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Abstract

The value of the Hubble constant is of great significance in modern cosmology. Despite
the large amount of solutions suggested to alleviate the Hubble tension, none of them
seem to explain the discrepancy in the measurements fully. One of the assumptions
suggests that a local underdensity might be a cause of a higher local Hubble flow. In this
thesis, we are going to investigate the possible contribution of voids on the local Hubble
constant in an effort to explain the deviation between early and late measurements
of H0. Using Watershed Void Finer on the Illustris simulation, we analyze the redshift
distribution of dark matter particles and halos in the void regions. A dependence between
the excess expansion rate and the size and depth of the voids was found. It was found
that voids cannot fully explain the tension between local and global values of the Hubble
constant.

Contents

1 Introduction 2
1.1 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Cosmological background 4

3 On voids 6
3.1 Void formation and evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Voids contribution to the excess expansion rate 7
4.1 Voidfinding formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Illustris simulation: The data cube . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Density cube: The Delaunay Tesselation Field Estimator . . . . . . . 10
4.1.3 Identification of voids: The Watershed Void Finder . . . . . . . . . . . 10
4.1.4 Void centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.5 Effective radii: Ellipsoidal fitting of voids . . . . . . . . . . . . . . . . 15

4.2 Lines of sight method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Results 18

6 Discussion 23

7 Conclusion 25

References 26

1



1 Introduction

One of the most important discoveries of the last century was made by Edwin Hubble
in 1929 (Hubble, 1929). He presented the evidence for the expanding universe, making a
cosmological breakthrough that changed our perception of the world and allowed us to start
looking far beyond our Milky Way into the vast, deep universe. This conclusion comes from
the famous graph of the distances to the nearby nebulae and their receding velocities that
Hubble obtained from the 22 objects around the Milky Way (Figure 1), as further objects
move away faster than the ones close by. The Hubble constant, H0, is the slope of this linear
relation; it represents the current expansion rate of the Universe. When the Hubble constant
is known, the distance to any object in the Universe can be inferred easily by measuring only
its radial component of the receding velocity.

Figure 1: Velocity vs. distance relation for 22 nebulae nearby Milky Way (Hubble, 1929). Ve-
locity was measured using shifts in the spectral lines of the nebulae spectra. Using Cepheids
as standard candles, Hubble estimated the distances of these nebulae. The values of the
Hubble constant that he obtained from the graph was H0 = 465± 50 km s−1 Mpc−1, which
implied that the Universe is only 2 Gyr old.

Since Edwin Hubble, the constant has been refined many times using various indepen-
dent measurements. The most recent developments in this field reached a high level of
precision. Despite this, there appears to be a discrepancy in the measurements due to the
very different nature of the methods used to obtain them. Using the most recent data from
the local distance, type Ia Supernovae the Cepheids, the Hubble constant is found to be
H loc

0 = 73.04±1.04 km s−1 Mpc−1 (Riess et al., 2022), while measurements from the Cosmic
Microwave Background (CMB) anisotropies give HCMB

0 = 67.4± 0.5 km s−1 Mpc−1 (Planck
Collaboration et al., 2020). The difference between these values is 8% (with 4.9σ confi-
dence) when the error bars of the values (1.4% and 0.7% respectively) are much smaller. A
difference of 5σ significance means that there is a 99.99994% chance that this discrepancy
in the measurements is caused by some missing element in our perception of the Universe
(Why do physicists mention “five sigma” in their results? — CERN , 2024).

There are many other means that allow the measurement of the Hubble constant, such as
Tip of the Red Giant Branch (TRGB), lensed quasars, Baryon acoustic oscillations (BAO),
megamasers, Surface Brightness Fluctuations (SBF), etc. Values extracted using these meth-
ods are shown in Figure 2 (Bonvin & Millon, 2020). In general, these methods could be
divided into 2 groups: early and late Universe measurements, depending on the evolution
stage of the data used in them. The inconsistency between the two approaches caused a
discussion, which is known as the Hubble tension.
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Figure 2: Compilation of Hubble Constant measurements taken from the most recent lit-
erature. Four measurements based on the data from the early Universe are shown at the
top left. The middle part of the figure shows late Universe measurements. The bottom
panel shows combinations of the late-Universe measurements and the respective tensions
with the early-Universe predictions. The individual measurements shown on this plot cor-
respond to the following references: 1. Planck (Planck Collaboration et al., 2020) - CMB
observations; 2. ACT-DR4 (Aiola et al., 2020) - CMB observation from the Atacama Cos-
mology Telescope only; 3. DES+BAO+BBN (Abbott et al., 2018) - weak lensing, clustering,
BAO, and BBN (Big Bang nucleosynthesis); 4. DESI BAO+BBN (DESI Collaboration et
al., 2024); 5. SH0ES (Breuval et al., 2024) - distance ladder with SNe Ia and Cepheids; 6.
CCHP (Freedman, 2021) - SNe Ia and TRGB; 7. MIRAS (Huang et al., 2020) - SNe Ia and
Mira variables; 8. H0LiCOW+STRIDES (Wong et al., 2020) (Shajib et al., 2020) - lensed
quasars; 9. MCP (Pesce et al., 2020) - megamasers; 10. SBF (Blakeslee et al., 2021) - SBF
and Cepheids/TRGB; 11. bTF (Schombert et al., 2020) - baryonic Tully-Fisher relation with
Cepheids and TRGB. In summary, the difference between measurements is more than 4σ.
Illustration credit: (Bonvin & Millon, 2020)
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There are dozens of possible explanations suggested in an effort to put the Hubble tension
problem to an end, connecting the early and late Universe. (Di Valentino et al., 2021)
gathered more than 1000 papers presenting various possible theoretical solutions developed
over a decade. To the present moment, none of the suggested solutions have fully explained
such a discrepancy in the values. Resolving the Hubble tension problem is of great importance
to modern cosmology because it would connect observations and theory, which currently
seems insufficient to explain all the aspects of cosmic evolution fully.

