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Abstract: The building sector is one of the biggest contributors to climate change and greenhouse
gas emissions. However, there are numerous ways in which it can provide benefits to the electrical
grid, such as using solar photovoltaic generation for self-sufficient energy production. This study
investigates the effectiveness of different forecasting neural network models in order to optimize
carbon emissions and solar energy generation. Three different multi-input multi-output models
are considered: Multilayer Perceptron, Long Short-Term Memory, and Gated Recurrent Unit.
Each model is evaluated using four different criteria: RMSE score for carbon intensity forecasts,
RMSE score for solar generation forecasts, training time, and prediction time. The results indicate
minimal differences between the models, but the Gated Recurrent Unit achieves slightly lower
RMSE scores. However, Multilayer Perceptron is less complex and the training time is a lot
faster, with only a small increase in RMSE scores. Therefore, both models are viable options for
forecasting carbon intensity and solar generation.

1 Introduction

1.1 Motivation

Climate change and greenhouse gas emissions are
common and important topics of discussion, with
the building sector being a major contributor. De-
spite a 30% reduction in building-related emissions
in Europe since 2005, they still accounted for 35%
of energy-related emissions in 2021 (EEA, 2023).
This decrease was mainly caused by various

improvements such as better insulation or decar-
bonized heating and cooling systems. However,
while these measures reduce the emissions directly
caused by fossil fuel use, they often result in in-
creased electricity consumption. Therefore, unless
the energy is generated from renewable sources, the
emissions simply shift from the building sector to
the electricity sector.

Solar photovoltaic (PV) generation is an increas-
ingly popular method of reducing electricity loads
by providing a self-sufficient generation during
sunny days and storing the energy for other days.
In their analysis of the environmental impact of
PV power systems, Bošnjaković, Santa, Crnac, and
Bošnjaković (2023) showed that the emissions from
PV systems are significantly lower than emissions
from fossil fuel power plants. It is worth noting
that most of the CO2 emissions come from the pro-

The code of this project can be found in
the repository: https://github.com/MatejPriesol/

Forecasting-Carbon-Intensity-and-Solar-Generation

duction phase of PV systems. Depending on the
country, the energy payback in Europe is between
1 and 2.5 years, which is minimal compared to the
average 30-year lifespan of these systems.

To further highlight the importance of the topic
of climate change and carbon emissions, we might
consider the 2030 Agenda for Sustainable Develop-
ment, created and adopted by all United Nations
Member States in 2015 (UN, 2015). It provides a
blueprint for peace and prosperity for people and
the planet. The core of the agenda are 17 Sus-
tainable Development Goals, three of which are
directly related to climate change and sustainable
energy: Affordable and Clean Energy, Sustainable
Cities and Communities, and Climate Action.
The importance of minimizing CO2 emissions

can’t be underestimated, and the gradual shift
toward renewable energy is one of the means to
achieve that. However, these systems need to be
carefully managed to ensure high efficiency. There-
fore, understanding the factors that influence both
carbon emissions and solar generation is essential.
Furthermore, the ability to predict future measure-
ments can lead to fully optimizing these systems,
as being able to estimate carbon emissions or so-
lar generation would help with correctly managing
them.

1.2 State of Art

Forecasting carbon dioxide emissions is a relatively
well-studied topic, both in general and within the
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building sector. Oladokun and Odesola (2015) com-
pared various econometric, building physics, and
statistical methods for modeling household energy
consumption and carbon emissions. They noted
that these methods often struggle with capturing
the complex interdependencies and dynamic na-
ture of energy consumption and carbon emissions.
Therefore, the authors suggest using more robust
modeling approaches.

One such approach is the use of Neural Net-
works (NN). According to Swan and Ugursal (2009),
NN methods are not commonly used to model en-
ergy consumption due to their high computational
and data requirements. However, some studies
did successfully develop NN models. For instance,
Aydinalp, Ismet Ugursal, and Fung (2002) accu-
rately modeled and predicted appliance, lighting,
and space-cooling energy consumptions using NNs.
They found these models were also capable of accu-
rate predictions in households with unusually high
or low energy consumption. In a different study, Mi-
halakakou, Santamouris, and Tsangrassoulis (2002)
effectively used NNs to estimate the energy con-
sumption of residential buildings in Athens.

