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Abstract: This study explores the possible benefits of using a bluffing strategy in the bidding
phase of the game Skull and Roses, an imperfect information game that has many similarities
with other games such as Poker. By simulating various game scenarios using Python and rein-
forcement learning agents, the research aims to determine whether bluffing provides a statistical
advantage to the player when compared to strategies that do not employ bluffing. Essential con-
cepts such as game theory, reinforcement learning, Q-Learning and Theory of Mind (ToM) are
discussed in order to provide a theoretical foundation for the study. I hypothesize that bluffing
will outperform the non-bluffing strategies or at the very least provide similar performance to
them. The results were extracted over a total of 100 individual simulations, containing 1000
game rounds each, for each game scenario. After analysis, the results show that the agents that
are using the bluffing strategy are slightly outperforming those that do not, demonstrating a
statistically significant advantage. Therefore, this outcome is in line with the hypothesis. How-
ever, a key discovery has been made in the testing phase: bluffing is only beneficial when used
alongside specific card layouts such as the last placed card being a Skull. This hints that there is
a very close relation between bluffing and the first phase of the game. These findings contribute
to a deeper understanding of strategic decision-making in complex, imperfect information games.
Further research is needed in order to find out if the bluffing strategy can be further improved
by implementing Reinforcement Learning in all game phases.

1 Introduction

This study explores the strategic decision-making
process in imperfect information games, with a par-
ticular focus on the concept of bluffing. The study
uses the game Skull and Roses (Marly, 2011) as a
case study to investigate whether bluffing can pro-
vide a statistical advantage to players. By simu-
lating various game scenarios with AI agents em-
ploying different strategies (regular Q-Learning, en-
forced bluffing and forbidden bluffing), this re-
search aims to contribute to a deeper understand-
ing of the effectiveness of bluffing in strategic
games. The following sections will introduce essen-
tial concepts such as game theory, reinforcement
learning, and Theory of Mind (ToM), which form
the foundation for analysing and developing strate-
gies in Skull and Roses. Lastly, the results of the

experiment will be showcased and discussed in or-
der to reach a conclusion.

1.1 Introducing Concepts

1.1.1 Game Theory

The mid 20th century saw the birth of a new branch
of applied mathematics, called game theory. Its
purpose was to analyse decision-making processes
found in games such as Chess in order to model
strategies that could be applied in the real world in
various fields. As a result of the emergence and de-
velopment of this novel theoretical framework many
fields saw considerable advancements (Dufwenberg,
2011). Some examples of fields that benefited from
advancements made in game theory are computer
science, economics and biology.
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The beginning of experimentation with Artifi-
cial Intelligence in games happened roughly at the
same time as the field of game theory was gain-
ing traction, the mid 20th century, when scientists
attempted to simulate a chess player. A few no-
table instances of AI being successfully applied in
games are IBM’s DeepBlue model that managed
to win against the chess world champion in 1997
(Campbell et al., 2002) as well as Google’s AlphaGo
model that successfully won against an experienced
Go player in 2016. Recently, a new version called
AlphaGo Zero defeated the previous AlphaGo ver-
sion without domain knowledge or human guid-
ance. (Silver et al., 2017)

1.1.2 Perfect & Imperfect Information

Games can be broadly categorised into two types:
perfect information games and imperfect informa-
tion games. The first one refers to games where all
players know all the information about the current
state of the game; such games include Chess and
Go, where the players can view the whole board at
any moment, including the opponent’s pieces. The
only unknown in perfect information games is the
strategy that each player employs. In contrast, im-
perfect information games refers to games where
not all information is disclosed to all players (such
as the types of cards each player is holding, their
decisions and strategy etc). Among others, such
games include Poker and Skull and Roses; in both
of these games players will not know each other’s
cards or decisions until the end of the round when
the cards are revealed. Implementing an AI model
on this type of game poses significant challenges
compared to a perfect information game (Schofield
& Thielscher, 2019). This is happening because the
complexity of an imperfect information game is
much higher. However, this complexity is the very
reason why their study is important. This is be-
cause these types of games more closely resemble
the complexity found in real life scenarios from var-
ious human-driven fields and industries.

