a
more physical interpretation, namely a dimensional reduction [86]. Here we will discuss
the variation of a dimensional reduction that is identical to the longitudinal operator.

In this mechanism, massless gluons are constructed to live in a (2d+1)-dimensional space
which will be reduced to a d-dimensional subspace. This construction implies that the
momentum vectors PM

i are (2d + 1)-dimensional and are denoted with capital letters as
Lorentz indices:

PM
i = (pµi , 0, 0) (D.19)

The first and third entry of this vector are both d-dimensional and have Greek indices,
while the middle entry is 1 dimensional. The external polarizations can also be seen to live
in a (2d+ 1)-dimensional space. We will pick the external polarizations to be

EM
1 = EM

n = (0, 1, 0) EM
i = (pµi , 0, ip

µ
i ) i 6= 1, n. (D.20)

Here we have set leg 1 and n to be polarized in their own 1-dimensional space while the
other legs live in the d-dimensional subspaces. The reasoning for this specific choice of
polarizations apparant as we compute the Lorentz invariant kinematic products of these
vectors. The products of higher dimensional momenta gives rise to the product of d-
dimensional momenta

PiPj = pipj . (D.21)

Furthermore, the product of EM
1 and EM

n will return 1 (in the 1-dimensional subspace).

E1En = 1. (D.22)

Moreover, by construction these two polarizations are orthogonal to the polarizations of
the other external legs as seen in (D.3). The other internal polarization products vanish:

EiEj = 0. (D.23)

Finally the product of momenta and polarizations in (2d+1)-dimensions returns the prod-
uct of d-dimensional momenta for j 6= 1, n

PiEj = pipj , (D.24)

while the products P〉E1
and PiEn vanish. This choice of external kinematics works identi-

cally to a differential operator which, at the level of the amplitude, acts as a longitudinal
operator that replaces products of eipj by pipj and sets the pair of polarizations e1en → 1:

T 1nL =
∂

∂(e1en)

n−1∏
i=2

(∑
j 6=i

pip
∂

∂(eipj)

)
(D.25)



Dimensional Reduction: Pions from higher dimensional gluons 119

This version of the longitudinal operator is formulated slightly different from the TL op-
erator in (3.43). However, as shown in [87] the two dimensional reductions

Dim Red 1 ea · pb → 0, ea · eb → −pa · pb, ea, eb /∈ {e1, en} (D.26)
Dim. Red. 2 ea · eb → 0, ea · pb → pa · pb (D.27)

yield the same results at the level of the amplitude.

This higher dimensional interpretation has also been shown at the level of the action. The
Lagrangian for YM in 2d+ 1 dimension with Feynman gauge is simplified to be

LYM = Tr

(
−1

2
∂MAN∂

MAN + i
√
2∂MAN

[
AM ,AN

]
+

1

2
[AM ,AN ]

[
AM ,AN

])
(D.28)

The gluon fields transform under the adjoint representation AM = Aa
MT a. The field can

be split into three component field

AM = XM + YM + ZM , (D.29)

where these (2d + 1)-dimensional component fields are split into a (d, 1, d)-dimensional
component fields through the parametrisation

XM =
1√
2
(Xµ, 0,−iXµ)

YM = (0, Y, 0) (D.30)

ZM =
1√
2
(Xµ, 0,+iXµ)

Here Xµ and Zµ are d-dimensional vector fields and Y is a scalar field. In this parametriza-
tion the following inner product relations are established

AMAM = XµZ
µ + ZµX

µ + Y 2

XMXM = ZMZM = 0 (D.31)
XMYM = ZMYM = 0

It can then be shown through weight counting of the interactions in the Lagrangian and the
tranverse properties of the fields that the Lagrangian in (D.28) truncates to a Lagrangian
that describes the NGSb of the NLSM through as the fields Xµ and Yµ

LNLSM = Tr

(
Xµ�Zµ +

1

2
Y�Y + i (Xµν [Z

µ, Zν ] + Zµ[Y, ∂µY ])

)
(D.32)

Where the field strength tensor for Xµ is defined as Xµν = ∂µXν − ∂νXµ. This gives rise
to pion amplitudes

A(π1, π2, . . . , πn−1, πn) = A(Y1, Z2, . . . , Zn−1, Yn), (D.33)
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in agreement with the findings of [88]. [86] Further shows that a similar dimensional
reduction can be applied to gravitons to derive the action and amplitudes of Born-Infeld
and Special Galileon theory. Last but not least the higher-dimensional perspective the
double copy is manifest at the level of the action. This can be done by dropping flavor
indices of the fields and doubling the kinematic structures, e.g. Xµµ.