One of the simplest possible solutions to the tension implies that fluctuations in local
density can change the expansion rate with respect to the global value due to the additional
peculiar velocity component in the Hubble flow (Turner, Cen, & Ostriker, 1992) (Shi &
Turner, 1998) (Fleury, Clarkson, & Maartens, 2017).

1.1 Thesis Objective

This work is focused on exploring a possible imprint of the void regions on the inferred
value of the Hubble constant. A spatial analysis is performed on the cosmological simulation
Illustris (Collaboration, n.d.) to measure the relative variations in the expansion rate depend-
ing on the density of the environment. To identify void structure within the simulation, the
Delaunay Tesselation Field Estimator (DTFE) (Schaap, 2007) and Watershed Void Finder
(WVF) (Platen, van de Weygaert, & Jones, 2007) formalisms were adopted. A method of
lines of sight was used to infer a Hubble constant by performing a best-fit procedure for
points within a specific direction from a void. The investigation is performed both on dark
matter particles and subhalos to ensure the robustness of the analysis, as it would probe
different scales of the simulation.

Our spatial analysis confirms the presence of a small effect of the local density fluctuations
on the measurements of the local Hubble constant. Comparing this value to the global
expansion rate of the simulation reveals its statistical significance.

2 Cosmological background

From the very first attempts to map the observable Universe, it was clear that the
distribution of matter has a distinct structure known as the cosmic web (Chincarini & ROOD,
1975) (de Lapparent, Geller, & Huchra, 1986a) (Colless et al., 2001). The main components
of the cosmic web are voids, nodes, filaments, and walls. The latter 3 are the overdense
regions in the Universe separated by vast underdense voids. Voids are connected with each
other by walls, whereas filaments are the edges between the walls. Nodes, or clusters, are
the vertices within the structure of the Universe. Matter flows from voids into the walls and
then via filaments into cluster regions (Cautun, van de Weygaert, Jones, & Frenk, 2014).

A map of the galaxy distribution is shown in Figure 3, where filaments and nodes are
the regions of high concentration of galaxies, and voids are the empty regions between them.
The typical scale of void sizes is 20− 50h−1 Mpc (van de Weygaert & Schaap, 2009). They
take up most of the volume in the Universe, though having the lowest mean density (Kugel,
2020). The fact that the matter distribution was mostly homogeneous, with small density
perturbations, induced tidal forces that molded a large-scale structure as we see it now (van
de Weygaert & Schaap, 2009). By analyzing the large-scale structure, we can investigate
the formation and evolution of the Universe (Cautun et al., 2014), as well as estimate the
cosmological parameters.

Hubble constant H0 is the present-day value of the time-varying function H(t) (Ryden,
2016). The Hubble parameter H(t) is defined as

H(t) = ȧ/a, (1)
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Figure 3: Redshift distribution of galaxies from 2dF Galaxy Redshift Survey obtained in
2001 (Colless et al., 2001). This survey determined the structure of the cosmic web in the
directions of the north and south galactic poles up to a redshift of 0.2. Matter clumps
together into filaments and nodes, making voids more prominent as they become emptier.
Illustration credit: (The 2dF Galaxy Redshift Survey , n.d.)

where a is the cosmic scale factor, one of the parameters in the Friedmann equations, and
ȧ is its time derivative. Therefore, the Hubble constant is the Hubble parameter evaluated
at the current moment in time:

H0 = (ȧ/a)t=t0 . (2)

The scale factor is a dimensionless quantity, and by definition, a0 = 1 is the present time
value. If the Universe is expanding, it eventually leads to the fact that in the past, all the
matter (and anti-matter) was together at one point, leading to the development of the Big
Bang model (Alpher, 1999).

As mentioned before, Edwin Hubble discovered his famous relation in 1929, but he was
not the first one to find this trend. In 1927, Georges Lemaitre published a paper in a
small French journal proposing a model of an expanding universe in which he derived the
velocity-distance relation before Hubble. His work got lost when translated into English,
and therefore, his contribution was neglected for a very long time. Hubble’s discovery was
independent of Lemaitre and later by two years. In 2018, the Hubble law was renamed to
the Hubble-Lemaitre law (International Astronomical Union — IAU , n.d.).

The Hubble-Lemaitre law is the relation between the distance from the observer to an
object and its receding radial velocity as a result of the expansion of the Universe,

v = H0d, (3)

where v is the recession velocity, H0 is the Hubble constant, and d is the distance from
the observer to the object.

The receding velocity of an object consists of the contribution due to the expansion of the
Universe and also the peculiar motion of the galaxy that makes it deviate from the Hubble
flow:
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v⃗ = H0r⃗ + v⃗pec, (4)

where v⃗ is the observed velocity of the galaxy, H0 is the Hubble parameter at the present
moment, r⃗ is the position of the galaxy, and v⃗pec is the peculiar velocity, the velocity of the
galaxy with respect to the expansion of the Universe. Only a radial component is needed to
proceed with the investigation:

cz = H0D + vr,pec, (5)

where c is the speed of light, z observed redshift of the galaxy, D is distance from the
observer to the galaxy, and vr,pec is the radial component of the peculiar velocity. A non-
relativistic version of the Hubble-Lemaitre law will be used, as the redshift distribution of
the simulation is within very low values.

