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Abstract

This thesis describes multiple probable prime tests specifically de-
signed for Wagstaff numbers. Wagstaff numbers are of the form Wn =
2n+1

3
where n is an odd positive integer. Several properties of Wagstaff

numbers are covered and proven. Which allow to describe and prove mul-
tiple probable prime tests. A proof of the Lifschitz test is presented and
analyzed, which is a derivation of Miller’s test. After which a discussion
and proof of a generalized probable prime test based on Lucas-Lehmer re-
currences is given. Case distinctions of this generalized test are the Anton
Vrba test and Robert Gerbicz test. In terms of speed, the Lifschitz test
outperforms the Vrba and Gerbicz test. However, these latter two tests
provide some insights into finding a prime test that works in both direc-
tions. The theory used to prove these tests allows to determine primality
for ”smaller” Wagstaff numbers in a fairly straightforward manner, which
is demonstrated in multiple examples. Finally an argument is given on
why an attempted proof on whether there exist infinitely many Wagstaff
primes is incorrect.
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1 Introduction

This thesis describes multiple probable prime tests specifically designed for
Wagstaff numbers. Wagstaff numbers[12] are of the form Wn = 2n+1

3 where
n is an odd positive integer e.g. W3 = 3,W5 = 11 and W7 = 43. The largest
known probable Wagstaff prime at this moment is W15135397[11], which has over
4.5 million digits. As of today no efficient test exists that states: Wn is prime if
and only if this specific condition is satisfied. Determining whether for example
W15135397 is prime relies on factorization, which is something one wants to avoid
given the size. Hence it is of importance to understand what exactly Wagstaff
numbers are, what their properties are and how the probable prime tests work.
This information may perhaps lay the foundation of finding a test that does not
involve factorizations.

Wagstaff numbers are closely related to Mersenne numbers given that 3Wn−2 =
Mn = 2n − 1. They are named after S.S. Wagstaff who in collaboration with
colleagues used them in their New Mersenne Conjecture[1]. However, Wagstaff
numbers have been studied before by both E. Lucas[6] and D.H. Lehmer. In
1954 Lehmer[5] published a table of all known Wagstaff primes till that date.

Figure 1: Table of known Wagstaff primes up till 1954

The largest known Wagstaff prime in 1954 was 279+1
3 , which was proven by

A.Ferrier[5]. Back then solving this was a complicated task given that most
people did not own computers. Nowadays factorizing 279 + 1 can be done on
most modern laptops.

4



In the text published by Lehmer, two results from E. Lucas were mentioned
that are related to Wagstaff numbers. The first result is:

Theorem 1.1. If n ∈ N and 2n + 1 are prime and n ≡ 1 (mod 4). Then
2n + 1 ≡ 0 (mod 2n+ 1).

In chapter 3 it is shown that 2n + 1 is divisible by 3 for any odd inte-
ger. Hence this Theorem tells us if all assumptions are met regarding n, that
2n + 1 = 3(2n + 1)k for some natural number k. Now k > 1 automatically
implies that Wn is composite. k = 1 however implies that 2n + 1 = 6n + 3
and these functions intersect at n = 5. Hence we get that Wn = 11. The main
function of this Theorem is to quickly show that Wn has to have some divisor
given some prime n ̸= 5.

For example take n = 29. Then n ≡ 1 (mod 4) and 2n + 1 = 59 is also
prime. Then 229 +1 = 3 · 59 · k for some k ∈ N. This quickly shows that W29 is
not prime given that 229 + 1 > 3 · 59.

This works no matter the size, take for example n = 953 and 2n + 1 = 1907.

Checking whether 2953+1
3 is prime in a naive way might seem impossible. But

Theorem 1.1 quickly shows that 2953 + 1 > 3 · 1907, hence W953 has to be com-
posite.

The second result mentioned in the text by Lehmer is:

Theorem 1.2. If n ∈ N and 6n+1 are prime and in the unique decomposition
6n + 1 = 4L2 + 3M2, L and M are multiples of 2 and 3 respectively. Then
2n + 1 ≡ 0 (mod 6n+ 1).

This Theorem has the same function as Theorem 1.1, namely ruling out that
Wn is prime. If all assumptions are met on n and 6n+1, then 3(6n+1)k = 2n+1
for some k ∈ N. k > 1 automatically implies that Wn is not prime. The case
where k = 1 gives 2n + 1 = 18n+ 3. These functions intersect at n = 7, hence
these criteria are only met for W7 = 43. Consider the following counter exam-
ples.

Let n = 367, then 6n+1 = 2203. Both are prime. Note that 2203 = 16+2187 =
4(2)2 +3(32)2. So n = 367 satisfies all criteria of Theorem 1.2. But one quickly
sees that 2367 + 1 > 2203, hence W367 has to be composite.

Another example is n = 6011 with 6n + 1 = 36067. Both are prime and
36067 = 16384 + 19683 = 4(26)2 + 3(34)2. Hence n satisfies all assumptions.
26011 + 1 > 36067 then shows that W6011 is not prime.
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Even though the Wagstaff primes were not of main interest, they did arise
when both Lehmer and Lucas were working on Mersenne primes. Hence it is of
no surprise that multiple probable prime tests for Wagstaff numbers are based
on so called Lucas-Lehmer recurrences of the form Sn = S2

n−1− 2. Named after
the recurrences used in the Lucas-Lehmer test[2]. The beauty of the Lucas-
Lehmer test is the fact that it works in both directions, something that we
would like to achieve for Wagstaff numbers as well. Now what is interesting is
that none of the probable prime tests based on Lucas-Lehmer recurrences that
are described throughout this thesis, have shown a counter-example of them not
working both ways. Hence they very well might.

In chapter two theory about Legendre symbols and their properties is covered.
These Legendre symbols are extensively used throughout this thesis to prove
multiple Theorem’s and properties, however this chapter can be skipped if the
reader is already familiar with Legendre symbols. In chapter three Wagstaff
numbers and their properties are described. Then in chapter four general prob-
able prime tests that work for all integers are discussed and a slightly modified
version of Miller’s[8] test is presented. Chapter five is then dedicated to prob-
able prime tests based on Lucas-Lehmer recurrences. Two examples of such
tests are the Anton Vrba[16] test and the Robert Gerbicz[4] test. In chapter
five a proof is presented of a generalized test of which the Vrba and Gerbicz
test are case distinctions. This generalization allows one to construct new tests,
which is demonstrated. Ideally one wants these tests to work in both directions.
The analysis done in the previous chapters allows to touch upon this subject
in section 5.2. The final chapter presents an attempted proof of whether there
exist infinitely many primes argues why it is incorrect.
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2 Quadratic residues

Throughout this text multiple proofs that involve quadratic residues are pre-
sented. Quadratic residues contain useful properties that are essential for num-
ber theoretic purposes and allow us to provide proofs in a straightforward man-
ner. In this section the necessary Definitions and Theorems involving quadratic
residues needed to comprehend this text are given. Proofs of these Theorems
can be found in the textbook by Rosen[9]. It contains excellent examples and
well-explained proofs.

Definition 2.1. If m is a positive integer, we say that an integer a is a quadratic
residue of m if (a,m) = 1 and the congruence x2 ≡ a (mod m) has a solution.
If the congruence has no solution, we say that a is a quadratic non-residue of
m.

If we evaluate quadratic residues over a prime p then we know the exact
number of quadratic residues and non-residues.

Theorem 2.1. If p is an odd prime, then there are exactly p−1
2 quadratic

residues of p and p−1
2 quadratic non-residues of p among the integers {1, 2, ..., p−

1}.

Evaluating quadratic residues of a prime p gives rise to the Legendre symbol.

Definition 2.2. Let p be an odd prime and a an integer not divisible by p. Then

the Legendre symbol
(

a
p

)
is defined by

(
a

p

)
=

{
1 if a is a quadratic residue of p,

−1 if a is a quadratic non-residue of p.
(1)

The Legendre symbol allows us to simplify expressions modulo a prime. The
next criterion is an example that helps to determine if an integer is composite
or not.

