
Comparing Sample Efficiency Between

Model-Based and Model-Free Reinforcement

Learning Methods

Bachelor’s Project Thesis

Dennis Chong Yi Wu, s4752244, D.C.Y.Wu@student.rug.nl,

Supervisors: J.D. Cardenas Cartagena, M.Sc. & Dr M. Sabatelli

Abstract: Model-free Reinforcement Learning (RL) has been successfully applied to complex
tasks, such as playing Atari games from image observations, but it typically requires a large
amount of sample data. Model-based Reinforcement Learning attempts to address this issue
by introducing a transition model, thereby reducing the number of samples needed to train
an agent. This paper compares the sample efficiency of a Model-Free Double Deep Q-Network
(DDQN) algorithm with a Model-Based Dyna-Q algorithm. Both agents were trained across
various environments to determine which algorithm achieves a predefined reward threshold faster.
Results indicate that while both agents can achieve the threshold, the model-based Dyna-Q
algorithm consistently reaches it with fewer samples. However, this sample efficiency advantage
comes at the cost of significantly higher computational resources.

1 Introduction

In the evolving field of machine learning, rein-
forcement learning (RL) stands out as a pragmatic
methodology for enabling agents to make decisions
and learn policies based on interactions with their
environment. At its core, RL involves agents learn-
ing to achieve goals by taking actions that maxi-
mize the expected cumulative reward (discounted
over time). In recent times the application of Deep
Reinforcement Learning (DRL) on complex envi-
ronments such as Atari games has become more
prominent (Kaiser et al., 2020; Oh et al., 2015).
This approach uses function approximation to pre-
dict expected rewards from taking an action. This
process is heavily dependent on the agent’s ability
to sample data from its environment, where each
sample consists of states, actions, and the resul-
tant rewards (also known as a trajectory). How-
ever, the efficiency with which an RL agent can
learn from these samples is a challenge, particularly
in complex domains where obtaining each sam-
ple can be costly or time-consuming. Model-based
Deep Reinforcement Learning (MBDRL) offers a
possible solution to this by building up a transition
model that mimics the dynamics of the environ-
ment by sampling from the environment. By us-

ing this transition model to generate artificial sam-
ples, the amount of sampling from the environment
required can be reduced. Although model-based
methods are a more sample-efficient way of doing
reinforcement learning, the success of the model-
based approach relies on the quality of the predic-
tions of the dynamics model. Modelling the dynam-
ics of high dimensional problems usually requires
high-capacity networks that, unfortunately, require
many samples for training to converge into the op-
timal policy, potentially outweighing the sample ef-
ficiency gains of model-based methods.
This paper aims to answer the following question:

Do model-based reinforcement learning agents need
fewer samples compared to model-free reinforce-
ment learning agents?

With the subquestions:

• How does the reward gain in model-based
reinforcement learning compare to that of
model-free reinforcement learning across vary-
ing buffer sizes?

• Are model-based agents able to gain higher re-
wards from the environment in comparison to
model-free agents?

1

• Do model-based reinforcement learning agents
require more training resources than model-
free reinforcement learning agents?

The remainder of this paper is structured as fol-
lows: Section 2 will introduce important theoret-
ical concepts of reinforcement learning, Section 3
will introduce the Methods used to answer the re-
search questions, Section 4 will present the Results
obtained from the experiments, and finally, Section
5 is a Conclusion and Discussion of the project.

2 Background

This section will provide a formal introduction to
key concepts in reinforcement learning (RL). It
will cover essential concepts in both model-based
and model-free RL, including Markov decision pro-
cesses, samples, and experience replay.