Conversely, deep learning approaches, including
NNs, are a lot more common and successful in solar
generation forecasting. A review of different fore-
casting methods for solar PV generation showed
that these methods outperform more traditional ap-
proaches (Sobri, Koohi-Kamali, and Rahim, 2018).
Different Artificial Intelligence (AI) methods were
considered, such as NNs or Support Vector Ma-
chines. Among more traditional approaches, sky
imagery or satellite imaging were analyzed. The
research showed that the AI models outperform the
traditional approaches, by reducing the prediction
error.

While previous research shows various techniques
for forecasting both carbon emissions in the housing
sector as well as solar generation using PV gener-
ation, they are often treated separately. However,
to properly study the effect of PV solar generation
on carbon emission and climate change, a unified
approach is necessary to better understand the
relationship between them.

This research aims to bridge the gap between
these two closely related topics by exploring the
forecasting techniques for both carbon emissions
and solar generation. This study is inspired by
an AIcrowd competition NeurIPS 2023 CityLearn
Challenge (AIcrowd, 2023). For the competition, a
dataset is provided with the goal of carbon emis-
sion and solar generation forecasting. Since the
competition had already finished, it is possible to
compare different modeling techniques utilized by
the winning participants.

Three different models were observed: Multi-
layer Perceptron (MLP), linear regression, and au-

toregressive models (NeurIPS, 2023). Interestingly,
Recurrent Neural Networks (RNN) like Long Short-
Term Memory (LSTM) and Gated Recurrent Unit
(GRU) were not used in any of the best-performing
models, despite being more suited for processing
sequential data (Goodfellow, Bengio, and Courville,
2016). Additionally, these models were built and
trained separately for solar generation and carbon
emissions.

In this study, an MLP model will be trained and
evaluated as a baseline model since it outperformed
the rest in the competition. Additionally, LSTM
and GRU models will be trained and compared
against the baseline. Each model will be trained
to forecast both solar generation and carbon inten-
sity at the same time to capture the relationship
between the data and its’ effect on both variables.
All models will be compared with each other to
determine which technique is best suited for carbon
emission and solar generation forecasting.

2 Theoretical Framework

As mentioned previously, simple statistical mod-
eling and traditional methods have struggled to
capture the more complex and dynamic nature of
energy consumption modeling, and more robust
approaches might be needed (Oladokun and Odes-
ola, 2015). One such approach is deep learning.
Deep learning models try to mimic the human
brain through the use of interconnected artificial
neurons organized in layers. These layers process
the data and enable the models to learn patterns
within the data. The typical structure includes an
input layer, hidden layers, and lastly an output
layer (Goodfellow et al., 2016).

2.1 MLP

The first implemented deep learning model is an
MLP, which is a type of feedforward neural net-
work, meaning that the information flows only in
one direction. In particular, starting with an input
layer, through one or more hidden layers, to the
output layer. There are no feedback connections,
therefore, the network does not retain any informa-
tion about the previous inputs (Goodfellow et al.,
2016). A simple diagram for an MLP architecture
is shown in Figure 2.1.

During the training process, input data is fed into
the network, and propagated through the layers.
Each neuron receives an input from a previous
layer, computes the weighted sum of these inputs
plus a bias, and the result is passed through an
activation function to the next layer. Once an
output is reached, the loss is calculated. Through
the process of backpropagation, the weights and
biases are adjusted using gradient descent. This

2



Figure 2.1: Example structure of an MLP con-
sisting of an input layer, a single hidden layer,
and an output layer. The figure was taken from
Zhao et al. (2015).

iterative process allows the model to learn patterns
in the data.

There are two possible issues with MLPs in the
context of time-series forecasting. First, MLPs
can suffer from a vanishing gradient problem. As
gradients of the loss function propagate backward
through the network, they can become extremely
small due to the use of sigmoid or hyperbolic activa-
tion functions, effectively vanishing in deep neural
networks. Second, the lack of recurrent connec-
tions makes the MLPs less suited for sequential
data, as the model cannot learn long-term depen-
dencies between the data points. Despite these
possible issues, the simple architecture of MLPs
allows for fast training times and makes the model
less complex compared to RNNs.

