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Abstract

In the age of big data, organizations are frequently overwhelmed by the sheer
volume of data they have to handle. The real challenge, however, is not in
gathering the data, but in effectively using it. The process of converting
raw data into structured, actionable insights is intricate and does not always
yield successful results. In this Bachelor’s Thesis, my goal is to investigate
the use of data mining methods for customer profiling and sales predicting.
This involves a deep dive into various data mining algorithms, including
clustering algorithms like K-means, hierarchical clustering, and vector quan-
tization. Moreover, I will evaluate their efficacy in interpreting customer
behavior and predicting future sales patterns. This research will illustrate
how these techniques can enable businesses to customize their strategies to
satisfy customer demands and maximize sales. Additionally, it will add to
the expanding knowledge base in the realm of data science and its prac-
tical uses in business intelligence. In essence, it aims to pave the way for
harnessing data-driven insights in strategic decision-making.
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1 Introduction

In the past years, the field of information technology has seen an exponen-
tial increase in the volume of data generated and processed [1]. Every day,
our computer networks, the World Wide Web, and a variety of data storage
devices are flooded with thousands of terabytes of data stemming from di-
verse sectors including business, society, science and engineering, medicine,
and nearly all other facets of our daily lives [1]. This explosive growth of
available data volume can be attributed to the digitization of our society
and the fast development of powerful data collection and storage tools. Such
tools allow businesses worldwide to generate vast data sets, including sales
transactions, stock trading records, product descriptions, sales promotions,
company profiles and performance, and customer feedback. For example,
some of the largest retailers in the world, such as Amazon, handle tens of
millions of transactions per week at thousands of branches around the world

[2].

However, having enormous amounts of information does not mean you can
easily understand and efficiently make use of it. Transforming the data into
organized knowledge can be a cumbersome process that does not always
succeed, especially when trying to foresee future events by drawing insights
from past occurrences. One application of this idea is in the industry sec-
tor, where organizations want to maximize profits by predicting the buying
actions of their customers. Therefore, the following question arises: Is there
an efficient and reliable algorithm for anticipating sales based upon previous
sales figures?

The motivation behind this question lies within the ever-evolving corporate
landscape. It is the dream of every enterprise to know ahead of time what
their clients will be buying, because it allows them to adapt their strategies,
improve resource allocation, and enhance patron satisfaction. For example,
the company taking part in my research wishes to estimate its sales in order
to keep a small stock of prebuilt products to help in honoring larger orders
with tight deadlines.

To answer this question, I will explore several topics related to computer sci-
ence, such as data mining, machine learning, and clustering. Firstly, I start
by presenting the current state-of-the-art data mining techniques in section
2. Then, I will describe the details of my approach and implementation
in section 3. Afterwards, the experimental results and discussion (4th and



5th sections) of the research are outlined, defining the efficacy and potential
applications of the proposed methods. Finally, the paper concludes in sec-
tion 6 with a summary of the findings and suggestions for future research
directions.

2 State Of The Art

The intriguing concept of data mining can be seen as a natural outcome
of the development of information technology, which, since the 1960s, has
evolved continuously and systematically from the early file processing sys-
tems to the sophisticated and capable database management systems |[3].
The extensive volume of data contained within these databases has led re-
searchers to devise a process for analysing it in order to find potentially useful
relationships and patterns. Today, this process is commonly known as "data
mining". Data mining incorporates many techniques from other domains
such as statistics, machine learning, predictive analytics, visualization, and
so on [4]. Its application-driven nature makes it particularly appealing to
organizations looking to extract valuable insights from their data.

2.1 Customer Profiling

To achieve this goal, the idea of customer profiling or customer segmenta-
tion was introduced as a marketing tool that allows companies to build dif-
ferentiated sales strategies. Customer profiling involves dividing customers
into distinct, meaningful, and homogeneous subgroups based on various at-
tributes and characteristics [6]. Creating the customer groups is performed
through clustering, an unsupervised learning technique which can be broadly
classified into four categories: centroid-based methods (K-Means Clustering)
[5], connectivity-based methods (Agglomerative Hierarchical Clustering) [5],
density-based methods (Density-based spatial clustering of applications with
noise; DBSCAN for short) [5] and distribution-based methods (Gaussian
Mixture Model) [5]. Each of these techniques uses several algorithms with
different advantages and disadvantages that are presented in the subsequent
chapters. Despite the multitude of available methods, the architecture for
client segmentation shares two phases in common. First, in the data prepa-
ration phase, the data is collected and cleansed by removing any noise (the
incomplete, missing or irrelevant records are removed from the set). In the
second phase, cluster construction and profiling takes place [5]. Figure 1
provides a clearer visualization of the mentioned architecture.



o
o
-
]
-l
=
— o
°
o
=
o
=
5
Data Cleaning
T
|
N\ —
Demographic clustering
o
c
= 8
1]
=
@
[ Extract Pattern ]
Data Profiling & Cluster results z o
Analysis 2 ;_
— * 0
— 3
& 73
o 8
Identification of high-value & low- o
risk customers ) 3

Fig 1: Clustering Process Diagram

Figure 1: Clustering Process Diagram [5]

In the next subsections, I will delve deeper into the specifics of feature selec-
tion and extraction, which are critical in handling high-dimensional data for
effective clustering. I will also explore various distance and similarity mea-
sures, which play a crucial role in determining cluster assignments (grouping
algorithms are distance-based). This will be followed by a detailed examina-~
tion of the four different clustering methodologies, explaining how they work
and their respective strengths and weaknesses.

2.1.1 Feature Selection And Extraction

In high-dimensional data, clustering algorithms can suffer from the curse
of dimensionality—the phenomenon where the feature space becomes in-
creasingly sparse as the number of dimensions grows relative to a fixed-size
training set [11]. This sparsity complicates the visualization and interpreta-
tion of results, while also degrading the performance of the algorithms. To
effectively mitigate these issues, two techniques, known as feature selection



and extraction, become crucial.

Feature selection involves identifying and selecting the most relevant fea-
tures from the original data set to enhance the predictive accuracy of the
model. This process can be done manually, based on domain knowledge, or
automatically using algorithms. Automatic methods are divided into three
categories: filter methods, wrapper methods, and embedded methods. Fil-
ter methods rank features based on statistical measures and are generally
faster and less computationally expensive. Wrapper methods use a predic-
tive model to score feature subsets, while embedded methods perform feature
selection during model training, making them more suited to specific algo-
rithms [20].

In contrast, feature extraction involves creating new features from the orig-
inal data set, often in a lower-dimensional space. Among the various pro-
cedures available for feature extraction, one particularly popular approach
stands out: Principal Component Analysis, often abbreviated as PCA. This
technique is widely used due to its effectiveness and simplicity. PCA is, at its
core, a statistical technique that uses orthogonal transformation to convert
a set of potentially correlated variables into a set of linearly uncorrelated
variables, known as principal components [12]. This transformation ensures
that the first principal component captures the maximum possible variance
in the data, while each subsequent component captures the highest vari-
ance possible, subject to the condition that it is orthogonal to the preceding
components, thereby forming an uncorrelated orthogonal basis set [12]. The
input data to the transformation is usually standardized, since PCA is sen-
sitive to the relative scaling of the original variables.