2.1 Markov Decision Processes

A Reinforcement Learning problem can be defined
in terms of a Markov Decision Process with a state
space S, an action space A, a transition function
P : S × A × S → [0, 1], and a reward function
R : S×A → R. The central problem in both Model-
Free and Model-Based Reinforcement Learning is
to find a policy π : S → A or value function V π

that maximizes the expected return E defined by
Equation 2.1. Here Rt(st, at) is the reward received
by the agent at time-step t after it takes an ac-
tion at in state st. Furthermore γt is the Discount
Factor which ensures that short-term reward gains
are prioritized over those further in the future.. In
model-free RL, this is done through direct interac-
tion with the environment and learning from expe-
rience. In model-based RL, this involves building a
model of the environment and using it for planning
and decision-making. Understanding these distinc-
tions and their implications helps in selecting the
appropriate approach based on the specific charac-
teristics and requirements of the problem at hand.

V π(st, at) = E

[∞∑
t=0

γtRt(st, at)

]
(2.1)

2.2 Model-Free Reinforcement Learning

Model-Free Reinforcement Learning methods max-
imize the expected return using either policy-based
or value-based methods. Policy-based approaches
directly aim to learn the optimal policy that maxi-
mizes the expected return. Value-based approaches
focus on estimating the value of states or state-
action pairs to derive the optimal policy indirectly.
Both policy and value-based techniques learn to
make decisions without approximating the transi-
tion and reward functions of the MDP. They di-
rectly learn the optimal policy or value function
through sample data from the environment. An ex-
ample of a value-based method would be Q-learning
(Watkins & Dayan, 1992). At the core, Q-learning
is based around a Q(st, at) function that provides
Q-values that represent the expected return of tak-
ing a certain action a at a certain state s. It is
updated towards an optimal Q-value function us-
ing the observed reward and the highest Q-value of
the next state:

Q(st, at)← Q(st, at) +

α

[
Rt+1 + γ max

at+1

Q(st+1, at+1)−Q(st, at)

]
(2.2)

Here α is the learning rate and st+1, at+1 are the
state and taken action at the next time-step.

2.3 Model-Based Reinforcement Learning

In Model-Based Reinforcement Learning both
P and R are approximated by the learned tran-
sition function P̂(st+1|st, at) and the learned re-
ward function (R̂(st, at)) respectively. After train-
ing P̂ and R̂ artificial samples are simulated
through a process that is called planning as
(st, at, R̂(st, at), P̂(st, at)). These artificial samples
are then used to find the policy π or value function
V π by maximizing the expected return similar to
model-free methods.

2.4 Deep Reinforcement Learning

As mentioned in Section 1 Deep Reinforcement
Learning (DRL) agents have become more promi-
nent recently for their capabilities to interact effec-
tively with complex environments. Deep reinforce-
ment learning aims to combine function approxi-
mators from machine learning with traditional re-

2

inforcement learning algorithms to make them scal-
able towards environments with large state spaces.
By combining Q-learning with function approxima-
tors and a Experience Replay Buffer a Deep Q-
network (DQN) (Watkins & Dayan, 1992) was cre-
ated. It has proven to be able to perform well in a
wide variety of game-based environments.

2.5 Experience Replay Buffer

When an agent interacts with an environment the
state of the environment changes, this transition
can be expressed as a set of elements (st, at, rt, st+1)
which is called a sample. Samples are also referred
to as Experience or Trajectories are essential in ef-
ficiently training agents.

The Experience Replay Buffer (Lin, 1992) is a
fixed-size storage container that holds samples col-
lected from the environment. It is vital in the train-
ing process of both deep model-free and model-
based agents since it provides the ability to reuse
samples collected previously which leads to more
stable training. The most common implementation
of the Experience Replay Buffer uses a circular de-
sign. When the buffer is full, it removes samples
on a first-in, first-out basis, meaning old samples
are gradually replaced by new ones. Experience Re-
play Buffers also generally provide a way to sample
batches of samples in a uniform way, which means
that each sample in the buffer has an equal proba-
bility to be sampled.

3 Methods

This section will introduce the methods that are
essential to this project. The section starts out by
introducing the Double Deep Q-network and Dyna-
Q algorithm, hereafter the experimental design will
be introduced. Furthermore, the neural network ar-
chitectures that were used for the experiments are
outlined. Finally, the main differences across envi-
ronments are shown.