The connection between higher-dimensional gluons and scalars was also demonstrated in
[89], where it was shown that the scattering amplitudes of gluons are intricately embed-
ded within ’stringy’ deformations of pure scalar amplitudes. This paper introduces a new
approach to formulating Yang-Mills scattering amplitudes in any number of dimensions
and loop orders, using combinatorial and geometric ideas in kinematic space. The au-
thors show that by using a "scalar scaffolding" method (Figure D.1), where every pair of
coloured scalars produces a gluon, the shifted amplitudes of Tr[φ3] theory match those of
gluons. This scaffolded method preserves essential properties of gluon amplitudes such as
multilinearity, gauge invariance, and factorization, effectively connecting scalar and gluon
amplitudes through a shift in kinematic variables. It was shown in [72] that deformation of
the "stringy" Tr[φ3] amplitudes secretly contain pion amplitudes, extending the connection
between scalars, gluons and pions.

2

1

5

6

43

Figure D.1: A diagram depicting the 3-point gluon amplitude that is scaffolded from a 6-point
scalar amplitude.

D.4 Gauge invariance of longitudinal operator
Let us consider the conditions of conservation of the on-shell kinematics and the gauge
invariance of the longitudinal operators. For starters, these operators can be written as
linear combinations of these operators:

Li =
∑

j 6=kpipjIjik and Lij = −pipjTij. (D.34)

The (effective) vanishing of the commutation with the total momentum operator P then
guarantee the conservation of the on-shell kinematics. Next, while Lij is intrinsically gauge
invariant due to it being a linear combination of the gauge invariant trace operator Tij,



Transmutation of the subleading order soft factors 121

this is not the case for Li. For this operator we can argue again that it can be shown to be
effectively gauge invariant if the commutator [Li, Wj] = −Lij annihilates the amplitude.
This can be shown by rewriting the Ward identity operator as

Wi= Li −∆i, where ∆i=
∑

j piej∂ejei . (D.35)

With this we can rewrite a product Li · Lj by inserting Li = Wi + ∆i and commute this
operator to the right:

Li · Lj = (Wi +∆i)Lj (D.36)
= [Wi, Lj] + Lj ·Wi +∆iLj (D.37)
= Lij + · · · (D.38)

To finalise the argument we note that all the terms which are contained in · · ·will annihilate
the amplitude. The term with Wi will annihilate the amplitude by definition of the Ward
identity operator. The term with ∆i will annihilate the amplitude due to the multi-linearity
of the amplitude in polarisations. This argument can be extended to any product of Li

operators; by keeping track of all the commutation relations it can be shown that the
four-particle longitudinal operator can be written as

Li · Lj · Lk · Ll = Lij · Lkl + Lik · Ljl + Lil · Ljk + · · · , (D.39)

where it becomes visible that the product of Li will result in a sum of products of Lij

where i, j are grouped into distinct pairs.

D.5 Transmutation of the subleading order soft factors
YMS and BAS subleading soft factor from Yang-Mills
Since the soft factor is a pertubative expansion, we can apply transmutation to the sub-
leading factor aswell. The leadling+subleading factor is given by:

S
(ijk)
textY M =

piej − pjJiej
pipj

− pkej − pjJkej
pkpj

(D.40)

where we consider the soft particle j adjacent to i and k. For this discussion we only
consider the subleading factor denoted by

S
(ijk)
YM,sl =

pjJkej
pkpj

− pjJiej
pipj

= −pjJiej
pipj

+ (i ↔ k), (D.41)

where the notation pjJiej = pµj (Ji)µν eνj denotes the summation over the Lorentz indices.
In fact, Ji denotes the total angular momentum of the particle i, which can be split into
the orbital and spin contribution:

(Ji)µν = pi[µ
∂

∂p
ν]
i

+ ei[µ
∂

∂e
ν]
i

=

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
︸ ︷︷ ︸

Lµν

+

(
eiµ

∂

∂eνi
− eiν

∂

∂eµi

)
︸ ︷︷ ︸

Σµν

(D.42)
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Here it becomes clear that the angular momentum operator is in fact a differential operator
with respect to pi and ei, which allows for nontrivial commutation with the transmutation
operators.

