
Virtual Ray Tracer: Using
Light to Deform Objects

Bachelor’s Thesis Project
Computing Science

Author: Irina Bodola
First supervisor: Prof. Dr. Jǐŕı Kosinka
Second supervisor: Dr. Steffen Frey

University of Groningen
4 August 2024



Abstract

Anamorphism requires that a viewer needs to have a certain position or use special devices
to look at an image or object in order to see a recognisable picture.

Anamorphic art has been around for centuries but it has always been difficult to create
due to its complex mathematical calculations. With the advancement of modern technology,
new methods to create such art have been created. One such method uses ray tracing to
build anamorphic sculptures based on an object’s projection in a mirror or refraction through
a transparent medium.

Virtual Ray Tracer is a tool developed to teach ray tracing. Given its usefulness to
students and the intriguing method to produce art described above, this paper explores the
possibility of making a tool meant to teach the way anamorphic sculptures are constructed.

1



Contents

1 Introduction 3

2 Background and Related Work 4
2.1 Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Ray Tracing Visualisation Tools . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Anamorphic Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Requirements 8

4 Methodology 9
4.1 Tools and Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 The Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 VRT Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Results 14

6 Conclusion 17

7 Future Work 17

8 Acknowledgements 18

A Code, Images, Files 21
A.1 JSON file scene descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2 OBJ file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.3 Models of different deformed objects . . . . . . . . . . . . . . . . . . . 24

2



1 Introduction

Anamorphosis represents the process of projecting images and objects outside of their usual
proportions. When these pieces are then looked at from a specific point of view, they return
to normal [7]. The concept of bending an object out of its proportions using perspective,
reflection, and refraction has fascinated artists for centuries. With the evolution of mod-
ern technology, new ways to fashion such art work have been discovered. One method in
particular uses ray tracing to build 3D anamorphic sculptures [17].

Ray tracing is one of the most popular rendering algorithms in Computer Graphics. It
takes a 3D scene composed of many objects and lights and creates an array of pixels that
translates to a 2D picture [15]. Due to the nature of this algorithm, it can be difficult to
teach and explain how it works. Since most of the algorithm deals with 3D spaces, helping
someone visualise it in 2D is challenging. Hence, students and scientists at the University of
Groningen developed an application with the purpose of making the learning process easier.
This application is called Virtual Ray Tracer [20, 19]. From this point onwards we will refer
to Virtual Ray Tracer as VRT.

The aim of this paper is to build a new level in VRT that explains how anamorphic
sculptures can be built using ray tracing. The paper written by Louis Pratt, Andrew John-
ston, and Nico Pietroni [17], which was mentioned above, focuses on catoptric anamorphosis.
Therefore, the level will focus on the use of mirrors and the objects reflection in them to
build anamorphic sculptures.

In this paper, we explore the method of using ray tracing as a means to deform objects
based on their reflections in different types of mirrors. Then, we plan on building our own
framework to implement it. At last, we will create a new game level in a version of VRT
that uses real-time ray tracing to present the method.

This project aims to help Computer Graphics students, art and technology enthusiasts
learn about anamorphic sculptures. With the help of the tool, other people should be able
to build their own frameworks that deform objects using ray tracing.

In Section 2 we explore background and related work information about anamorphism
and VRT. Section 3 describes the main requirement of this project. In Section 4 we explain
our approach to construct anamorphic art and build a level to explain it. Section 5 discusses
the results of our implementation. A conclusion of the project is drawn in Section 6. Possible
future work is touched upon in Section 7.

3



2 Background and Related Work

Before diving into the requirements and implementation details of this project, let us have
a look at some background information and related work. We will first have a look at the
definition of anamorphosis. Next we will talk about ray tracing and tools used to visualise
this algorithm. Afterwards, we will talk about anamorphosis and its applications in art.

2.1 Ray Tracing

Ray tracing is one of the most popular algorithms in the field of Computer Graphics. To
define what it does, we first have to take a look at the definition of ray casting.

Ray casting is the process of shooting a ray from a camera, through a pixel on a screen,
and into the scene beyond. The screen is positioned between the camera and the scene. The
procedure is meant to determine if the ray going through a pixel intersects any object in the
scene. Sometimes, a second ray may be send from the point of intersection of a ray with an
object towards a light source. This is done with the purpose of determining how that point
is illuminated [13]. An illustration of this can be found in figure 1a.