The variation of the local Hubble constant, H loc
0 , according to theory, comes from the

local fluctuations of the density,

∆H loc
0

H loc
0

= −1

3
δf(ΩM ), (6)

where f(ΩM ) ≈ (ΩM )γ in the flat ΛCDM Universe and γ ≈ 0.55. For ΩM adopted in
the Illustris simulation, f ≈ 0.5.

3 On voids

Since the conduction of the first galaxy surveys, it was noticed that the distribution of
galaxies is not homogeneous on a certain scale, and there are regions that are almost devoid
of any galaxies (Gregory & Thompson, 1978) (Einasto, Joeveer, & Saar, 1980). In 1981,
Kirshner identified a large empty region in the galaxy distribution survey that he and his
colleagues conducted (Kirshner, Oemler, Schechter, & Shectman, 1981), confirming it later
(Kirshner, Oemler, Schechter, & Shectman, 1987) and calling it the Bootes void, a 60 Mpc
sized void in the constellation Bootes (Figure 4).

Figure 4: Distribution of galaxies in the velocity-declination space. The circle represents the
Bootes void, drawn as the largest and emptiest circle that fits in that region (Kirshner et
al., 1987).

From that moment, multiple surveys were conducted, each increasing in size over the
years. They established the importance of voids in the large-scale structure of the Universe
(de Lapparent, Geller, & Huchra, 1986b) (Colless et al., 2001) (Tegmark et al., 2004), and
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the first method of void identification was developed (Hoyle & Vogeley, 2004) (Foster &
Nelson, 2009).

3.1 Void formation and evolution

Small fluctuations in the primordial density and velocity field led to the creation of the
large-scale structure. These density fluctuations with respect to the average density of the
Universe are defined like

δ(r⃗, t) =
ρ(r⃗, t)− ρ

ρ
, (7)

where ρ is the mean density, and ρ(r, t) is the density at a certain position r⃗ in space.
These density fluctuations produce gravitational effects such that regions with higher than
average density will attract more matter, and the future void regions become emptier (van de
Weygaert & Bond, 2008). In return, The gravitational perturbations induce perturbations
in the flow of matter, and as a result, voids become subject to the super-Hubble expansion,
expanding faster than the background Universe (Sheth & van de Weygaert, 2004). The
evolution of a isolated spherical void is shown in Figure 5. As a result of the super-Hubble
expansion, matter evacuates from the center of the void, making it emptier with time. How-
ever, in reality, voids are not isolated since they are embedded in the cosmic web, where they
interact with other surrounding voids.

Figure 5: Evolution model for an ideal isolated spherical void. Left: Top-hat density profile
model, where subsequent graphs represent time steps of the evolution process: top-hat func-
tion evolves into a ”bucket-shape” profile. Right: Evolution of an angular averaged SCDM
profile. In both cases, matter evacuates from the center towards the boundary of the void
and forms a steep ridge. Illustration: (Sheth & van de Weygaert, 2004)

4 Voids contribution to the excess expansion rate

4.1 Voidfinding formalism

4.1.1 Illustris simulation: The data cube

For this project, we use the Illustris simulation, which is based on ΛCDM cosmology.
Currently, ΛCDM cosmology is the favorite model for describing the evolution and structure
of our Universe, and it is based on three major components. The cosmological constant Λ
represents the amount of dark energy, which, discovered from the observations, prevails in
the Universe. The second most abundant part is the cold dark matter (CDM), which is only
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detectable because of its interaction with gravity. The baryonic (ordinary) matter is only a
small fraction of all matter in the Universe. This model is considered the standard model of
modern cosmology, as it is the most simple and stable model so far. The ΛCDM model is
used to simulate the data cubes with dark matter particles and subhalos.

The difference between these two data cubes lies within a few factors. The dark matter
particles model the distribution of the dark matter in the Universe, while subhalos are
the distinct overdensities of these dark matter particles, gravitationally bound structures
that form larger halos. Subhalos show the possible locations where galaxies might form,
resembling a future galaxy distribution and uniting dark matter with visible one. they both
probe different scales of the universe’s structure, small and large, respectively.

The Illustris simulation uses parameters from WMAP-9 measurements (Hinshaw et al.,
2013). The values for different cosmological parameters of this simulation can be seen in
Table 1.

Parameter Value

Dimensions 106.5 Mpc
Number of DM particles 4553

Number of subhalos 111992
Total matter density ΩM 0.2726
Dark energy density ΩΛ 0.7274

Baryonic matter density Ωb 0.0
Hubble constant H0 70.4

Table 1: Details of the Illustris simulation

The value for the Hubble parameter used in this simulation is 70.4 km/s/Mpc. It is
important to remember that for the analysis of the possible excess Hubble flow, we are not
interested in the value itself but rather in its relative difference from the intrinsic Hubble
parameter set in the simulation, in our case, H0 = 70.4 km/s/Mpc. Therefore we adopt a
concept of the deviation of the local Hubble constant:

∆H loc
0 = H loc

0 −Htrue
0 = H loc

0 − 70.4, (8)

where H loc
0 is the local values of the Hubble constant and Htrue

0 is the global value of H0

in the simulation.
The data cube is periodic with dimensions of 75 000 h−1 kpc (106.5 Mpc). We are using

the snapshot of redshift z = 0 from Illustris-Dark-3: the simulation with only dark matter
that has the lowest resolution (4553 DM particles). Despite the fact that this is the lowest
resolution, the amount of particles exceeds 94 million, which slows down the data processing
significantly. A decision was made to take a random sample, decreasing the amount to 1
million points due to the strain on the system. Taking a sample from the data cube did
not affect the results, as the structure within the cube was still well-recognizable: results of
such sampling can be seen in Figure 6. However, when working with subhalos, the data cube
contains only 111 992 particles, so there is no need to take a sample in this case (Figure 7). In
both of these figures (Figures 6 & 7), the simulated large-scale structure can be recognized:
filaments and nodes are the high-density regions (clumps of particles in blue), and the voids
are the regions devoid of particles (”empty” regions).
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Figure 6: Left panel: Illustris-Dark-3 data cube of size 75 000 h−1 kpc (106.5 Mpc) with
4553 dark matter (DM) particles. Right panel: slice of the data cube in Z direction with
a thickness of 5 000 h−1 kpc.