Theorem 2.2. Euler’s Criterion. Let p be an odd prime and let a be an integer

not divisible by p. Then
(
a
p

)
≡ a

p−1
2 (mod p).

Calculations with Legendre symbols are quite straightforward as the follow-
ing Theorem will show.

Theorem 2.3. Let p be an odd prime and a and b be integers not divisible by
p. Then

1. if a ≡ b (mod p), then
(
a
p

)
=

(
b
p

)
;

2.
(
a
p

)(
b
p

)
=

(
ab
p

)
;

3.
(
a2

p

)
= 1.
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The main result of Quadratic residues is the Law of Quadratic Reciprocity.
It allows us to flip the numerator and denominator inside the Legendre symbol,
given some conditions. This allows us to evaluate the Legendre symbols of large
numbers fairly easily.

Theorem 2.4. The Law of Quadratic Reciprocity. Let p and q be distinct odd

primes. Then
(

p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 . Consequently we have that

(
p

q

)(
q

p

)
=

{
1 if p = 1 (mod 4) or q = 1 (mod 4)

−1 if p ≡ q ≡ 3 (mod 4)
(2)

Using property 2 of Theorem 2.3 often results in evaluating
(−1

p

)
or

(
2
p

)
for a

prime p. These Legendre symbols can be evaluated by using the following two
Theorems:

Theorem 2.5. If p is an odd prime, then(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ −1 (mod 4)
(3)

Theorem 2.6. If p is an odd prime, then
(

2
p

)
= (−1)

p2−1
8 . Hence, 2 is a

quadratic residue of all primes p± 1 (mod 8) and 2 is a quadratic non-residue
of all primes p± 3 (mod 8).
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3 Wagstaff numbers and their properties

To understand primality tests involving Wagstaff numbers means to first un-
derstand Wagstaff numbers themselves. In this section important properties of
Wagstaff numbers are presented. An acknowledgement is in order for Piet van
Eeghen [15] as this section is largely based on his Thesis. The formal definition
of a Wagstaff number is as follows:

Definition 3.1. For n ∈ N we call a number of the form Wn = 2n+1
3 a Wagstaff

number.

Wagstaff numbers have the following properties:

1. Wn+2 = 4Wn − 1.

2. If n ∈ N is odd, then Wn ∈ N.

3. If n ∈ N is odd and Wn is prime, then n is prime.

4. If n is prime but Wn is not prime, then for all prime divisors q of Wn we
have that q ≡ 1 (mod 2n).

5. If n is prime and q is a prime such that q|Wn, then q ≡ 1 (mod 8) or q ≡ 3
(mod 8).

6. If n > 1 is an odd integer, then Wn is not a square.

Proof. property 1: Wn+2 = 2n+2+1
3 = 4·2n+1

3 = 4 · 2n+1
3 − 1 = 4Wn − 1.

Proof. property 2: Observe that W1 = 1 ∈ N. Then use induction on property
2 and the result follows.

Proof. Property 3: Assume n is composite i.e. n = ab where both a and b are

odd and ≥ 3. Then Wn = 2n+1
3 = 2ab+1

3 . Now let c = (−2)a. Then we get
1−cb

3 = (1−c)(1+c+c2+...+cb−1)
3 . Here 1−c

3 = 2a+1
3 is in N, and because a, b ≥ 3 it

is > 1 and < Wn. Hence Wn is not prime.

Proof. Property 4: Let q be a prime divisor of Wn. Then 2n+1
3 ≡ 0 (mod q).

Hence 2n + 1 ≡ 0 (mod q) ⇔ 2n ≡ −1 (mod q) which in turn implies that
22n ≡ 1 (mod q). The order of 2 is either 1, 2, n or 2n. The order cannot
be 1 since we have that 2n ≡ −1 (mod q). If the order of 2 is 2, then q is
automatically 3 as 4 ≡ 1 (mod q) only holds for the prime q = 3. Hence
q = Wn and n = 3 meaning Wn is prime and thus we have a contradiction. If
the order is n, then we cannot have 2n ≡ −1 (mod q). Hence the order of 2 has
to be 2n, i.e. 2n|q−1 ⇔ q = 1 (mod 2p) where 2n|q−1 follows from Lagrange’s
Theorem[13].
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Proof. Property 5: Similar as in the proof of property 4, we have 2n ≡ −1
(mod q). This gives us 2n+1 ≡ −2 (mod q) and thus we have a solution for
x2 ≡ −2 (mod q). So we know that

(−2
q

)
=

(−1
q

)(
2
q

)
= 1 using Theorem 2.3.

So either we have
(−1

q

)
=

(
2
q

)
= 1 or we have

(−1
q

)
=

(
2
q

)
= −1. Then we can

apply Theorem 2.5 and Theorem 2.6 to deduce that in the former case we have
q ≡ 1 (mod 4) and q ≡ ±1 (mod 8). Implying that q ≡ 1 (mod 8). And in
the latter case we have q ≡ 3 (mod 4) and q ≡ ±3 (mod 8). Giving us q ≡ 3
(mod 8).

Proof. Property 6: From property 1 we know that for any odd n > 1 ∈ N we
have that Wn ≡ −1 (mod 4). No x exists such that x2 ≡ −1 (mod 4). Hence
Wn is not a square.
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4 Probable prime tests

Probable prime tests verify conditions that are satisfied by all prime numbers.
A famous example of such a test is Fermat’s Little Theorem.

Theorem 4.1. Fermat’s Little Theorem. If p is a prime and a is an integer
such that (p, a) = 1, then ap−1 ≡ 1 (mod p).

Proof. [9]

Fermat’s Little Theorem being a probable prime test implies that there exist
composite integers that pass this test, so called pseudo-primes[9]. For example
341 = 11 · 31. This composite integer is a pseudo-prime to the base 2 since
2341 ≡ (210)34 · 2 ≡ (1)34 · 2 ≡ 2 (mod 341). The formal definition of pseudo-
primes is as follows:

Definition 4.1. Let b be a positive integer. If n is a composite integer such
that (b, n) = 1 and bn ≡ b (mod n). Then n is a pseudo-prime to the base b.

Despite this apparent flaw, Fermat’s Little Theorem proves to be very useful
in finding primes. Say we have a composite integer n and we choose some base
b ∈ {1, 2, ..., n− 1}. We can check if bn−1 ≡ 1 (mod n), but we could also check

if b
n−1
2 ≡ 1 (mod n). If n is prime, then Euler’s Criterion 2.2 tells us that this

is either 1 or −1. Miller’s test[8] takes this one step further.

Definition 4.2. Miller’s test. Let n be an integer with n > 2 and n− 1 = 2st,
where s is a non-negative integer and t is an odd positive integer. We say that n
passes Miller’s test for the base b if either bt ≡ 1 (mod n) or b2

jt ≡ −1 (mod n)
for some j ∈ {0, 1, ..., s− 1}.

What Miller’s test does is catching bases b for which n passes early. Since
if bt ≡ 1 (mod n) or if b2

jt ≡ −1 (mod n), then bn−1 ≡ 1 (mod n). Meaning
all composite integers that pass Miller’s test are pseudo-primes. In the case
of Miller’s test we know an estimate for how many such bases b exist. A well
written version of this proof is provided by René Schoof[10].

Theorem 4.2. If n is an odd composite integer, then n passes Miller’s test for
at most n−1

4 bases b with b ∈ {1, 2, ..., n− 1}.

This provides the tools to deduce whether an integer is prime with high
certainty. Given any composite integer n and a randomly chosen base b between
1 and n− 1, the chance of it passing the test is at most 1

4 . Repeating this test
for 10 random bases, already brings the probability of n passing all 10 tests to
less than 1 in 1 million.
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4.1 Miller’s test and Wagstaff numbers

Applying Miller’s test to Wagstaff numbers is quite straightforward. Note that

Wn − 1 = 2n−2
3 = 2( 2

n−1−1
3 ). One cannot take out any other factors of 2

given that 2n−1−1
3 is odd. Hence Miller’s test simply reduces to checking if

b
2n−1−1

3 ≡ ±1 (mod Wn) =⇒ b2
n−1−1 ≡ ±1 (mod Wn) for some b between 1

and Wn − 1.