(a) Ray casting [13]

(b) Ray tracing [13]

Figure 1: Ray casting and ray tracing explained. Images adopted from [13]

Ray tracing takes a 3D model of a scene and renders a 2D digital image based on it. It
uses the ray casting process recursively by bouncing the ray multiple times around the scene
starting from the initial point of intersection in the scene. It gathers information about light,
reflected and refracted rays, and keeps track of them in a recursion tree. To determine the
final colour of the original ray’s corresponding pixel, the tree is evaluated by climbing it from
the bottom along the pixel’s designated chain [13]. An image describing the bounce of the
ray from object to object in the scene can be found in Figure 1b.

2.2 Ray Tracing Visualisation Tools

Ray tracing is a complex algorithm that makes use of three dimensional descriptions of
scenes. Because of this, it can be difficult to explain how it works without visual aids.

4



Unfortunately, 2D images are not always enough to help a student fully grasp the concept
of ray tracing. This is why, researchers at the University of Groningen have come up with
Virtual Ray Tracer (VRT) [20]. VRT is an educational tool developed by C.S. van Wezel
and W.A. Verschoore de la Houssaije, two former Computing Science Bachelor students at
the University of Groningen, in collaboration with the Scientific Visualisation and Computer
Graphics (SVCG) research group.

Since its initial version published in 2022, a second version of the application has been
developed. VRT2.0 [19] is a gamified version of the original tool. This has been done in
order to make the application more engaging.

In a typical level in VRT, a user can move around the scene, see the scene from the
perspective of a camera that can be moved about, and change the colour, position, rotation,
and scale of an object. Another useful feature is that in front of the camera used in ray
tracing the scene, there is a pixel grid whose size can be modified. The rays going from
the camera pass through every pixel of the grid and change colour depending on type of
interaction in the scene. An individual ray can be seen by selecting a pixel in the preview
screen. It also shows a preview panel of what the image constructed by the ray tracer looks
like. A screenshot of the typical VRT scene can be seen in Figure 2.

Figure 2: A scene in VRT [20].

Another tool worth mentioning is the Ray Tracing Visualization Toolkit
(rtVTK) [12]. It works similarly to VRT. The two downsides of rtVTK are the fact that it
is not beginner friendly nor is it user friendly. VRT guides the student through every step
of the ray tracing algorithm, while rtVTK assumes some previous knowledge. Furthermore,
VRT has a web version making it easily accessible to anyone, while rtVTK needs to be
installed and a ray-based renderer needs to exist on the machine of the user.

2.3 Anamorphic Art

Anamorphosis means to produce a distortion of an object which upon glance will look nothing
like its original form. It requires a viewer to either have a specific point of view, to use special
devices, such as mirrors, glasses of water, or other similar optic media, or a combination of
both, in order to see a distinguishable image of the object that was deformed. The concept

5



of anamorphism has been around for a long time, however anamorphic art has only started
to become popular in the sixteenth century [7, 11].

We distinguish between two main types of anamorphosis. Namely, perspective (oblique)
and mirror (catoptric) anamorphosis.

• Perspective anamorphosis requires the viewer to occupy a specific point of view in order
to see a recognisable image or object [18]. It deforms an object such that distances
and angles are modified, however lines are not. An example that illustrates perspective
anamorphosis is the shadow of a person on the ground at different times of the day,
as it can be seen in Figure 3a. A more modern approach is anamorphic 3D chalk art.
Artists draw on the street with chalk and certain perspectives give the effect of the art
appearing 3D [8].

• In the case of mirror anamorphosis, the viewer needs a mirror in order to see a recog-
nisable image [9]. The most common type of mirror used is cylindrical. This type of
anamorphosis was primarily used to make 2D art, as seen in Figure 4a, until more
recent years when artists started building 3D sculptures centred around a mirror, ex-
emplified in Figure 4b.

(a) Shadows illustrating anamorphism [17]

(b) Anamorphic chalk art [8]

Figure 3: Examples of oblique (perspective) anamorphism.

The focus of this project is mirror anamorphosis. More specifically, how to construct
sculptures using mirror anamorphosis. Some researchers have tried to simulate building such
sculptures by using software. In a recent paper, a method that uses ray tracing to construct
such sculptures is used [17]. Some of the sculptures they created have been 3D printed and
displayed at different art festivals. One of their sculptures can be seen in Figure 5.

6



(a) 2D illustration using mirror anamorphosis [16]
(b) 3D anamorphic sculpture using a mir-
ror [14]

Figure 4: Examples of catoptric (mirror) anamorphsim.

Figure 5: Anamorphic skull sculpture deformed using ray tracing [17].

7



3 Requirements

The goal of this project is to build a level (or multiple levels) in VRT that explain how
anamorphic sculptures are created. The most important part is then to be able to see the
reflection of the deformed object on the mirror in the scene.