3.1 DDQN

The agent chosen for this project is a Double Deep
Q-Network (DDQN) (Van Hasselt et al., 2015)
agent, as described by algorithm 3.1. It is an ex-
tension of the Deep Q-Network (DQN) framework

introduced earlier. As its name suggests, a DDQN
consists of two DQN networks: a primary network
and a target network. The primary network is used
to select actions, while the target network is used
to provide stable Q-value targets for the training
updates.

This separation helps mitigate the problem of
overestimation of Q-values, which can occur in
standard DQN implementations. By decoupling the
action selection and Q-value target calculation,
DDQN improves learning stability and leads to bet-
ter overall performance. These advantages make it
an ideal choice for the project.

Before training starts the replay buffer D is ini-
tialized to store the agent’s experiences, and both
the primary network Qθ and the target network Qθ′

are initialized with weights θ and θ′ = θ, respec-
tively. In each episode, starting from an initial state
s0, the agent selects actions at using an ϵ-greedy
policy derived from Qθ. Actions are either random
(with probability ϵ) or the ones that maximize the
Q-value (with probability 1−ϵ). After executing ac-
tion at, the agent observes the reward rt and next
state st+1, storing the transition (st, at, rt, st+1) in
the replay buffer D. A random mini-batch of tran-
sitions (sj , aj , rj , sj+1) is sampled from D. For each
transition, the target value Qθ′(sj , aj) is computed
as:

a′ = arg max
a

Qθ(sj+1, a) (3.1)

Qθ′(sj , aj) ≈ rj + γQθ′(sj+1, a
′) (3.2)

A gradient descent step is performed to mini-
mize the squared error between Qθ′(sj , aj) and
Qθ(sj , aj). Every C steps, the target network
weights are updated to match the primary net-
work weights, θ′ ← θ. This process repeats until
the training ends or resources are exhausted.

3.2 Dyna-Q

The model-based algorithm that was used for the
experiments in this project is a variation of the
Dyna-Q algorithm first introduced by (Sutton,
1991) The key difference is that the Dyna-Q vari-
ant used for this project does not sample the state-
action pair used for planning from a set of previ-
ously seen state-action pairs but instead is sam-
pled from the Experience Replay Buffer. This is
to ensure that the transition model simulates the

3

Algorithm 3.1 Double Deep Q-Network (DDQN)

1: Initialize replay buffer D
2: Initialize primary network Qθ with random weights

θ
3: Initialize target network Qθ′ with weights θ′ = θ
4: Set learning rate α, discount factor γ, batch size B,

and target update frequency C
5: for episode = 1, M do
6: Initialize state s0
7: for t = 1, T do
8: Select action at using ϵ-greedy policy from

Qθ(st, at)
9: Execute action at

10: Observe reward rt = R(st, at)
11: Observe next state st+1 = P(st, at)
12: Store sample (st, at, rt, st+1) in replay buffer

D
13: Sample random minibatch of transitions

(sj , aj , rj , sj+1) from D
14: Calculate target Qθ′(sj , aj) for each transition

in minibatch:

Qθ′(sj , aj) ≈


rj if sj+1 is terminal

otherwise:

rj + γQθ′(sj+1, argmaxa Qθ(sj+1, a))

15: Perform a gradient descent step on loss:

L(θ) =
1

B

∑
j

(Qθ′(sj , aj)−Qθ(sj , aj))
2

16: Update weights θ using gradient descent:

θ ← θ − α∇θL(θ)

17: If t mod C == 0:
Update target network Qθ′ ← Qθ

18: end for
19: end for

Algorithm 3.2 Dyna-Q

1: Initialize Q(s, a) arbitrarily
2: Initialize model as P̂ (st+1|st, at), and R̂(rt|st, at)
3: Set simulation size n
4: for t = 1, T do
5: Select and execute action at using ϵ-greedy policy

from Q(st, at)
6: Observe reward rt = R(st, at)
7: And next state st+1 = P(st, at)
8: Store sample (st, at, rt, st+1) in replay buffer D
9: Sample random minibatch of transitions