Figure 7: Left panel: Illustris-Dark-3 data cube of size 75 000 h−1 kpc (106.5 Mpc) with
111992 subhalos. Right panel: slice of the data cube in Z direction with thickness of 5 000
h−1 kpc.

Each particle in the cube has an ID, spatial position (in kpc/h), and spatial velocity
(km/s) within the periodic box in 3 dimensions. For convenience, the position units were
changed from kpc/h to Mpc, resulting in the cube’s volume of 106.53 Mpc. This data cube
is the basis of the results obtained in this thesis.

To produce a representative statistical analysis of the simulation, we need to identify
all voids within the data cube. It can be done using the Watershed Void Finder (WVF),
a procedure for identifying underdense regions (Platen et al., 2007). The WVF produces
its output based on the continuous density field supplied. For this purpose, the Delaunay
Tesselation Field Estimator (DTFE) was applied to the cube sample of data points from the
simulation (Schaap, 2007). In this section, both of the algorithms will be presented.
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4.1.2 Density cube: The Delaunay Tesselation Field Estimator

As the data cube from the Illustris-3 simulation is a particle distribution, it should be
converted to a continuous density field. We apply the Delaunay Tesselation Field Estimator
(DTFE) method to process the given sample of dark matter particle (or subhalo) positions
from Illustris.

This method was developed by Schaap & van de Weygaert (Schaap, 2007) and is based on
Delaunay tessellation of the distribution of particles: splitting space into mutually disjunct
tetrahedra (no vertex lying inside the circumscribed sphere) (right panel of Figure 8). The
inverse of the volume of the tesselation cells provides an estimated of the local density.
The DTFE is able to fully show the substructure and anisotropies of the given discrete
distribution, as well as reveal voids as uniform regions of low density.

Figure 8: A set of points with their Voronoi (left panel) and Delaunay (right panel) tessela-
tions. The center of each circumscribed sphere is a vertex of a Voronoi cell, and vice versa.
(Schaap, 2007)

The final result of the DTFE is a field sampled on the grid of a certain size. A resolution
of 128 x 128 x 128 is the most efficient, as it allows us to resolve the structure of the
cosmic web at a reasonable level while requiring little computational power. This resolution
was used to make maps of velocity streamlines, velocity divergence, and shear maps using
code developed by Job Feldbrugge (Feldbrugge, 2021). However, a different code by Marius
Cautun (Cautun, 2020) was used as input for the WVF, as it was compatible with it in terms
of formats (no other difference in methods between these two options). For the application
of the WVF method, the resolution of 256 x 256 x 256 was chosen , as the computing power
allowed us to do so.

4.1.3 Identification of voids: The Watershed Void Finder

There is no set definition of a void, so their analysis is quite complicated, though it
yields a lot of freedom. In this project, the Watershed Void Finder (WVF) was used to find
voids in the data set for further investigation. This method was chosen as it does not make
assumptions about the shape of the voids.

After the DTFE is applied to the data cube, the WVF could be used to find all void
regions within the simulation sample. The Watershed Void Finder is chosen as the tool for
void identification because of several advantages over other methods (Platen et al., 2007):

• No assumption is made on the shape of the voids: they can have any irregular shape.

• Ideally, the method is parameter-free: simply supplying a smooth density field is
enough. In our case, a filtering radius (smoothing radius) needs to be supplied.

• Closed contours as the result of the procedure: this algorithm is not sensitive to bulges
between neighbouring voids.
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Figure 9: Examples of how the particle distribution is converted to a continuous density field
by means of the DTFE method. The structure within the slices (on the left) is accurately
represented in the resulting density field (on the right), where all the characteristic features
of the cosmic web are observed: nodes (the bright spots), filaments (lines fainter than nodes
connecting them) and voids (dark regions in between filaments). The scale of the color bar
does not contain any physical meaning here. The results are produced using (Feldbrugge,
2021).
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The Watershed Transform (WST) algorithm, which the WVF is based on, originates
from the analogy with landscapes: marking boundaries of basins of rainfall collection. The
algorithm of the WVF is the following:

1. Application of the DTFE for the conversion of the discrete particle distribution field
to the continuous density field, which is then Gaussian smoothed.

2. The local minima of the DTFE density grid are found: points surrounded only by
points with higher density values.

3. These points are the starting points of the ”flooding” process: increasing density con-
tour levels. Points are added to a specific basin if their density is lower than the
current flooding level. When a point is reached by two neighboring basins, it becomes
a boundary between them. This process is illustrated in Figure 10. In the cosmic web
simulation, basins define void regions, and boundaries represent filaments and walls
that separate the voids.

Figure 10: These frames show the main principle behind the Watershed Transform algorithm.
The first frame from the left is the surface to be flooded. The plane below the surface
represents the water level that is going to be rising. When the local minima are found, the
flooding starts, and the water level rises, filling up the basins. The central frame shows
how the ridges form as neighboring basins meet. The end result of the flooding process is a
surface divided into segments separated by clearly defined boundaries (Platen et al., 2007).