1.1.3 Reinforcement Learning

Reinforcement learning (RL) is a branch of
machine learning that emerged as an effective
method of implementing Artificial Intelligence in
various types of problems, including imperfect

information games. When reinforcement learning
(RL) is implemented correctly, agents acquire the
ability to make decisions by executing actions
and receiving rewards upon the completion of the
specified task, thereby incrementally enhancing
their strategies through a process of trial and error
(Kaelbling et al., 1996). If the task was completed
successfully (or better than in the last attempt),
then the reward is higher. A lower reward or a
negative reward is awarded if the task was not
completed successfully (or worse than in the last
attempt). This iterative process encompasses
essential elements including agents, states, actions,
rewards, and policies.

Q-Learning is a widely used reinforcement learning
algorithm that enables agents to learn the best
strategies by updating a Q-Table, which estimates
the value of actions in specific situations (also
called states) (Jang et al., 2019). Furthermore,
the correct balance between exploration (trying
new actions) and exploitation (choosing the best
known actions) is crucial for efficient training
and can be set through the parameter “epsilon”.
A higher epsilon value will promote exploration,
meaning that the agent will attempt to find new
(and potentially better) strategies. A lower epsilon
value will promote exploitation, meaning that the
agent will take advantage of the information it
has already gathered about strategies and use the
best one found so far. Exploration is especially
necessary in multi-agent settings because the
values of actions can change over time due to the
dynamic interactions between agents (Buşoniu et
al., 2008).

1.1.4 Theory of Mind

An essential concept related to strategic decision-
making in games is Theory of Mind (ToM). ToM
refers to the ability to attribute mental states such
as beliefs, intents, and desires to another agent
(Yoshida et al., 2008).

In the context of games, ToM enables players
to predict and interpret the actions of their
opponents by trying to mentally simulate what the
opponent is thinking and take advantage of that.
This is particularly important in games involving
deception, like Skull & Roses, where players must
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anticipate how their actions will be perceived by
others. For example in Poker, if Theory of Mind is
applied correctly in the scope of bluffing, a player
could bet everything in hopes of demoralising its
opponent and forcing them to fold.

Theory of Mind level zero refers to the scenario
when a person is making decisions based on the be-
havior of another person (as exemplified in Figure
1.1).

Figure 1.1: Theory of Mind - Level 0

Continuing the ToM hierarchy, starting with
ToM 1, recursive reasoning becomes paramount.
Theory of Mind level one entails person ’A’
thinking about what person ’B’ will think of their
actions, and making a decision based on that
(Figure 1.2). The bluffing we will be discussing in
this research falls under the ToM level 1 category.
More precisely, in the process of bluffing, player ’A’
(the bluffing player) will think about how player
’B’ will interpret their actions and how that will
reflect in the choices that player ’B’ will make.

For an ideal bluffing round the following sce-
nario would play out: player ’A’ is placing a bet
higher than their maximum safe bid, player ’B’ will
assume that player ’A’ is playing a safe bet, and
therefore increase the bid once again, effectively
falling in the trap laid by player ’A’.

Figure 1.2: Theory of Mind - Level 1

ToM level 2 (Figure 1.3) takes bluffing to an even
more advanced level: continuing the Poker example
provided earlier, if we know we successfully bluffed
in the past by betting everything, when playing
with the same opponent in the future, we can bet
everything again when the cards are in our favour.
This way, the opponent will believe that we are
bluffing, but in fact we are not. Both Tom 1 and
ToM 2 are forms of recursive reasoning that can be
useful when modelling reinforcement learning for
the scope of finding the best strategies in a game.

Figure 1.3: Theory of Mind - Level 2

A player that makes use of the bluffing strategy
deceives opponents regarding the true worth of
their hand or decisions. This approach is thor-
oughly investigated in card games like poker, where
a player’s chances of winning can be significantly
enhanced with adept bluffing (Guazzini & Vilone,
2013). Bluffing necessitates players to meticulously
assess the risk and reward, since they must weigh
the possibility of their deception being exposed.

1.2 Skull and Roses

Skull and Roses was designed by Hervé Marly in
2010 and falls under the imperfect information
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category of games. It encompasses various mechan-
ics that are similar to the game of Poker, such as
bidding and revealing the cards at the end of the
round.

As previously stated, it provides a very good
foundation for artificial intelligence research due
to its complexity. Furthermore, the number of
rules is relatively small but at the same time, the
game allows space for a high number of possible
strategies that could be employed.