VRT was developed using the game engine Unity [6]. The original VRT uses rasterisation
to render its scenes. However, it is almost impossible to get good reflections and refractions
when using this algorithm. An exaple of reflection can be found in Figure 6a. For this
reason, in 2023 a student at the University of Groningen implemented real-time ray tracing
in VRT [10]. This version uses Unity’s High Definition Render Pipeline to render the final
scenes of the game [3]. Therefore, reflections and refractions look realistic in this version of
the tool, as can be seen in Figure 6b. It is this version of the tool that we will be building
upon in this project since we need real-time ray tracing in order to ascertain the accuracy
of the reflections of the sculptures.

(a) Reflections in VRT [10] (b) Reflections in VRT using HDRP [10]

Figure 6: Difference in reflection between VRT versions.

As has been explained so far, when it comes to mirror anamorphosis, the reflected rays
are very important. Which is why we have the following requirements:

1. Implement the method to deform objects explained by Pratt et al. [17].

2. Add a level to VRT where mirror anamorphism is taught.

• Define and explain anamorphism.

• Explain how an obejct is deformed in mirror anamprphosis.

• The reflection of the deformed object should be visible on the mirror.

• Have a reference to the original object to compare with the reflection of the
deformed one.

• Maintain the other functionalities of VRT.

8



4 Methodology

This project has two main components. Namely, the framework used to deform an object
and VRT. The object deformed by the framework is used to construct the levels in VRT.

4.1 Tools and Languages

The first tool we address is the framework that we used to deform the objects. Given a scene
description and the mesh of an object, we feed them into a C++ framework. The result is
the mesh of the deformed object.

A scene description is a JSON file [4] that contains information about the context in
which we will deform an object. It contains three main elements: the position of the camera,
the type, shape and, position of mirror used in the deformation, and the position of the
object we want to deform. Examples of the scene descriptions we used, as well as additional
information about them, can be found in Appendix A. Additionally, depending on the type
of mirror present in the scene, the mirror entity will have additional details such as position,
radius, rotation, and in the case of plane mirrors, the four edges at each corner of the plane.

Another file necessary for our framework is an OBJ file [5]. An object file gives the
description of the mesh of an object. It gives the coordinates of the vertices of a mesh, the
faces of the mesh, texture coordinates, and other details. In our case, we are only interested
in the coordinates of the vertices and the faces of the objects they form. The input file is
generally a model we constructed using Blender [1] and exported them as Wavefront(.obj)
files. After deforming the object, the new vertex coordinates of the mesh and faces, which
have been preserved, are written to a new object file. This object file will later be used to
build a scene in VRT.

The C++ framework mentioned above has initially been a ray tracing framework used in
the course Computer Graphics taught at the University of Groningen. Most of the framework
has been erased and what remained has been repurposed to fit the requirements of this
project.

As mentioned above, Blender [1] has been used to make models of objects to deform or
to edit models downloaded online. It has also been build to model example scenes of what
the final VRT scene would look like and to visualise the deformed object.

The last tool used for this project is the game engine Unity [6] since this is the engine
originally used to build VRT.

4.2 The Framework

The framework 1 is relatively simple. Once the scene description and the object file are
passed to it, it parses them and saves the relevant information. Then it loops through all
of the points on the mesh, calculates their deformation, and writes all of the new displaced
points to a new OBJ file. Therefore, we are interested in how two things are done, and those
are how to calculate the deformation of the object and how is the intersection of the rays
with the mirror calculated. Additionally, before deforming an object, if it is a large mesh,

1https://github.com/irinaB11/anamorphicRayTracer

9

https://github.com/irinaB11/anamorphicRayTracer


a function that fits it in the unit cube can be called. This is necessary in order to avoid
situation where the new points cannot be calculated.

We are given a camera C, a mirror, and an object mesh with vertices V, where V is any
vertex on the mesh of the object.

Figure 7: Process of calculating deformed point

A ray shoots from the camera to a point on the object. This ray passes through a
mirror. Therefore, it can have (plane, cylinder, sphere) one or two intersections points with
it, depending on the type of mirror used. We are interested in the intersection point that is
closest to the object. Now that we have the intersection point of the ray with the mirror,
we calculate two things. That is, the normal at the intersection point and the distance d
between the intersection point and the vertex of the object. Based on the incident ray and
the normal we can calculate the reflection ray. Taking the distance, we move the point of
the object along the reflected ray at distance d from the intersection point. An illustration
of this process can be found in Figure 7. We repeat this algorithm for every vertex of the
object.