Theorem 4.3. Miller’s test for Wagstaff primes. If Wn is a Wagstaff prime,
then b2

n−1−1 ≡ ±1 (mod Wn) for any b ∈ {1, 2, ...,Wn − 1}.

A slightly modified version of Miller’s test was introduced by Renaud and
Henri Lifschitz[3]. It essentially evaluates a base b the same way as in Miller’s
test, but now the test evaluates the base b over the larger ring modulo 3Wn and
considers b2

n−1

instead of b2
n−1−1.

Theorem 4.4. If Wn is prime and n > 3, then b2
n ≡ b2 (mod 2n + 1) where

b ∈ {1, 2, ...,Wn − 1}.

Proof. Assume Wn = 2n+1
3 is prime. Then Fermat’s Little Theorem 4.1 implies

that for any integer b such that gcd(b,Wn) = 1, one has bWn−1 ≡ 1 (mod Wn).

Hence b
2n−2

3 ≡ 1 (mod Wn) which implies that b2
n−2 ≡ 1 (mod Wn). Multi-

plying both sides with b2 results in b2
n ≡ b2 (mod Wn). Note that 2n+1

3 is a
divisor of 2n + 1. To apply the Chinese Remainder Theorem [13] we require
gcd(Wn, 3) = 1. Determining for which n this holds is equivalent to looking
at when 2n + 1 ≡ 0 (mod 9). Note that 26 = 64 ≡ 1 (mod 9). 21 + 1 ≡ 3
(mod 9), 23 + 1 ≡ 0 (mod 9) and 25 + 1 ≡ 6 (mod 9). n is larger than 3 by
assumption. Hence the Chinese Remainder Theorem is applicable and therefore
the congruence b2

n ≡ b2 (mod 2n + 1) also holds.

NB : In the test by Renaud and Henri Lifschitz b = 5 was used.

Two improvements have been made to optimize Miller’s test. Working over
the ring modulo 2n +1 efficiently stores integers in binary form. 2n +1 reduces
to a string of n + 1 bits where only the first and the last bit are 1 and the
others bits are 0. This makes it very efficient to reduce any number modulo
2n + 1 as the bit wise operations are minimal. Although 2n+1

3 is smaller as an
integer, its binary representation consists of more 1’s and hence requires more
bit operations when subtracted. Moreover, in the ring modulo 2n + 1 it holds
that 2n ≡ −1. So any element r can be reduced by looking at how many factors
of 2n it has. Meaning that if r = q2n + s where s < 2n, then r ≡ −q + s
(mod 2n + 1). Finally one of its biggest improvements is the fact that it only
uses n operations as it squares b only n times. Similar reasoning as before. The
binary representation of 2n is a string of n+1 bits where only the most left bit
is 1 and all the other bits are 0. Now if one has to evaluate b2

n−1−1 and if we
assume that its binary representation consists of k bits of 1. Then for each of
those k bits equal to 1, b has to be raised to a certain power of 2 and finally all
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those products would have to be added as well as well. Which will always result
in more than n operations. So even though large numbers 2n are evaluated.
The test only uses n operations to evaluate.
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5 Probable prime tests based on Lucas-Lehmer
recurrences

As mentioned earlier, the Lucas-Lehmer test is a primality test for Mersenne
numbers. The recurrences on which the Lucas-Lehmer test is based, can also
be used for Wagstaff numbers. These Lucas-Lehmer recurrences are of the form
Sn = S2

n−1−2. Consider the following two probable Wagstaff prime tests based
on the recurrences. First the Anton Vrba[16] test:

Theorem 5.1. The Anton Vrba test. If Wn = 2n+1
3 is prime, then Sn ≡ S2

(mod Wn) where Sn = S2
n−1 − 2 and S0 = 6.

And second the Robert Gerbicz[4] test:

Theorem 5.2. The Robert Gerbicz Test. If Wn = 2n−1
3 is prime, then Sn ≡ S1

(mod Wn) where Sn = S2
n−1 − 2 and S0 = 3

2 .

In order to prove these two probable Wagstaff prime tests and analyze why
they work, first the necessary tools to do so have to be provided. Consider the
following Lemma:

Lemma 5.3. Let τ and τ̄ be the solutions of x2−S0x+1 = 0 where S0 ∈ R i.e.

τ =
S0+

√
S2
0−4

2 and τ̄ =
S0−

√
S2
0−4

2 . Then Sn = τ2
n

+ τ̄2
n

, where Sn = S2
n−1−2.

Proof. We will prove this by means of induction. Let n = 0, then τ2
0

+ τ̄2
0

=
τ + τ̄ = S0. Now assume this holds for n = k where k ∈ N is taken arbitrarily.
Then it should also hold for n = k + 1. Plugging in n = k + 1 and observing

that τ τ̄ = 1 results in Sk+1 = τ2
k+1

+ τ̄2
k+1

= (τ2
k

)2 + (τ̄2
k

)2 = (τ2
k

+ τ̄2
k

)2 −
2(τ τ̄)2

k

= S2
k − 2.

An example would S0 = 6 from the Anton Vrba test, this results in τ =
3 + 2

√
2. Another example is S0 = 3

2 from the Robert Gerbicz test, then

τ = 3+
√
−7

4 . The value inside the square root is of importance and depends on
S0. In general one wants to avoid S0in{0,±1,±2} to avoid repeating sequences.

For S0 ∈ Q one has τ =
c
d+

√
c2

d2
−4

2 = c+
√
c2−db2

2d . S0 needs to be chosen in such
a way that gcd(Wn, d) = 1 as it is not always known that Wn is prime. τ is
then rewritten as τ = a+ b

√
q where a, b ∈ Q, q ∈ Z and q cannot be simplified

any further.

Note that τ τ̄ = 1 implies that it naturally belongs to the multiplicative group
(Z[√q]/(Wn))

∗. This can be used to simplify the representation of τ such that
no calculations involving

√
q have to be done directly. This is done by denoting

it as the pair (ā, b̄) instead of ā + b̄
√
q. To norm map has to be introduced in

order to prove this.

Definition 5.1. Let R = Z[
√
m]/(M) = Z[x]/(x2 −m,M) = {ā+ b̄

√
m : a, b ∈

Z/(M)} where m,M ∈ Z. Then the Norm map is defined as N : R → Z/(M)
where N(ā+ b̄

√
m) = (ā+ b̄

√
m)(ā− b̄

√
m) = a2 −mb2.
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The norm map N has some useful properties:

Theorem 5.4. The norm map N as defined in Definition 5.1 has the following
properties:

1. For all x, y ∈ R we have N(xy) = N(x)N(y).

2. N(0) = 0 and N(1) = 1.

Proof. Property 1: Let x = ā+ b̄
√
m and y = c̄+ d̄

√
m be arbitrary elements in

R. Then N(xy) = N(ac+mbd+(ad+ bc)
√
m) = (ac+mbd)2 −m(ad+ bc)2 =

(ac)2 + (mbd)2 + 2acmbd−m(ad)2 −m(bc)2 − 2acmbd =
(ac)2 −m(ad)2 + (mbd)2 −m(bc)2 = N(x)N(y).
Property 2: N(0̄) = (0̄+0̄

√
m)(0̄−0̄

√
m) = 0̄ andN(1̄) = (1̄+0̄

√
m)(1̄−0̄

√
m) =

1̄.

τ naturally belongs to the pre-image N−1({1}). This set is defined for any
commutative ring R in the following way:

Definition 5.2. Let the set G(R, q) be defined as follows: G(R, q) = {(a, b) ∈
R×R : a2−qb2 = 1 where R is a commutative ring and q ∈ R} with (1, 0)
as identity element, multiplication defined as (a, b) ∗ (c, d) = (ac+ qbd, ad+ bc)
and the inverse of any element (a, b) is (a,−b).

As one might suspect, this is actually a group.

Theorem 5.5. The set G(R, q) where R is a commutative ring and q ∈ R as
defined in Definition 5.2 is a group.