(Ji)µν = [piµ(∂pi)ν − piν(∂pi)µ] + [eiµ(∂ei)ν − eiν(∂ei)µ] (D.43)

The soft factor for YMS theory can again be deduced from the commutation with the trace
operator

S
(ijk|jl)
YMS,sl =

[
Tjl, S

(ijk)
YM,sl

]
= −

∑
m 6=i,k

δlmIilk +

{
Nijkl

pipj
− (i ↔ k)

}
, (D.44)

with Nijkl =
∑

m 6=i(δilpjem − δlmpjei)Tim +
∑

m6=i,k δilpjpmImik. The commutator with the
insertion operator results in the subleading soft factor for BAS theory

S
(ijk|ljm)
BAS,sl =

[
Tljm, S

(ijk)
YM,sl

]
=

{
(δli − δim)(1 + pj∂pi)

pipj
− pjei

pipj
Ilim − (i ↔ k)

}
−Tilkm. (D.45)

NLSM subleading soft factor

In the argumentation of (3.72) we discussed how we could use that effectively
[
T (n−1), S(j)

]
=

0, as the leading order only involved derivatives with respect to pairs which do not contain
soft leg j. For the subleading order, the soft factor does contain terms proportional to
adjacent legs. Explicitely the factor is given by

S
(ijk)
YM,sl =

(pjpi)(∂piej)− (pjpi)(∂piej) + (pjei)(∂eiej)− (pjei)(∂eiej)

pipj
+ (i ↔ k), (D.46)

which contains derivatives with respect to the soft leg. When considering the commu-
tator with the longitudinal factor Lij = −pipj∂eiej , the argumentation therefore has to
be altered to incorporate this. First, consider the transmutation of the non-soft legs
T (n−1) ∝ (−plpm∂elem) with l,m 6= j. If T (n−1) acts on the Lorentz invariants (pp), (pe) or
(emej) it results in a vanishing contribution

T (n−1) · S(ijk)
YM,sl = 0 (D.47)

Part of the commutator therefore already vanishes, the other part S
(ijk)
YM,sl · T

(n−1) con-
tains several derivative terms. Derivatives of ∂ei will vanish, derivatives in the term
∂pi(plpm∂elem)ej will only be nonzero if l,m = i so only pmej∂eiem and plej∂elei survive.
The only surviving terms from ∂pk(plpm∂elem) are those with l,m = k, which are pmej∂ekem
and plej∂elek . What remains of this contribution to the commutator is

S
(ijk)
YM,sl · T

(n−1) =
(pjpi)(pmej)∂eiem − (pjpi)(pmej)∂eiem

pipj
, (D.48)

which will be hit by another longitudinal operator L ∼ ∂(ee), resulting in an effectively
vanishing contribution to the commutator as it does not contain any pairs of (ee). Therefore
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it is shown that
[
T (n−1), S(j)

]
effectively vanishes for products of Lij operators, which is

neccesary to obtain amplitudes for the NLSM. Therefore, to obtain the subleading soft
factor of the NLSM, the commutator with the Trace operator can be considered instead,
due to the fact that Lij = −pipjTij:

S
(ijk)
NLSM,sl =

[
−pjplTjl, S

(ijk)
YM

]
(D.49)

=
∑
m6=i,k

pjplδlmIilk − pjpl

{
Nijkl

pipj
− (i ↔ k)

}
(D.50)

S
(ijk)
NLSM,sl =

∑
l 6=i,k

pjplIilk. (D.51)

It is noted that this subleading soft factor contains an insertion operator, indicating that
soft behaviour is dependent on a lower point BAS amplitude, which is in agreement with
the proposal of Cachazo and collaborators in the same publication that argued on the
mixed amplitudes of pions and biadjoint scalars [35].