Finding the point of intersection of the ray with the mirror can result in three different
type of calculations based on the shape of the mirror. The type of mirrors the algorithm
addresses are flat mirrors (also known as quads or plane mirrors), cylinder mirrors, and
sphere mirrors.

4.3 The Objects

The meshes of the objects that we choose to deform plays an import role in the shape of the
resulting object. Multiple objects can have the same shape but they have meshes that look
completely different from each other. Such an example can be seen in Figure 8. The mesh
of the cube shown in Figure 8a consists of 8 vertices and 16 triangular faces. On the other
hand, the cube in Figure 8c looks the same but has a much more complex mesh. It has 6146
vertices and 12288 triangular faces. A close up of this mesh can be seen in Figure 8b.

The deformations of the meshes described above based on their reflection on a cylindrical
mirror can be seen in Figure 9. The edges of the deformed cube with the simpler mesh are

10



(a) A cube with a low number
of vertices.

(b) A close up of a cube with
a complex mesh.

(c) A cube with a high number
of vertices.

Figure 8: Difference between the same object with different mesh complexities.

straight, while in the more complex mesh, there is a distinctive curve. This is the result of
the number of vertices along the edge of a cube. If an edge is composed of only the vertices
at its ends, in the resulting deformation, the edge is be a straight line. However, if a cube
has multiple vertices along an edge, after deforming it, connecting the vertices results in a
curved edge.

From the above example we can conclude that using objects that have a high number of
vertices in their mesh will result in more accurate deformations. However, before constructing
the mesh of an object or downloading one online, we have to take into consideration the limit
of vertices a mesh can have in Unity. It is recommended that this limit is not surpassed.

In the implementation of our VRT scenes, we use an object shaped like a box. This box
has a mesh consisting of 6146 vertices and 12288 triangular faces. This file of this object
is saved in a folder in the C++ framework 2 that also performs the deformation of this
object. If the object is so large that the ray going from the camera to the vertex does not
intersect the mirror in between them, a function unitize() can be called. This function finds
the bounding box the object and uniformly shrinks it so that it fits in a unit cube.

(a) Side view. (b) Perspective view.

Figure 9: Side comparison of deformed objects that have the same shape but different
meshes. The right object has a more complex mesh than the left one. Their deformation
was calculated using a cylindrical mirror.

2https://github.com/irinaB11/anamorphicRayTracer

11

https://github.com/irinaB11/anamorphicRayTracer


4.4 VRT Level

When we deformed the object, we had to feed the program a scene description. This scene
description is based on a model we build using Blender. The model not only gives us the
coordinates of the positions of the objects present in the scene but it also serves as a mock-up
of what the VRT level will look like. Since we have three different types of mirror we use
to deform objects, we build three models, and subsequently three levels in VRT. Images of
these models can be seen in Figures 11.

Since the Ray Tracing camera (RT Camera) is an important component in this project,
it has been kept in the scene as the point of view used to deform the original object. None
of its functionality has been disabled. Therefore, the rays that shoot from it into the scene
are visible, its position can be changed, and the number of pixels present on the grid in front
of it can be tinkered with. Also, the reflection that resembles the original object the most
can be seen from its perspective.

The original object has been kept in the scene in all of the levels, positioned behind the
mirror, in order to have a reference to what the reflection of the deformed object should look
like.

The mirrors in the levels have all been added to the scene by using prefabs already
present in the project file of VRT. To these prefabs, a mirror texture that can be rendered
by Unity’s HDRP has been added. These textures were already imported into the project.
While calculating the deformation of the object, we do not take into consideration the mesh
of the mirror. We are only interested in the four points at the corners of the quad, in the
case of plane mirrors; the radius of the sphere when we have spherical mirrors; and the
radius, upper most and lower most points on the central axis of the cylinder when we have
a cylindrical mirror.

Figure 10: Panel that pops up when opening a level. It explains what happens in the scene.

12



(a) Scene with a cylinder mirror. (b) Scene with a sphere mirror.

(c) Model of a scene with a plane mirror.

Figure 11: Models of scenes. In all three cases, the original object is the box on the right.

The initial idea of the project was to position the RT Camera such that the deformed
object and its reflection on the mirror are visible at the same time. In the case of the flat
mirror level, this was possible. However, when we used a cylindrical and spherical mirror,
the reflection of the deformed object ended up being obstructed by itself. This is why in
those levels, we decided to keep the RT Camera between the deformed object and the mirror.
This way the deformed object is visible from the normal perspective of the game camera,
and its reflection on the mirror is visible from the perspective of the RT Camera.

