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Abstract: Recent research in reinforcement learning (RL) has seen a shift towards experiment-
ing within complex and stochastic environments with large, dynamic state spaces. Football, one
of the most popular sports, has garnered significant interest in RL research for these reasons.
Football has also seen a rise in data-based analysis to improve real world player and team perfor-
mance. A common issue in RL for complex environments is accurately modeling the relationship
between the ultimate goal and the individual actions that produce desired behavior. Previous re-
search shows that incorporating prior knowledge through reward shaping is essential for efficiently
training RL agents to learn complex concepts, as it allows for conditioning individual actions at a
local scale. Existing work either incorporates football domain knowledge within the model repre-
sentation while keeping the sparse reward unchanged, or arbitrarily changes the reward without
clear motivation. In this paper, we focus on incorporating football domain knowledge as a dense
reward motivated by real world analytics in a proximal policy optimization-based RL scheme.
Experimental results through extensive simulations against a fixed opponent show an improved
policy in novel scenarios compared to the results published by the environment developers, as
well as comparative performance to models with a greater architecture complexity.

1 Introduction

Reinforcement Learning (RL) can be classified
as the study of understanding and automat-
ing goal-directed learning and decision-making in
environments of various complexity (Sutton &
Barto, 2020). RL and Deep Reinforcement Learn-
ing (DRL) algorithms have been becoming increas-
ingly applicable in solving complicated real-world
situations successfully such as traffic control sig-
nals (TCS) and HVAC management (Sivamayil et
al., 2023). While the development of these systems
are impressive achievements, from a goal-directed
learning perspective these problems are fairly triv-
ial for RL algorithms to solve. For example, in-
vestigating a TCS system solution where the ulti-
mate goal is to (safely) minimize the total waiting
time for all cars at an intersection over a contin-
uous period, the state space of this environment
is relatively limited. Encompassing variables could
include the current phase of the traffic light, the

number of vehicles in each lane, and the current
waiting times of vehicles. This would be sufficient
to create a successful model for the task (Bouk-
tif et al., 2023), but still a conceivably small state
space. Thus, this can be considered a solved prob-
lem with existing RL technology. However, the sig-
nificance of an agent and its behavior is directly tied
to the complexity of the domain in which it oper-
ates. As agents learn from interactions within their
environments, more complex domains and environ-
ments naturally lead to more sophisticated agent
behavior. This complex behavior observed through
engaging with increasingly advanced environments
has led to multiple milestones in understanding and
challenging traditional strategy in partially-solved
problems such as the game of Go (Silver et al.,
2016), which is considerably more difficult to solve
due to the magnitude of possible states spaces.

Further research in RL has continued experi-
menting with increasingly complex environments.
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Moving beyond deterministic games where the
transition functions are predictable and often
static, the focus has shifted to more complex and
stochastic environments with larger, dynamic state
spaces. These environments require sophisticated
learning algorithms capable of managing levels
of uncertainty and intricate strategy formations.
Football, one of the most popular sports, has seen
significant interest in RL for these reasons. Tan-
gentially, football has also seen a rise in utiliz-
ing data science based analysis to understand and
improve the performance of players and teams.
Mathematical models such as the Pitch-Control
Model (Fernández & Bornn, 2018) have been de-
veloped to quantify spatial value occupation of in-
possession and out-of possession players, enhanc-
ing strategic approaches and tactical insights in a
manner that is highly reproducible. Naturally, this
has invoked research into the combination of foot-
ball analysis and DRL in football environments.
Google Research released a physics-based football
simulation for RL research purposes (Kurach et al.,
2020), which has inspired investigation into many
of the current scientific problems facing RL such as
sample-efficiency, and sparse reward problems.
Various type of deep neural network techniques