Proof. The set G is closed under its group law, given that for all a, b, c, d ∈ R
it holds that (a, b) ∗ (c, d) = (ac+ qbd, ad+ bc) and (ac)2 + (qbd)2 + 2(acqbd)−
q((ad)2+(bc)2+2adbc) = (ac)2+(qbd)2−q(ad)2−q(bc)2 = (a2−qb2)(c2−qd2) =
1 · 1 = 1. Additionally take any e, f ∈ R. Then (a, b) ∗ ((c, d) ∗ (e, f)) =
(a, b)∗ (ce+qdf, cf +de) = (a(ce+qdf)+qb(cf +de), a(cf +de)+b(ce+qdf)) =
(ace+aqdf+qbcf+qbde, acf+ade+bce+bqdf) = ((ac+qbd)e+q(ad+bc)f, (ac+
qbd)f + (ad+ bc)e) = (ac+ qbd, ad+ bc) ∗ (e, f) = ((a, b) ∗ (c, d)) ∗ (e, f). Hence
associativity holds in G. Now note that (a, b) ∗ (1, 0) = (a · 1 + q · 0, 0 + b · 1) =
(a, b) = (1 · a + q · 0, 0 + 1 · b) = (1, 0) ∗ (a, b). Hence G has a well defined
identity element. Next for any (a, b) ∈ G, it holds that (a,−b) ∈ G as well since
a2−qb2 ≡ a2−q(−b)2 ≡ 1. Note that (a, b)∗(a,−b) = (a2−qb2, ab−ab) = (1, 0).
Hence every element in G also has an inverse in G.

This group allows one to evaluate τ = ā+ b̄
√
q ∈ (Z[√q]/(M))∗ as the pair

(ā, b̄). Naturally the set {ā + b̄
√
q ∈ (Z[√q]/(M))∗ : N(ā + b̄

√
q) ≡ 1̄} is a

subgroup of (Z[√q]/(M))∗. It has the same group law, identity element and
is closed under multiplication since for all ā + b̄

√
q and c̄ + d̄

√
q it holds that

N((ā+ b̄
√
q)(c̄+ d̄

√
q)) = N(ā+ b̄

√
q)N(c̄+ d̄

√
q) ≡ 1̄ using Theorem5.4.

To formalize this:
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Theorem 5.6. Let N : (Z[√q]/(M))∗ −→ Z/(M) be the Norm map as defined
in Definition 5.1 with q ∈ Z and M ∈ N. Then {ā + b̄

√
q ∈ (Z[√q]/(M))∗ :

N(ā+ b̄
√
q) ≡ 1̄} ≃ G(Z/(M), q).

Proof. Define f : {ā+ b̄
√
q ∈ (Z[√q]/(M))∗ : N(ā+ b̄

√
q) ≡ 1̄} −→ G(Z/(M), q)

where ā+ b̄
√
q −→ (ā, b̄). Let ā+ b̄

√
q and c̄+ d̄

√
q in {ā+ b̄

√
q ∈ (Z[√q]/(M))∗ :

N(ā+b̄
√
q) ≡ 1̄} be arbitrary. Then f is a group isomorphism since f((ā+b̄

√
q)∗

(c̄+ d̄
√
q)) = f(ac+ qbd+ (ad+ bc)

√
q) = (ac+ qbd, ad+ bc) = (ā, b̄) ∗ (c̄, d̄) =

f(ā + b̄
√
q)f(c̄ + d̄

√
q). Now assume f(ā + b̄

√
q) = f(c̄ + d̄

√
q). Then (ā, b̄) =

(c̄, d̄) ⇐⇒ ā ≡ c̄ and b̄ ≡ d̄. Hence f is injective. Surjectivity follows since for
all (ā, b̄) ∈ G(Z/(M), q) we have that a2 − qb2 ≡ 1̄. Now let τ = ā+ b̄

√
q, then

τ τ̄ = 1 and τ ∈ {ā + b̄
√
q ∈ (Z[√q]/(M))∗ : N(ā + b̄

√
q) ≡ 1̄}. Hence f is

surjective as well, making it an isomorphism.

Performing calculations with (ā, b̄) in G(Z/(M), q) are identical to doing
calculations with ā + b̄

√
q in (Z[√q]/(M))∗. Note the one to one correspon-

dence between (ā + b̄
√
q)(c̄ + d̄

√
q) = ac+ qbd + (ad+ bc)

√
q and (ā, b̄)(c̄, d̄) =

(ac+ qbd, ad+ bc).

In Theorem 5.1 and Theorem 5.2 τ is evaluated over the ring modulo Wn where
Wn is assumed to be prime. What does the group G(Z/(Wn), q) then look like?
Given that Wn is prime, the order of G(FWn , q) can exactly be determined.

Theorem 5.7. Assume p is prime and let G(Fp, q) be the group defined in
Definition 5.2. Then G(Fp, q) has order p−

(
q
p

)
.

Proof. Finding the order of G(FWn
, q) is identical to findings all the solutions

of the hyperbola ā2 − qb̄2 ≡ 1̄ in Fp. To do so, any point on this hyperbola is
chosen, then a line is constructed through this point and intersected with other
points on the hyperbola. For simplicity, let this point be (1, 0). This gives the
line y = t(x− 1). Intersecting this line with x2 − qy2 = 1 results in:

x2 − qt2(x− 1)2 = 1

⇐⇒ −qt2(x− 1)2 + (x+ 1)(x− 1) = 0

⇐⇒ (x− 1)(−qt2(x− 1) + x+ 1) = 0.

Note that x = 1̄ is one solution. The other solutions depend on (−qt2(x −
1) + x + 1) = 0 ⇐⇒ x(1 − qt2) + qt2 + 1 = 0. This gives incorrect solutions
when qt2 = 1 as this would imply 2 = 0. In general the following pairs :
x = −(qt2 + 1)(1− qt2)−1, y = t(x− 1) are obtained where t runs over Fp.
This gives p pairs of solutions. Now uniqueness has to be proven. Let f :
{0, 1, 2, ..., p− 1} −→ (x(t), y(t)) be a map that sends a to (x(a), y(a)). Assume
there exist a, b ∈ {0, 1, 2, ..., p−1} such that (x(a), y(a)) = (x(b), y(b)). Consider
the x coordinate first, x(a) = x(b) implies that (qa2 + 1)(1 − qb2) = (qb2 +
1)(1 − qa2) ⇐⇒ −a2b2q2 + (a2 − b2)q + 1 = a2b2q2 + (−a2 + b2)q + 1. Hence
a2 − b2 = −a2 + b2 implying that a = ±b. And for the y coordinate it holds
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that: a(qa2 +1)(1− qb2) = b(qb2 +1)(1− qa2) ⇐⇒ −a3b2q2 + a(a2 − b2)q+ a =
a2b3q2+b(−a2+b2)q+b. Hence a = ±b. Assume a = −b. Then −a5q2+a(a2−
a2)q+a = −a5q2+b(−a2+a2)+b. But then a = b, contradicting the assumption
a = −b. This only holds if a = b = 0. Hence (x(a), y(a)) = (x(b), y(b)) implies
that a = b i.e. f is injective. This automatically implies that f is bijective
as p different points are mapped to p different pairs of coordinates. In total
there are then p+1 solutions. If

(
q

Wn

)
= 1, two of those solutions are incorrect.

Subtracting those leaves p− 1 solutions.

Now that we know the size of G(Fp, q), we are able to deduce the size of
G(Z/(pk), q) for any k ∈ N.

Theorem 5.8. Let p be prime and k ∈ N be arbitrary. Then the order of
G(Z/(pk), q) is pk−1(p−

(
q
p

)
).