The main steps of the PCA algorithm can be summarized by the following
[13]:

1. Standardize the data: Since PCA is affected by the scales of the vari-
ables, the data is standardized so that each variable contributes equally
to the analysis.

2. Compute the covariance matrix: This matrix provides insights into
how the variables in the data set relate to one another.

3. Calculate eigenvalues and eigenvectors: These are calculated from the
covariance matrix. The eigenvectors (principal components) determine



10

the directions of the new feature space, and the eigenvalues determine
their magnitude.

4. Sort eigenvalues and corresponding eigenvectors: The eigenvector with
the highest eigenvalue is the first principal component that captures
the most variance in the data. The eigenvector with the second highest
eigenvalue is the second principal component, and so on.

5. Transform the original data set: The final step is to transform the
original data set via the selected principal components to obtain a new
data set of reduced dimensionality.

By incorporating feature selection and extraction methods into the clus-
tering process, companies can enhance the customer segmentation process.
These techniques simplify the data and help in identifying the most relevant
features, which can contribute to more accurate and meaningful clusters.
As a result, this improved clustering can support more targeted marketing
strategies and potentially enhance customer satisfaction.

2.1.2 Distance And Similarity Measures

In the following sections, the terms "distance" or "distance function" are
used when describing various algorithms. They refer to measurements of the
distance (dissimilarity) or similarity between a pair of objects, an object and
a cluster, or a pair of clusters based on their feature values or attributes
[7]. The choice of distance or similarity measure depends on the nature of
the data and the specific clustering algorithm being employed. For exam-
ple, while common distance measures for continuous data include Euclidean
distance and Manhattan distance, cosine similarity and Jaccard Index are
often more appropriate when working with categorical data [8]. Euclidean
distance, the most-widely used, is a measure that calculates the straight-line
distance between two points in a space, its generalized formula being the
following [8]:

n

d= | > (v — 21)? (1)

i=1

where n is the number of dimensions and x1; and x9; are the coordinates of
the two points in the i-th dimension.
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2.1.3 Centroid-Based Clustering

The fundamental concept of centroid-based clustering algorithms is to con-
sider the centroid of data points as the center of the respective cluster. K-
means and K-medoids are the two most well-known algorithms of this type,
each with its own unique approach.

K-means operates on the principle of minimizing the variance within each
cluster. It does this by continually updating the cluster’s center, which is
represented by the centroid of the data points. This centroid is the arithmetic
mean of all the points in the cluster. The iterative calculations continue until
a certain convergence criterion, such as no change in the cluster assignments
or a maximum number of iterations, is satisfied [8].

On the other hand, K-medoids is an enhancement of K-means designed to
handle discrete data and to be more robust to noise and outliers, but is com-
putationally more expensive. Instead of using the mean of data points as
the centroid (which may not correspond to an actual data point), K-medoids
selects an existing data point from the cluster to represent it. This represen-
tative point, known as the medoid, is the data point that minimizes the sum
of dissimilarities (e.g., distances, as explained in section 2.1.2) between itself
and all other points in the cluster. In other words, it’s the most centrally
located point in the cluster according to the chosen distance measure [8].

Having discussed the K-medoids algorithm, we now turn our attention to
the K-means algorithm, which will be used as a representative of centroid-
based clustering. The main steps of the K-means algorithm are as follows |7]:

1. Initialize a K-partition randomly or based on some prior knowledge
and then calculate the cluster prototype matrix M = [my,...,mg],
where each m; represents the centroid (mean) of the i-th cluster.

2. Assign each object in the data set to the nearest cluster C,, by finding
the minimum distance:
xzj € Cy if ||z — my|| < |lzj —myl|, for j = 1,.,N, i # w and
i=1,..., K.

3. Recompute the cluster prototype matrix based on the current partition
by recalculating the centroids of the clusters.

4. Repeat steps 2 and 3 until there is no change for each cluster.
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The general advantages and disadvantages of partition-based clustering (us-
ing K-means as reference) are the following [7]:

Advantages: relatively low time complexity (worst case is linear); works
very well for compact and hyperspherical (well-separated) clusters.
Disadvantages: no efficient and universal method for identifying the initial
partitions and the number of clusters K; the iteratively optimal procedure
of K-means cannot guarantee convergence to a global optimum; sensitive to
outliers and noise.

2.1.4 Density-Based Clustering

Density-based clustering algorithms, such as DBSCAN, OPTICS, and Mean-
shift, operate on the principle that data in high-density regions of the data
space belong to the same cluster [8]. DBSCAN, the most well-known among
these, creates a new cluster from a data object (an individual data point
within a data set) by absorbing all objects in its neighborhood, which must
satisfy a user-specified density threshold. Therefore, it works on two key
parameters: the radius of the neighborhood (often denoted as eps) and the
minimum number of points required to form a dense region (often denoted
as MinPts) |7].

The main steps of the DBSCAN partitioning algorithm can be outlined as
follows |7]:

1. Choose an arbitrary data point P from the data set.

2. For each P, determine the neighborhood N(P) of P by finding all data
points within distance eps from P. If |[N(P)| >= MinPts, label P as
a core point. If [N(P)| < MinPts,|N(P)| # 0, label P as a border
point.

3. Form the clusters by performing:

e Initialize an empty list to store clusters.
e For each core point P that has not been visited:

— Create a new cluster.

— Perform a depth-first search (DFS) or similar traversal:
* Add P to the current cluster.
« For each neighboring point P’ in N(P):
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- If P’ is a core point and not yet visited, recursively add
its neighbors to the cluster.
- If P’ is a border point, include P’ in the current cluster.
— Mark all points in the cluster as visited.

4. Label any point that remains unvisited after processing all clusters as
a noise point.

The general advantages and disadvantages of density-based clustering (using
DBSCAN as reference) are the following [8]:

Advantages: does not require a predefined number of clusters; robust to
outliers and noise; suitable for data with arbitrary shape.

Disadvantages: cannot cluster data sets with large differences in densities
well; very sensitive to its main parameters (eps and MinPts), which makes
choosing them quite challenging.

2.1.5 Connectivity-Based Clustering

Connectivity-based clustering algorithms construct a hierarchical relation-
ship among data in order to form clusters. Hierarchical clustering (HC)
techniques organize data based on a proximity matrix, visualizing results
through binary trees or dendrograms. In this representation, the root node
signifies the entire data set, with each leaf node corresponding to a data ob-
ject. Intermediate nodes reflect proximity between objects, and dendrogram
height indicates the distances between object pairs or clusters. Clustering
results are derived by cutting the dendrogram at different levels, offering
valuable insights and visualization of potential clustering structures. This
approach is particularly beneficial when real hierarchical relationships exist,
such as in evolutionary studies of species diversity |7]. Moreover, HC meth-
ods are of two types: agglomerative (which start with individual data points
and iteratively merge them into clusters) and divisive (which start with the
entire data set and recursively split it into smaller clusters) |7].

The main steps of the agglomerative hierarchical clustering (AHC) algorithm
are as follows [7]:

1. Start with N singleton clusters and calculate the proximity matrix for
the N clusters.

2. Search the minimal distance:
D(C;,Cj) = min(D(Cp,, C1)); 1 <m, I < N,m # [
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where D(x,x) is the distance function, in the proximity matrix, and
combine clusters C; and C; to form a new cluster.