have been applied in attempt to overcome the learn-
ing difficulties found within DRL in football. Ex-
isting studies (B. Liu et al., 2023) have used the
Pitch-Control Model to design a knowledge em-
bedded state representation of the environment,
applied with a Deformable Convolution Network
(DCN) to achieve impressive results. This was as-
sisted by their custom-built shaped reward, which
was largely motivated by intuition through com-
mon knowledge of real world football. Other stud-
ies (J. Liu et al., 2022) have done similar investi-
gations in implementing football knowledge to the
model architecture of the training algorithm, but
leave the sparse rewards provided by the environ-
ment unchanged. A common issue found within RL
in complex environments is correctly modeling the
relationship between the long horizon goal and the
individual actions that produce the desired behav-
ior; the correlation between the two can become
less apparent over training time. For this reason,
Adam Laud (Laud, 2004) believes that the incor-
poration of prior knowledge through the use of re-
ward shaping is the key to efficiently train artificial
intelligence agents to learn complex concepts, as it

allows conditioning for individual actions at a local
scale. Given the large growth of data aggregation in
the professional football domain, we have sufficient
availability to data of the individual actions within
a team that are considered ideal play in real world
football.

Motivated by the discussions above, this paper
will investigate if we can rationalize and implement
an effective RL policy, based on a reward func-
tion inspired by leveraging analytics from domain
knowledge; to provide a more consistent dense re-
ward to assist with the long horizon learning goal
in Google Football.

Effectiveness will be measured by:

1. Number of timesteps for policy convergence.

2. The model’s ability to generalize and perform
in new, unseen scenarios of the environment.

3. Average goal difference compared to existing
models

We believe that future applications can benefit
from a better understanding on exploring ratio-
nales behind shaping an effective reward within the
context of a specific environment. As well as how
shaped rewards effect training processes in com-
plex, stochastic environments.

2 Related Work

Reward shaping as a means to incorporate domain
knowledge is a divisive topic among researchers in
reinforcement learning. When reasoning about the
mechanics of the reward function as a means to
promote an ultimate goal, common intuition com-
pels us to believe that this is an appealing strategy.
If we shape the reward function to include domain
knowledge, this will promote a minimal search ra-
dius, and therefore a lower reward horizon; result-
ing in a faster convergence to an effective policy
and greater success in high dimensional environ-
ments (Laud, 2004).

However, other researchers disagree with this
narrative. A fundamental belief behind reinforce-
ment learning is the idea that agents should learn
from a blank slate using a general model (Randlov
& Alstrøm, 1998), any additional information you
wish to provide to the agent should be encoded in
the environment as part of the problem statement.
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Barto and Sutton (Sutton & Barto, 2020) agree
with this premise, stating “In particular, the reward
signal is not the place to impart to the agent prior
knowledge about how to achieve what we want it
to do”. The skepticism of incorporating domain
knowledge in the reward function arises from the
greedy nature of policy gradient algorithms, where
intentionally introducing a bias may cause adverse
affects depending on which state the agent finds
itself in (Eschmann, 2021). More general methods
of promoting efficient exploration are often consid-
ered, such as intrinsic motivation signals, which fos-
ter comparative psychological rewards such as cu-
riosity or novelty (Oudeyer et al., 2016). However,
we reject the notion that successful reward shaping
is incapable to achieve, and believe that in following
certain characteristics in context to the underlying
environment, the potential to significantly enhance
learning outcomes can be unlocked.

As Adam Laud introduces (Laud, 2004), the the-
ory of reward shaping overlaps considerably with
the psychological learning processes of conditioning
and intermediate reinforcement. This is based on
the understanding that contextually relevant and
timely rewards allow the correlation between ac-
tions and outcomes to become more apparent. Nev-
ertheless, these localized rewards must be consis-
tent with prior knowledge in order for the adoption
of the desired behaviors to be faithful to the de-
sired outcome. In Liu et al. (B. Liu et al., 2023),
their custom shaped reward features a combination
of positive and negative signals for the long hori-
zon reward (scoring), and possession and dribbling
sub-tasks. The reward signal polarity for the pos-
session and dribbling sub-tasks are dependent on
an arbitrary division of the environment into 5 dif-
ferent regions, with the regions closest to the user
goal returning the negative reward signal. While
the logic behind this reward captures the essence
of an effective football strategy, it is clear that it
was strictly motivated through intuition, and is not
entirely consistent with prior knowledge. Studies
(David Adams & Williams, 2013) exist which con-
tradict the logic behind this reward design, demon-
strating a direct performance correlation in top-
level professional teams with the number of com-
pleted short passes between defenders. This trait,
however, would be negatively rewarded under their
current design.