Appendix E

Mathematica computations of amplitudes

E.1 6-point YMS amplitude

At O (τ 0) we encounter the YMS amplitude that is generated by summing up the contri-
butions of the GT-operator for different arrangements of 6 particles. An example of one
such an ordering is given by the ordering (12)(34)(56) which results in the contribution :

4AYMS(φ1φ2, φ3φ4, φ5φ6) =
s2,3

s1,2s1,2,3
+

s4,5s2,3
s1,2s1,2,3s1,2,3,4

+
1

s1,2,3
+
−s2,4s3,5 + s2,3s4,5 + s2,5s4,5

s1,2s3,4s3,4,5

+
s2,3s4,5 + s2,5s4,5

s1,2s4,5s3,4,5
+

−s1,4s2,5 − s2,4s2,5 − s2,4s3,5 + s2,3s4,5
s1,2s3,4s1,2,3,4

+
s4,5

s1,2,3s1,2,3,4
+

s4,5
s2,3,4s1,2,3,4

+
−s2,4s2,5 − s2,4s3,5 + s2,3s4,5

s3,4s2,3,4s1,2,3,4
+

1

s2,3,4,5
+

s4,5
s2,3,4s2,3,4,5

+
−s2,4s2,5 − s2,4s3,5 + s2,3s4,5

s3,4s2,3,4s2,3,4,5

+
−s2,4s3,5 + s2,3s4,5 + s2,5s4,5

s3,4s3,4,5s2,3,4,5
+

s2,3s4,5 + s2,5s4,5
s4,5s3,4,5s2,3,4,5

(E.1)

with a factor 1/4 due to the replacement of the momentum factor pipj that was present in
numerator of the gluon amplitude to pipj → sij/2.
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The complete amplitude is the summation over all 15 arrangements and is given by