2.2 LSTM

To address the vanishing gradient problem and
allow the model to learn long-term dependencies
between the data, RNNs are considered. A diagram
for an RNN architecture is visible in Figure 2.2.
The first RNN implemented is the LSTM. The

biggest difference between an MLP and an LSTM is
that LSTMs contain memory cells. These memory
cells allow LSTMs to maintain information over
long sequences of data. The internal state of a
memory cell can be updated over time, enabling
the network to retain past information and carry
it forward (Goodfellow et al., 2016).
LSTMs use a gating mechanism to control the

flow of information into and out of the memory
cells (Figure 2.3). There are three gates responsible

for the flow of information: the input gate, the
forget gate, and the output gate. The input gate is
responsible for updating the cell state, it regulates
the flow of information into the memory cell. The
forget gate controls whether information in the
memory cell is retained or discarded. Lastly, the
output gate determines what information is passed
on to the next time step.

2.3 GRU

The final type of NN considered in the project is a
GRU. Like LSTMs, GRUs are a type of RNN that
can learn and maintain long-term dependencies in
the data. However, the gating system of a memory
cell is different from an LSTM. Rather than three
different gates, it only contains two: the update
gate and the reset gate. The update gate controls
the amount of old information that is retained,
combining the functions of input and forget gates
in an LSTM. The reset gate then controls how much
of the past information is forgotten (Goodfellow
et al., 2016).

GRUs are considered to be less complex than
LSTMs due to the simpler architecture consisting
of only two gates and no separate cell state. De-
spite this simpler architecture, GRUs are capable
of capturing the long-term dependencies of the se-
quential data. Depending on the dataset, they can
sometimes outperform LSTMs with faster training
times and lower complexity.

3 Methods

3.1 Task

To determine the most appropriate model for fore-
casting carbon intensity and solar generation, three
different models are considered: MLP, LSTM, and
GRU. Due to the potential limitations of MLP
when handling sequential data, the MLP is con-
sidered as the baseline model against which the
LSTM and GRU are compared.

All models are trained on the same dataset and
evaluated using the same evaluation data. The
performance of each model is assessed using the
following 4 metrics: the RMSE score of carbon
intensity forecast, the RMSE score of solar gen-
eration forecast, the training time, and lastly the
prediction time. The formula for calculating the
RMSE score can be seen in Equation 3.1,

RMSE(y, ŷ) =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.1)

where n is the number of data points, ŷ is the pre-
dicted observation, and y is the actual observation.
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Figure 2.2: And RNN architecture with a single output at the end of the sequence. At each timestep
t, xt represents the input, ht is the hidden layer activation, ot represents the output, yt is the target,
and the loss is Lt. U, V, and W, are the weight matrices for input-to-hidden, hidden-to-output. and
hidden-to-hidden connections, respectively. The figure was taken from Goodfellow et al. (2016).

The RMSE score is an important indicator of
the model’s accuracy since it measures the average
distance between the predicted and actual values.
When dealing with large deep-learning models, the
training and prediction times are important indi-
cators of the model complexity, and therefore, are
also considered.

All models are using the same window approach
for the forecast. A period of 48 hours is used as
an input to the model, while the next 24 hours are
used as an output.

3.2 Data

The data for this project was taken from the
AICrowd CityLearn Challenge 2023 (AIcrowd,
2023).

The available data comprise multiple datasets,
each consisting of 720 rows representing a measure-
ment from a specific hour. In total, there are 30
days of data, spanning the whole month of June.
The first three datasets provide information

about three different buildings in the same neigh-
borhood. The building data consists of 15 different
features such as time of the day, indoor temper-
ature and humidity, and solar generation among
other things.

Additionally, a dataset containing weather mea-
surements from the corresponding area is provided,
comprising 16 different features, including in-depth
information about humidity, temperature, or solar
radiation.

Lastly, datasets providing information about elec-
tricity pricing and carbon intensity are also in-

cluded.

3.3 Data Preprocessing

3.3.1 Dependent variables

The models forecast two separate features: Carbon
Intensity (CI) and Solar Generation (SG). CI is
already provided in one of the datasets and the SG
is included for each building separately. Therefore,
a new feature is created where the mean SG over
the three buildings is calculated, and the separate
measurements are removed.

3.3.2 Data cleaning

The data was explored for potential outliers and the
necessary steps for data cleaning. The dataset had
no missing or null values, and all data points were
in consecutive order without any hours skipped.
While some variables showed minor fluctuations,
there weren’t any unreasonable values to suggest
potential recording errors. Therefore, all values
were kept. Features with constant values were
removed, and all datasets were combined into a
single one.