Figure 1.4: The cards used in Skull & Roses.
Each player starts with a hand of: 1 Skull card
and 3 Rose cards.

In Skull and Roses, each player starts with
four cards: three roses and one skull (Figure
1.4). The game progresses in three phases: card
placement, bidding, and card-flipping. During the
card placement phase, players take turns placing
one card face down on a personal stack until
everyone has placed at least one card. In the
bidding phase, players bid on how many cards they
believe they can flip without revealing a skull, with
the highest bidder becoming the ’challenger’. In
the card-flipping phase, the challenger is required
to reveal the same number of cards as their bid
value, starting by first flipping over all of their
own cards and then moving on to the opponent’s
cards. Revealing a skull results in losing the round,
while successfully flipping the required number of
cards without revealing any skulls wins the round.
This study focuses on the strategies related to the
bidding phase, where bluffing plays a crucial role.

Strategies in Skull & Roses don’t solely revolve
around the bidding phase, however in this study
the focus will be on the strategies related to the
bidding phase (second stage of the game) because
that is where the possibility of bluffing comes into
play. While choosing a strategy, players must decide
whether to bid conservatively (therefore if they be-
come the challenger, they know for sure that no
skull will be revealed from their own stack), risking
losing the round if they don’t win the bidding war,
or to bluff by bidding more than they can safely flip,
hoping to influence opponents into taking risky de-
cisions by bidding a higher value. Bluffing in Skull
and Roses comes in two variations:

• Bluffing when the player knows the bid
cannot be satisfied: This happens when a
player has placed a skull in their stack but
still chooses to bid higher than their maximum
safe bid, knowing that if challenged, they will
inevitably fail to reveal the required number
of safe cards. The goal here is to deceive op-
ponents into believing the player has a higher
maximum safe bid than they actually do.

• Bluffing when the player thinks the bid
can be satisfied: Similar to poker, where a
player might bluff with a low-value hand, bet-
ting as if they have a high-value hand. In this
scenario, the bluffing player does not place
down a Skull card but bids a high value hoping
to fulfill it.

Overall, bluffing relies on deceiving opponents
into believing the player has a stronger position in
the current round than they actually do. In a real
life scenario, successful bluffing requires an under-
standing of the opponent’s tendencies and the abil-
ity to anticipate their responses. However, even a
rudimentary version of bluffing could bring to light
a difference in performance.

1.3 Scope of the research

Given the importance of bluffing in imperfect
information games such as Skull and Roses, this
research investigates whether implementing a
bluffing strategy provides a statistical advantage
to a player compared to a non-bluffing strat-
egy. Specifically, this study aims to determine
if players who incorporate bluffing into their
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strategy outperform those who do not. There-
fore, the research question addressed in this
study is: Does applying a bluffing strategy
in a two-player game of Skull and Roses
provide a statistical advantage to the player?

The hypothesis posits that bluffing should result
in at least neutral outcomes when compared to non-
bluffing strategies and potentially offer a statistical
advantage. It is expected that bluffing will either
improve or maintain the player’s chances of winning
when used strategically. To explore this hypothesis,
various game scenarios will be simulated using AI
agents with different strategies, including bluffing
and non-bluffing but also completely forbidding the
use of bluffing. The results of these simulations will
provide insights into the effectiveness of bluffing in
Skull and Roses, contributing to a deeper under-
standing of strategic decision-making in imperfect
information games.

2 Methods

In this section, we describe the methods used to
investigate the effectiveness of different strategies
in the game of Skull and Roses. The methodology
involves creating a detailed simulation of the game,
implementing various artificial intelligence (AI)
strategies, and conducting experiments to collect
and analyse data on the performance of these
strategies.

We start by outlining the construction of the
game simulation, detailing the classes and parame-
ters involved. This is followed by an explanation
of how Reinforcement Learning, particularly Q-
learning, is employed to enable AI agents to learn
and adapt their strategies over time. Finally, we
present the experimental setup, specifying the dif-
ferent scenarios tested and the process used to col-
lect and analyse the results.

2.1 Game Implementation

To simulate the game of Skull and Roses, the
Python programming language was used, taking
advantage of its object-oriented features. The sim-
ulation is built around two main classes: Player and

SkullGame. These classes handle the behaviour of
the players and the overall game flow.