3. Update the proximity matrix by computing the distances between the
new cluster and the other clusters.

4. Repeat steps 2 and 3 until all objects are in the same cluster.

The general advantages and disadvantages of connectivity-based clustering
(using AHC as reference) are the following |8]:

Advantages: having the dendrogram helps interpret relationships between
groups; does not require a predefined number of clusters; does not impose
assumptions about the shape or distribution of clusters.

Disadvantages: relatively high time complexity in general (worst case is
squared); sensitive to noise and outliers; choosing the dendrogram cutting
point can be difficult.

2.1.6 Distribution-Based Clustering

Distribution-based clustering, also known as probabilistic clustering, is a
technique in machine learning that assumes data points are generated from
a mixture of probability distributions [7|. It groups data points based on
their probability distribution, often using Gaussian distributions (but can
use t-distributions as well). The parameters of these distributions are es-
timated to identify clusters. Unlike centroid-based clustering, which relies
on representative points, distribution-based clustering focuses on the un-
derlying probability distributions. One commonly used approach to prob-
abilistic clustering is to create a Gaussian Mixture Model (GMM) through
Expectation-Maximization [9], which is used to find the parameters of the
Gaussian distributions that best fit the data, where the ‘best fit’ is defined
as the one that maximizes the likelihood of the data given the parameters.

The main steps of the GMM clustering algorithm are as follows [7]:

1. Choose initial values for the parameters (such as the means, covari-
ances, and mixing coefficients for each Gaussian distribution). This
can be done either randomly or by using methods like K-means clus-
tering to provide an initial estimate.

2. Given the current parameters, calculate the probability that each data
point belongs to each cluster or Gaussian distribution. This step uti-
lizes Bayes’ theorem [10] and results in a 'responsibility’ matrix where
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each entry represents the probability of a data point belonging to a
specific cluster.

3. Update the parameters (means, covariances, and mixing coefficients)
using the responsibility matrix calculated in step 2.

4. Evaluate whether the parameters have significantly changed since the
last iteration. If there are substantial changes, return to step 2. If not,
the algorithm has converged, and the current parameters are accepted
as the final model parameters.

5. Finally, assign each data point to the cluster it is most likely to belong
to based on the computed probabilities.

The general advantages and disadvantages of distribution-based clustering
(using GMM as reference) are the following [8]:

Advantages: robust to outliers and noise; can accurately model data with
overlapping clusters; provides probabilities for cluster assignments, aiding in
uncertainty estimation.

Disadvantages: relatively high time complexity in general (worst case is
squared); many parameters with strong influence on the clustering; assumes
the data to be composed of distributions.

2.2 Cluster Validation Measures

In the field of cluster analysis, validation measures are crucial for assessing
the quality of clustering results. Two commonly used validation measures
are the Silhouette Score and the Davies-Bouldin Index.

The Silhouette Score is a metric that quantifies how similar an object is to its
own cluster in comparison to other clusters. The score is bounded between
-1 and 1, where a high value signifies that the object is well integrated
into its own cluster and poorly integrated into neighboring clusters [17].
If the majority of objects have a high score, it suggests that the clustering
configuration is suitable. Conversely, if many points have a low or negative
score, it may indicate that the clustering configuration has an excess or
deficiency of clusters, leading to the misclassification of objects. The formula
for calculating the Silhouette Score for a single data point ¢ is as follows [18]:

b(i) — a(d)

"0 {00

(2)
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where:

e a(i) is the average dissimilarity of 7 with all other data within the same
cluster,

e b(7) is the lowest average dissimilarity of ¢ to any other cluster, of which
1 is not a member.

The Davies-Bouldin Index (DBI) also serves as a valuable metric for assess-
ing the effectiveness of clustering algorithms. It does this by evaluating the
compactness and separation of the resulting clusters. More specifically, the
DBI quantifies the average similarity ratio of each cluster to its most similar
counterpart [19]. Here, ‘similarity’ is defined as the ratio of the scatter within
a cluster to the separation between clusters. A lower DBI value, which can
range from 0 to oo, signifies superior clustering performance. This is because
it implies that the clusters are both compact and well-separated. Moreover,
the index is calculated by taking the average of the worst-case similarity
ratios for each cluster, this approach emphasizing the least desirable charac-
teristics of the clustering configuration. The formula for the Davies-Bouldin
Index is as follows [19]:

1< ) .
DBI == max (UJ”’”) (3)
n — itj d;j
=1
where:

e 1 is the number of clusters,

e 0; is the average distance of all elements in cluster ¢ to the centroid of
cluster 1,

e d;; is the distance between cluster centroids 7 and j.

2.3 Sales Prediction

After obtaining the customer aggregations and checking their quality, our
attention shifts to the crucial aspect of sales prediction. The current body
of literature offers a plethora of methods to predict the sales of products
and services. These methods are typically either applied the raw data set
itself or combined with the clusters derived from the data, thus enhancing
the predictive power.
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2.3.1 Qualitative and Quantitative Predicting

The techniques that are generally utilized in practice can be broadly cate-
gorized into two classes: qualitative and quantitative predicting [15].

Qualitative predicting leverages information gleaned from market surveys to
anticipate future trends. On the other hand, quantitative predicting places
emphasis on the analysis of numerical data. It involves studying the num-
ber of elements in development based on historical statistical data, thereby
making it immune to subjective factors [16].

In contrast, quantitative predicting emphasizes the analysis of numerical
data. It involves studying historical statistical data to predict future sales,
making it less subjective and more data-driven. Quantitative methods in-
clude a range of statistical and machine learning techniques that analyze the
relationships between different variables and sales outcomes [15].

2.3.2 Predictive Modelling Methods

Within the realm of quantitative predicting, various algorithms can be em-
ployed to construct predictive models, such as Linear Regression, Decision
Trees, Random Forest and Gradient Boosting (a brief summary of each
method is provided hereafter).

Linear Regression is used to model the relationship between one or more
independent variables and a dependent variable. Simple linear regression
involves a single predictor variable, while multiple linear regression involves
two or more predictors. Multiple linear regression, in particular, is widely
used due to its ability to account for the influence of multiple variables on
sales, which is more common in practice [14]. However, it assumes a linear
relationship and may not perform well with non-linear data.

Decision Trees are a type of supervised learning algorithm used for both clas-
sification and regression tasks. They work by splitting the data into subsets
based on the value of input features, creating a tree-like model of decisions.
Moreover, Decision Trees are easy to interpret and can handle non-linear
relationships, but they can be prone to overfitting [24].

Random Forest is an ensemble learning method that constructs multiple
decision trees during training and outputs the average prediction of the in-
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dividual trees. It improves the predictive performance and robustness of the
model by reducing overfitting and increasing generalization. Also, Random
Forests are effective for both classification and regression tasks and can han-
dle large datasets with higher dimensionality, although with an increased
computational cost [25].

Gradient Boosting is another ensemble technique that builds models sequen-
tially, with each new model correcting the errors of the previous ones. It
combines the predictions of multiple weak learners (typically decision trees)
to create a strong predictive model. Gradient Boosting is highly effective for
both classification and regression tasks, offering high accuracy and flexibil-
ity, but it can be computationally intensive and sensitive to overfitting if not
properly tuned [26].