3.3.3 Training, Validation, and Evaluation

Because no separate evaluation data was provided
in the competition, the evaluation dataset was cre-
ated from the existing data. Additionally, a valida-
tion dataset was also created to evaluate different
model architectures.

4



Figure 2.3: Block diagram of the LSTM gating
mechanism. An input feature is computed with
an artificial neuron unit. The state unit has
a self-loop which is controlled by the forget
gate, and the black square represents a delay
of one time step. The figure was taken from
Goodfellow et al. (2016).

Considering the whole dataset consists of only
720 data points, it was important to maximize the
number of data points in each set. As previously
mentioned, 48 hours are used to forecast the follow-
ing 24 hours. This allows for an overlap between
the sets without introducing a bias. The last 24
data points from the training set were also included
in the validation set, serving only as an output in
the training set, and only as an input in the vali-
dation set. The same procedure was repeated for
the last 24 data points of the validation set, which
were added to the evaluation set.

As a result, three datasets were obtained. The
training set consisted of 576 data points and was
used to train the model. The validation set con-
sisted of 96 data points and was used to evaluate
different model architectures to determine the best-
performing one. Lastly, the evaluation set, also
consisting of 96 data points, was used to assess the
most accurate model architecture.

3.3.4 Input-Output batches

The final step in the training, validation, and eval-
uation split, was to organize the data into input-
output batches that could be used during the sepa-
rate phases. Each batch consisted of 48 input data
points and the immediately following 24 output

data points. This resulted in 505 batches for train-
ing, 25 batches for validation, and 25 batches for
evaluation.

There were two main reasons for creating these
batches. First, it ensured the correct input-output
pairs. Since the models use a 48-hour window to
forecast the following 24 hours, each batch had to
follow the specified shape. Second, it transformed
the data into a correct shape accepted by all three
models.

3.3.5 Data Normalization

Some features had largely varying scales as visible
in Figure 3.1. The features in the plot were selected
to highlight this trend, but many other features
showed similar or even bigger ranges. Therefore, it
was important to normalize the data to ensure a
similar scale for each feature. Otherwise, certain
features could dominate the learning process.

Figure 3.1: Distribution of selected variables.
Because the range of CI and Indoor Tempera-
ture is very small, the figure also contains zoom
on these parts to better visualize the differences.

The data was normalized using the min-max
normalization approach. The formula for min-max
scaler can be seen in Equation 3.3,

v′i =
vi −mintrain(v)

maxtrain(v)−mintrain(v)
(3.2)

where v′i is the normalized value, vi is the original
value, mintrain(v) is the minimum value from the
training set for a specific feature v, andmaxtrain(v)
is the maximum value from the training set for a
specific feature v.

To prevent information leakage between the train-
ing phase and the validation or evaluation phase,
it is important to highlight that the minimum and
maximum values for each feature were taken from
the training set. The normalization process was
then applied to all three sets using the same mini-
mum and maximum measurements.
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3.3.6 Feature Selection

To select the features used for the model, the ab-
solute value of the Pearson Correlation Coefficient
was used,

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(3.3)

where r is the correlation coefficient, x and y are
two specific variables from the dataset that are
being correlated, xi is the value of x-variable from
the sample, x is the mean of the values of the
x-variable, yi is the value of y-variable from the
sample, and y is the mean of the values of the
y-variable.

All variables were correlated with CI and in-
cluded in case the absolute value was > 0.4. This
threshold was determined through empirical test-
ing on the validation set. A correlation heatmap
displaying the 10 features most correlated with CI
is shown in Figure 3.2.

Figure 3.2: Heatmap of Pearson correlation for
the 10 most correlated variables with CI

3.4 Models

3.4.1 Model Architecture

All three networks in the project are multi-input,
multi-output models. Multiple features are used as
input for each network, and two different dependent
variables are forecasted. Therefore, a multi-input,
multi-output model architecture is appropriate to
use. For all three models, there is a shared input
layer, as well as other optional shared layers, such
as preprocessing layers for the MLP. Each model
has two different heads with separate hidden layers,
each head corresponding to one of the dependent
variables. There are also two separate output lay-
ers. A general multi-input, multi-output model
architecture is visible in Figure 3.3.

Figure 3.3: Generalised multi-input, multi-
output model architecture with separate heads
for each output variable

During the training phase, cross-validation was
used to help prevent over-fitting of the model.
Given the nature of a time-series forecast, a cross-
validation on a rolling basis was used. Therefore,
the data used for the validation in each fold always
follows the data used for training. Additionally, to
ensure similarity to the output shape, only 24 data
points are used as the validation data in each fold.