3 Preliminaries

In this section, we introduce relevant background
knowledge to contribute full context to our re-
search. We provide a comprehensive overview of the
Google Football Environment and its representa-
tions, as well as how those representations function
in a mathematical framework for decision-making
used in reinforcement learning; the Markov Deci-
sion Process. We then introduce the Proximal Pol-
icy Optimization (PPO) algorithm, followed by a
summary of the default reward functions imple-
mented in the Google Football Environment.

3.1 Google Football Environment

In 2019, Google Research released Google Research
Football (Kurach et al., 2020). It is a reinforcement
learning environment which provides a 3D, physics-
based football simulator that follows the real rules
of football. It consists of two teams of 11 agents
which broadly compete to score more goals than the
other team; but also offers additional training sce-
narios under the ‘Football Academy’ benchmarks.
In this paper, we focus on single agent DRL, mean-
ing the algorithm controls a single player on the
left side team called the ‘active player’. The active
player is generally the player closest to the ball,
but more specifically the player of attention. For
example, if current active player ‘1’ has the ball
and attempts a pass to inactive player ‘2’, the en-
vironment will switch activity to player ‘2’ imme-
diately in anticipation of receiving a pass, despite
the ball being closer to player ‘1’ for the majority
of the pass. All other inactive players on the user
team are controlled by a rule-based agent which
operates separately from the model our agent is
playing against in training. The Google Football
Environment provides three different state repre-
sentations such as pixels, super mini-map (SMM),
and a 115-dimensional vector. We will be utiliz-
ing the SMM representation, which contains four
72× 96 matrices that encodes various environment
observations as the state. This representation in-
cludes detailed information about the ball such as
its position, direction vector, rotation vector, and
possession status. It also encompasses data of both
the left and right teams, including player positions,
movement vectors, stamina levels, yellow card sta-
tus, activity status (indicating red cards), and spe-
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cific player roles. Furthermore, it provides insights
into the controlled player’s information, detailing
any active actions. Additionally, the match state is
encapsulated, featuring the current score, remain-
ing steps until the match ends, and the current
game mode (such as Normal, KickOff, GoalKick,
FreeKick, Corner, ThrowIn, and Penalty). The en-
vironment contains a discrete action space of 19 dif-
ferent actions, meaning that the agent can choose
from a finite set of distinct actions at each state.
The action set can be found in the appendix.

3.2 Markov Decision Process

The model of the football environment can be clas-
sified as a Markov Decision Process denoted as
M =< S,A, P, r, γ > (van Otterlo & Wiering,
2012). Each state s ∈ S is a unique representa-
tion of the 72× 96× 4 shape described previously,
while each action a ∈ A is from the mentioned ac-
tion space. P is the state transition function, where
P (s′|s, a) gives the probability for reaching s′ af-
ter taking action a in state s. r is an immediate
reward, which we will official define later for our
case. Lastly, γ ∈ [0, 1) is the discount factor, which
determines the emphasis placed on immediate re-
wards over future return.