3 Methodology And Experimental Setup

The primary goal of this research is to explore and understand the usefulness
of data mining when applied to a real-world data set with the purpose of
predicting future sales through customer profiling. In order to achieve the
primary goal, the research aims to provide a comprehensive comparison of
four diverse clustering algorithms - K-means, DBSCAN, AHC, and GMM -
in terms of their speed, quality of clusters, and their ability to handle outliers
over the span of three experiments. Each experiment will correspond to a
pair of features (see section 3.2.2) selected from a given sales data set (see
section 3.1) and its cluster results will be used in building a predictive model
(described in section 2.3.2). Furthermore, the research will be guided by the
following questions:

“Can data mining techniques applied to customer profiling improve the ac-
curacy of sales predictions? If so, which clustering algorithm provides the
most accurate and efficient results?”.

In the subsequent sections, I will delve into the specifics of the data set,
the implementation details of the experiments, and the technology stack
used. This should provide a broad understanding of the methodology and
experimental setup, setting the stage for the results and discussion.
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3.1 Data Set

The conducted research is performed on a data set provided by an indus-
trial partner from Lithuania that focuses on filter manufacturing. The set
contains information about the sales of the company, describing the placed
orders through 13 different features (columns in the table) and over 100000
entries (rows in the table). For a clearer understanding of the structure of
the available data, table 1 provides an explanation for each feature.

Feature Explanation
Order ID of an order
Customer ID of a customer
Order Date date on which the order was placed
Order Need By date on which the order needs to arrive at the customer
Order Ship By date on which the order is ready for shipping
Order Amount value of the order in euros
Line ID of an item within the order it is part of
Line Type type of an item of an order (part, service or set)
PartID ID of a part
Part name of a part
Line Qty quantity of an item of an order
Line Ship By date on which an item of an order is ready for shipping
Line Need By | date on which an item of an order needs to arrive at the customer

Table 1: Features of the sales data set

To gain a deeper understanding of the data set, I conducted an Exploratory
Data Analysis (EDA) on the data set. EDA is a fundamental step in the data
analysis process. It allows us to understand the data we are working with,
discover patterns, spot anomalies, test assumptions, and check for any initial
hypotheses |31]. Therefore, I checked the distribution of the continuous fea-
tures (through the Kolmogorov-Smirnov test [23]) and found that the "Order
Amount," for example, does not follow a normal distribution, which can in-
fluence the GMM results. I also examined the relationships between different
features using methods such as correlation matrices (Pearson’s correlation to
be exact), which helped me identify any strong correlations between variables
that could impact our clustering and prediction algorithms. For example, I
found that the “Order Amount” and “Line Qty” columns had a correlation
of 0.836 (closer to 1 is better). This high correlation indicates that both fea-
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tures provide similar information, making them suitable for linear regression
in the predictive model.
3.2 Implementation

By combining the techniques mentioned in section 2, the research is con-
ducted through the steps depicted in the following flowchart:

[Input: sales data set]

l

Preprocessing of the
data set

l

[ Feature selection ]—)[Euildingthe clusters]—» Cluster validation

Cluster analysis

|

[Predictive mndelling]

Figure 2: Flowchart of the implementation steps

3.2.1 Data Preprocessing

Before any analysis can be performed, the data set must be preprocessed to
ensure its quality and relevance. This involves cleaning the data by remov-
ing any irrelevant entries, handling missing values, and converting data types
where necessary. For instance, calendar dates may require conversion into a
uniform format to facilitate subsequent processing, or numerical values may
undergo normalization to fit within the range [0, 1] or be subjected to stan-
dardization. Standardization is a preprocessing step in data analysis that
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helps to give different features the same weight during the clustering process.
This is done to avoid any single feature from dominating the clustering due
to its scale or units [21].

The initial data set is missing some values for the ‘order need by’ and ‘order
ship by’ dates. While these features will not be used in our current analysis
due to their clear low relevance in sales prediction (they are more related to
logistics), it is important to consider potential scenarios where they could
be significant. For instance, these dates might influence the order fulfillment
efficiency, which could indirectly affect sales by altering the customer satis-
faction. Ideally, if we were to use these features, one approach to handling
the missing values would be to remove the corresponding orders to main-
tain the integrity of the data set. However, this is not the only solution.
Alternatively, we could use imputation techniques to estimate the missing
dates based on available data, or apply machine learning models that can
handle missing values effectively [32]. Each method has its own advantages
and trade-offs, and the choice would depend on the specific context and re-
quirements of the analysis.

Moreover, there are only two outliers in the data set regarding the ‘order
amount’, specifically the top two most expensive orders, as shown in figure
3. These outliers can influence the results of clustering algorithms that
are sensitive to extreme values, such as K-means. Nevertheless, they also
represent a natural part of the population we are analyzing, reflecting the
reality that there can indeed be instances where someone spends significantly
more than the average. Therefore, the top two orders by amount will not be
removed in the performed research.
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Box Plot of Order Amounts
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Figure 3: Box plot with the order amounts

3.2.2 Feature Selection

The next step is feature selection, which involves identifying the most per-
tinent features that will contribute to the effectiveness and relevance of the
clustering. Features can be deemed relevant based on computational meth-
ods, such as their correlation with the target variable, or through domain
knowledge and logical reasoning. For instance, the ID of an order might not
be as significant as the quantity of a product ordered or the product’s name.
While visualizing high-dimensional data is complex, pairs of features are se-
lected not only for visualization purposes but also to ensure meaningful and
illustratable clusters.

The choice of feature selection over feature extraction is primarily due to the
interpretability of the results. Feature selection maintains the original fea-
tures, making the results more understandable and actionable. On the other
hand, feature extraction, such as Principal Component Analysis (PCA), cre-
ates new composite features [13|, which might be more difficult to interpret,
especially in a business context like ours. Thus, we preserve a clear connec-
tion between the data and the real-world entities in the research.
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In this study, three pairs of features were selected for three separate exper-
iments to gain a comprehensive understanding of customer behaviors and
trends. Since the data set contained no personal information about the cus-
tomers, such as age, income, occupation, or company revenue (in the case
of other businesses placing an order), the clusters will be more indirectly
related to the customers. The chosen pairs are as follows:

e Frequency by quantity of a product over all orders: this pair can reveal
the popularity of specific products across all orders, providing insights
into what customers are most interested in.

e Total order amount by total product quantity per customer: this pair
can help identify the spending habits of customers, showing whether
they prefer to make frequent small purchases or fewer large ones.

e Order amount by the number of different products per order: this pair
can indicate the diversity of products in a customer’s order, which can
be a sign of a customer’s willingness to explore different items.

3.2.3 Building The Clusters

Once the relevant features have been selected, the clustering algorithm can
be applied. There are various clustering algorithms available, such as K-
means, Hierarchical Clustering, DBSCAN, and Gaussian Mixture Model,
each with its own strengths and weaknesses which are explained in section 2.
All four of these strategies are carried out on the sets of chosen features that
were mentioned in the previous subsection, in order to assess and compare
their performance and results. In addition, to make the results be as cred-
ible as possible, I test the algorithms beforehand on other data sets found
on the internet that have the purpose of evaluating the correctness of an
implementation.