The first time a level is opened, the user will be met with a panel. This panel has
information about what anamorphosis is, how objects are deformed in mirror anamorphosis
using their reflection, and a general description of the scene and how to view the reflection
of the deformed object. A sample of this can be seen in Figure 10.

Additional models depicting the deformation of objects that are not the rectangular
parallelepiped used in these levels, can be found in the appendix of this thesis.

13



5 Results

In this section, we show the final VRT 3 levels we implemented. Additionally, we will analyse
the resulting reflections of the deformed objects and discuss the limitations of the application.
The laptop we used to build these levels and to test the reflections of the objects works on
a Windows 11 operating system and has a NVIDIA GeForce RTX 3050 GPU.

In Figure 12, the top left image shows what the first level of anamorphic sculptures looks
like after closing the introductory panel. The top right picture was taken after navigating
through the scene to see the original object behind the mirror. In the bottom right picture,
the perspective of the viewer was changed to match that of the RT Camera. The final image,
on the bottom right, shows the reflection of the deformed object unobstructed by the pixel
grid. As can be seen in the picture, the reflection of the deformed object does not exactly
match the original object. After experimenting with different positions for both the camera
and the object, we managed to make the reflection of the object match the frontal view of
the original object almost perfectly. While we are not exactly sure why the reflection of
the object does not match its original shape, we have some theories. It is possible that the
right position and angle has not been found yet. Otherwise, assuming that the mathematical
part of our calculations is correct and we did not exclude any possible edge cases, a possible
explanation is a floating point inaccuracy. In our framework, we use type float to store and
calculate the vertices of the mesh. It is possible that were we to change the type to double,
the reflection would be more accurate. If, on the other hand, we made a mistake from the
mathematical point of view of this project, righting the mistake should result in a more
accurate reflection.

In the second level we developed in VRT, we had better luck regarding the accuracy of
the reflection. Once again, as it can be seen in Figure 13, the top two images show the scene
at first glance and the scene after navigating it to catch a better look at the original object.
It is worth mentioning that the user can change the position of this object if they wish to
have a better look at it without the obstruction of the mirror in front of it. The bottom
left image shows the scene from a perspective that comprises the whole scene, slightly above
every component present. From this point of view, the reflection is visible and we can see
that it somewhat resembles the original object. The last image shows the reflection of the
anamorphic sculpture from the perspective of the RT Camera. This is the closest reflection
we have to the original object. The bottom edge of the front of the object still has a slight
curve which we could not diminish further. The curvature of the bottom edge could be the
result of the position of the object. While implementing the scene, we experimented with
different distances from the mirror, and rotations of the object, in the pursuit of the most
accurate reflection possible. It is possible that we just have not found the most optimal
position yet. Another possibility, is a calculation error when we implemented the framework
that deformed these objects.

3https://github.com/irinaB11/Virtual-Ray-Tracer-Anamorphic-Sculptures/tree/

VRT-RTX-Anamorphic-Sculptures

14

https://github.com/irinaB11/Virtual-Ray-Tracer-Anamorphic-Sculptures/tree/VRT-RTX-Anamorphic-Sculptures
https://github.com/irinaB11/Virtual-Ray-Tracer-Anamorphic-Sculptures/tree/VRT-RTX-Anamorphic-Sculptures


Figure 12: VRT level: Anamorphic Sculptures 1.

Figure 13: VRT level: Anamorphic Sculptures 2.

15



Figure 14: VRT level: Anamorphic Sculptures 3.

In the last level we implemented, we are looking at the case where we have a spherical
mirror. Once again, the top two pictures show the initial scene and the scene where the
perspective is oriented closer to the original object. Here we stumbled into similar problems
to the cylinder level when tinkering with the perspective of the RT Camera. However, the
object is positioned much higher than the rest of the objects in the scene in order to get the
right reflection as viewed by the RT Camera. The bottom pictures in Figure 14 show the
perspective of the RT Camera, once through the pixel grid and another time after rendering
the picture. In this level, we have a reflection that perfectly matches the original object.
None of the edges are curved, like it is the case in the other levels. Here, it is possible to see
that the reflection of the deformed object matches the original one very well. There is also
no visible curvature to its edges.

16



6 Conclusion

We started this project with the goal of understanding how building anamorphic sculptures
using ray tracing works and building a level in VRT trying to explain the process.

In the end, we managed to build a framework that deforms objects using their reflections
on three different types of mirrors. Using the meshes of the resulting objects we proceeded
to build three different levels each explaining mirror anamorphosis performed with the use
of each type of mirror described.

Whilst the results that we have are not the most ideal, we hope that this project sets the
base for future development of this topic or similar ones in VRT.