Early stopping was used to minimize overfitting.
In case the validation error starts increasing, the
model is possibly overfitting on the training data,
and therefore, the current fold in the training pro-
cess terminates. Because the model has two sepa-
rate heads leading to two separate forecasts, two
different validation loss values are calculated in
each epoch: one for CI, and one for SG. The sum
of these two values is then considered for early
stopping.

3.4.2 Model Architecture Evaluation

The best model architecture was chosen through
empirical testing based on the model performance
on the validation data. This was achieved through
a grid search for different hyperparameters. The fol-
lowing hyperparameters were considered and tuned:

1. Number of hidden layers: 3, 4, and 5

2. Number of neurons: 192, 96, 48, or 24

3. Number of folds for cross-validation: 3, 4, or 5
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4. The patience parameter: 4, 5, 6, 7, or 8

5. Number of epochs: 20, 50, 100

6. Activation functions: ReLU, Tanh, or Leaky
ReLu. ReLU scales the output to the range
[0,∞) and Tanh to the range of (−1, 1). Leaky
ReLU is also considered since it may help with
diminishing the vanishing gradient problem
(Yilmaz and Poli, 2022). It scales the output
to the range (−∞,∞).

All the different models were compared based
on the RMSE score for both CI and SG on the
validation data. As previously mentioned, there
were 25 forecasts in total for each model architec-
ture. Therefore, the average RMSE score over all
25 forecasts was calculated,

Avg RMSE =

∑n=25
i=1 RMSEi

n
(3.4)

where RMSEi is the RMSE score for i -th predic-
tion calculated using the formula in Equation 3.1,
and n is the number of forecasts, in this case, 25.

The average RMSE was calculated for CI and SG
and then summed. The model architecture with the
lowest combined RMSE value was then selected as
the final model. After the model architectures were
determined, all models were evaluated using the
evaluation data. Similar to the validation process,
the average RMSE score for both CI and SG was
calculated. Additionally, the total training time, as
well as prediction time (the time it takes to predict
a single forecast) were considered.

4 Results

4.1 Model architecture selection

To determine the best-performing model, differ-
ent architectures were evaluated using the RMSE
score metric for both CI and SG. Different hyper-
parameter combinations and the whole process are
described in Section 3. Most hyperparameters were
shared between all three models, in particular, all
models had 3 hidden layers, 4 folds were used for
cross-validation, the patience parameter was set
to 4, the number of epochs was set to 50, and the
activation function was Leaky ReLU. The models
differed in the number of neurons in each layer.
The MLP performed best with the number of neu-
rons set to 192, 96, and 48 in the 3 hidden layers,
respectively, while LSTM and GRU had the num-
ber of neurons set to 48, 48, and 24. The results
for all three models are shown in Table 4.1.
After determining the best-performing architec-

tures, the models were run on the evaluation data.
In addition to RMSE scores for CI and SG, the
training time and average prediction time were also
considered. The results are shown in Figure 4.2.

RMSE SCORE MLP LSTM GRU
Carbon Intensity 0.1067 0.1586 0.1124
Solar Generation 0.056 0.064 0.042

Table 4.1: RMSE scores for the best-performing
models ran on the validation data

MLP LSTM GRU
Carbon Intensity 0.1389 0.131 0.1265
Solar Generation 0.057 0.0605 0.0405
Training time (s) 13.662 97.786 78.208
Prediction time (s) 0.103 0.121 0.076

Table 4.2: RMSE scores, training time, and
prediction time of the best-performing models
ran on the evaluation data

4.2 Qualitative Results

As previously mentioned, there were 25 forecasts
in total, each shifted by one hour. 3 example pre-
dictions over the whole range are plotted for vi-
sualization purposes, one from the beginning, one
from the middle, and one from the end. Example
CI forecasts are visible in Figure 4.1, and example
SG forecasts are visible in Figure 4.2. Additional
predictions for both variables can be found in the
Appendix (A).

By looking at the visual results, it is hard to spot
any significant difference between the models. The
patterns for models are relatively similar to each
other. There are some small variations between the
models, but none of them look a lot worse compared
to the others. The models seem to forecast the SG
a lot more accurately than the CI.
For CI, all models seem to learn approximately

the same pattern. For the first half of predictions,
this pattern aligns well with the actual data. How-
ever, for the second half of predictions, all models
are a bit off compared to the actual data. While
the general pattern is maintained, the predictions
are shifted back by a few hours.