3.2.4 Cluster Validation

After the clusters have been formed, their validity is assessed. This can in-
volve either comparing the results with known customer profiles, if available,
or applying statistical techniques to measure the quality of the clusters. In
our situation, it’s the latter option that is relevant, meaning that we have to
use statistical measures such as the Silhouette Score and the Davies-Bouldin
Index to assess the quality of our clusters, both of which have already been
clarified in section 2.2. By using two metrics instead of a single one, we gain
a more holistic view of the grouping results, allowing us to easily determine
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if the chosen number of clusters is ideal or further investigation is needed.
Additionally, these quality scores help us select the best scatter plot for visu-
alizing the clusters (the result of only one clustering algorithm is analysed per
experiment), ensuring that the most representative and informative graph is
used for analysis.

3.2.5 Cluster Analysis

Finally, the clusters are analyzed to derive insights about the customer pro-
files. This involves examining the characteristics of the points within each
cluster of the graph chosen during the validation stage and identifying any
common patterns or trends, which can be used to inform various business
strategies. For instance, if we have a cluster where the majority of customers
have a high frequency of orders with a large quantity of a specific part type,
this could indicate a group of industrial clients who require these parts for
their operations.

It is important to note that the results of cluster analysis are not absolute
and should be interpreted with caution. Unlike classification, clustering is
an unsupervised learning method that does not rely on predefined labels.
Instead, it groups data based on similarity in characteristics, which can be
subjective and dependent on the chosen parameters and distance measures.
Therefore, while the clusters can provide valuable insights, they should not
be viewed as definitive categories, since they serve only as a starting point
for understanding the structure within the data.

3.2.6 Predictive Modelling

The final step in our implementation entails predictive modeling, where we
utilize the insights gained from cluster analysis to predict future sales trends
and behaviors. By insights from the cluster analysis, I refer to the cluster
values assigned to each data point. For instance, in the first experiment,
for a product, we can use its frequency and assigned cluster to predict its
quantity. The assigned cluster provides additional context that can improve
the accuracy of the predicted value. However, it is important to note that
building a detailed predictive model is not strictly necessary. We can stop at
the cluster analysis and still make some abstract predictions based on just
the identified clusters, using our intuition. Given the varying correlation
coefficients observed in the experiments (as discussed in section 3.1 during
the Exploratory Data Analysis), if we choose to proceed with predictive
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modelling, we need to select appropriate models for predictive tasks:

e First Experiment (Pearson correlation coefficient: 0.338): Linear re-
gression might not be the best choice due to the weak linear relation-
ship. Instead, Random Forest Regression is used, a flexible model that
can capture non-linear relationships and also handle complex data dis-
tributions.

e Second Experiment (Pearson correlation coefficient: 0.836): With a
high correlation coefficient, linear regression is a suitable model due to
the strong linear relationship between the variables.

e Third Experiment (Pearson correlation coefficient: 0.123): Given the
very low correlation, models that can handle weak or complex rela-
tionships are needed. We choose Gradient Boosting, which builds an
ensemble of weak prediction models, usually decision trees, to create a
strong predictive model to capture more intricate patterns in the data.

The data (features used in the experiments) is then split into training and
test sets, using the most common rule, i.e. 80%-20% split, to estimate model
performance. Each model is trained on its respective training set and eval-
uated using the following metrics to assess accuracy and reliability:

e Mean Absolute Error (MAE): Measures the average magnitude of the
errors in a set of predictions, without considering their direction. It
provides a straightforward interpretation of the average error [27].

1o )
MAE = EZ|yi_yi| (4)
i=1

where:

— n is the number of observations
— 1; is the actual value

— g); is the predicted value

e Mean Squared Error (MSE): Measures the average of the squares of
the errors. It gives more weight to larger errors, making it useful for
identifying significant deviations [27].

1 n
MSE = — > (i — i) (5)
i=1

where:
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— n is the number of observations
— y; is the actual value
— ¢; is the predicted value

e R-squared (R?): Represents the proportion of the variance in the de-
pendent variable that is predictable from the independent variables. It
indicates how well the model explains the variability of the outcome
[27].

R2—1_ > i (i — §i)° (6)
> i (i —9)?

where:

— g; is the actual value
— g); is the predicted value

— ¢ is the mean of the actual values

Once the models are trained and validated, they can be deployed to make
predictions on new data. These predictions can be used to inform business
decisions, such as inventory management and marketing strategies. More-
over, by continuously monitoring the model performance and updating them
with new data, we can maintain their accuracy and relevance over time.

3.3 Technology Stack

The research paper is written using LaTeX with the help of the online
editor Quverleaf. To ensure no progress is lost in case of unforeseen hard-
ware/software malfunctions, all written source files of the required program
are backed up on a remote GitHub repository, utilising the platform’s CI/CD
(continuous integration/delivery) capabilities. In terms of IDE, I chose to
use IntelliJ IDEA with the python support plugin, since I am familiar with
it and it helps streamline my coding process and catch errors early due to its
intelligent features like code completion, refactoring, and quick navigation.
Moreover, the data sets used in testing the algorithms are open source (can
be found here [30]) and freely available for anyone to use and apart from a
personal computer (laptop), no other hardware is required.

The experiments were set up using several python libraries, including scikit-
learn (sklearn) for machine learning algorithms (used in the clustering and
the predictive modelling), pandas for data manipulation and analysis, seaborn
and matplotlib for data visualization, and numpy for any numerical compu-
tations.
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4 Experimental Results

As mentioned in section 3.2.3, each experiment is run on four clustering algo-
rithms. The provided graphs depict the obtained cluster configurations and
the validation values for varying numbers of clusters. This was carried out to
ascertain the optimal number of clusters for the K-means, GMM, and AHC
algorithms. However, for the DBSCAN algorithm, the second graph is uti-
lized to determine the optimal epsilon parameter instead (through the elbow
method and k-nearest neighbor technique [22]). These visual representations
serve as a crucial tool in understanding and fine-tuning the performance of
each clustering method. Finally, a table containing the overall execution
times and cluster quality ratings is provided per experiment, as well as a
summary of the predictive model performance metrics.

4.1 Experiment 1

In this experiment, we are performing a clustering operation based on two
key features: the frequency and quantity of every product across all orders.
For example, one such product, T02057 to be more specific, has appeared
in 504 different orders, with a total quantity of 40800 units ordered. In the
context of our cluster graphs, these two figures serve as the x and y coordi-
nates respectively.