3.3 Proximal Policy Optimization

Proximal Policy Optimization, or PPO, is a rein-
forcement learning algorithm designed at OpenAI
(Schulman et al., 2017). It has proven itself suc-
cessful in a wide variety of single-agent tasks from
robotic control to complicated video games. PPO
is well-versed to handling environments with both
discrete and continuous action and state spaces,
making it an ideal algorithm for our environment
with a discrete action space, but continuous state
space. Consequently, PPO is a common algorithm
used within the aforementioned studies of Google
Research Football, and we will continue to adopt
it for our research. This section will outline the
mechanisms and techniques used in PPO from a re-
inforcement learning perspective, highlighting the
importance of an increasing data utilization ratio
with respect to operating in the Google Football
Environment.
In reinforcement learning, the training data gen-

erated is dependent on the current policy of the

algorithm, as it is collected through the agent’s in-
teractions with the environment. Consequently, the
data distributions for observations and rewards are
continually evolving. This inherent instability com-
pounded with sensitivity to hyperparameters leads
to an overall unstable training process. PPO was
developed with these problems in mind, as it looked
to improve the sample efficiency of no experience
buffer policy gradient methods.

Policy Gradient Loss is defined as the expecta-
tion of the product of the log of the parameterized
policy output from our network (πθ), and the es-
timate of the advantage function (Ât), which mea-
sures the relative value of the selected action. In
this context, π represents the strategy used by the
agent to decide actions, while θ denotes the param-
eters of said strategy.

LPG(θ) = Et

[
log πθ(at|st)Ât

]
(3.1)

Expanding Ât, its value is obtained using general-
ized advantage estimation (GAE) (Schulman et al.,
2018), which combines the current discounted re-
turn γ and the estimated future returns λ ∈ (0, 1).

ÂGAE(γ,λ)

t = δt + (γλ)δt+1 + · · ·+ (γλ)T−t−1δT−1

(3.2)
Here, δt represents the temporal difference error,
or the difference between the predicted value of the
current state and the updated estimate of the next
state. The equation sums the difference errors from
the current timestep t to the final timestep T . δt is
calculated as

δt = rt + γV (st+1)− V (st) (3.3)

where rt is the reward at time t, and V (st) is the
estimated value at t given by the critic network.
This allows for balancing between bias and variance
of advantage estimations.

Expanding log πθ(at|st), as πθ(at|st)
πθold

(at|st) , we end up

with the objective function or surrogate objective,
who’s goal is to be maximized within a constraint
of the policy update.

max
θ

Et

[
πθ(at | st)
πθold(at | st)

Ât

]
(3.4)

constraint Et [KL [πθold(· | st), πθ(· | st)]] ≤ δ
(3.5)
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However, setting a constraint function that gen-
eralizes well across a problem within the course
of training is difficult, and proposed modifications
are made. The proposed method of PPO is to al-
ter the surrogate objective by clipping the proba-
bility ratio, removing the incentive for our policy
output log πθ(at|st) to move outside the intervals
[1 − ϵ, 1 + ϵ], where ϵ is an importance sampling
clipping parameter. The updated objective function
can be defined below, where the result is a function
that benefits from the gradient clip operation with
its update process being relatively stable.

LPG(θ) = Et[min(log πθ(at|st)ÂGAE(γ,λ)

t ,

clip (log πθ(at|st)), 1− ϵ, 1 + ϵ) ÂGAE(γ,λ)

t )]
(3.6)

3.4 Default Environment Rewards

The Google Football Environment comes sup-
ported with two different extrinsic reward func-
tions, each with their own characteristics in respect
to the ultimate goal. The ‘Scoring’ reward corre-
sponds to the natural reward in football where each
team obtains +1 for scoring a goal, and −1 for con-
ceding a goal. In the context of the environment,
this is an extremely sparse reward. Numerous steps
within the simulation can occur before a positive,
or negative signal from the reward function is given,
due to the general complexity of the task. In con-
trast, the ‘Checkpoint’ reward corresponds to the
football domain knowledge that scoring is a result
of advancing the ball closer to the opponents goal.
Specifically, the opponents field is divided into 10
regions based on the Euclidean distance to the op-
position goal. Each initial time the agent possesses
the ball in one of the checkpoint regions, a reward
of +0.1 is given, for a maximum of +1, the same
as scoring a goal. All non-collected checkpoints are
also given if a goal is scored, to avoid penalizing
the agent for achieving the ultimate goal outside
the confines of the checkpoints. This can be consid-
ered a dense reward, as it allows for more frequent
signals from the reward function over the course
of many episodes, which can be highly beneficial
for algorithms based on policy gradient methods
(Sehnke et al., 2010).