Proof. This proof will be done by induction. Let k = 2. We are looking for
solutions modulo p2. Let (a, b) be a solution of x2 − qb2 ≡ 1 (mod p). Then
a2 − qb2 = 1 + rp for some k ∈ Z. We need to find c, d ∈ {1, 2, ..., p − 1}
such that (a + cp, b + dp) are solutions of x2 − qb2 ≡ 1 (mod p2). Plugging
those coordinates in gives us a2 + 2acp + (cp)2 − qb2 − 2qbdp − q(dp)2 ≡ 1
(mod p2) ⇐⇒ p(r + 2ac − 2qbd) ≡ 0 (mod p2). This is the same as looking
at values for c, d such that r−1(d(2qb) − c(2a)) ≡ 1 (mod p). We know this
solution is unique[9] and also that r−1 exists for r ̸= 0 since p is prime. Now we
let r run over {1, 2, ..., p− 1} to obtain p− 1 additional solutions. Meaning we
have p solutions of the form (a+ cp, b+ dp). The number of different solutions
(a, b) modulo p is p −

(
q
p

)
. Hence we have p(p −

(
q
p

)
) solutions in total. Note

that (a, b) ̸= (0, 0) (mod q) since we assumed it to be a solution. Now let
k ∈ N be arbitrary and assume the order of G(Z/(pk), q) is pk−1(p −

(
q
p

)
). We

apply the same method as before. We are looking for solutions of the form
(a + cpk−1, b + dpk−1) modulo pk where (a, b) is a solution of x2 − qy2 ≡ 1
(mod pk−1). Substituting gives us a2 + (cpk−1)2 + 2acpk−1 − qb2 − (dpk−1)2 −
q2bdpk−1 (mod pk) ⇐⇒ pk−1(r + 2ac − 2qbd) ≡ 0 (mod pk) where we used
a2 − qb2 = rpk−1 for some r ∈ Z. Similar reasoning as before, this is equivalent
to finding values for c, d such that r−1(d(2qb)−c(2a)) ≡ 1 (mod p). Which gives
a unique solution for a unique r ∈ {1, 2, ..., p − 1}. We have p − 1 options in
total for r plus the initial solution (a, b) so p solutions in total. The assumption
tells us that we have pk−1(p−

(
q
p

)
) options for our initial solution (a, b). Hence

we have pk(p−
(
q
p

)
) solutions in total that are in G(Z/(pk+1), q).

The order of G(Z/(NM), q) can also be determined givenN,M are relatively
prime natural numbers.
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Theorem 5.9. Let N,M be relatively prime natural numbers and q ∈ Z. Then
G(Z/(NM), q) ∼= G(Z/(N), q)×G(Z/(M), q).

Proof. The Chinese Remainder Theorem [13] maps all points (a (mod NM), b
(mod NM)) to (a (mod N), b (mod N), a (mod M), b (mod M)) and this map-
ping is a bijection. Note that a2 − qb2 ≡ 1 (mod NM) implies that a2 − qb2 ≡ 1
(mod N) and a2 − qb2 ≡ 1 (mod M). Hence the pair (a (mod N), b (mod N))
belongs to G(Z/(N), q). And similarly the pair (a (mod M), b (mod M)) be-
longs to G(Z/(M), q). Hence G(Z/(NM), q) ∼= G(Z/(N), q)×G(Z/(M), q).

So in general the order of G(Z/(Wn), q) is as follows:

Theorem 5.10. Let Wn = pa1
1 pa2

2 · · · pak

k where all the pi are distinct primes
and all ai ∈ N, then the order of G(Z/(Wn), q) with q ∈ Z is (pa1−1

1 (p1 −(
q
p1

)
))(pa2−1

2 (p2 −
(
q
p2

)
)) · · · (pak−1

k (pk −
(
q
pk

)
))

Proof. Simply apply Theorem 5.8 and Theorem 5.9.

Before the generalized Theorem for the Anton Vrba test and the Robert
Gerbicz test can be proven. One final thing has to be pointed out. Given some
τ = a + b

√
q that satisfies Lemma 5.3, then it holds that τ + τ̄ = 2a. This

essentially means that when τ is represented as the pair (a, b), one only needs
to look at the x coordinate. In general it then holds that t2

n ≡ (c̄, d̄) (mod Wn)
is equivalent to 2c ≡ Sn (mod Wn). The generalized Theorem is as follows:

Theorem 5.11. If Wn is prime, then Sn ≡ S1 (mod Wn) if
(

q
Wn

)
= 1 and

Sn ≡ S2 (mod Wn) if
(

q
Wn

)
= −1. Where Sn = S2

n−1 − 2 and S0 = c
d ∈ Q

is chosen such that S0 ̸∈ {±1,±2, 0}. And τ =
S0+

√
S2
0−4

2 = a + b
√
q where

a, b ∈ Q and q ∈ Z cannot be simplified any further.

Proof. Assume Wn is prime and S0 ∈ Q satisfies the criteria. By Theorem 5.3
some τ of the form τ = ā+ b̄ is obtained which can be represented as (ā, b̄) using
Theorem 5.6. Now assume

(
q

Wn

)
= 1. Then G(FWn

, q) has order Wn − 1 us-

ing Theorem 5.7. Hence (ā, b̄)Wn−1 ≡ (1̄, 0̄) (mod Wn) =⇒ (ā, b̄)2
n−2 ≡ (1̄, 0̄)

(mod Wn) ⇐⇒ (ā, b̄)2
n ≡ (ā, b̄)2 (mod Wn). The x coordinate of (ā, b̄)2

n

is
therefore identical to the x coordinate of (ā, b̄)2 modulo Wn. Hence automat-
ically it holds that Sn ≡ S1 (mod Wn). In a similar way, if

(
q

Wn

)
= −1, then

G(Z/(Wn), q) has order Wn + 1. Hence (ā, b̄)Wn+1 ≡ (1̄, 0̄) (mod Wn) =⇒
(ā, b̄)2

n+4 ≡ (1̄, 0̄) (mod Wn) ⇐⇒ (ā, b̄)2
n ≡ (ā, b̄)−22 (mod Wn). The x co-

ordinate of (ā, b̄)2
2

and (ā, b̄)−22 are identical. Therefore the x coordinate of

(ā, b̄)2
n

and (ā, b̄)2
2

are also identical modulo Wn and thus Sn ≡ S2 (mod Wn).
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Theorem 5.11 is a generalization of the Vrba test and the Gerbicz test. In
combination with the following Theorem one automatically proves the Anton
Vrba test:

Theorem 5.12. If Wp is prime, then
(

2
Wp

)
= −1.

Proof. Note that Wp ≡ 9Wp = 3(2p + 1) ≡ 3 (mod 8) for p > 2. Now apply

Theorem 2.6 to deduce that
(

2
Wp

)
= −1.

Proof. The Anton Vrba Test. By using Lemma 5.3 and plugging in S0 = 6,
τ = 3 + 2

√
2 is obtained. Now simply use Theorem 5.12 and Theorem5.11.

With the following Theorem the Robert Gerbicz test can be proven:

Theorem 5.13. If Wn > 3 is prime, then
(

−7
Wn

)
= 1

Proof. Note that Wn = 9Wn = 3(2n + 1) ≡ 3 (mod 4) for n > 1. Hence by

using Theorem 2.4 and Theorem 2.5 we get
(

−7
Wn

)
=

(
−1
Wn

)(
7

Wn

)
=

(
Wn

7

)
.

Note that in modulo 7,Wn behaves in a repetitive way, since 23 ≡ 1 (mod 8).
Hence we have the following options 3Wn = 2n + 1 (mod 7). For n = 1 + 3k
with k ∈ Z, 3Wn ≡ 3 (mod 7) =⇒ Wn ≡ 1 (mod 7). For n = 2+3k with k ∈ Z,
3Wn = 2n + 1 ≡ 5 (mod 7) =⇒ Wn ≡ 4 (mod 7) and finally for n = 3 + 3k
with k ∈ Z it holds that 3Wn = 2n + 1 ≡ 2 (mod 7) =⇒ Wn ≡ 3 (mod 7). We
know that

(
1
7

)
= 1 and

(
4
7

)
= 1. But also that if Wn is prime, then n is prime

as well. n = 3+ 3k is only prime for k = 0. Hence this only holds for k = 0 i.e.
W3.

Proof. The Robert Gerbicz Test. By plugging in S0 = 3
2 in Lemma 5.3 we

obtain τ = 3+
√
−7

4 . Hence our q = −7. Next we apply Theorem 5.13 and
Theorem 5.11.