7 Future Work

The framework that we built has several limitations. One of which is the type of mirror that
can be used to deform an object. Since momentarily it is only possible to deform objects
based on three types of mirror, a viable future feature would be to extent the framework to
free-form mirrors.

Another possible addition would be to deform the objects based on the refraction through
a transparent medium. Examples of such media may include transparent spheres, glasses of
water, and others.

A third possible feature would to implement the deformation function directly in VRT.
This way, the framework, which acts like a middle man in our case, would not be necessary
anymore.

A fourth option, would be to gamify the level such that the explanation gets broken into
smaller tutorial-like steps. This would help the user understand the process better and make
the learning experience more enjoyable.

To address some of the issues we encountered when we constructed the VRT levels, we
will suggest what could be changed/reviewed/experimented with.

• For both levels, Anamorphic Sculptures 1 and Anamorphic Sculptures 2, tinkering with
the position of the deformed object and its rotation along the x-axis might solve the
problem. If this does not solve the issue, the following points might be helpful.

• In level Anamorphic Sculptures 1 (plane mirror), the reflection does not match the
original object closely. We theorised that it is either a mathematical problem or a float
type issue. Therefore, we first suggest reviewing the mathematics used to calculate
the ray-plane intersection. The functions mentioned are in the C++ framework in
shapes/quad.cpp. If the mathematical equations turn out not to need any tweaks, a
second suggestion we make is to change all of the float type arrays, variables, and
functions to type double.

• In the second level we implemented, Anamorphic Sculptures 2 (cylinder mirror), the
reflection of the deformed object matches the shape of the original object almost per-
fectly. The only difference is the lower edge of the reflection is curved upward. It could
be one of the two issues mentioned above for the plane mirror levels. For this reason,

17



we suggest to double-check the mathematical part of the code that calculates the ray-
cylinder intersection. It can be found in the C++ framework in shapes/cylinder.cpp.

8 Acknowledgements

I want to thank my supervisors Prof. Jǐŕı Kosinka and Dr. Steffen Frey for their help and
support along this project. Their guidance has been very appreciated. I would also like to
thank Tom Couperus for his help and advice, especially for his help with VRT, Unity, and
other small questions I had. I also want to thank my friend Eertze van de Riet for his help
in debugging the framework when I was really stuck. And thank you to all my family and
friends who let me use them as rubber duckies whenever I was thinking about this project
aloud.

18



References

[1] Blender documentation. [Accessed: 11-07-2024]. URL: https://docs.blender.org/
manual/en/latest/.

[2] Free3d. [Accessed: 22-07-2024]. URL: https://free3d.com/3d-model/

mummy-hand-v1--243397.html.

[3] High definition render pipeline overview. [Accessed: 11-07-2014]. URL: https:

//docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@

8.0/manual/index.html.

[4] Json file. [Accessed: 11-07-2024]. URL: https://fileinfo.com/extension/json.

[5] Obj file. [Accessed: 11-07-2024]. URL: https://docs.fileformat.com/3d/obj/.

[6] Unity documentation. [Accessed: 11-07-2014]. URL: https://docs.unity3d.com/
2020.3/Documentation/Manual/index.html.

[7] Jurgis Baltrušaitis. Anamorphic art. Chadwyck-Healey, 1977.

[8] Cecilia Mazzoli Caterina Morganti Cristiana Bartolomei, Alfonso Ippolito. From
anamorphosis to vision: “3d sidewalk chalk art”. Disegnare con, 2020. https:

//doi.org/10.20365/disegnarecon.24.2020.1.

[9] Francesco de Comite. A General Procedure for the Construction of Mirror Anamor-
phoses. In Bridges 2010: Mathematics, Music, Art, Architecture, Culture, pages 231–
238, Pecs, Hungary, July 2010. URL: https://hal.science/hal-00861388.

[10] Tomas de Vries. Implementing real-time ray tracing in unity to increase the render
quality of a ray tracing visualization tool. 2023. URL: https://fse.studenttheses.
ub.rug.nl/30711/.

[11] Crannell A. Frantz, M. Viewpoints: Mathematical perspective and fractal geometry in
art. Princeton University Press., 2011.

[12] Christiaan Gribble, Jeremy Fisher, Daniel Eby, Ed Quigley, and Gideon Ludwig. Ray
tracing visualization toolkit. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, I3D ’12, page 71–78, New York, NY, USA, 2012.
Association for Computing Machinery. doi:10.1145/2159616.2159628.

[13] Eric Haines and Tomas Akenine-Möller, editors. Ray Tracing Gems. Apress, 2019.
http://raytracinggems.com.