AYMS
s1,5s2,3 + s2,5s2,3 + s3,5s2,3

s2,3s4,5s1,2,3
+
−s1,5s2,3 − s2,5s2,3 − s3,5s2,3

s1,2s4,5s1,2,3
+
−s1,5s2,3 − s2,5s2,3 − s3,5s2,3

s2,3s4,5s1,2,3
+

s1,3s1,5 + s1,3s2,5 + s1,3s3,5
s2,3s4,5s1,2,3

+
−s2,4s3,5 + s2,3s4,5 + s2,5s4,5

s1,2s3,4s3,4,5
+

s2,5s3,4 − s2,3s3,5 − s2,4s3,5
s1,2s4,5s3,4,5

+

s2,3s4,5 + s2,5s4,5
s1,2s4,5s3,4,5

+
−s2,3s4,5 − s2,4s4,5

s1,2s4,5s3,4,5
+

−s1,4s2,5 − s2,4s2,5 − s2,4s3,5 + s2,3s4,5
s1,2s3,4s1,2,3,4

+

s2,3s4,5
s1,2s1,2,3s1,2,3,4

− s1,3s4,5
s2,3s1,2,3s1,2,3,4

+
s2,5s3,4 + s4,5s3,4 − s2,4s3,5

s2,3s2,3,4s1,2,3,4
+

s2,5s3,4 + s4,5s3,4
s3,4s2,3,4s1,2,3,4

+
−s2,5s3,4 − s3,5s3,4
s3,4s2,3,4s1,2,3,4

+
−s2,4s2,5 − s2,4s3,5 + s2,3s4,5

s3,4s2,3,4s1,2,3,4
+

s1,3s2,5 − s1,5s3,4 + s1,3s3,5 + s1,4s3,5
s2,3s4,5s2,3,4,5

+
s2,3s2,5 + s2,3s3,5
s2,3s4,5s2,3,4,5

+
−s2,3s2,5 − s2,3s3,5

s2,3s4,5s2,3,4,5
+

s3,4s4,5 + s3,5s4,5
s2,3s4,5s2,3,4,5

+
−s3,4s4,5 − s3,5s4,5

s2,3s4,5s2,3,4,5
+

−s2,5s3,4 − s4,5s3,4 + s2,4s3,5
s2,3s2,3,4s2,3,4,5

+
s2,5s3,4 + s4,5s3,4 − s2,4s3,5

s2,3s2,3,4s2,3,4,5
− s1,5s3,4

s2,3s2,3,4s2,3,4,5
+

s2,5s3,4 + s3,5s3,4
s3,4s2,3,4s2,3,4,5

+
s2,5s3,4 + s4,5s3,4
s3,4s2,3,4s2,3,4,5

+
−s2,5s3,4 − s3,5s3,4
s3,4s2,3,4s2,3,4,5

+
−s2,5s3,4 − s4,5s3,4
s3,4s2,3,4s2,3,4,5

+
−s2,4s2,5 − s2,4s3,5 + s2,3s4,5

s3,4s2,3,4s2,3,4,5
+

s2,4s2,5 + s2,4s3,5 − s2,3s4,5
s3,4s2,3,4s2,3,4,5

+
s1,5s2,4

s3,4s2,3,4s2,3,4,5

+
−s2,4s3,5 + s2,3s4,5 + s2,5s4,5

s3,4s3,4,5s2,3,4,5
+

s3,4s3,5 + s3,4s4,5
s3,4s3,4,5s2,3,4,5

+
s1,4s3,5 − s1,3s4,5 − s1,5s4,5

s3,4s3,4,5s2,3,4,5

+
s2,4s3,5 − s2,3s4,5 − s2,5s4,5

s3,4s3,4,5s2,3,4,5
+

−s3,4s3,5 − s3,4s4,5
s3,4s3,4,5s2,3,4,5

+
−s1,5s3,4 + s1,3s3,5 + s1,4s3,5

s4,5s3,4,5s2,3,4,5

+
−s2,5s3,4 + s2,3s3,5 + s2,4s3,5

s4,5s3,4,5s2,3,4,5
+

s2,5s3,4 − s2,3s3,5 − s2,4s3,5
s4,5s3,4,5s2,3,4,5

+
s1,3s4,5 + s1,4s4,5
s4,5s3,4,5s2,3,4,5

+
s2,3s4,5 + s2,4s4,5
s4,5s3,4,5s2,3,4,5

+
s2,3s4,5 + s2,5s4,5
s4,5s3,4,5s2,3,4,5

+
s3,4s4,5 + s3,5s4,5
s4,5s3,4,5s2,3,4,5

+
−s1,3s4,5 − s1,5s4,5
s4,5s3,4,5s2,3,4,5

+
−s2,3s4,5 − s2,4s4,5
s4,5s3,4,5s2,3,4,5

+
−s2,3s4,5 − s2,5s4,5
s4,5s3,4,5s2,3,4,5

+
−s3,4s4,5 − s3,5s4,5
s4,5s3,4,5s2,3,4,5

.

(E.2)

From a quick inspection it is clear that there are quite a few terms that share the same
propagator which could be collected. It is chosen to not simplify this calculation at this
stage for two reasons. The first being that the Simplify function of mathematica will
collect all terms and simplify them to 1 term with a new denominator that is common to
all elements of the sum. This does not give us any meaningful insight. The second reason
is that we will expand on this result in later computations, therefore it is not yet necessary
to simplify at this stage.


	Introduction
	Scattering Amplitudes
	Gluons - Yang-Mills Theory
	Pions - Nonlinear Sigma Model
	Factorisation - Recursion relations
	Soft Theorems and Soft Factors
	The Double Copy

	BCJ Bootstrap - Hybrid Soft Behaviour
	A group Theory Approach to Numerators
	Numerators for 4-point Interactions
	Numerators for 5-point Interactions
	Numerators for 6-point and Higher: BCJ Bootstrap
	Colour x Kinematics: The Gauged NLSM
	Key Findings and Implications

	Unifying Relations - Transmutation Operators
	Conditions and Basis for Transmutation Operators
	Trace and Insertion Operators
	Longitudinal Operators
	Web of theories connected through transmutation
	Infrared properties of Transmutation
	On-shell recursion, factorisation and the Double Copy
	UV completion

	Generalised Transmutation of Yang-Mills
	Defining the Generalised Transmutation Operator
	Generalised transmutation at 4-point
	Generalised Transmutation at 6-point

	Discussion
	Partial 6-point Amplitude of BCJ Bootstrap
	Factorization Comparison

	Conclusion and Outlook
	Bibliography
	Appendix
	Diagrammatic calculation of double color ordered BAS amplitudes
	KLT double copy
	Z-Theory
	Transmutation operators
	Kinematics
	Gauge invariance
	Dimensional Reduction: Pions from higher dimensional gluons
	Gauge invariance of longitudinal operator
	Transmutation of the subleading order soft factors

	Mathematica computations of amplitudes
	6-point YMS amplitude