Theorem 5.11 allows to easily prove the Anton Vrba and Robert Gerbicz
tests, but also allows to construct new tests. Take for example a test with
q = 5 where S0 = 3 as initial value of our sequence Sn. Then if Wn is prime,(

5
Wn

)
=

(
Wn

5

)
using Theorem 2.4. Note that 6Wn = 2(2n + 1) ≡ Wn (mod 5)

and 24 ≡ 1 (mod 5). For n = 1+4k with k ∈ N one then gets Wn ≡ 1 (mod 5)
and

(
5

Wn

)
=

(
1
5

)
= 1. And for n = 3 + 4k with k ∈ N one gets Wn ≡ 3 (mod 5)

and
(

5
Wn

)
=

(
3
5

)
= −1. To test if a given Wn is a probable prime, then if n ≡ 1

(mod 4) one has to check if Sn ≡ S1 (mod Wn). And if n ≡ 3 (mod 4), then
one has to check if Sn ≡ S2 (mod Wn).
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A natural question to ask is whether new tests are actually helpful or essen-
tially the same test. Assuming Wn is prime, the obtained τ from Lemma 5.3 is
evaluated modulo Wn. So τ actually resides in the ring:

R = Z[
√
q]/(Wn) ∼= Z[x]/(x2 − q,Wn) ∼= FWn [x]/(x

2 − q̄) (4)

This ring is a field if x2 − q̄ is irreducible in FWn [x].

Theorem 5.14. Let R = Z[√q]/(Wn) where Wn is prime and
(

q
Wn

)
= −1.

Then R is a field.

Proof. x2 − q̄ is irreducible in FWn
[x]. We know that FWn

[x] is a principal
ideal domain since Wn is prime. Thus we also know that x2 − q̄ being irre-
ducible is equivalent to (x2 − q̄) being a maximal ideal[14]. Which implies that
FWn

[x]/(x2 − q̄) is a field.

If R = Z[x]/(x2 − q,Wn) is not a field q ̸ |Wn, then it has order (Wn − 1)2.
And if R is a field, then it has order W 2

n − 1. Although the difference between
(Wn − 1)2 and W 2

n − 1 gets larger as n increases, τ still resides in the group
G(FWn , q). And this group has order Wn ± 1, implying that any difference is
likely negligble. So the main difference seems to be that the greater structure
to which the obtained τ belongs, is either a ring or a field. But the smaller
subgroups, are almost identical. Hence in terms of speed one would not expect
these tests to perform different. To show if this is indeed the case, computation
times are compared in the next subsection.
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5.1 Time comparison

In this section the performance between all the probable prime tests based on
Lucas-Lehmer recurrences i.e. the Gerbicz test, the Vrba test and the newly
crafted q = 5 test are compared. The probable prime test by Henri and Renaud
Lifschitz has also been added. The scripts are written in GP/Pari. The script
calculates the time needed to compute all known Wagstaff primes till date. The
exponents of the Wagstaff primes are on the x-axis and the time needed to
compute is on the y-axis. The time in milliseconds.

The following known Wagstaff primes have been used Wn with n ∈ {3539, 5807,
10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937}

The computation times in ms:

For the Lifschitz test: {16, 47, 187, 194, 226, 296, 422, 5900, 30100, 41500, 67000,
83000, 103000}

For the q = 5 test: {16, 46, 207, 223, 250, 315, 475, 7200, 38500, 53200, 88700,
109850, 135400}

For the Vrba test: {16, 46, 203, 219, 250, 313, 470, 7100, 38400, 52800, 88900,
109550, 134600}
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For the Gerbicz test: {16, 47, 219, 234, 266, 329, 484, 7450, 38900, 54600, 89900,
110150, 136300}

The code in GP/Pari for the Anton Vrba test:

VAppt(p) = {

w = ((2^p) + 1) / 3;

s_2 = (34^2) - 2;

s_var = Mod(s_2,w);

for(n = 3, p,

s_var = Mod(s_var^2 - 2, w);

);

if(s_var == Mod(s_2, w), print(1), print(0));

}

The code in GP/Pari for the newly generate probable prime test using S0 = 3
and q = 5:

pptq5(p) = {

w = ((2^p) + 1) / 3;

s_1 = 7;

s_2 = 47;

s_var = Mod(s_2,w);

if (Mod(p, 4) == 1,

for (n = 3, p,

s_var = Mod(s_var^2 - 2, w);

);

if(s_var == Mod(s_1, w),print(1),print(0));

,

for (n = 3, p,

s_var = Mod(s_var^2 - 2, w);

);

if(s_var == Mod(s_2, w),print(1),print(0));

);

}

22



The code in GP/Pari for the Robert Gerbicz test:

GRppt(p) = {

w = ((2^p) + 1) / 3;

s_1 = 1/4;

s_var = Mod(s_1,w);

for(n = 2, p,

s_var = Mod(s_var^2 - 2, w);

);

if(s_var == Mod(s_1,W), print(1), print(0));

}

The algorithms of the Gerbicz, Vrba and q = 5 test basically work the same.
They evaluate the new Sk value based on the previous one and reduce it modulo
Wn. The algorithms loops until Sn is reached and check if its congruent to S1

or S2 depending on the algorithm and the value of n. The q = 5 test has to
do 1 additional check compared to the others, namely checking whether n is 1
modulo 4 or if it is 3 modulo 4. So all in all these algorithms have roughly the
same amount of operations, hence it is of no surprise that these three tests ap-
pear to perform similarly. The Lifschitz test however performs better in terms
of speed.

The code in GP/Pari for the Henri and Renaud Lifschitz test with b = 5:

HRppt(a) = {

if(Mod(Mod(25, (2^a + 1))^(2^a-1),(2^a + 1)) == 25,

print(1), print(0))

}

The way this algorithm is written is identical to the so called power mod
function in GP/Pari. It is efficient in evaluating modular exponention by per-
forming modular reduction before raising it to a certain power. The results
show us that the Lifschitz test is faster than the other three tests. This may be
explained by the fact the modular reduction requires many lot bit operations
whenever we are reducing integers modulo 2n+1

3 . Like we mentioned in chapter
4. The Lifschitz test is an optimization of Miller’s test, where bit operations are
minimized by reducing everything modulo 2n+1 instead. Similar optimizations
have not been done to the Gerbicz, Vrba or our new q = 5 test.
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5.2 The only if implication.

Ideally Theorem 5.11 would work in both directions ways i.e. that Sn ≡ S1 or
S2 depending on q, implies that Wn is prime. One way to do this is to assume
that Wn is composite and reach some sort of contradiction. This approach is
used in the proof of the Lucas-Lehmer test[2]. For our purposes showing just
the only if part of the proof sufficient.

Theorem 5.15. The Lucas-Lehmer primality test Let Sn = S2
n−1 − 2 with

S0 = 4. Then Mp = 2p − 1 is prime if and only if Mp divides Sp−2.

Proof. ⇐= Assume Mp has a proper prime divisor q. Note that Lemma 5.3
can be applied here as well. Plugging in S0 = 4 results in τ = 2 +

√
3. Mp

is assumed to be composite, hence knowing the order of G(Z/(Mp), 3) means
knowing the factorization of Mp. The order of G(Fq, 3) however is known.
Depending on q its either q − 1 or q + 1. Mp divides Sp−2 implies there exists

some k ∈ N such that kMp = Sp−2 = τ2
p−2

+ τ−2p−2

. Multiplying both sides

with τ2
p−2

results in kMpτ
2p−2 − 1 = τ2

p−1

. However, by assumption q|Mp.

Hence τ2
p−1 ≡ −1 (mod q). This implies that the order of τ in G(Fq, 3) is 2p.

But then 2p ≤ q ± 1 < 2p − 1.