[14] Yifat Davidoff Jonty Hurwitz. Rosso horse, 2022. URL: https://jontyhurwitz.com/
horse-rosso.

[15] S Marschner and P Shirley. Fundamentals of computer graphics (Fourth). Taylor &
Francis Group, 2016.

19

https://docs.blender.org/manual/en/latest/
https://docs.blender.org/manual/en/latest/
https://free3d.com/3d-model/mummy-hand-v1--243397.html
https://free3d.com/3d-model/mummy-hand-v1--243397.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@8.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@8.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@8.0/manual/index.html
https://fileinfo.com/extension/json
https://docs.fileformat.com/3d/obj/
https://docs.unity3d.com/2020.3/Documentation/Manual/index.html
https://docs.unity3d.com/2020.3/Documentation/Manual/index.html
https://doi.org/10.20365/disegnarecon.24.2020.1
https://doi.org/10.20365/disegnarecon.24.2020.1
https://hal.science/hal-00861388
https://fse.studenttheses.ub.rug.nl/30711/
https://fse.studenttheses.ub.rug.nl/30711/
https://doi.org/10.1145/2159616.2159628
http://raytracinggems.com
https://jontyhurwitz.com/horse-rosso
https://jontyhurwitz.com/horse-rosso


[16] Kaushik Patowary. Anamorphic art by István Orosz. Amusing Planet, 21 April
2010. [Accessed: 11-07-2024). URL: https://www.amusingplanet.com/2010/04/

anamorphic-art-by-istvan-orosz.html.

[17] Louis Pratt, Andrew Johnston, and Nico Pietroni. Bending the light: Next generation
anamorphic sculptures. Computers Graphics, 114:210–218, 2023. URL: https://
www.sciencedirect.com/science/article/pii/S0097849323000778, doi:10.1016/
j.cag.2023.05.023.

[18] Javier Sánchez-Reyes and Jesús M. Chacón. Anamorphic free-form deforma-
tion. Computer Aided Geometric Design, 46:30–42, 2016. URL: https://

www.sciencedirect.com/science/article/pii/S0167839616300826, doi:10.1016/
j.cagd.2016.06.002.

[19] Chris S. van Wezel, Willard A. Verschoore de la Houssaije, Steffen Frey, and Jǐŕı
Kosinka. Virtual ray tracer 2.0. Computers Graphics, 111:89–102, 2023. URL:
https://www.sciencedirect.com/science/article/pii/S0097849323000067, doi:
10.1016/j.cag.2023.01.005.

[20] Willard A. Verschoore de la Houssaije, Chris S. vanWezel, Steffen Frey, and Jiri Kosinka.
Virtual Ray Tracer. In Jean-Jacques Bourdin and Eric Paquette, editors, Eurographics
2022 - Education Papers. The Eurographics Association, 2022. doi:10.2312/eged.

20221045.

20

https://www.amusingplanet.com/2010/04/anamorphic-art-by-istvan-orosz.html
https://www.amusingplanet.com/2010/04/anamorphic-art-by-istvan-orosz.html
https://www.sciencedirect.com/science/article/pii/S0097849323000778
https://www.sciencedirect.com/science/article/pii/S0097849323000778
https://doi.org/10.1016/j.cag.2023.05.023
https://doi.org/10.1016/j.cag.2023.05.023
https://www.sciencedirect.com/science/article/pii/S0167839616300826
https://www.sciencedirect.com/science/article/pii/S0167839616300826
https://doi.org/10.1016/j.cagd.2016.06.002
https://doi.org/10.1016/j.cagd.2016.06.002
https://www.sciencedirect.com/science/article/pii/S0097849323000067
https://doi.org/10.1016/j.cag.2023.01.005
https://doi.org/10.1016/j.cag.2023.01.005
https://doi.org/10.2312/eged.20221045
https://doi.org/10.2312/eged.20221045


A Code, Images, Files

A.1 JSON file scene descriptions

The word “Eye” denotes the camera and the numbers following between square brackets
give its position. “Objects” denotes the other two elements of the scene, the mirror and the
original object. The mirror is denoted by “type”:“x” where x can be a quad (flat mirror),
cylinder, or sphere. Depending on the type of mirror, the following additional information
will be given about it:

• “quad”: the four corner points of the plane will be given as vertices “vi”, where i = {
0, 1, 2, 3}.

• “cylinder”: “position” refers to the point at the centre of the object, “radius” gives the
value of the radius of the cylinder, “topPoint” and “bottomPoint” refer to the points
in the centre of the circles that bound the cylinder at its top and bottom.