(sj , aj , rj , sj+1) from D
10: Update Q(sj , aj)
11: Update model(st+1, rt|st, at)
12: for i = 1 to n do
13: Sample (sj , aj) from buffer D
14: rj , sj + 1← model(sj , aj) {planning}
15: Update Q(sj , aj)
16: end for
17: end for

environment instead of merely reproducing past
samples. The algorithm begins by initializing the
weights of the DDQN agent and training the tran-
sition model using data collected by an agent pre-
trained on the environment. In each iteration, the
agent interacts with the environment, and these in-
teractions are stored as samples in the Experience
Replay Buffer. Subsequently, both the agent and
the transition model were trained on a batch of 128
samples from the buffer. The algorithm then enters
the planning stage, where the transition model sim-
ulates a batch of X samples that is used to further
train the agent. This process repeats until training
is completed.

3.3 Experimental Setup

To evaluate the sample efficiency of model-based
and model-free approaches, experiments were con-
ducted across the Cartpole and Acrobot environ-
ments, the Lunar Lander environment which is part
of the Box2D benchmark and the Atari:Freeway en-
vironment which is part of the Atari Learning En-
vironment (ALE)(Bellemare et al., 2012). All en-
vironments were accessed through OpenAI Gym
(Brockman et al., 2016). Changes in hyperparam-
eters and neural network architectures were made
across environments, Section 3.5 and, Appendix A
and Bwill go into more detail on this. Because the

4

experimental results were consistent across all envi-
ronments, this paper will focus on a detailed analy-
sis of the Cartpole environment for the sake of sim-
plicity. All of the other experimental results can be
found in the Appendix. Before starting the exper-
iment, samples were collected by a trained model-
free agent and stored in an Experience Replay
Buffer. During the experiments both the model-
based and the model-free agents interacted with
the environment X amount of times. The experi-
ment was repeated for 3 runs for every one of the 9
buffer sizes varying from 1000 to 9000 with an in-
crement of 1000 every time. Every 50 interactions
with the environment the network weights were up-
dated. During the experiment, the total amount
of (non-artificial) samples used, the performance of
the agents over 3 episodes every 500 updates and
the amount of weight updates were kept track of.

3.4 Network Architectures

All of the experiments were performed on both
a Double Deep Q-network and an altered version
of the Dyna-Q algorithm using a Double Deep Q-
network (DDQN) as the agent as described by Sec-
tion 3.2. The network parameters of the DDQN
network as well as the parameters of the transition
model are given by Appendix A.

3.5 Differences Across Environments

As mentioned before in Section 3.3 all of the ex-
periments were performed on Cartpole, Acrobot,
Lunar Lander and Atari:Freeway notable changes
in hyperparameters between is an increase in train-
ing time as state complexity increases since it takes
longer for the agent to learn the optimal policy. As
well as a decrease in simulated data due to a limit
in computational resources. All of the hyperparam-
eters can be at Appendix A. Other notable differ-
ences between states is the DDQN agent’s network
as a regular Multi layer perception is swapped out
for a Convolutional Neural Network when working
with the Freeway environment as it has high di-
mensional pixel-based states. All DDQN network
specifications can be found at Appendix B. The
transition model used to simulate the Freeway envi-
ronment is also different from the transition model
used on the other environments as it needs to work

with pixel images. The exact transition model spec-
ifications can be found at Appendix B.

4 Results

This section will comprehensively address all re-
search questions by presenting the results obtained
from the conducted experiments, which will subse-
quently be analyzed.

4.1 Sample Efficiency

To address whether model-based reinforcement
learning (RL) agents require fewer samples com-
pared to model-free RL agents, the mean number
of samples needed to reach a certain threshold re-
ward across different buffer sizes was kept track of.
The threshold reward was different for each envi-
ronment and was chosen to represent a level of per-
formance deemed reasonable by the experimenter.