• Player Class: This class represents each player
in the game. It includes methods for placing
cards, choosing bids, resetting the environment
after each simulation, and updating the Q-
learning table based on the outcomes of their
actions.

• SkullGame Class: This class manages the se-
quence of game phases, including card place-
ment, bidding, and card-turning. It also han-
dles game resets and the reward system for Q-
learning.

The simulation allows for customization through
several parameters, some of which are fixed for the
purpose of this experiment:

• FIXED STARTER (fixed to 0):
Determines if Player 1 always starts (1) or if
the starting player is selected randomly (0).

• ALL CARDS BEFORE BID (fixed to 0):
Controls whether all cards must be placed be-
fore bidding starts (1) or if bidding can start
before all cards are placed (0).

• USE RANDOM BLUFF CHANCE (fixed to
False):
If set to True, the bluff chance is randomised;
otherwise, a fixed bluff chance is used.

• BLUFF CHANCE:
Sets the probability of bluffing (e.g., 15%).

• Use Softmax Policy & Use UCB Policy (both
are fixed to False):
Enable different exploration strategies like
Softmax and Upper Confidence Bound (UCB),
respectively.

2.2 AI in Skull and Roses

Reinforcement learning (RL) was used to allow
players to learn optimal bidding strategies. I used
the Q-learning algorithm because it works well for
discrete action spaces like those found in Skull and
Roses (Fares Fourati, 2024).
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• Q-Learning: Players use a Q-table to store val-
ues of state-action pairs. These Q-values are
updated based on rewards received after ac-
tions and the estimated future rewards.

• Q-Table: A dictionary where keys are state-
action pairs and values are the estimated re-
wards for those pairs.

The reward function is crucial for guiding the
learning process. The rewards were designed as fol-
lows: for every successful action the reward is +10
and for every failed action the reward is -10. This
reward function was achieved after experimenting
with different implementations, many of which of-
fered a higher penalty for a failed bluffing attempt.
However, this did not lead to different results when
compared to a standard reward function, therefore
the less complicated version was chosen. The Q-
learning implementation can be observed in Listing
1 and is given by the mathematical formula (2.1):

Q(s, a)← Q(s, a)+α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.1)

where:

• Q(s, a) is the Q-value for the state-action pair
(s, a)

• α is the learning rate

• r is the reward received after taking action a
in state s

• γ is the discount factor

• maxa′ Q(s′, a′) is the maximum Q-value for the
next state s′ over all possible actions a′

1 def update_q_value(self, state, action, reward,

next_state, max_bid):

2 old_value = self.q_table.get((state, action),

0)

3 future_rewards = max([self.q_table.get((

next_state, a), 0) for a in range(1, max_bid +

1)], default=0)

4 new_value = old_value + self.alpha * (reward +

self.gamma * future_rewards - old_value)

5 self.q_table[(state, action)] = new_value

Listing 1: Python function responsible updating
the QTable

The state representation used by the Reinforcement
Learning algorithm consists of:

• The number of cards on the player’s stack.

• The number of cards on the opponent’s stack.

• The number of roses on the player’s stack.

• The presence of a skull on the player’s stack
(boolean).

• The current bid.

• The maximum safe bid.

This particular state representation has been
chosen because it aggregates all the important
freely available information for each player. This
implementation provides the reinforcement learn-
ing algorithm with enough information to assess
the current state of the game and compare it with
previous states. To give more context, the number
of cards in the opponent’s stack can influence the
chance that a Skull has been placed on the table,
while the number of roses on the player’s stack
along with the maximum safe bid and the Skull
boolean allows for the system to infer the exact
placement of the cards on the player’s stack.

Different policies were employed to ensure a com-
prehensive exploration of the action space:

• Epsilon-Greedy: With a probability epsilon,
players select random actions; otherwise, they
choose the best-known action. The epsilon
value decays over time to shift from explo-
ration to exploitation (Sewak, 2019).

• UCB: This algorithm selects actions based
on their upper confidence bounds of esti-
mated rewards, promoting exploration of less-
frequented actions (Ye & Chen, 2022).

• Softmax: Actions are chosen probabilistically
based on their Q-values, allowing for more nu-
anced exploration (Syafiie et al., 2004).