Regarding SG, there doesn’t seem to be any drop
in performance for later predictions. The general
pattern is maintained, as well as the location of the
spikes in generation. All models approximate the
actual data very well, to the point where it might
be difficult to distinguish one from another.

4.3 Quantitative results

Statistical tests were performed to determine
whether there was a difference between the RMSE
scores of each model across the 25 forecasts. How-
ever, it is important to note that while the RMSE
score is a significant indicator of model quality,
it is not the only determinant. Both dependent
variables, as well as training and prediction times,
have to be taken into account. Additionally, model
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Figure 4.1: Forecast for the CI over the 25 predictions

Figure 4.2: Forecast for the SG over the 25 predictions

complexity should also be considered. The purpose
of this quantitative analysis is to gain a better un-
derstanding of the model performance in terms of
RMSE scores; considering the scores are very simi-
lar to each other as visible in Table 4.2, it can be
difficult to visualize and understand the difference.

To determine the appropriate statistical method,
the Shapiro-Wilk normality test was conducted.
The results indicated that RMSE scores for CI
might not follow a normal distribution, with similar
findings for the MLP model for SG. Both LSTM
and GRU showed no evidence of non-normality.
Table 4.3 summarizes the Shapiro-Wilk test results.
Therefore, a non-parametric Wilcoxon signed-rank
test was used to compare the RMSE scores for CI,
while a parametric two-sided paired t-test was used
to compare the RMSE scores for SG.

For CI, a Wilcoxon signed-rank test was applied
to all three combinations of models: MLP-LSTM,
MLP-GRU, and LSTM-GRU. The results are visi-
ble in Table 4.4.

For SG, a two-sided paired t-test was applied
to all three combinations of models: MLP-LSTM,
MLP-GRU, and LSTM-GRU. The results are visi-
ble in Table 4.5.

The RMSE score analysis for CI suggests that
both LSTM and GRU perform significantly better

Model and Variable Test-statistic P-value
MLP - CI 0.879 0.00753
LSTM - CI 0.831 0.00099
GRU - CI 0.845 0.00179
MLP - SG 0.889 0.01261
LSTM - SG 0.922 0.0645
GRU - SG 0.959 0.4111

Table 4.3: Overview of the Shapiro-Wilk Nor-
mality test results

Combination W p-value Result
MLP-LSTM 77 0.03665 Yes
MLP-GRU 74 0.02913 Yes
LSTM-GRU 89 0.08392 No

Table 4.4: Wilcoxon signed-rank test results

Combination t-statistic p-value Result
MLP-LSTM -0.33801 0.73841 No
MLP-GRU 3.25957 0.00345 Yes
LSTM-GRU 5.6578 < 0.00001 Yes

Table 4.5: Two-sided paired t-test results
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than MLP, with no significant difference between
LSTM and GRU. The RMSE score analysis for
SG suggests that GRU performs significantly bet-
ter than both MLP and LSTM, while there is no
significant difference between MLP and LSTM.
During the training phase, both training and

validation losses were observed and plotted. An
example training graph from the first fold of MLP
is visible in Figure 4.3. A similar pattern was
observed also for LSTM and GRU models, with
detailed plots for the remaining folds and other
models included in the Appendix (B).

Figure 4.3: An example training and validation
error from the first fold of the MLP training.

5 Discussion

5.1 Model Performance

The models were evaluated using four different
metrics: RMSE score for CI, RMSE score for SG,
training time, and prediction time.
For all three models, there is a noticeable dif-

ference between the RMSE score for the CI and
SG within the model. This can be attributed to
the pattern of both dependent variables. The CI
pattern is quite complex and contains a lot of small
drops and spikes, while the pattern for SG is a lot
smoother and repetitive, as shown in Figure 5.1.
As a result, the models are more likely to learn
and predict the behavior of SG, resulting in lower
RMSE scores.

While looking at the difference in RMSE scores
between CI and SG within the models gives us
useful insight into the model performance and the
nature of the data, comparing these scores between
the models is crucial for evaluating their relative
performance.

The RMSE scores for CI are fairly similar across
all three models, with MLP performing the worst
and GRU performing the best. As the quantitative
analysis showed, despite GRU having the lowest
score, there was no significant difference between

Figure 5.1: First 75 samples for the dependent
variables CI and SG. The data is normalized to
show the difference in the pattern more clearly.