The results shown in Figure 4.1 reveal that
model-based RL agents consistently needed fewer
samples to achieve the threshold reward com-
pared to model-free RL agents. This trend was ob-
served across all tested buffer sizes. Model-based
RL agents not only reached the threshold reward
with fewer samples but also exhibited less variabil-
ity in the number of samples required, as indicated
by the smaller standard deviations. This implies a
more consistent performance compared to model-
free RL agents.

4.2 Buffer Sizes

To compare the reward gain of model-based rein-
forcement learning (RL) agents with that of model-
free RL agents across varying buffer sizes, The
mean reward over three episodes was tracked at
intervals of every 500 update steps.

One of the key observations from comparing the
reward gain of model-based reinforcement learn-
ing (RL) agents to that of model-free RL agents is
the notable ”jump-start effect” in the performance
of model-based RL agents at the start of train-
ing. This phenomenon is characterized by an initial
spike in performance for model-based RL agents.

The cause of this jump-start effect lies in the pre-
training process. Before the main training phase be-
gins, the transition model used by the model-based

5

Figure 4.1: A comparison of the amount of sam-
ples needed for the model-based and model-free
agents to reach a certain reward.

RL agent is pre-trained on existing data. During
the main training phase, the model-based RL agent
utilizes both data gathered directly from the en-
vironment and data generated by this pre-trained
transition model. Since the agents are trained in
batches, this jump-start effect becomes even more
pronounced. Figures 4.2A, 4.2B and 4.2C all illus-
trate the initial performance boost experienced by
the model-based RL agent compared to the model-
free RL agent.

The results also indicate that increasing buffer
sizes contribute to training stability for both model-
based and model-free RL agents. Larger buffer sizes
provide a more comprehensive dataset for training,
which helps mitigate the variability in performance
during the training process. This stabilizing effect
is observed equally in both types of agents. Despite
the increased stability with larger buffer sizes, the
final performance of both model-based and model-
free RL agents after training does not show signif-
icant improvement.

4.3 Post-training Performance

To determine if model-based reinforcement learning
(RL) agents are able to gain higher rewards from
the environment in comparison to model-free RL
agents, the mean of the last rewards across different
buffer sizes for both agents was tracked.

The results shown in Figure 4.3. indicate that
there is no significant performance difference be-

Figure 4.2: Comparison of the Model-based and
Model-free agent’s mean reward over 3 episodes
every 500 update steps across buffer sizes.

6

Figure 4.3: Comparison between the Model-
based and Model-free agent’s mean last reward
across buffer sizes.

tween model-based and model-free agents at the
end of training. Both types of agents achieved sim-
ilar rewards with very similar standard deviations
across different buffer sizes. This suggests that,
given sufficient training time, both model-based
and model-free agents converge to similar policies

4.4 Resource Cost

To address whether model-based reinforcement
learning (RL) agents require more training re-
sources than model-free RL agents, the number
of weight updates was tracked throughout the
training process. Additionally, the total number of
weights in the networks of both types of agents was
compared.

The analysis reveals that model-based RL agents
require significantly more training resources com-
pared to model-free RL agents. Specifically, the
model-based RL agents needed roughly three times
as many weight updates as seen in Figure. This in-
creased computational demand is illustrated in Fig-
ure 4.4. Moreover, the model-based RL agents had
approximately three times as many weights in their
networks compared to the model-free RL agents.
This difference in the complexity of the networks
contributes to the higher number of weights up-
dated in the training of a model-based RL agent.

5 Discussion and Conclusion

This paper systematically compared the perfor-
mance and resource requirements of model-based
and model-free reinforcement learning (RL) agents

Figure 4.4: Comparison between the Model-
based and Model-free agent’s amount of weight
updates.

across several criteria: sample efficiency, reward
gain, final performance, and training resources.