Bluffing was integrated by adjusting the bidding
process. Players designated as bluffers would
consider bluffing based on a specified probability.
Furthermore, a secondary condition needed to be
met in order for bluffing to go into effect: the
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last placed card of the bluffing player had to be
a ’Skull’. This decision is meant to more closely
resemble a real life scenario (in a real life game
of Skull and Roses, a player may choose to bluff
only when the cards are placed in a specific order,
increasing the chances that the opponent will fall
into the ’trap’). The ’Skull’ card being on top
reflects the best opportunity to bluff because it
allows the bluffing to be successful with the lowest
opponent bid (the opponent only needs to turn
one of the bluffing player’s cards in order to lose).
This strategy was tested in scenarios where the
opponent was relying only on Q-Learning to place
bets.

1 function consider_bluff(action, max_bid):

2 if not use_random_bluff_chance:

3 bluff_chance = predefined_bluff_chance

4 else:

5 bluff_chance = random value between 0 and 1

6 if player_is_bluffing and random value <

bluff_chance and last card on table is ’skull’:

7 currently_bluffing = True

8 safe_bid = 0

9 for each card in player table (reverse):

10 if card is ’rose’:

11 increment safe_bid

12 else:

13 break

14 safe_bid = safe_bid + 1

15 if safe_bid < max_bid:

16 return safe_bid

17 return action

Listing 2: Python function responsible for
bluffing. Translated to pseudocode.

The ’consider bluff’ function (Listing 2) is
responsible for evaluating if a player is supposed
to bluff during a specific round (by confirming the
identity of the player, taking into account the bluff
chance and making sure bluffing is only allowed
when the last placed card is a Skull) and applying
the actual bluff mechanics. If the player is indeed
supposed to bluff then the maximum safe bid is
calculated by counting all the roses found before
encountering a Skull, in the reversed player stack.
In the implementation used for the final experi-
ment, this part of the code is redundant because
the maximum safe bid will always be 0 (due to
the condition requiring the Skull to always be on
top). The next part of the code is responsible for
increasing the maximum safe bid by 1, therefore

initiating a bluff. Lastly, there is a check that
makes sure the current bluffing bid cannot be
equal or higher than the maximum allowed bid
(which is the current number of cards on the table).

2.3 Experimental Setup

Five experimental scenarios were constructed to
test the effectiveness of different strategies:

• Scenario 1 (Random vs Random):
Both players take random actions in phase 1
and phase 2 of the game

• Scenario 2 (Random vs Q-Learning):
One player takes random actions in phase 2
of the game while the other uses Q-learning.
Phase 1 of the game is still randomized for
both players.

• Scenario 3 (Q-Learning vs Q-Learning
and Bluffing):
Both players use Q-learning, but Player 2 is
forced to bluff with a certain probability (only
when the last placed card is a ”Skull”). Phase
1 is randomized for both players.

• Scenario 4 (Q-Learning vs Q-Learning
and Bluffing Forbidden):
Both players use Q-learning, but one is forbid-
den from bluffing. Phase 1 is randomized for
both players.

• Scenario 5 (Q-Learning and Bluffing For-
bidden vs Q-Learning and Bluffing For-
bidden):
Both players use Q-learning, but bluffing is
forbidden for both. Phase 1 is randomized for
both players.

In all scenarios, the first phase (card placing
phase) was handled by allowing each player to
randomly place one card at a time until all cards
are placed or until a player decides to move on
to the second phase of the game by placing a
bet, therefore the decision to move to the bidding
phase could occur randomly as long as each player
has placed at least one card in their stack. This
simulates the uncertainty and variation that is
expected in a real life game of Skull and Roses.
The third phase (card reveal) was handled by
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having the ’challenger’ (the player that won the
bidding phase) flip the number of cards they bid,
starting by first revealing cards from their own
stack and then the opponent’s, if necessary.

In the scenarios where bluffing is forbidden, the
code presented in Listing 3 will check if the bid
value dictated by the Q-Table is higher than the
maximum safe bid. If that is the case, then the value
from the QLearning algorithm will be replaced by
the maximum safe bid value, otherwise, the value
from the Q-Table will be used. If the maximum
safe bid value is lower or equal to the opponent’s
current bid, then the player will pass. In scenar-
ios where bluffing was forbidden, the agent’s action
space was reduced by excluding bluffing actions.
These constraints on bluffing reduced the available
actions for the QLearning agent, potentially lead-
ing to the agent learning the same strategies.