The two features - frequency and quantity - are crucial in understanding
the distribution and demand of the product. However, to ensure a fair and
unbiased clustering operation, it is important that these features are stan-
dardized, since I do not consider one of them to be more significant than
the other. Consequently, after the aggregation processes is completed, every
data point, representing an individual product, is precisely allocated to its
respective cluster, ensuring an objective representation of its characteristics.
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4.1.1 K-Means

Frequency by Quantity-KMEANS
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Figure 4: Exp 1: Clusters obtained through K-means

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 3 as the answer
(Silhouette should be closer 1, while DBI closer to 0).
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Silhouette Score vs Number of Clusters
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Figure 5: Exp 1: Silhouette score by number of clusters for K-means

Figure 6:

Davies-Bouldin Score vs Number of Clusters
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Exp 1: Davies-Bouldin Index by number of clusters for K-means



30

4.1.2 Gaussian Mixture Model

Frequency by Quantity-GMM
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Figure 7: Exp 1: Clusters obtained through GMM

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 6 as the answer
(Silhouette should be closer 1, while DBI closer to 0). Note that in the
cluster visualization, cluster 5, represented in red, is located near the origin
of the graph.
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Silhouette Score vs Number of Clusters
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Figure 8: Exp 1: Silhouette score by number of clusters for GMM

Figure 9:

Davies-Bouldin Score vs Number of Clusters
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Exp 1: Davies-Bouldin Index by number of clusters for GMM
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4.1.3 Agglomerative Hierarchical Clustering

Frequency by Quantity-AHC(ward linkage)
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Figure 10: Exp 1: Clusters obtained through AHC

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 7 as the answer
(Silhouette should be closer 1, while DBI closer to 0).
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Silhouette Score vs Number of Clusters
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Figure 11: Exp 1: Silhouette score by number of clusters for AHC

Davies-Bouldin Score vs Number of Clusters

0.9 1

0.8

0.7 1

Davies-Bouldin Score

0.6

0.5 1

6 8 10
Number of Clusters

[
-

Figure 12: Exp 1: Davies-Bouldin Index by number of clusters for AHC
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4.1.4 Density-Based Spatial Clustering of Applications With Noise

Frequency by Quantity-DBSCAN
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Figure 13: Exp 1: Clusters obtained through DBSCAN (-1 represents noise)

The optimal number of clusters was found automatically due to the nature
of DBSCAN. The epsilon parameter required by the algorithm is 5.5, which
given by the figure below.

Figure 14:

K-neighbors Distance Graph
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Exp 1: K-distance graph for determining optimal epsilon value
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4.1.5 Overall Execution Times And Quality Scores

The table below summarizes the execution times and quality scores for dif-
ferent clustering algorithms: K-means, GMM, AHC and DBSCAN. These
metrics help in comparing the algorithms and choosing one for the analysis
step of the implementation. The scores are computed for the optimal num-
ber of clusters, which was determined for each algorithm in the subsections
of 4.1.

K-means | GMM | AHC | DBSCAN
Execution Time 0.31s 0.76s | 9.50s 7.10s
Silhouette Score 0.95 0.53 0.94 0.98
Davies-Bouldin Index 0.65 1.08 0.52 0.12

Table 2: Exp 1: Execution times and quality scores for different algorithms

4.1.6 Predictive Model Performance Metrics

This table displays performance metrics for a predictive model that estimates
the quantity of a product through Random Forest Regression. The model
uses as predictors the frequency of a product and the cluster (from the DB-
SCAN result, since it had the best quality scores) it is part of, although other
combinations of predictors would also be possible (for example, predicting
frequency based on quantity and cluster).

Metric Value
Mean Absolute Error 148.47
Mean Squared Error | 995880.81
R-squared 0.64

Table 3: Exp 1: Accuracy scores of the predictive model

4.2 Experiment 2

In this experiment, we are conducting a clustering analysis on a data set rep-
resenting the customer orders. Each data point in the cluster corresponds to
a unique customer, while the two features we are considering for each cus-
tomer are the total amount spent on orders and the total product quantity
ordered. In addition, to guarantee that both features contribute equally to
the clustering process, they are standardized before the analysis, ensuring
that no single feature dominates the clustering due to its scale. Through this
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method, we aim to identify patterns and groupings among customers based
on their purchasing behavior.

4.2.1 K-Means

Amount by Quantity per Customer-KMEANS
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Figure 15: Exp 2: Clusters obtained through K-means

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 2 as the answer.
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Silhouette Score vs Number of Clusters
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Figure 16: Exp 2: Silhouette score by number of clusters for K-means
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Figure 17: Exp 2: Davies-Bouldin Index by number of clusters for K-means
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4.2.2 Gaussian Mixture Model

Amount by Quantity per Customer-GMM
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Figure 18: Exp 2: Clusters obtained through GMM

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 9 as the answer.
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Figure 19: Exp 2: Silhouette score by number of clusters for GMM
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Davies-Bouldin Score vs Number of Clusters
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Figure 20: Exp 2: Davies-Bouldin Index by number of clusters for GMM

4.2.3 Agglomerative Hierarchical Clustering

Amount by Quantity per Customer-AHC(ward linkage)
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Figure 21: Exp 2: Clusters obtained through AHC

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 2 as the answer.



40

Silhouette Score

Silhouette Score vs Number of Clusters
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Figure 22: Exp 2: Silhouette score by number of clusters for AHC

Davies-Bouldin Score

Figure 23:
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Exp 2: Davies-Bouldin Index by number of clusters for AHC
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4.2.4 Density-Based Spatial Clustering of Applications With Noise

Amount by Quantity per Customer-DBSCAN
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Figure 24: Exp 2: Clusters obtained through DBSCAN (-1 represents noise)

The optimal number of clusters was found automatically due to the nature
of DBSCAN. The epsilon parameter required by the algorithm is 1.65, which
given by the figure below.
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K-neighbors Distance Graph
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Figure 25: Exp 2: K-distance graph for determining optimal epsilon value

4.2.5 Overall Execution Times And Quality Scores

The table below summarizes the execution times and quality scores of the
used clustering algorithms. These metrics help in comparing the algorithms
and choosing one for the cluster analysis. The scores are computed for the
optimal number of clusters, which was determined for each algorithm in the
subsections of 4.2.

K-means | GMM | AHC | DBSCAN
Execution Time 0.024s 0.20s | 0.017s 0.019s
Silhouette Score 0.97 0.45 0.98 0.96
Davies-Bouldin Index 0.50 0.57 0.30 0.17

Table 4: Exp 2: Execution times and quality scores for different algorithms

4.2.6 Predictive Model Performance Metrics

This table displays performance metrics for a predictive model that esti-
mates the total quantity of a product ordered by a customer through Linear
Regression. The model uses as predictors the amount spent by a customer
and the cluster (from the DBSCAN result, due to its high quality scores) the
customer is part of, although other combinations of predictors would also be
possible (for example, predicting amount spent based on quantity ordered
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and cluster). The high MSE value is due to the large scale of the order
amount values, which results in larger squared errors. This is not necessarily
indicative of poor model performance, but rather a reflection of the high
values in the dataset.