4 Methods

In this section, we detail and motivate the imple-
mentation and design characteristics behind our
shaped reward. We introduce our methodology be-
hind the sourcing and processing of football data to
obtain meaningful analytics, which we then appro-
priate and illustrate in a Markov Decision Process
framework.

4.1 Reward Function Design Moti-
vation

To apply the principles in the previous section suc-
cessfully, we need to design our reward function
with certain characteristics in mind. First, we must
clearly define the long-term goal of our agent and
understand the implications of this goal within the
state space of the environment. In our context,
the primary objective is to score more goals than
the opposing team. While achieving this objective
could involve various strategies, including robust
defensive modeling to prevent the opponent from
scoring, it is important to ensure that the reward
function aligns with the desired outcome and ac-
counts for dynamic behavior. This involves focus-
ing on rewarding processes which offer endorsement
for the long-horizon goal, rather than offering small
incentives to avoid large negative consequences, as
it may be counterproductive in a high-dimensional
environment (Yuan et al., 2021). Furthermore, we
should avoid generalized state punishment for triv-
ial reasons to maintain a healthy balance of ex-
ploration and exploitation and promote a faster
convergence (Dayal et al., 2022). Additionally, we
are operating in a realistic simulation of a phys-
ical game, which is highly popular. Assuming the
simulation faithfully replicates a real-world game of
football (A. Scott et al., 2021), we have access to
millions of samples of ideal play from the highest
level in the domain. While our algorithm will simu-
late thousands of games during training, leveraging
this extensive pool of data can significantly enhance
our approach.

This compounds into the motivation behind our
reward function design, which is ultimately to en-
courage the active agent to occupy positions that
historically led to goal-assisting passes. We will re-
ward the agent for productive existence in these
spaces, while providing an additional reward to the
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Figure 4.1: Positional graph of start and end
passing locations that resulted in assists. Red
dots denote the starting positions and blue dots
denote the ending positions, with yellow lines
connecting the coordinate pairs.

agent for completing a transition between active
players from the goal-assisting starting spaces, to
the goal-assisting ending spaces; ultimately mod-
eling an assist in the environment. The distinc-
tion between the regions will be determined statis-
tically using Gaussian Kernel Density Estimation
(D. W. Scott, 1992), which has shown to be an ef-
fective representation of spacial structure in sports
(Mortensen, 2020). The weights of the distributions
within the reward will be scaled to ensure that the
magnitude reflects the relative importance between
the starting states, ending states, and the ultimate
goal - scoring.

4.2 Analytics

We sourced positional data of events that pre-
cede scoring in real-world professional play using
an open-source database from StatsBomb. We col-
lected all instances of goal-assisting passes from
open play during the 2015/2016 seasons of the En-
glish Premier Division and the French Ligue 1 divi-
sion. This resulted in 474 data points of start and
end positions plotted in a space ranging from 0 to
120 for the x-axis and 0 to 80 for the y-axis, illus-
trated in ‘Figure 4.1’.

The scale of the football field in the Google Foot-
ball Environment is naturally different than the
scale of the collected data points. So we must nor-
malize the data points to a space of -1 to 1 for the

x-axis, and -0.42 to 0.42 for the y-axis.
Next, we perform Gaussian Kernel Density Esti-

mation (KDE) on the coordinate pairs to determine
the perceived spatial influence of the areas. Since
our shaped reward depends on modeling the pro-
cess of an assist, we apply the KDE function to the
set of starting positions and ending positions sepa-
rately. This process results in two density distribu-
tions, each contributing to the reward function.