A similar test could be created using Wagstaff primes, by plugging in S0 = 4
in Theorem 5.11. The same group G(Z/(Wn), 3) is obtained. But finding some
k ∈ N such that Wn|Sk turns out to be very hard, if not impossible. We tried
multiple known Wagstaff primes and observed all possible Sk values. None of
which were congruent to zero. What was found is that Wn|τe where e is an odd
positive integer, but not a power of 2. Making it impossible to get an expression
for some Sk. Hence even if Wn is assumed to be composite with some proper
prime divisor q. It seems that the same trick cannot be applied. The only thing
that is known is that τ2

n

is equivalent to τ2
2

or τ2 modulo Wn and that the
order of τ therefore divides 2n + 4 or 2n + 2. For Wn = pa1

1 pa2
2 · · · pak

k the order

of G(Z/(Wn), 3) is (pa1−1
1 (p1 −

(
3
p1

)
))(pa2−1

2 (p2 −
(
3
p2

)
)) · · · (pak−1

k (pk −
(
3
pk

)
)).

Hence finding any contradiction likely requires some form of factorization which
by itself would already prove that Wn is not prime.

As of today we have not seen any examples where Wn is composite and Sn ≡ S2

or S1 modulo Wn. Or found proof of others that did. So it may very well be
that Wn being composite implies that Sn is not equivalent to S1 or S2 modulo

Wn. The first possible example is W9 = 29+1
3 = 171. G(Z/(171), 2) has order

240 using the Vrba test and Theorem 5.7. The order of (3, 2), the representative
of τ in G(Z/(171), 2) has order 60. And 60 does not divide 516, hence W9 not
prime implies that S9 ̸≡ S2 (mod 171). The order was calculated in GP/Pari
with the following script:
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selfmult(p) = {

w = (2^p + 1)/3;

flag = 0;

a = 3;

b = 2;

a_flag = 3;

for(n = 2, w + 1,

a = Mod(3*a + 4*b, w);

b = Mod(3*b + 2*a_flag, w);

a_flag = a;

if(a == 1 && b == 0,

flag = n;

break;

);

);

print(flag);

}

This algorithm simply multiplies τ represented as (3, 2) in G(Z/(Wn), 2)
with itself until it reaches (1, 0). It then returns the flag value which represents
the order.

This approach can also be used for larger Wagstaff numbers. However, instead
of calculating the order of τ , factorizations are used from the so called Cun-
ningham Tables[17]. The Cunningham tables contain all factorizations of 2n±1
for n < 1200. In this example the Anton Vrba test with q = 2 is again used.
This test states that if Wn is prime, then Sn ≡ S2 (mod Wn). Lemma5.3 plus

Wn being prime implies that τWn+1 ≡ τ
2n+4

3 ≡ 1 (mod Wn) =⇒ τ2
n+4 ≡ 1

(mod Wn). Hence the order of τ to needs to divide 2n + 4 = 4(2n−2 + 1).
Now consider the Wagstaff number W107. Then the order of τ has to divide
2107 + 4 = 4(2105 + 1) and also the order of G(Z/(W107), 2). The factorization
of 2105 +1 = 32 · 11 · 43 · 211 · 281 · 331 · 5419 · 86171 · 664441 · 1564921. And the
factorization of 2107 + 1 = 3 · 643 · 84115747449047881488635567801. Note that
643 ≡ 3 (mod 8) and 84115747449047881488635567801 ≡ 1 (mod 8). Hence
Theorem 2.6 implies that

(
2

643

)
= −1 and

(
2

84115747449047881488635567801

)
= 1.

Then the order of G(F643, 2) is 644 and the order of
G(F84115747449047881488635567801, 2) is 84115747449047881488635567800 using The-
orem 5.7. Theorem 5.9 implies that the order of G(Z/(W107), 2) is their product.
The prime factorization of their product is
24 · 52 · 7 · 23 · 107 · 3930642404161115957412877. None of the prime factors
of 2105 + 1 and the prime factors of the order of G(Z/(W107), 2) are similar.
Hence the order of τ cannot divide both. Meaning that W107 composite implies
Sn ̸≡ S2 (mod W107).
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Just to support the possibility that it might work both ways in general,
consider the following two examples. Two additional arbitrary prime numbers
are chosen, n = 251 and n = 337. Then the Vrba test is applied again and
the same reasoning as in the W107 case. Theorem 2.6 is used to deduce if 2
is a quadratic residue or a quadratic non-residue for all the prime factors of
Wn. Then Theorem 5.7 and Theorem 5.9 is applied to obtain the order of
G(Z/(Wn), 2)

5.3 Example with n = 251

The prime factorization of 2251 + 1 is: 3 · 238451 · 5035345723951854..
..68850566542884631380649090303121677364358901199128608233. And the
prime factorization of the order of G(Z/(W251), 2) is: 2

5 · 3 · 13 · 31 · 89 · 641 ·
83865932952614889957040658114051·648664851319405936384384380073628147.
The prime factorization of 2249+1 is:32 ·499 ·1163 ·2657 ·155377 ·13455809771 ·
9202419446683·33880982905675873770520165225627948593. The order ofG(Z/(W251), 2)
and 2249 + 1 do not have any common prime factors except 3. The order
of the representative (3, 2) of τ in G(Z/(W251), 2) cannot have order 3 since
(3, 2)3 = (99, 60) ̸≡ (1, 0) (mod W251). Hence W251 being composite implies
that Sn ̸≡ S2 (mod W251).

5.4 Example with n = 337

The prime factorization of 2337+1 is: 3 ·21569 ·5333388961 ·964094242760707 ·
841462035388400254709200130801140475354660321983340709246797..
..058685767257. And the prime factorization of the order of G(Z/(W337), 2) is:
216·3·5·232·151·3373·32971·430085009·3017358263·7641670808360088680058401·
94966844667290070188436576237317579. The prime factorization of 2335+1 is:
3 ·11 ·93131 ·7327657 ·6713103182899 ·P75. The P75 stands for a prime number
that has 75 digits. The only shared prime factor is again 3. The order of τ
cannot equal 3 because of similar reasoning in the W251 example. More over,
the largest prime factor of the order of G(Z/(W337), 2) has 69 digits. Hence it
cannot equal the prime factor of 75 digits. Hence W337 being composite implies
that Sn ̸≡ S2 (mod W337).
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6 Primality proofs of W79,W191 and W313

In this section the primality of W79,W191 and W313 is shown using the Cun-
ningham tables. The approach is follows. To determine the primality of Wn,
we search for an element that has order Wn − 1 in Z/(Wn). After finding such
an element, we the following Theorem is applied:

Theorem 6.1. The multiplicative group (Z/(Wn))
∗ has order Wn − 1 if and

only if Wn is prime.

Proof. =⇒ The multiplicative group (Z/(Wn))
∗ having order Wn − 1 implies

that for all a ∈ {1, 2, ...,Wn − 1} that gcd(a,Wn) = 1. Hence Wn has no prime
divisors i.e. Wn is prime. ⇐= Wn prime implies that for all a ∈ {1, 2, ...,Wn−1}
we have gcd(a,wn) = 1. Hence there are Wn − 1 elements in (Z/(Wn))

∗.

Finding an element that has order Wn − 1 is rather exhaustive. But finding
an element x such that x2n−1 ≡ x (mod Wn) is not. When such an element is
found, then its order has to divide 2n−1 − 1. Then the Cunningham Tables are

used to find the factorization of 2n−1 − 1 and evaluate x
2n−1−1

pi (mod Wn) for
all prime factors pi of 2

n−1 − 1 to see if it evaluates to 1. If this is only true for

the prime factor 3, then the order of x is 2n−1−1
3 = Wn−1

2 . Now (Z/(Wn))
∗ is

an abelian group. Hence for any two elements x, y in (Z/(Wn))
∗ such that their

orders are co-prime, the order of their product is the product of their orders[9].
Note that −1 has order 2 and the order of x is always odd given that 2n−1 − 1
is odd and is being divided by 3. Hence the order of −x will be the product of
2 and Wn−1

2 i.e. it has order Wn − 1.