• Sample Efficiency: The findings indicate that
model-based RL agents required significantly
fewer samples to achieve a predefined perfor-
mance threshold compared to their model-free
counterparts. This advantage was underscored
by smaller standard deviations in the num-
ber of samples needed, suggesting more con-
sistent performance across different environ-
ments. This efficiency is particularly advan-
tageous in scenarios where data collection is
costly or time-consuming.

• Reward Gain: The initial phase of train-
ing revealed a distinct jump-start effect for
model-based RL agents. This phenomenon, at-
tributed to the pre-training of the transition
model on existing data, facilitated a rapid ini-
tial performance boost. However, as training
progressed, both model-based and model-free
agents demonstrated improved stability with
larger buffer sizes.

• Final Performance: Despite the initial ad-
vantage, final performance levels in terms of
mean rewards converged between the two ap-
proaches, indicating that while model-based
RL agents may achieve quicker initial learn-
ing, model-free RL agents can ultimately reach
comparable performance outcomes.

• Training Resources: Analysis of training re-
source requirements revealed that model-based

7

RL agents required approximately three times
more weight updates and had networks with
about three times as many weights compared
to model-free RL agents. This increased com-
putational demand highlights a significant con-
sideration for applications where computa-
tional resources are limited or where rapid
training is crucial. During this project this
was especially apparent when working with
the Atari:Freeway environment, due to com-
putational and time limitations the model-
based agent was not able to finish training suc-
cessfully. This was both due to the relatively
large demand for memory capacity and the in-
creased demand for training time.

In conclusion, this paper provides insights into
the comparative advantages and trade-offs between
model-based and model-free reinforcement learning
approaches. Model-based RL agents demonstrate
superior sample efficiency and initial performance
due to their ability to leverage pre-trained transi-
tion models. However, the higher computational de-
mands associated with model-based RL underscore
the importance of considering resource constraints
in practical implementations.

The convergence of final performance metrics
suggests that specific application requirements
should guide the choice between model-based and
model-free RL approaches. For scenarios priori-
tizing sample efficiency, model-based RL may of-
fer distinct advantages. Model-based reinforcement
learning however suffers from environments with
complex dynamics since the amount of memory ca-
pacity needed to store and update the transition
model and the computation cost to train the model
directly scales with how complex the environment
is. Conversely, model-free RL remains competitive
in achieving comparable long-term performance
outcomes while potentially requiring fewer compu-
tational resources. The key trade-off to consider is
the difficulty and cost of obtaining samples from
the environment. If samples are not particularly
hard or expensive to collect, model-free RL is often
the superior choice because training time becomes
a major factor. Although model-free RL may in-
cur higher costs in collecting samples, it benefits
from significantly lower computational costs dur-
ing training, which can greatly reduce the overall
training time for the agent.

Future research could focus on optimizing model-
based RL methods to reduce computational costs
associated with training model-based RL agents
this way model-based RL agents can be scaled
to applications associated with complex environ-
ments. Due to time constraints, the reward thresh-
olds in this project were determined arbitrarily. The
reward threshold used to determine sample effi-
ciency should not be arbitrarily chosen, as it was in
this project. Instead, the threshold choices should
be based on thorough reasoning and justification.
One effective method is to use human performance
as a benchmark. By analyzing the scores or rewards
that proficient human players typically achieve, the
reward threshold can be set relative to this bench-
mark.

References

Bellemare, M. G., Naddaf, Y., Veness, J., &
Bowling, M. (2012, 7). The Arcade Learn-
ing Environment: An Evaluation Platform
for General Agents. Journal of Artificial In-
telligence Research, 47 , 253–279. Retrieved
from http://arxiv.org/abs/1207.4708

http://dx.doi.org/10.1613/jair.3912 doi:
10.1613/jair.3912

Brockman, G., Cheung, V., Pettersson, L., Schnei-
der, J., Schulman, J., Tang, J., & Openai, W. Z.
(2016, 6). OpenAI Gym. Retrieved from
https://arxiv.org/abs/1606.01540v1

Kaiser, , Babaeizadeh, M., Mi los, P., Zej Ośı Nski,
B., Campbell, R. H., Czechowski, K., . . . Ai,
D. (2020). MODEL BASED REINFORCE-
MENT LEARNING FOR ATARI. Retrieved
from https://goo.gl/itykP8

Lin, L.-J. (1992). Self-Improving Reactive Agents
Based On Reinforcement Learning, Planning and
Teaching. , 8 , 293–321.