The Gaussian Kernel Density Estimation (KDE)
is defined by the formula:

f̂(x, y) =
1

n

n∑
i=1

1

2πh2
e−

(x−xi)
2+(y−yi)

2

2h2 (4.1)

The exponential function is the Gaussian func-
tion, which measures the squared euclidean dis-
tance between a given point (x, y) and each data
point (xi, yi). This function is multiplied by a factor
of 1

2πh2 for normalization in two dimensions. Lastly,
the contributions of each data point are summed
and normalized by the number of data points in
the set n, yielding the estimated density at a given
point, f̂(x, y). h is the bandwidth parameter of the
kernel, which controls smoothness of the density es-
timation. We found Normal Distribution Approxi-
mation (Silverman, 2018) to be appropriate for our
use case, which is defined as

h =

(
4σ5

3n

)1/5

(4.2)

where σ is the standard deviation of the data
and n is the number of data points. The results are
two individual density estimation matrices for the
starting position and ending positions, which can
be viewed in ‘Figure 4.2’.

4.3 Reward Function Implementa-
tion

In this section, we will define our reward function
implementation within a MDP framework to illus-
trate its calculation during a step in the environ-
ment. Some of the variables’ notations are derived
directly from the current observation of the envi-
ronment; however, we will also introduce new vari-
ables in our shaped reward. These additional vari-
ables will augment the state, allowing us to access
them as part of the observation.
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Figure 4.2: Gaussian Kernel Density Estimation
of Assist Starting (Top) and Ending (Bottom)
Passing Positions

First we define our long horizon goal of scoring
and conceding. We leave the scaled value of scor-
ing unchanged from the default reward implemen-
tations to preserve consistency, as well as it being
a generally intuitive value to place on a goal be-
ing scored. In the environment, a goal is considered
scored if the ball’s coordinates surpass the coordi-
nates of the left or right goal, located at -1 and
1 on the X-axis, respectively. The goalposts span
between -0.044 and 0.044 on the Y-axis.

scoring(s, a) =

{
+1 if goal scored

−1 if goal conceded
(4.3)

Next, we define a boolean variable to ensure the
active player has possession of the ball at the cur-
rent state, this variable is directly obtained from
the environment observation.

active(s, a) =

1 if at observation s the active
player has the ball

0 otherwise

(4.4)

From the observation of the environment at state
s, we are able to obtain the (x, y) coordinates of
the ball. We will denote the position of the ball as
follows

Ob(s) = sb(x), sb(y) = x, y (4.5)

where sb(x) represents the x-coordinate of the ball
at state s, and sb(y) the y-coordinate of the ball at
state s.

These coordinates of the ball will directly cor-
respond to a value calculated from the previously
defined density distributions. We scale the values of
each distribution to reflect the relative importance
of the perceived actions associated with them, in
the context of the value of scoring a goal.

For our starting position reward, this value is
scaled to a maximum of 0.001. This value is sig-
nificantly smaller than the reward for scoring due
to its large spatial size in proportion to the environ-
ment. Consequently, relative to scoring, the maxi-
mum reward this distribution can provide at any
given step will be worth 1/1000 of a goal. This can
be represented as:

f̂s(x, y) =
0.001

vmax
KDEstarting

f̂s(Ob(s, a)) = k where k ∈ [0, 0.001] (4.6)

For our ending position reward, this value is
scaled to a maximum of 0.1. We scale this value
to be significantly larger than the starting posi-
tion reward due to the positional importance in
the context of the ultimate goal and the greater
difficulty in achieving this reward compared to the
starting position, which will be realized in the com-
plete function.

f̂e(x, y) =
0.1

vmax
KDEending

f̂e(Ob(s, a)) = k where k ∈ [0, 0.1] (4.7)

Lastly, we define a check to confirm if the ac-
tive player in the current state is different from the
active player in the previous state. This augments
the state with a variable that tracks the index of
the active player with possession of the ball in the
previous state, to access in the next state. Essen-
tially this models the transition of the ball between
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active players between s and s′.

transition(s, s′) =

{
1 if Oactive(s

′) ̸= Oactive(s)

0 otherwise

(4.8)
The aggregation of these functions results in our

complete reward function, which is defined in its
entirety below.