Metric Value
Mean Absolute Error 1093.56
Mean Squared Error | 17111841.36
R-squared 0.95

Table 5: Exp 2: Accuracy scores of the predictive model

4.3 Experiment 3

In this analysis, we are focusing on a data set of individual orders, with
each order represented as a unique data point in our cluster. We are ex-
amining two specific features for each order: the total amount of the order
and the number of unique product types within that order. To ensure an
equal contribution from both features during the clustering process, we have
standardized them prior to the analysis, preventing any single feature from
overpowering the clustering due to its scale. Through this method, we strive
to unveil intricate patterns and establish meaningful classifications among
orders, guided by the nuances of their monetary value and the diversity of
products they encompass. Moreover, the top two orders by amount, which
are outliers, are included during the grouping process but excluded from the
cluster graphs themselves, as to improve the visibility of the final clusters
(the only exception being the AHC result).
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4.3.1 K-Means

Order Amount vs Product Diversity-KMEANS
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Figure 26: Exp 3: Clusters obtained through K-means

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 4 as the answer.
The two outliers by order amount form their own cluster, with identifier 0.
They have been removed from the figure to improve the scaling and make
the other points more visible.
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Silhouette Score vs Number of Clusters
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Figure 27: Exp 3: Silhouette score by number of clusters for K-means
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Figure 28: Exp 3: Davies-Bouldin Index by number of clusters for K-means
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4.3.2 Gaussian Mixture Model

Order Amount vs Product Diversity-GMM
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Figure 29: Exp 3: Clusters obtained through GMM

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 3 as the answer.
The first outlier with the highest order amount forms its own cluster with
identifier 2, while the second one was added to cluster 0. They have been
removed from the figure to improve the scaling and make the other points
more visible.
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Figure 30: Exp 3: Silhouette score by number of clusters for GMM
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Figure 31: Exp 3: Davies-Bouldin Index by number of clusters for GMM
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4.3.3 Agglomerative Hierarchical Clustering

Order Amount vs Product Diversity-AHC(ward linkage)
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Figure 32: Exp 3: Clusters obtained through AHC

The optimal number of clusters was found by analysing the Silhouette Score
and Davies-Bouldin Index figures below, giving the value 2 as the answer.
The two outliers by order amount have not been from the figure in this case,
since all of the other points form a single cluster, making the observability
of the results not an issue.
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Silhouette Score vs Number of Clusters
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Figure 33: Exp 3: Silhouette score by number of clusters for AHC
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Figure 34: Exp 3: Davies-Bouldin Index by number of clusters for AHC



50

4.3.4 Density-Based Spatial Clustering of Applications With Noise

Order Amount vs Product Diversity-DBSCAN
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Figure 35: Exp 3: Clusters obtained through DBSCAN (-1 represents noise)

The optimal number of clusters was found automatically due to the nature
of DBSCAN. The epsilon parameter required by the algorithm is 3.6, which
given by the figure below. The two outliers by order amount are considered
noise in this scenario, being part of the cluster with identifier -1. They have
been removed from the figure to improve the scaling and make the other
points more visible.
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Figure 36: Exp 3: K-distance graph for determining optimal epsilon value

4.3.5 Overall Execution Times And Quality Scores

The table below outlines the execution times and quality scores for the clus-
tering algorithms used in this experiment. These metrics are essential for
comparing the performance of each algorithm and selecting the most suit-
able one for the cluster analysis. The scores are computed for the optimal
number of clusters, as identified in the previous subsections of 4.3. Note
that the "N /A" values for DBSCAN are due to the algorithm finding only a
single cluster in this case.

K-means | GMM | AHC | DBSCAN
Execution Time 0.33s 0.27s | 10.00s 6.10s
Silhouette Score 0.77 0.59 0.99 N/A

Davies-Bouldin Index 0.57 0.80 0.36 N/A

Table 6: Exp 3: Execution times and quality scores for different algorithms

4.3.6 Predictive Model Performance Metrics

This table displays performance metrics for a predictive model that estimates
the unique product count per order through Gradient Boosting Regression.
The model uses as predictors the order amount and the cluster (from the
AHC result, because it demonstrated the highest quality scores) the order
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is part of, although other combinations of predictors would also be possible
(for example, order amount based on the number of unique products in the
order and cluster).

Metric Value

Mean Absolute Error | 2.63
Mean Squared Error | 28.40
R-squared 0.18

Table 7: Exp 3: Accuracy scores of the predictive model

5 Discussion

5.1 Algorithm Comparisons

The three of experiments we conducted, each honing in on distinct aspects
of our data set, used four clustering algorithms: K-means, DBSCAN, AHC,
and GMM. These experiments are important illustrations of the respective
strengths and weaknesses inherent in each clustering algorithm. Conversely,
the prediction algorithms will not be compared, because their performance
is extremely dependent on the context of each experiment and the nature of
the data involved.

K-means, known for its simplicity and speed, provided clear visualizations of
the clusters in, overall, the lowest amount of time. However, since it assumes
clusters to be convex (roughly spherical in shape) and isotropic (the spread
of data points is the same in all directions within a cluster) [8], which may
not always be the case for real-world data, it can result in unusual linear
cluster shapes such as in figure 26. Moreover, due to some degree of ran-
domness involved in the algorithm’s initialization phase, multiple runs were
required to get the average Silhouette Score and DBI, meaning those values
are not the absolute truth. Also, despite being the fastest, K-means did not
necessarily produce the highest quality clusters, reflected in the unimpres-
sive Silhouette Score and DBI values when compared to those achieved by
DBSCAN.

GMM demonstrated impressive speed, ranking as the second fastest algo-
rithm. It trailed slightly behind K-means in the first and third experiments
(it is important to note that the second experiment is not a reliable bench-
mark for the comparison of run times, given that its input data set was
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significantly smaller: almost thirty times less than the other two experi-
ments). Nevertheless, GMM had the worst cluster quality scores, resulting
in many overlapping clusters as in figures 7 and 29. This occurred because
GMM assumes that the data points are generated from a mixture of sev-
eral Gaussian distributions, which can lead to clusters overlapping when the
actual data distribution does not fit this assumption well. Consequently,
GMM struggled to delineate clear and distinct clusters, negatively impact-
ing its performance on the provided real-world data. In addition, similar to
K-means, GMM also involves some degree of randomness in the initializa-
tion phase, requiring multiple runs to obtain reliable results regarding the
Silhouette Score and DBI.

AHC, while being the slowest among the four algorithms tested, excelled in
producing high-quality clusters, securing the second highest quality scores
after DBSCAN. The algorithm’s hierarchical approach to clustering, where
each data point starts in its own cluster and pairs of clusters are merged
as one moves up the hierarchy, ensures a comprehensive exploration of the
data structure. This methodical process, although computationally inten-
sive, contributed to its superior performance in cluster quality as illustrated
in figures 10 and 21. Unlike K-means and GMM, AHC does not involve any
randomness in its initialization or execution phases. Consequently, it man-
aged to generate consistent and reproducible results across multiple runs,
with Silhouette Score and DBI values that are definitive and absolute.

DBSCAN emerged as the top performer in terms of cluster quality, achieving
the highest Silhouette Score and DBI values among the four algorithms tested
(to be noted that for the third experiment, there is only one cluster in figure
35 which would mean maximal scores, hence the "N /A" values in table 6).
Although not the fastest, DBSCAN ranked third in terms of speed, ahead
of AHC but trailing behind K-means and GMM. Moreover, just like AHC,
DBSCAN has the advantage of a deterministic nature, i.e. it does not involve
any randomness in its initialization or execution phases, meaning that the
obtained clusters are the same no matter how many times the algorithm
is run. Even though a distinguishing feature of DBSCAN is its ability to
identify and treat outliers effectively, the algorithm can still classify normal
data points as noise if they do not meet the minimum criteria for being part
of a cluster based on a specified distance (epsilon) and minimum number
of points. These noise points, illustrated in figures 13 and 24, can still be
considered valid data points and might be regarded as forming their own
"cluster" of outliers which can be further analysed. For example, in the
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context of our first experiment, the outlier cluster (figure 13) would actually
be the most important one, since it represents the most popular products
among customers.