The output of the Watershed is a grid, where each pixel has an ID that determines what
void it belongs to. Therefore, this grid is sorted to extract pixel coordinates that belong to
each void in the data box. The visual representation of this is shown in Figure 11, where
a slice of a WVF grid is shown. Different voids can be easily distinguished, as they have
different colors (do not carry any physical meaning). An example of a void in 3D, identified
by the Wateshed procedure, and slices of it in 2D can be seen in Figure 12.
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Figure 11: A slice (in the z-direction, where z=0) of a density field (bottom left panel), its
corresponding slice in the WVF data cube with identified voids (top panel) and their overlap
(bottom right panel). Different colors of the voids do not represent any physical property
but are used to distinguish the voids in the data cube.
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Figure 12: Top left: Void point distribution in 3D. The star represents the center of mass
of the void. Top right, bottom left & right: Slices made through the center of the void
in 3 planes, XY, XZ, and YZ respectively.

The grid obtained by means of the WVF procedure is used to determine the effective sizes
of the voids and points of outflow to perform an environmental analysis of the Hubble flow
in the simulation. The following sections describe the methodology for determining these
quantities for further analysis.

4.1.4 Void centers

There is no classic method for determining the center of a void. Due to their irregular
shapes, this becomes an issue. We introduce 3 different methods of determining the center
of a void to obtain their shape characteristics within the simulation. One might think that
the density minimum would be the most representable point, as it would be a characteristic
point in the density profile of the void. Another option is to determine a barycenter, a
mass (or density) weighted center of mass, as it would be the most classic approach for the
overdense regions. A simpler method would be taking a mean value of the coordinates of all
points belonging to the void. When looking at the velocity flow in the void region, a point
of outflow is clearly visible, which could also serve as a characteristic center of the void. In
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this project, we would try a few different approaches for determining void centers, as they
might have an influence on the Hubble flow.

1. Density weighted center of mass: The most obvious way to evaluate an object’s
center is to compute its center of mass or barycenter using,

r⃗cm =

∑
i r⃗iδi∑
i δi

, (9)

where r⃗i is the position of a point on the grid within the void, δi is the density values
at that point, which is technically a weight of that specific point. Due to the fact that
density values range from -1 to any positive number, it is hard to apply normalization
to these values. As a result of this method, in some cases, we get a center that is outside
of the void or even outside of the data cube. This is caused by the overdensities on
the edges of the voids, where density contrast reaches very high values. A threshold
value of δ = 1 was applied to the values of the density contrast. As a result, previously
extreme values of centers do not affect the r⃗cm so much, allowing the estimated center
point to be within the void volume.

2. Density minimum as a void center: Density values were taken from the Gaussian
smoothed density field from the DTFE. The center was determined at the point of the
lowest density contrast within the void,

r⃗δ = r⃗(δmin). (10)

A theoretical density profile of a void looks like a top-hat model (Sheth & van de
Weygaert, 2004), where the density within the void is uniform and doesn’t have a
clearly defined minimum. But in reality, there would be a minimum, which could be
considered as the center of a void.

3. Mean of the coordinates: The most simple way to determine the center of the void
is to compute the mean value of all the coordinates,

⟨r⃗⟩ =
∑

i r⃗i
N

. (11)

In this case, the center will definitely be inside the void, unlike in the case of the center
of mass. Though not the most physically accurate, it is the most trustworthy method
of all.

4.1.5 Effective radii: Ellipsoidal fitting of voids

Approximating voids as ellipsoids is a very effective way of estimating their shapes. To
fit an ellipsoid into a specific void, first, its center should be identified by means of one of
the 3 above-described methods. The origin should be relocated to the center of the void. It
is done to make all the points have coordinates as vector positions with respect to the void
center. After that, a covariance ellipsoid is fitted. By doing this, eigenvalues of the covariance
matrix of the data are found: they contain information about the size of the fitted ellipsoid
- its semi-axes. The code by (Beeftink, 2019) was generalized in 3 dimensions and used to
make these fits. As a result, principal semi-axes of the ellipsoids were determined. Periodic
conditions were taken into account in order to receive information for all the voids within
the simulation data cube. This is described n more detail in (Beeftink, 2019) as well.

As voids have very irregular shapes, it is hard to give a definition of the radius of a void.
In this project, a way to characterize the effective size of a void was implemented from (Bos,
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van de Weygaert, Dolag, & Pettorino, 2012), where they calculate the effective radius of the
void as

r =
√
abc, (12)

where a, b and c are the semi-axes of the fitted ellipsoid.

4.2 Lines of sight method

Knowing the coordinates of the centers of all voids in the data cube allows us to position
the observer inside them and measure the Hubble constant for each void. Therefore, for each
individual void, the cube’s origin was shifted to be in the center of the void, whether it is
the barycenter, mean, or density minimum. From this point of view, the radial component
of the velocity vector is calculated for each point in the data cube using

vr =
v⃗ · r⃗
r

, (13)

where v⃗ is the velocity vector and r⃗ is the position vector of a particle, and r is the
distance from the observer to the particle.

Due to the contribution of the peculiar velocities to the total radial recession velocity of
the particles, we need to limit the number of particles in the radial direction by taking a
lower limit on the distance from the center of the void. Therefore, we implement a 10 Mpc
limit within the cone of light of sight, as the impact of peculiar velocities becomes minimal.