R(s, a, s′) = scoring(s, a) + active(s, a)×

(f̂s(Ob(s, a)) + (f̂e(Ob(s, a))× transition(s, s′)))

(4.9)

This function can be decomposed into three dis-
tinct components that collectively contribute to the
total reward. The first being the natural reward for
scoring or conceding a goal. The second being the
value from the starting position density estimation,
dependent on the active player having possession of
the ball. With the third being the value from the
ending position density estimation, given a success-
ful transition between active players with posses-
sion of the ball. This approach effectively captures
the essence of rewarding a pass from common assist
starting locations to common assist ending loca-
tions, motivating the agent to occupy these spaces
without overshadowing the long-term goal of scor-
ing a goal.

5 Experimental Setup

To evaluate our analytics-based shaped reward in
terms of its ability to converge to an effective pol-
icy, and generalize to scenarios, we train multiple
models on various Football Academy scenarios of
interest, as well as on different difficulty levels of
a full 11v11 game. We compare the performance of
the models trained with the analytics-based shaped
reward to similar models with various specifications
and enhancements in fresh scenarios. This section
describes the finer details of the environment sce-
narios used, as well as the experimental setup, en-
compassing training and hyperparameter details.

5.1 Scenarios Used

We train our model using the analytics-based
shaped reward on five different scenarios provided
by the Google Football Environment, all of these

Figure 5.1: 3v1 with Keeper Scenario

Figure 5.2: Counterattack Scenario

scenarios involve training against a fixed opponent.
Three of these are Football Academy scenarios and
can be viewed in ‘Figure 5.1’ and ‘Figure 5.2’,
namely:

1. Academy 3v1 with Keeper - Three user play-
ers try to score from the edge of the box, one
on each side, and the other at the center. Ini-
tially, the player at the center has the ball and
is facing the defender. There is an opponent
keeper.

2. Academy Counterattack Easy - 4 versus 1
counter-attack with keeper; all the remaining
players of both teams run back towards the
ball.

3. Academy Counterattack Hard - 4 versus 2
counter-attack with keeper; all the remaining
players of both teams run back towards the
ball.

We chose to investigate these scenarios due to
comparative studies reporting low performance in
models with a shorter training time compared to
models with a longer training time, suggesting dif-
ficulties in effective policy convergence. The Foot-
ball Academy scenarios run for a maximum of 400
steps per episode, with early stopping if the ball
goes out of play, or a goal is scored/conceded.
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The full 11v11 game scenario attempts to repli-
cate a simulation of a real football game. The
ball starts in the center of the field, and the ac-
tive player(s) needs to possess the ball, overcome
the opposition, and eventually score. The simula-
tion runs continuously for 3000 steps. We train a
model for both the “11v11 stochastic easy” and
“11v11 stochastic” scenarios in order to make an
effective comparison to results published by the
Google Football Environment developers, and to
other models competing in the Google Research
Football Competition with Manchester City F.C.
(Addison Howard, 2020).

5.2 Model

For our PPO model, we use the convolutional neu-
ral network architecture as described in the original
paper by the environment developers, inspired by
(Espeholt et al., 2018). We opted to keep the model
unchanged for simplicity and comparison purposes.
The input state, with dimensions 72 × 96 × 16, is
normalized by dividing by 255. This input is then
processed through a convolutional layer with a 3×3
kernel, a stride of 1, and 16 channels, followed by a
ReLU activation. This is followed by a max-pooling
layer with a 3 × 3 kernel, stride of 1, and ReLU
activation, maintaining the number of channels as
[16, 32, 32, 32]. The output of the residual blocks
is fed into a fully connected layer with 256 units
and a ReLU activation. Finally, two separate fully
connected layers predict the value function and the
policy from the features produced by the previous
layer. A diagram of the model can be found in ‘Fig-
ure 5.3’.