5.2 Practical Analysis And Sales Prediction

By exploring the performance tables of each of the three experiments, we
can find out the results of which clustering algorithm (i.e. its scatter plot)
to choose for our sales analysis. Additionally, for the predictions, we can
investigate the machine learning models that were built in order to estimate
the relevant features per experiment.

5.2.1 First Experiment Predictions

In the case of the first experiment, DBSCAN displayed the best cluster
quality scores (figure 13). Since the groupings represent what products the
customers are most interested in, we are basically categorizing the products
by overall popularity. Thus, the items in the purple cluster are most likely to
sell or, at least, will have bigger orders, suggesting they are in high demand
and have a strong market presence (the company should focus production on
them). Conversely, the red cluster, while not as popular as the purple one,
shows good potential due to its reasonable quantity, being able to maybe
contribute to the total revenue in the future.

For more concrete predictions, we can use the model we built that approxi-
mates the product quantity using its frequency and cluster. The R? score of
0.64 indicates that approximately 64% of the variance in product quantity
can be explained by this model. While this shows the model has some pre-
dictive power, there is still substantial room for improvement. The following
table contains some prediction examples for a few products, showing both
the estimated and actual quantities from the data set, while also illustrat-
ing the influence the cluster value has (the inputs to the model are only
"Frequency’ and ’'Cluster’):

Product ID | Frequency | Cluster | Estimated Quantity | Actual Quantity
T19969 341 0 1501 1442
T02057 504 -1 42280 40800
T00155 316 0 939 753

Table 8: Experiment 1 predictions
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5.2.2 Second Experiment Predictions

For the second experiment, similar to the first, DBSCAN once again dis-
played the best cluster quality scores (figure 24). The clusters represent the
customer purchasing behavior, providing valuable insights into which prod-
ucts are frequently bought together and by which type of customers. Focus-
ing on the purple cluster customers’ choices can guide the company towards
potential best-sellers. These items are what is currently being purchased for
quite substantial amounts of money, indicating a strong market preference.
To capitalize on this trend, it would be beneficial for the company to con-
centrate production efforts on these particular products. Additionally, for
products favored by light blue cluster customers, implementing discounts on
large quantities or introducing loyalty programs could incentivize purchases.
Such strategic moves could not only boost sales but also foster customer
loyalty and satisfaction by rewarding their continued patronage.

For more precise predictions, we can use the Linear Regression model we built
to estimate product quantities based on the amount spent by a customer and
their cluster. The R? score of 0.95 means that 95% of the variance in product
quantity per customer can be explained by this model, demonstrating its
robustness and ability to give highly accurate predictions. The following
table provides prediction examples for a few customers, showing both the
estimated and actual quantities from the data set. This model can, of course,
be used for any other customer as well (the inputs to the model are only
’Amount Spent’ and ’Cluster’):

Customer ID | Amount Spent | Cluster | Estimated Quantity | Actual Quantity
1775 837 0 399 442
2490 5158 0 916 812
3075 751986 1 60017 66449

Table 9: Experiment 2 predictions

5.2.3 Third Experiment Predictions

Finally, int the third experiment, AHC emerged as the top performer (figure
32). The clusters were formed based on the order amount and the number
of unique products per order. Although AHC had the best results, its scat-
ter plot revealed one large cluster and a smaller one with only two orders
in it, which essentially represent the outliers by order amount. The light
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blue cluster represents the majority of customers who make regular-priced
orders, while the yellow cluster could defines a niche segment of customers
who make exceptionally expensive orders. Despite the smaller size of this
cluster, the high order amount indicates a significant contribution to the
company’s revenue, so it might be beneficial for the company to investigate
this customer segment and tailor specific marketing strategies to cater to
their unique purchasing behavior. Furthermore, the K-means graph (figure
26) could be consulted to better understand the distribution of the majority
of customers.

Similar to the other experiments, reviewing the Gradient Boosting model we
built to estimate unique products based on the order amount and its cluster
will give more tangible predictions. The R2 score of 0.18 means that only
18% of the variance in unique product count can be explained by this model,
indicating a weak predictive power. This low R? score suggests that there
are other significant factors affecting the said feature that are not captured
by the model. The following table provides prediction examples for a few
orders (the inputs to the model are only ‘Order Amount’ and ‘Cluster’). The
"Order IDs’ are not from the data set, since they will not repeat in the future,
meaning we do not have actual values to compare the estimated ones with.

Order ID | Order Amount | Cluster | Estimated Unique Products
400000 100000 0 56
400001 9000 0 21
400002 300000 1 4

Table 10: Experiment 3 predictions

6 Conclusions And Future Work

This research aimed to address the following questions: "Can data mining
techniques applied to customer profiling improve the accuracy of sales pre-
dictions? If so, which clustering algorithm provides the most accurate and
efficient results?".

In pursuit of these questions, the results of the experiments underscore the
importance of choosing the right clustering algorithm based on the specific
characteristics and requirements of the data set. For instance, while K-means
and GMM were found to be faster, they were limited by their assumptions
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and the quality of clusters they produced, meaning they are better suited
for large data sets where speed is a priority and the data distribution aligns
well with their premises. On the other hand, AHC and DBSCAN, despite
being slower, excelled in producing high-quality clusters and handling out-
liers more effectively, making them suitable for smaller data sets.

Furthermore, the research highlights the potential value of outliers, which
are often overlooked in data analysis. As demonstrated in the first experi-
ment for DBSCAN, these outliers can represent important patterns in the
data, such as the most popular products among customers, and can there-
fore provide valuable insights for businesses, which should think twice when
deciding whether or not to remove them from the sales analysis.

In conclusion, my research demonstrates that customer profiling through
data mining can be a reliable method for predicting future sales in real-world
scenarios. However, the choice of clustering algorithm is critical and should
be tailored to the specific characteristics and requirements of the data set,
such as its size, distribution, and feature correlations. As we move forward,
it is crucial to continue exploring and refining these methods to enhance
their predictive capabilities and support more informed business decisions.
Below are some example approaches for such future improvements.

Firstly, the performance of the clustering algorithms could be further en-
hanced by either fine-tuning their parameters or leveraging parallel comput-
ing techniques. Given the inherently iterative nature of these algorithms,
parallelism could significantly reduce computation time, especially for large
data sets.

Secondly, exploring additional clustering algorithms such as Spectral Clus-
tering or OPTICS [28] could provide new insights and advantages. Ensemble
methods that combine multiple clustering techniques might also be worth in-
vestigating. Additionally, we could consider evaluating a broader range of
predictive algorithms beyond Linear Regression, Random Forest, and Gra-
dient Boosting, including Support Vector Machines, Neural Networks, and
XGBoost [29]. This could help in identifying the most effective approaches
for accurate predicting.

Thirdly, the role of outliers in data analysis, which was highlighted in this
research, deserves further exploration. More sophisticated methods for iden-
tifying and handling outliers could be developed, and the potential insights
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they can provide for businesses could be studied in more depth.

Lastly, the application of these clustering techniques could be extended be-
yond customer profiling to other areas of business, such as inventory man-
agement or marketing strategy. This would provide a more holistic view of
the business and could lead to more informed and effective decision-making.
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