1 if self.forbid_bluffing:

2 for card in reversed(self.table):

3 safe_bid = 0

4 if card == ’rose’:

5 safe_bid += 1

6 else:

7 break

8 if safe_bid > action:

9 return safe_bid

10 else:

11 return action

Listing 3: Code excerpt responsible for handling
forbidding bluffing (simplified version).

For each scenario, the experiment ran for 1000
game rounds, repeated over 100 simulations. The
total number of wins for each player was recorded
and averaged across runs to ensure stable results.

• Epochs: Each simulation run consists of 1000
game rounds.

• Results: The number of wins for each player
is recorded and averaged across runs to deter-
mine the effectiveness of the strategies.

The results of the simulations were exported to
a CSV file for further analysis. The CSV file in-
cludes the total and average number of wins for
each player in each scenario, but also a more de-
tailed look at the running total for the last sim-
ulation, providing a comprehensive view of per-
formance differences. Lastly, debugging statements

have been implemented in the code, providing a log
for the actions taken by both players in every round
of the game. Upon manually examining this log, a
viewer could verify the integrity of the gameplay
(for example if all the rules are being followed).

3 Results

Although the experiment will be conducted for 100
simulations of 1000 rounds each, this is only be-
cause after this point, no differences can be ob-
served in the results when increasing the number
of simulations and epochs. Results for all five sce-
narios have been obtained and will be discussed
further:

3.1 Scenario 1: Random vs Random

The first scenario revolves around two players that
both use a random strategy to play the game.
Therefore, there is no intelligent decision-making
process in this scenario. It is meant to serve as a
control scenario, as well as a debugging tool. By
analyzing the results of this scenario we can draw
conclusions with regards to how well the game rules
have been implemented and making sure there is no
unfair advantage for either player. The action that
both players take for phase 1 and phase 2 of the
game are dictated by a random function.

• Average Results for Scenario Random:
Player 1 - 500.42 — Player 2 - 499.58

The results suggest that no player has an advan-
tage, the average wins across 100x1000 rounds be-
ing 500.42 vs 499.58, which is almost a 50-50 split.
Therefore, this scenario will do a very good job of
serving as a control scenario for all the following re-
sults. Figure 3.1 offers a visual depiction of how the
two players follow the same upward trend, ending
up with very similar (almost equal after averaging)
results.
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Figure 3.1: Running Win Total for 1 simulation
in the Random Scenario

3.2 Scenario 2: Random vs Rein-
forcement Learning (QLearning)

This scenario is used to check the implementation
of the reinforcement learning algorithm. In this
case, Player 1 has a purely random strategy (the
same as in scenario 1) while Player 2 employs a Q-
Learning algorithm with an Epsilon Greedy policy.
The parameters used by the reinforcement learning
algorithm are as follows:

• self.alpha = 0.1

• self.gamma = 0.9

• epsilon = 0.2

• epsilon decay = 0.995

• min epsilon = 0.01

• FIXED STARTER = 0

• ALL CARDS BEFORE BID = 0

After running the test for 100x1000 rounds, these
are the average results:

• Average Results for Scenario QL:
Player 1 - 265.82 — Player 2 - 734.18

Clearly, the reinforcement learning agent shows a
considerable advantage (approximately 26-74 split)
over the player that relies on a random function for
its actions. This is because Player 2 is able to find
good strategies and exploit them. Figure 3.2 show-
cases the immediate performance advantage for the

Q-Learning agent and the constant increase in per-
formance across the epochs.

Figure 3.2: Running Win Total for 1 simulation
in the QLearning Scenario

3.3 Scenario 3:
Q-Learning vs QL & Bluffing

This scenario will test the efficiency of Bluff-
ing (player 2) against a regular Q-Learning agent
(player 1). If there is a statistically significant ad-
vantage for the bluffing player, the hypothesis will
be confirmed. The parameters being used are the
same as in scenario 2 with the addition of the fol-
lowing:

• USE RANDOM BLUFF CHANCE = False

• BLUFF CHANCE = 0.6

The bluff chance indicates that bluffing will occur
for 60% of the time, only when the last card for
player 2 is a Skull. After testing, the last card card
is a Skull for player to in roughly 25% of the cases
(results after 100x1000 rounds - Average skull as
last card for Player 2: 250.96). Knowing this, we
can calculate exactly how often bluffing will be used
overall across all 100x1000 rounds of the game: 60%
x 25% = 15%.