LSTM and GRU. However, both models performed
better than MLP. These results align with the
expectations, considering RNNs are better suited
for handling sequential data. The more complex
pattern of CI was likely better captured by the
more complex LSTM and GRU models.

Similarly, the RMSE scores for SG are also very
close to each other for all three models. Once again,
GRU performed the best, and interestingly, LSTM
performed the worst. Based on the quantitative
analysis, GRU performed significantly better than
both MLP and LSTM, but there was no significant
difference between MLP and LSTM. The improved
performance of the MLP could be due to the rela-
tive simplicity of the SG pattern. It is likely that
despite not having any recurrent connections, the
MLP architecture was able to learn the underlying
pattern relatively well.

Another factor to consider is the dataset used for
training. With 720 observations and only 505 input-
output training batches from the same month, the
range of the data is relatively small and narrow.
While this dataset provided a solid foundation for
model training, the simplicity of the data may have
contributed to the minimal differences observed
between the models.
Regarding training time, the results were as ex-

pected. The MLP required significantly less train-
ing time than LSTM and GRU due to its simpler
architecture. Additionally, GRU trained a little bit
faster than LSTM.
In terms of prediction times, GRU was the

fastest, followed by MLP, and lastly LSTM. How-
ever, since these times were all close to 0.1 seconds,
the differences are negligible unless a large number
of predictions are made simultaneously.

5.2 Feature selection

As mentioned previously, the features were selected
using a Pearson Correlation Coefficient. In particu-
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lar, all features were correlated against CI using a
0.4 threshold. If the absolute value of the correla-
tion exceeded this threshold, the feature was added
to the list of independent variables. Additionally,
duplicate features were removed (for example, the
feature depicting the current hour was in all three
building datasets, but it was kept only once).

The choices of the 0.4 threshold and the exclu-
sion of SG from the correlation comparison were
made based on the empirical testing on the training
set. Lowering or increasing the threshold led to a
decrease in model performance, especially for CI.
Increasing the threshold led to a smaller list of in-
dependent variables which did not provide enough
information for the models. Conversely, decreasing
the threshold introduced a lot of noise to the train-
ing process, preventing the models from accurately
learning the patterns.

Similarly, including SG in the correlation com-
parison led to the inclusion of a lot more features.
Due to the relative simplicity of the SG pattern,
more features correlated well with it. This had
the same effect as decreasing the threshold for CI:
an unnecessary noise was added to the training
process and the models struggled with learning the
correct patterns for CI.

It is noteworthy that adding these features had a
positive effect on the RMSE score for SG. However,
due to the relative simplicity of the pattern, the
RMSE score for SG was already a lot lower than
that of CI, resulting in only a minor decrease. On
the other hand, the increase in the RMSE score for
CI was more substantial, and therefore, the overall
RMSE of the model would not improve.

The weather dataset was the most influential
one. Variables like Outdoor Drybulb Temperature,
Outdoor Relative Humidity, or Direct Solar Radia-
tion were all included in the independent variables.
Apart from the weather dataset, the information
about the current hour and the number of occu-
pants in the house were also highly correlated.

The influence of the weather dataset was ex-
pected considering its close relation to electricity
consumption and, consequently, to both CI and
SG. For example, higher outdoor temperatures
might indicate sunny days, leading to higher SG.
Additionally, it could lead to increased electricity
consumption if the buildings have air conditioning.
The effect of the current hour was also anticipated
as it can be used to determine whether it is a day
or night. This likely affects CI, considering that
electricity usage is typically lower when people are
sleeping compared to the daytime. This effect is
even more evident in SG which is also visible from
the repetitive pattern. Energy is being generated
during the day, but not during the night. The
number of occupants was likely connected to CI,
as more people in the house at a given time would

lead to increased electricity consumption.

5.3 Overfitting

Despite exploring different combinations of the
number of epochs, number of folds, and the pa-
tience parameter for early stopping, all three mod-
els seem to overfit the training data. This trend
is particularly evident in the second fold of the
MLP training, where small improvements in train-
ing error were observed, but the validation error
steadily increased, as shown in Figure 5.2. This
suggests a possible overfitting as the model was
likely learning patterns specific to the training set
that were not present in the validation set. With
the patience parameter set to 4, the second fold
ran for 27 epochs, occasionally improving the val-
idation error, but the overall trend indicated an
increase. A similar pattern was observed for the
second fold in the LSTM model. The remaining
folds and models can be found in Appendix (B).