• “sphere”: “position” refers to the point at the centre of the sphere, “radius” gives the
value of the radius of the sphere.

flat.json

1 {
2 "Eye": [2, -12, 8],

3 "Objects": [

4 {
5 "type": "quad",

6 "v0": [15, 0, 10],

7 "v1": [-15, 0, 10],

8 "v2": [-15, 0, 0],

9 "v3": [15, 0, 0]

10 },
11 {
12 "type": "mesh",

13 "position": [2, 10, 1]

14 }
15 ]

16 }

cylinder.json

1 {
2 "Eye": [0, -30, 15],

3 "Objects": [

4 {
5 "type": "cylinder",

6 "position": [0, 0, 10],

7 "radius": 10,

21



8 "topPoint": [0, 40, 10],

9 "bottomPoint": [0, 0, 10]

10 },
11 {
12 "type": "mesh",

13 "position": [0, 30, 1]

14 }
15 ]

16 }

sphere.json

1 {
2 "Eye": [0, -12, 5],

3 "Objects": [

4 {
5 "type": "sphere",

6 "position": [0, 0, 5],

7 "radius": 5

8 },
9 {

10 "type": "mesh",

11 "position": [0, 5, 1]

12 }
13 ]

14 }

A.2 OBJ file

An example of what an input object file exported from Blender looks like. Ideally, we would
an object that is formed out of many vertices. This input file will not have many vertices
since it is meant to be an example template.

cube.obj

1 # Blender 3.3.1

2 # www.blender.org

3 mtllib cube2.mtl

4 o Cube

5 v 1.000000 1.000000 -1.000000

6 v 1.000000 -1.000000 -1.000000

7 v 1.000000 1.000000 1.000000

8 v 1.000000 -1.000000 1.000000

9 v -1.000000 1.000000 -1.000000

10 v -1.000000 -1.000000 -1.000000

11 v -1.000000 1.000000 1.000000

12 v -1.000000 -1.000000 1.000000

22



13 vn -0.0000 1.0000 -0.0000

14 vn -0.0000 -0.0000 1.0000

15 vn -1.0000 -0.0000 -0.0000

16 vn -0.0000 -1.0000 -0.0000

17 vn 1.0000 -0.0000 -0.0000

18 vn -0.0000 -0.0000 -1.0000

19 vt 0.625000 0.500000

20 vt 0.375000 0.500000

21 vt 0.625000 0.750000

22 vt 0.375000 0.750000

23 vt 0.875000 0.500000

24 vt 0.625000 0.250000

25 vt 0.125000 0.500000

26 vt 0.375000 0.250000

27 vt 0.875000 0.750000

28 vt 0.625000 1.000000

29 vt 0.625000 0.000000

30 vt 0.375000 0.000000

31 vt 0.375000 1.000000

32 vt 0.125000 0.750000

33 s 0

34 usemtl Material

35 f 5/5/1 3/3/1 1/1/1

36 f 3/3/2 8/13/2 4/4/2

37 f 7/11/3 6/8/3 8/12/3

38 f 2/2/4 8/14/4 6/7/4

39 f 1/1/5 4/4/5 2/2/5

40 f 5/6/6 2/2/6 6/8/6

41 f 5/5/1 7/9/1 3/3/1

42 f 3/3/2 7/10/2 8/13/2

43 f 7/11/3 5/6/3 6/8/3

44 f 2/2/4 4/4/4 8/14/4

45 f 1/1/5 3/3/5 4/4/5

46 f 5/6/6 1/1/6 2/2/6

23



A.3 Models of different deformed objects

Figure 15 shows a model of a mummy hand deformed based on its reflection in a sphere
and a cylinder mirror. If we were to create a scene in VRT for them, the deformed object’s
position would differ a little bit from this scene. The mesh of the object has been found
online on a website that makes it possible to download the mesh for free [2]. Before we used
it, we had to triangulate the mesh in Blender and fit the object into the unit cube using the
C++ framework built. The mesh has 48994 vertices and 97984 triangular faces. A mesh of
a simple hand, a goat, a monkey head, and other more basic shapes can be found on the
GitHub repository of the C++ framework 4.

Figure 15: Deformed mummy hand.

4https://github.com/irinaB11/anamorphicRayTracer

24

https://github.com/irinaB11/anamorphicRayTracer

	Introduction
	Background and Related Work
	Ray Tracing
	Ray Tracing Visualisation Tools
	Anamorphic Art

	Requirements
	Methodology
	Tools and Languages
	The Framework
	The Objects
	VRT Level

	Results
	Conclusion
	Future Work
	Acknowledgements
	Code, Images, Files
	JSON file scene descriptions
	OBJ file
	Models of different deformed objects