For further convenience, the coordinates are transformed from cartesian (x, y, z) to spher-
ical (r, α, δ). To make all lines of sight equal in length, we should cut the cube into a sphere.
The initial size of the cube is 106.5 Mpc, so the radius for the sphere was chosen to be 53
Mpc, which almost reaches the edges of the initial data cube. Then, a slice in the declina-
tion space is taken from −1.5◦ to 1.5◦. The slice itself is divided into sectors of 3◦ in the
dimension of right ascension. As a result of such cuts, we get 120 cones (technically, very
thin pyramids) representing our future lines of sight. The size of these cones is chosen in
a way, so that the points lie close enough to each other to be considered within one line of
sight. Figure 13 illustrates this process. The ratio of the radius of the cone to its height is
0.08.

For each point in the sphere, the total velocity is calculated as

v = cz = H0r + vr = H̃rpec (14)

,
where H0 = 70.4 km/s/Mpc, the Hubble parameter defined in the simulation, r is the

distance to the particle from the observer and vr is the peculiar velocity of the particle found
from Equation 13.

As we know both the velocities and distances of the particles with respect to the observer,
we can fit the data to the Hubble law to get an estimate of the Hubble parameter. Using
Least Squares Method, we fit the data to a function with only one free parameter:

v = H̃r, (15)

where H̃ is the Hubble constant that contains the peculiar velocity of the particle due to
the void expansion.

An important detail to consider when fitting data from cones is that the part of the cone
closer to the observer would contain fewer points than the end of the cone at the ridge of
the sphere. Therefore, it is important to introduce weights here. The amount of points in
the specific shell of the cone depends on the distance from the center, so reasonable values

16



Figure 13: Illustration explaining method of lines of sight. When the origin is shifted to the
center of the void, the coordinates are converted from cartesian to spherical and a sphere
of R = 53 Mpc is cut out from the data cube. A slice in the declination space is cut, such
as DE ∈ [−1.5◦; 1.5◦]. This slice is divided into 120 segments in the right ascension space,
resulting in 120 spherical segments with a square base dimension of 3◦. Points within that
segment are used to determine H0 for the specific line of sight.

for the weight of the point would be a normalized distance to the observer as it would be in
the range of [0, 1].

The fit should provide a good estimate of the inferred Hubble constant and a correspond-
ing error for a specific line of sight. From one slice in the declination space, we get 120 lines
of sight. To estimate a characteristic Hubble parameter for a void, we take a weighted mean

H̄0 =

∑
iH0iwi∑

iwi
, (16)

where H0i is the Hubble constant of a single individual line of sight within the slice and
wi = 1/σ2

i is the inverse of the variance of the specific H0i. The error on the weighted mean
is calculated like

σH̃0
=

√
1∑
i σ

−2
i

=

√
1∑
iwi

. (17)

As a result, we can determine the distribution of the Hubble constant for all voids in the
simulation box.
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5 Results

Examples of plots for some line-of-sights within one void can be seen in Figure 14. A
value for the Hubble constant is determined in every direction from the inside of the void,
where it is defined as the slope of the fit to the data points. Weights of the inverse distance
are implemented to take into account the sampling bias due to the shape of the line-of-sight
segments.

Figure 14: Examples of line-of-sight fits: distance to the particle is plotted versus vpec, where
the slope of the line is the Hubble constant in that specific direction. The slope is determined
by fitting a line through the points using the Least Squares method. As the structure farther
away in the spherical segment is more heavily sampled, distance-related weights (1/r2) were
implemented on each point to prevent overfitting of these data points. The vertical structure
in the plots represents a cluster within the line of sight.

Using the line-of-sight method for the full sample of voids found within the data cube,
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we obtained histograms corresponding to different methods of determining centers of voids.
Figure 15 shows the distribution of the local Hubble constant from the inside of the void
sample for dark matter particles distribution, whereas Figure 16 depicts the same, but for
the subhalos. Each histograms contains 1215 data points, as it is the amount of voids found
within the data cube.

The weighted mean was estimated for each distribution using Equation 16, where the
error determined is the weighted mean error from Equation 17. The standard deviation is
determined for each distribution, as it would be the most representative error on the weighted
mean (Table 2). Therefore, the final values resulting from the histograms are the weighted
mean with the standard deviation of the distribution. The significance of the results is
estimated as

σ =
H loc

0 −Htrue
0√

σ2
loc + σ2

true

, (18)

where Htrue
0 = 70.4 km s−1 Mpc−1. Significance is used as the way to tell if the result

is significantly relevant and is able to cover the range of differences that cause the Hubble
tension.

Type of center Weighted mean Standard deviation Result Significance

Particles

Barycenter 70.945± 0.005 1.581 70.9± 1.6 0.35
Density Minimum 70.931± 0.005 1.591 70.9± 1.6 0.35

Mean 70.886± 0.005 1.619 70.9± 1.6 0.3

Subhalos

Barycenter 71.114± 0.005 1.690 71.1± 1.7 0.4
Density Minimum 70.988± 0.005 1.658 71.0± 1.7 0.35

Mean 71.086± 0.005 1.698 71.0± 1.7 0.4

Table 2: Results from the statistical analysis of the distribution of the local Hubble constant
in the underdense regions. Values are found for DM particle and subhalo data samples.

To proceed with the environmental investigation of the void impact on the Hubble flow,
we inspect if there is any dependence between the void sizes and their depth. Effective radii
of the voids are found using centers as the mean of the coordinates. Density contrast is
determined as the average density within the effective radius of the void. This relation can
be seen in Figure 17, which resembles the result of (Nadathur et al., 2015) as expected. The
scatter in this plot is inherent due to the interactions between voids. However, the trend is
still clear: larger voids tend to be deeper than the smaller ones.