• Average Results for Scenario Bluffing:
Player 1 - 494.78 — Player 2 - 505.22

The results show that the bluffing agent has a
slight advantage over the non-bluffing agent.
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Figure 3.3: Increasing the BLUFF CHANCE
parameter by 0.05 in the 0-1 interval

The graph in Figure 3.3 shows the effects of
gradually increasing the bluff chance value from
0% to 100% (100% translating to a 25% bluffing
integration across all games). When increasing the
bluffing chance, we can see a gradual increase in
performance for Player 2, however, around the
65% mark, a plateau is starting to form all the
way to 100% bluffing chance. Unfortunately, the
current implementation does not allow for further
analysis (due to the rule stating that the skull
needs to always be on top for bluffing to occur).

Figure 3.4: Increasing the BLUFF CHANCE pa-
rameter by 0.05 in the 0-1 interval without the
Skull on top rule

Figure 3.4 showcases the performance of the
bluffing agent when bluffing is allowed to hap-
pen solely on the bluff chance, not taking into ac-
count the placement of the cards during phase 1.
The graph shows a downward trend in performance

when increasing the bluffing frequency. This finding
is to be expected because the more often a player
bluffs, the more chances the other player (regular
reinforcement learning) has to identify the bluffing
pattern and not fall in the trap. Furthermore, it is
less likely that the non-bluffing player can even in-
crease the bid safely, making it more likely that the
bluffing player is challenged.

3.4 Scenario 4 & Scenario 5

The last two scenarios involved forbidding the use
of bluffing first just for player 2 and then for both
players, respectively. The results are as follows:

• Average Results for Scenario QL Bluffing For-
bidden (Player 2):
Player 1 - 499.92 — Player 2 - 500.08

• Average Results for Scenario QL Bluffing For-
bidden Both:
Player 1 - 499.87 — Player 2 - 500.13

For both scenarios, no difference can be observed
between the two players, indicating that not a lot
of ’accidental’ bluffing is occurring in the current
implementation. This suggests that the QLearning
algorithm prefers staying under the maximum safe
bid.

3.5 Statistical Analysis

In order to confirm or reject the hypothesis, a sta-
tistical significance test has been conducted on the
results obtained in the third scenario. The data
used for the test is composed of a list of total won
rounds by each player, for every simulation. In this
study, a total of 100 simulations have been con-
ducted, therefore, a total of 100 data points are
used for each player. After conducting a Shapiro-
Wilk test (P-Value = approximately 0.47, which is
greater than the 0.05 threshold), we can conclude
that the data obtained from Scenario 3 is approx-
imately normally distributed (this can also be ob-
served in Figure 3.5), therefore a Paired T-Test is
suitable in order to test for statistical significance.
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Figure 3.5: Distribution of wins for Player 1 and
Player 2 for Scenario 3

• Paired T-Test
After conducting a paired t-test (calculating
the differences, obtaining the mean of the dif-
ferences, calculating the standard deviation of
the differences, obtaining the t-statistic, calcu-
lating the degrees of freedom and ultimately
determining the p-value), the p-value ob-
tained is p = 0.00028, well below the 0.05
significance threshold.

4 Discussion

4.1 Conclusion

The research was aimed at understanding how a
bluffing strategy affects the performance of a player
in the game of Skull & Roses. The results revealed
that indeed there is a performance increase for the
players that are using bluffing when compared to
players that do not make use of bluffing. However,
this boost in performance can only be observed un-
der specific card layouts, indicating a very close re-
lation between the first phase of the game (when
the players place the cards on the table) and the
second phase of the game (when the bidding war
is waged). Conducting a statistical significance test
(Paired T-Test) on the results obtained in Scenario
3 showed statistical significance (the obtained p-
value was smaller than p=0.05). This leads to the
conclusion that the results fail to reject the hypoth-
esis. Therefore, bluffing is indeed increasing the per-
formance of the player if the right game environ-
ment is provided.