Oh, J., Guo, X., Lee, H., Lewis, R., & Singh,
S. (2015, 7). Action-Conditional Video Pre-
diction using Deep Networks in Atari Games.
Advances in Neural Information Processing Sys-
tems, 2015-January , 2863–2871. Retrieved from
https://arxiv.org/abs/1507.08750v2

8

Sutton, R. S. (1991, 7). Dyna, an in-
tegrated architecture for learning, plan-
ning, and reacting. ACM SIGART Bul-
letin, 2 (4), 160–163. Retrieved from
https://dl.acm.org/doi/10.1145/122344.122377

doi: 10.1145/122344.122377

Van Hasselt, H., Guez, A., & Silver, D. (2015,
9). Deep Reinforcement Learning with Double
Q-learning. 30th AAAI Conference on Artificial
Intelligence, AAAI 2016 , 2094–2100. Retrieved
from https://arxiv.org/abs/1509.06461v3

doi: 10.1609/aaai.v30i1.10295

Watkins, C. J. C. H., & Dayan, P. (1992). Technical
Note Q,-Learning. , 8 , 279–292.

9

A Hyperparameters

Table A.1: Hyperparameters

Reinforcement learning environments

Hyperparameters Cartpole Acrobot Lunar Lander Freeway

Training duration 30000 30000 90000 500000

Learning rate 0.0001 0.0001 0.0001 0.0001

Minimum buffer size 1000 1000 1000 1000

Maximum buffer size 9000 9000 9000 9000

Discount factor 0.99 0.99 0.99 0.99

Batch size 128 128 128 128

Q̂target Update frequency 37 37 37 37

Q̂ Update frequency 16 16 16 16

Minimum ϵ 0.7 0.7 0.7 0.7

Maximum ϵ 1 1 1 1

ϵ decay factor 0.2 0.2 0.2 0.2

Reward threshold 350 -60 250 18

Planning steps 32 32 32 64

10

B Architecture Details

Table B.1: Transition model

Reinforcement learning environments

Network architectures Cartpole Acrobot Lunar Lander Freeway

Input Dimension 5 7 9 33601

Layer 1 512 256 256 16800

Layer 2 256 512 512 8400

Layer 3 256 256 256 8400

Layer 4 N.A. 256 256 16800

Output Dimension 5 7 9 33601

Table B.2: Double Deep Q-network (DDQN)
MultiLayer Perceptron (MLP)

Reinforcement learning environments

Network architectures Cartpole Acrobot Lunar Lander

Input Dimension 4 6 8

Layer 1 512 512 512

Layer 2 256 256 256

Layer 3 256 256 256

Output Dimension 2 3 4

11

Table B.3: Double Deep Q-network (DDQN)
Convolutional Neural Network (CNN)

Reinforcement learning environments

Network architectures Freeway

Input Image 210 x 160 (greyscale)

Convolutional Layer 1 1 x 32, kernel size = 4, stride = 2

Convolutional Layer 2 32 x 64, kernel size = 4, stride = 2

Convolutional Layer 3 64 x 64, kernel size = 3, stride = 1)

Flatten layer

Fully Connected Layer 1 input dimension 23552

Fully Connected Layer 2 input dimension 512

Output Dimension 3

12

C Cartpole

This appendix contains the figures with the full set
of collected data on the Cartpole environment as
discussed in Section 4.