The algorithm to find this element x is as follows:

order(p,start,size) = {

w = (2^p + 1)/3;

for(k = start, size,

if(Mod(Mod(k,w)^(2^(p-1)),w) == k,

print(k);

break;

);

if(k == size - 1,

print("increase the size");

);

);

}
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6.1 primality proof of W79

The algorithm to find the element x returned the value 6. Hence we know
that the order of 6 divides 279 − 1. The factorization of 279 − 1 is given by
32 ·7 ·79 ·2731 ·8191 ·121369 ·22366891. Then by using the following algorithm:

order_func79(x) = {

prime_factors = [3,7,79,2731,8191,121369,22366891];

w = (2^79 + 1) / 3;

e = 2^78 - 1;

for (i = 1, #prime_factors,

val = Mod(x, w)^(e / prime_factors[i]);

if(val == 1,

print(1),print(0));

);

}

Using this algorithm we found that the order of 6 in Z/(W79) is
Wn−1

2 and
hence −6 has to have order W79 − 1 i.e. W79 is prime.

6.2 primality proof of W191

The order of 3 divides 2190 − 1 using the algorithm mentioned earlier. The
factorization of 290 − 1 is: 3 · 11 · 31 · 191 · 2281 · 524287 · 174763 · 420778751 ·
30327152671·3011347479614249131. With the following algorithm we confirmed

that the order of 3 in Z/(W191) is
2190−1

3 .

order_func191(x) = {

prime_factors = [3, 11, 31, 191, 2281, 524287,

174763, 420778751, 30327152671, 3011347479614249131];

w = (2^191 + 1) / 3;

e = 2^190 - 1;

for (i = 1, #prime_factors,

val = Mod(x, w)^(e / prime_factors[i]);

if(val == 1,

print(1),print(0));

);

}

Hence −3 has to have order W191 − 1 in Z/(W191) i.e. W191 is prime.
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6.3 primality proof of W313

The order of 5 divides 2312−1. The factorization of 2312−1 is: 32 ·5·7·13·17·53·
79 ·157 ·241 ·313 ·1249 ·1613 ·2731 ·3121 ·8191 ·21841 ·121369 ·858001 ·22366891 ·
308761441 · 84159375948762099254554456081. With the following algorithm it

was confirmed that the order of 5 in Z/(W313) is
2312−1

3 .

order_func313(x) = {

prime_factors = [3,5,7,13,17,53,79,157,241,313,1249,1613,

2731,3121,8191,21841,121369,858001,22366891,308761441,

84159375948762099254554456081];

w = (2^313 + 1) / 3;

e = 2^312 - 1;

print(Mod(x,w)^e);

for (i = 1, #prime_factors,

val = Mod(x, w)^(e / prime_factors[i]);

if(val == 1,

print(1),print(0));

);

}

Hence −5 has to have order W313 − 1 in Z/(W313) i.e. W313 is prime.

7 Are there infinitely many Wagstaff primes?

A natural question to ask is whether there exist infinitely many Wagstaff primes.
As of today there is no conclusive answer. There is however an attempted
proof by Stephen Marshall[7]. This proof can be found in the references section.
Unfortunately his proof turned out to contain multiple flaws. The first apparent
one being that he defines Wagstaff primes incorrect multiple times. On page 1
Wagstaff numbers are incorrectly defined as numbers of the form q = 2p−1

3 and
then just a few sentences later correctly defined in the New Mersenne Conjecture
which he mentions. Then on page 3 he starts his proof, with again the incorrect
definition 2p−1

3 . The way he sets his attempted proof up is however unaffected
by the incorrect definition. He assumes there are finitely many Wagstaff primes
which he calls n1, n2, ..., np where np = 3 is the smallest one. He then argues
that 1

n1
+ 1

n2
+ ... + 1

np
> 1

2n1
+ 1

3n2
+ ... + 1

knp
:= S. He then rewrites the

fractions in the following manner 1
3n2

= 1
6n2

+ 1
6n2

, 1
4n3

= 1
12n3

+ 1
12n3

+ 1
12n3

etc,
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so in general 1
knk−1

=
∑k

1 = 1
k(k−1)nk−1

and puts them in the following form.

A =
1

2n1
+

1

6n2
+

1

12n3
+

1

20n4
+

1

30n5
+

1

42n6
+

1

56n7
+ ...

B =
1

6n2
+

1

12n3
+

1

20n4
+

1

30n5
+

1

42n6
+

1

56n7
+ ...+

C =
1

12n3
+

1

20n4
+

1

30n5
+

1

42n6
+

1

56n7
+ ...

D =
1

20n4
+

1

30n5
+

1

42n6
+

1

56n7
+ ....

.

.

They are constructed in such a way that if all the rows are summed up, S is
obtained again. The next step is rearranging A as follows:

A = (
1

n1
− 1

2n1
) + (

1

3n3
− 1

4n3
) + (

1

4n4
− 1

5n4
) + ...

It is important to note here that it was assumed that there are finitely many
Wagstaff primes, namely p. So A should actually be written up till ( 1

pnp
−

1
(p+1)np

) to be precise. The author probably oversaw this part as he proceeded

to rewrite A once again in the following way:

A =
1

n1
+ (

1

2n2
− 1

2n1
) + (

1

3n3
− 1

3n2
) + (

1

4n4
− 1

4n3
) + (

1

5n5
− 1

5n4
) + ....

where he notes that n1 > n2 > n3 > n4 > ... and that each intermediate
( 1
2n2

− 1
2n1

) > 0, ( 1
3n3

− 1
3n2

) > 0, ( 1
4n4

− 1
4n3

) > 0, ( 1
5n5

− 1
5n4

) > 0 etc. His

conclusion is that A then has to be larger than 1
n1

. He however forgets about

the − 1
(p+1)np

at the end of A. Stating that A > 1
n1

is equivalent to stating that

( 1
2n2

− 1
2n1

)+( 1
3n3

− 1
3n2

)+( 1
4n4

− 1
4n3

)+( 1
5n5

− 1
5n4

)+....+( 1
pnp

− 1
pnp−1

) < 1
(p+1)np

.

Which is something one cannot know. The same reasoning is applied to the other
rows B,C,D, .... For row B he concludes that B > 1

2n2
, for C he concludes that

C > 1
3n3

and for D likewise concludes that D > 1
4n4

. He then sums up all rows

and concludes that their sum S is larger than 1
n1

+ 1
2n2

+ 1
3n3

+ 4
n4

+ ... and

that this contradicts the earlier definition S = 1
2n1

+ 1
3n2

+ ... + 1
knp

. However

he cannot draw this conclusion because of the incorrect rearrangement of the
rows.

Hence it is unfortunately still not known whether there are infinitely many
Wagstaff primes.
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8 Conclusion

The main aim of this thesis was to describe probable prime tests involving
Wagstaff numbers. This was done by first looking at the properties of Wagstaff
numbers and then making the distinction between two kinds of probable prime
tests. The Henri and Renaud Lifschitz test, which is a derivation of Miller’s test
and probable prime tests based on Lucas-Lehmer recurrences. In terms of speed,
the Renaud Lifschitz test out performs the tests derived from Lucas-Lehmer
recurrences. That is, the Anton Vrba test, The Robert Gerbicz test and the
newly crafted test with q = 5. The main interest however was not necessarily
the speed difference between the tests, but how they operate and potentially
finding a test that states: Wn is prime if and only if a certain condition is
satisfied. The build up to proving Theorem 5.7 resulted in constructing the
group G(Z/(M), q) which in turn allows to restrict the possible orders of τ from
Lemma 5.3. These restrictions together with the Vrba test and the factorizations
of 2n ± 1 from the Cunningham tables were used to show that W107,W251 and
W337 being composite automatically implied that the order of τ cannot divide
2105+1, 2249+1 and 2335+1 respectively. And therefore one cannot have Sn ≡ S2

(mod Wn). Although three examples is nowhere near a proof, it does support
the idea that these tests based on Lucas-Lehmer recurrences may work both
ways. In the introduction it was mentioned that the largest proven Wagstaff
prime around 1954 was W79 and that nowadays one can prove this using their
laptop at home. This was demonstrated by proving the primality of W79,W191

and W313. Finally an attempted proof on whether there are infinitely many
Wagstaff primes is incorrect was covered. The author incorrectly rearranged
sums of fractions, which led to an incorrect conclusion.
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