19



Figure 15: Histograms of the distribution of the local Hubble constant inferred from the
underdense regions in the simulation using 3 different methods to find the center of such
region. Top: Centers are determined at the center of mass of the voids. Middle: Centers
are determined as the density minima within the void region. Bottom: Centers are the
mean of the coordinates of the points that belong to one void. All histograms include the
weighted mean of the distribution, compared to the global value of H0 = 70.4 km s−1 Mpc−1.
Distributions are drawn from the dark matter particle data cube.
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Figure 16: Histograms of the distribution of the local Hubble constant inferred from the
underdense regions in the simulation using 3 different methods to find the center of such
region. Top: Centers are determined at the center of mass of the voids. Middle: Centers
are determined as the density minima within the void region. Bottom: Centers are the
mean of the coordinates of the points that belong to one void. All histograms include the
weighted mean of the distribution, compared to the global value of H0 = 70.4 km s−1 Mpc−1.
Distributions are drawn from the subhalos data cube.
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Figure 17: Correlation between density contrast in the central part of the void and its effective
radius. A high level of scatter is inherent in this case because of the mutual interaction of
voids in the distribution. The relation matches the one in (Nadathur et al., 2015).

In (Wu & Huterer, 2017), the observations show that this difference can be reached
at δ ≈ −0.8, with radius of 120 h−1 Mpc, which is a large and deep underdense region
that is very unlikely in the ΛCDM Universe. However, the fact that such a void could
alleviate the tension is a possibility. Recent studies have explored the idea that under-
/overdense regions can be the cause of the deviation of the local Hubble constant from the
global value (Kenworthy, Scolnic, & Riess, 2019), (Mazurenko, Banik, Kroupa, & Haslbauer,
2024), (Giani, Howlett, Said, Davis, & Vagnozzi, 2024). As the local structure produces
large inflows or outflows of matter, it is important to take this bias into account. The study
by (Kenworthy et al., 2019) has shown that the change in the Hubble constant due to the
fluctuation of the density is only around 2.2%, which does not have an influence on the
discrepancy. However, in their research, the data used goes up only to a redshift of 0.5,
whereas the evidence of the local void is found to be at higher redshifts. (Giani et al.,
2024) have found that the Laniakea, a supercluster hosting the Milky Way, increases the
Hubble tension by producing negative average expansion, whereas (Mazurenko et al., 2024)
showed that the large local KBC void (Keenan, Barger, & Cowie, 2013) produces outflows
that change the local bulk flow (on a smaller scale than the flow of the Local Group) that
give rise to the decrease in the discrepancy between the Plank and SH0ES measurements.
This explains both the Hubble tension and the existence of a very unlikely KBC void in the
ΛCDM Universe. In (Wu & Huterer, 2017), the observations show that this difference can
be reached at δ ≈ −0.8, with radius of 120 h−1 Mpc, which is a large and deep underdense
region that is very unlikely in the ΛCDM Universe. However, the fact that such a void
could alleviate the tension is a possibility. Recent studies have explored the idea that under-
/overdense regions can be the cause of the deviation of the local Hubble constant from the
global value (Kenworthy et al., 2019), (Mazurenko et al., 2024), (Giani et al., 2024). As
the local structure produces large inflows or outflows of matter, it is important to take this
bias into account. The study by (Kenworthy et al., 2019) has shown that the change in the
Hubble constant due to the fluctuation of the density is only around 2.2%, which does not
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have an influence on the discrepancy. However, in their research, the data used goes up only
to a redshift of 0.5, whereas the evidence of the local void is found to be at higher redshifts.
(Giani et al., 2024) have found that the Laniakea, a supercluster hosting the Milky Way,
increases the Hubble tension by producing negative average expansion, whereas (Mazurenko
et al., 2024) showed that the large local KBC void (Keenan et al., 2013) produces outflows
that change the local bulk flow (on a smaller scale than the flow of the Local Group) that give
rise to the decrease in the discrepancy between the Plank and SH0ES measurements. This
explains both the Hubble tension and the existence of a very unlikely KBC void in the ΛCDM
Universe. Now, we can investigate the relation between the deviation of the local Hubble
constant and the density perturbations (Equation 7). Theoretically, a higher local expansion
rate is expected when the density contrast is negative, as was shown previously in Equation
6. These relations are depicted in Figure 18 for both dark matter particles and subhalos,
where they are compared to the tension between the Planck and SH0ES measurements of
the constant.

6 Discussion

After applying the standard deviation from the distribution to the weighted mean, the
resulting value can be seen in the 4th column in Table 2. All three methods of evaluating
the center of the void arrive at the same result as they lie within the 1σ. Therefore, no
difference between these methods will be drawn in this discussion. The investigation was
important because it was important to examine the influence of the center estimation, as it
might influence the Hubble flow. However, a further more precise analysis could be made to
inspect the difference between using these methods.

The global value of the Hubble constant in the simulation, Htrue
0 = 70.4 km s−1 Mpc−1,

lies within 1σ of the obtained values from the histograms. However, the weighted mean
values of all the distributions are confidently higher than the true value for both the DM
particles and subhalos. This effect might be confirmed with a greater certainty in a few ways.