Figure C.1: Comparison of the amount of sam-
ples needed to reach the reward threshold for
the Model-based and Model-free agents across
buffer sizes

13

Figure C.2: Comparison of the Model-based and
Model-free agent’s mean reward over 3 episodes
every 500 update steps across buffer sizes.

Figure C.3: Comparison between the Model-
based and Model-free agent’s mean last reward
across buffer sizes.

Figure C.4: Comparison between the Model-
based and Model-free agent’s mean last reward
across buffer sizes.

14

D Acrobot

This appendix contains the figures with all of the
collected data on the Acrobot environment. When
looking at the number of trajectories to reach the
reward threshold, we can see that model-based re-
inforcement learning is not only able to reach the
threshold quicker but also more consistently across
buffer sizes as can be seen from the smaller stan-
dard deviations. Similar to what was observed for
the Cartpole environment the training process for
both agents became more stable after increasing the
buffer size. The jump-start effect that was discussed
in Section 4.2 is also observed. The mean last re-
ward of the agents stayed relatively stable for most
buffer sizes. The large standard deviation observed
for a buffer size of 1000 can be attributed to the
stochastic nature of the environment. This is con-
sistent with the conclusions drawn from the Cart-
pole data. Unsurprisingly the amount of weight up-
dates of the Model-based agent was a multiple of
the model-free weight updates, which is once again
in line with the conclusions drawn previously.

Figure D.1: Comparison of the amount of sam-
ples needed to reach the reward threshold for
the Model-based and Model-free agents across
buffer sizes

15

Figure D.2: Comparison of the Model-based and
Model-free agent’s mean reward over 3 episodes
every 500 update steps across buffer sizes.

Figure D.3: Comparison between the Model-
based and Model-free agent’s mean last reward
across buffer sizes.

Figure D.4: Comparison between the Model-
based and Model-free agent’s amount of weight
updates.

16

E Lunar Lander

This appendix contains the figures with all of the
collected data on the Lunar Lander environment.
When looking at average amount of trajectories
to reach the reward threshold, we can once again
see that model-based reinforcement learning consis-
tently uses fewer trajectories to reach the thresh-
old. Similar to what was observed for the Cart-
pole and Acrobot environments the training pro-
cess became more stable for a higher buffer size and
the jump-start effect was also observed. The mean
last reward of the agents remained stable across
buffer sizes, which is consistent with the conclu-
sions drawn from the other environments. Finally,
the amount of weight updates of the Model-based
agent was more than twice as much as the model-
free agent’s weight updates.

Figure E.1: Comparison of the amount of sam-
ples needed to reach the reward threshold for
the Model-based and Model-free agents across
buffer sizes

17

Figure E.2: Comparison of the Model-based and
Model-free agent’s mean reward over 3 episodes
every 500 update steps across buffer sizes.

Figure E.3: Comparison between the Model-
based and Model-free agent’s mean last reward
across buffer sizes.

Figure E.4: Comparison between the Model-
based and Model-free agent’s amount of weight
updates.

18

F Freeway

This appendix contains the figures with all of the
collected data on the Atari:Freeway environment.
Due to a constraint in computational resources and
a limited amount of time to complete this project,
the model-based agent was not able to be trained.
Furthermore, the model-free agent was only trained
on a buffer size of 9000. This also means that the
data collected by the model-free agent, could not
be compared. This again shows one of the major
limitations of model-based reinforcement learning
currently, high computational costs, because a tran-
sition model needs to be pre-trained and for every
training iteration after both the weights of the tran-
sition model and the network of the agent need to
be updated.

Figure F.1: Comparison of the amount of sam-
ples needed to reach the reward threshold for
the Model-based and Model-free agents across
buffer sizes

Figure F.2: Comparison of the Model-based and
Model-free agent’s mean reward over 3 episodes
every 500 update steps across buffer sizes.

Figure F.3: Comparison between the Model-
based and Model-free agent’s mean last reward
across buffer sizes.

Figure F.4: Comparison between the Model-
based and Model-free agent’s amount of weight
updates.

19