Figure 5.2: Possible overfitting during the MLP
training process.

Interestingly, despite the possible overfitting, the
models still showed overall improvement. Reducing
the patience parameter resulted in the training
process terminating quickly and a significant drop
in overall performance. A possible explanation
could be due to the simplicity of the data. Since
there are only 505 input-output training batches
and 7 features, the models may be able to learn the
underlying patterns fairly accurately and the noise
from the training data does not have a significant
effect.

This raises the question of the necessity of cross-
validation. Given the simplicity of the dataset and
the rapid overfitting, could training the models
on the entire training dataset for a set number of
epochs yield better performance? Empirical test-
ing suggests this might be a viable option. While
none of the models without cross-validation outper-
formed the current models, there was not a large
difference between the RMSE scores. Additionally,
the removal of cross-validation led to a decreased
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training time. For future research, it would be
interesting to run a more statistical and thorough
comparison to determine if cross-validation is even
needed in this particular case.
That being said, it is worth noting that cross-

validation is generally an essential part of deep
learning. While in this particular case, the mod-
els without cross-validation performed comparably
with the current models, this was likely due to
the simplicity and the small size of the dataset
(with only 720 entries and three buildings). In
larger applications, cross-validation would likely be
necessary to ensure a robust training process.

6 Conclusions

As discussed in previous sections, both LSTM and
GRU performed better than MLP when forecast-
ing the more complex CI, and GRU performed
better when forecasting SG. However, it is impor-
tant to note that the differences were relatively
small and the RMSE is not the only metric of eval-
uation. In terms of training times, MLP trained
approximately 6 times faster than LSTM and GRU.
Although this difference might be negligible with
the current dataset, where even the slowest model
trained in under two minutes, it could become sig-
nificant in large applications.
Deep learning is often applied to much bigger

datasets, resulting in more complex models. This
can significantly increase the time required not only
to train the model but also to generate predictions
once deployed. For example, if the data were ex-
tended with information from other months, more
frequent observations, or more buildings, the faster
MLP training time would become more significant.
On the other hand, including more data might

better highlight the benefits of RNNs in handling
sequential data. Therefore, it is difficult to conclude
which model performs the best overall. However,
with respect to the dataset used, arguments can be
made in favor of both GRU and MLP.

GRU had the lowest RMSE score for both CI and
SG and also trained faster than LSTM. However, if
training time is prioritized, MLP could be a viable
option. Despite being outperformed by both LSTM
and GRU in the CI forecast, and by GRU in the
SG forecast, the differences were relatively small,
making MLP a reasonable choice.

For future research, extending the dataset should
be the primary focus. While the current data pro-
vides an initial understanding of all models and
the behavior of each feature, a significantly larger
dataset is needed to simulate a real-world scenario.
However, there are still many valuable insights to
be gained from the current experiment.
First, this study demonstrates the different ef-

fects and significance of different data features, par-

ticularly highlighting the importance of weather
information in carbon emissions and solar gener-
ation forecasting. Second, it explored the differ-
ent model behaviors. It showed the possibility of
building models that can accurately forecast both
variables, rather than handling them separately.
Lastly, the study concluded that NNs are a viable
option for this forecasting task. Despite the limited
data, all models predicted carbon emissions and
solar generation with accuracy.
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A Appendix

Additional examples of predicted CI values. Due to the large number of predictions, only half were
selected.

Figure A.1: Overview of the forecasts from the MLP, LSTM, and GRU models compared with
actual CI values.
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Additional examples of predicted SG values. Due to the large number of predictions, only half were
selected.

Figure A.2: Overview of the forecasts from the MLP, LSTM, and GRU models compared with
actual SG values.
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B Appendices

Validation loss plotted over the 4 folds of the training process for the MLP model. The validation and
train error are summed for the CI and SG variables.

Figure B.1: MLP validation loss during the training
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Validation loss plotted over the 4 folds of the training process for the LSTM model. The validation and
train error are summed for the CI and SG variables.

Figure B.2: LSTM validation loss during the training
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Validation loss plotted over the 4 folds of the training process for the GRU model. The validation and
train error are summed for the CI and SG variables.

Figure B.3: GRU validation loss during the training
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