4.2 Discussion & Literature

The research conducted by Friedman (1971) on
optimal bluffing strategies in poker offers a theo-
retical foundation for the conditions under which
bluffing can be effective in imperfect information
games. Friedman employs game theory in order
to figure out what is the frequency and optimal
conditions in order to obtain maximum gains from
bluffing in the game of Poker. Apart from figuring
out if bluffing offers a competitive advantage in
the game of Skull, this study parallels Friedman’s
because it showcased that bluffing offers an advan-
tage only under specific card layouts. Both studies
emphasize the role of deception in games of im-
perfect information. The big difference comes from
the fact that Friedman’s work predates current
Reinforcement Learning and computing concepts
and relied solely on mathematical constructs in
order to reach a conclusion. Therefore, this study
could be considered a practical demonstration of
some of Friedman’s conclusions.

Additionally, this study examines bluffing in the
context of opponents that are learning over time.
Unlike Friedman’s static theoretical approach,
this research incorporates dynamic interactions
where the opponent could theoretically develop
counter-bluff strategies. However, the results did
not indicate that the opponent learned to coun-
teract bluffing within the 1000 rounds time frame,
suggesting that either the duration was too short
for such strategies to emerge or that the learning
algorithm requires further alterations and experi-
mentation. This insight highlights the complexity
of learning effective bluffing and counter-bluffing
strategies in a relatively short period.

Another closely related study has been con-
ducted by Marwala & Hurwitz (2009), focusing on
the use of multi-agent systems and reinforcement
learning to train agents on executing bluffing
strategies. This research makes use of Temporal
Difference Reinforcement Learning to allow agents
to predict opponent’s reactions based on both the
actions of other players as well as their own cards.
The findings demonstrate that agents can learn to
bluff effectively and even recognise each other’s
bluffs, supporting the idea that bluffing can be
optimized. This leads me to believe that further
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research is needed on implementing bluffing in the
game of Skull & Roses. I theorize that if Reinforce-
ment Learning would be applied to all three phases
of the game (alongside including more than two
players in the game), the system would potentially
be able to create its own bluffing strategies as
well as recognizing other’s bluffs. This claim is
supported by the research conducted by Tuyls
& Nowé (2005) on how Reinforcement Learning
could be applied to train agents in reaching human
levels of performance in strategic games. This
could include human traits, such as recognizing
bluffs. While the current study did not show
agents learning counter-bluff strategies, humans, in
contrast, explicitly attempt to determine whether
others are bluffing through pattern recognition and
psychological cues. However, there is no indication
that a Reinforcement Learning implementation
couldn’t develop a human-like strategic approach
that includes bluff detection, therefore further
research might unveil such progress.

The findings discussed in this research could
serve as a building block towards a more nuanced
understanding of how bluffing influences various
real life systems. For example, bluffing is a common
strategy in high-stakes environments such as busi-
ness negotiations. Understanding and optimizing
bluffing strategies through reinforcement learning
can help individuals and organizations develop
more effective negotiation tactics, leading to
better outcomes in competitive scenarios. Another
example could be in the realm of cyber-security
and fraud detection where bluffing can serve as a
parallel to the deceptive tactics used by attackers.
By training AI to recognize and respond to these
strategies, we can enhance the effectiveness of
systems designed to detect and prevent fraudulent
activities.

The limitations faced by this study varied, how-
ever the main limitations were related to the re-
source intensive nature (both time-wise and compu-
tationally) of implementing Reinforcement Learn-
ing for the entirety of the game of Skull and Roses.
This is why early on in the development process,
a decision was made to focus only on the second
phase of the game. Another decision that simpli-
fied the development process was the choice of us-
ing only a two-player configuration (the maximum

number of players for Skull and Roses is 6). Im-
plementing a higher player count could consider-
ably help with the learning process because of the
increased variety of strategies that are being em-
ployed simultaneously.

Further research could also focus on a differ-
ent implementation of bluffing, such as allowing
bluffing to emerge as a beneficial strategy on its
own instead of forcing it. This could potentially be
achieved by implementing a complex reward struc-
ture that dynamically provides slightly higher re-
wards for newly discovered strategies. The longer
that strategy would be used, the lower the reward
will drop (until reaching a default minimum), there-
fore incentivizing the exploration of other possi-
ble strategies, including bluffing and bluffing vari-
ations.
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