Looking at the histograms for the DM particles (Figure 15), we can see that the dis-
tribution is skewed to the left, with a more flat but bigger left wing. When investigating
the Hubble law individual fits in more detail (as in Figure 14), it was noticed that a lot of
significant local structure influences the fit by a substantial amount, producing low values
of the Hubble constant. Extremely local overdensitites with high dispersion in the peculiar
velocity produce ovefitting problems. We tried to avoid it by setting a lower limit to the
distance of the particles within the ligh-of-sight segment, which improved the distribution
significantly. Therefore, an assumption was made that the low values in the flatter wing can
come from the collapsing voids (Sheth & van de Weygaert, 2004). As the voids is pushed
from the outside by the overdense regions surrounding it, the expansion rate can become
lower than the global value. This is a very intriguing assumption, that definitely should
be looked into. Excluding such voids from the distribution can shift the weighted mean to
higher values improving the significance of the result and accounting for more difference of
the Hubble tension.

The H0 distribution from the dark matter particle data cube seem to have 2 prominent
peaks: one around the true value and another one at a higher values, implying that it is
statistically possible to have a higher chance of determining a higher values of the local
expansion rate. The values from the subhalo distribution are peaking at values close to
the weighted mean, rather than the global values, confirming the result with even greater
significance, as bigger part of the distribution lies to the right of the Htrue

0 = 70.4 km s−1

Mpc−1.
Significance of the obtained result varies between 0.3σ and 0.4σ, whereas the tension

between the Plank and SH0ES measurements reaches 4.9σ confidence level. Therefore, it
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Figure 18: Deviation of the local Hubble constant as a function of the density contrast for
DM particles and the subhalos. Each point represents a deviation of the H loc

0 from the global
value in the specific void in the cube with respect to the average density contrast in that
void. Using the Least Squares method, the fit was made through all the points. 1σ difference
range between the Plank and SH0ES measurements of the Hubble constant is depicted to
estimate the possible contribution of the voids to the tension.
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is hard to conclude that local underdesity can alleviate the Hubble tension. Although is is
clear that there is definitely an environmental dependence of the local expansion rate. This
can be also seen more clearly in Figure 18. According to theory, a slope of 0.167 is expected,
which does not lie within the statistically significant confidence level of our values.

Density contrasts of all order are present in the distribution, sampling the range effectively
to be able to draw conclusions. The level of scatter in the distribution is significant, but a
general downward is definitely present, as predicted by theory. For the dark matter particle
data cube, voids can account only for the 0.96 km s−1 Mpc−1 difference between the global
and local values when the tension between late and early universe measurements reach 6
km s−1 Mpc−1 difference. For the subhalo data sample, this value is even smaller.

In (Wu & Huterer, 2017), the observations show that this difference can be reached at
δ ≈ −0.8, with radius of 120 h−1 Mpc, which is a large and deep underdense region that
is very unlikely in the ΛCDM Universe. However, the fact that such a void could alleviate
the tension is a possibility. Recent studies have explored the idea that under-/overdense
regions can be the cause of the deviation of the local Hubble constant from the global value
(Kenworthy et al., 2019), (Mazurenko et al., 2024), (Giani et al., 2024). As the local structure
produces large inflows or outflows of matter, it is important to take this bias into account.
The study by (Kenworthy et al., 2019) has shown that the change in the Hubble constant due
to the fluctuation of the density is only around 2.2%, which does not have an influence on
the discrepancy. However, in their research, the data used goes up only to a redshift of 0.5,
whereas the evidence of the local void is found to be at higher redshifts. (Giani et al., 2024)
have found that the Laniakea, a supercluster hosting the Milky Way, increases the Hubble
tension by producing negative average expansion, whereas (Mazurenko et al., 2024) showed
that the large local KBC void (Keenan et al., 2013) produces outflows that change the local
bulk flow (on a smaller scale than the flow of the Local Group) that give rise to the decrease
in the discrepancy between the Plank and SH0ES measurements. This explains both the
Hubble tension and the existence of a very unlikely KBC void in the ΛCDM Universe.

Recently, the data from the JWST telescope was used to determine the local value of the
Hubble constant using the cosmic distance ladder method (Li et al., 2024). The result yields
a value of H0 = 74.7± 2.1 km s−1 Mpc−1, producing a slight increase in the discrepancy of
the early and late universe measurements. Although the results are new and waiting to be
refined even more, this puts our perspective of the evolution of the Universe under doubt.

7 Conclusion

In this thesis, we investigated the influence of the underdense regions on the discrepancy
between the measurements of the local and global values of the Hubble constant. Using
cosmological simulation Illustris, we were able to explore this dependence on two data sets,
with dark matter particles and subhalos, in order to probe a different scale of gravitationally
bound structures. The Watershed Void Finder was used for the identification of voids in the
data cube, as this method does not make an assumption about the shape of voids. A method
of lines of sight was implemented in order to gather statistical data from each individual void.

Analysis of this data revealed the expected behavior of the expansion rate, although it
did not show signs of being able to explain the existing tension fully. The variations of the
local Hubble constant in the underdense regions are present but fail to connect early (Riess et
al., 2022) and late (Planck Collaboration et al., 2020) universe measurements. This implies
that, while voids have an effect on the dynamical properties of the Universe, the solution to
the Hubble tension lies somewhere else.

The method of taking lines of sight could be further refined to increase the confidence
in this study’s results. This work contributes to the continuous search for the solution of
the Hubble tension. By understanding and quantifying the dynamical influence of voids on
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the expansion rate, we are able to confirm the importance of the underdense regions in the
Universe.

This work showed that evaluating voids’ influence exclusively is a complicated task, as
they are embedded in the large-scale structure. Both under- and overdense regions con-
tribute to the variation of the expansion rate and should be explored in more detail. Future
research in this field could potentially investigate the influence of the variety of the overdense
structure, providing more insights into the substructure within the voids. Of course, bigger
sky surveys might expand our picture of the large-scale structure, revealing new features,
such as supervoids.
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