5.3 Training Details and Hyperpa-
rameters

In PPO, the primary mechanism for improving con-
trol and learning efficiency involves increasing the
number of collected experiences per update (Yu et
al., 2022). This principle contributes to our ratio-
nale for the 11v11 hyperparameter selection, as de-
tailed in ‘Table 5.1’. It is important to note the
disparity between the ending conditions for the en-
vironmental scenarios. Unlike the Academy scenar-
ios, which have dynamic end cases depending on
the state, the continuous end case in the 11v11 sce-
narios affects variance throughout the PPO train-

Figure 5.3: Architecture used for PPO Experi-
ments.

ing. In environments with long episodes, a larger
batch size and more frequent updates are essential
to accommodate the extensive variability and to en-
sure that the model can learn from a more compre-
hensive and representative set of state experiences
across the entire episode length. Our motivation for
the Academy hyperparameters selection was from
a parameter sweep done in the original Google Re-
search Football paper (Kurach et al., 2020).

We elected to use an annealing learning rate on
a linear decay schedule over the course of train-
ing. The reasoning behind this choice while some-
what nuanced, generally aligns with the consensus
that it improves training stability. Studies suggest
that gradient estimates may poorly correlate with
the true gradient, and despite the potential for in-
ducing degenerate agent behavior, optimal gradient
estimates often require a lower learning rate (En-
gstrom et al., 2020).

We used the PPO implementation by Stable-
Baselines3. Each Academy scenario model was
trained for one million timesteps, while each
11v11 scenario model was trained for five million
timesteps. Training was done on a Nvidia V100
with 8 cores and 32GB of memory, completing
roughly one million steps in four hours.
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6 Experimental Results

Results for our experiments and comparisons for
Academy and 11v11 scenarios are presented in ‘Fig-
ure 6.1’, ‘Figure 6.2’, and ‘Figure 6.3’. Average goal
difference was determined by recording the scoring
performance of each trained model across 100 new
scenarios for each scenario type.

6.1 Football Academy Results

‘Figure 6.1’ presents the average goal difference
at 1 million steps for our model trained with our
analytics-based shaped reward against the model
results published by Google Football with the de-
fault scoring reward. In the Academy 3v1 scenario,
our shaped reward model greatly outperforms the
default scoring reward, with an average goal differ-
ence of 0.53 compared to 0.09. A similar trend is ob-
served in the counter-attack scenarios across both
difficulty levels. While the default scoring reward
failed to exceed 0.0 on either difficulty, our shaped
reward model achieved an average goal difference
of 0.09 and 0.03 on the easy and hard difficulties,
respectively.

6.2 11v11 Results

‘Figure 6.2’ presents the average goal difference in
the 11v11 medium difficulty scenario, comparing
our shaped reward model against the results of de-
fault scoring model and a default checkpoint model
both published by Google Football, each with vary-
ing timesteps. Our shaped reward model with 5 mil-
lion timesteps fails to outperform either the scor-
ing reward model or the checkpoint reward model

Table 5.1: Scenario Hyperparameters For PPO

Academy 11v11

lr decay(3.43e− 4) decay(3.43e− 4)

nsteps 512 1024

mbatch 8 64

n epochs 2 4

discount 0.993 0.993

GAE 0.95 0.95

clip range 0.08 0.08

ent coef 0.00155 0.00155

vf coef 0.5 0.5

max grad 0.64 0.64

at 20 million timesteps. The exact values of the
three models are -1.29, -0.71, and -0.29, respec-
tively. Due to computational constraints, there is
a substantial difference in the number of training
timesteps between our reported results and those
in the original Google Football paper. Future in-
vestigations could consider a simulation with 20
million timesteps. ‘Figure 6.3’ presents the average
goal difference in the 11v11 easy difficulty scenario
at 5 million steps, comparing our shaped reward
model against other models created through re-
search in the same domain. KESR-DCFP, 16SMM-
DCFP, and KESR-RESNET are all models created
by the work done in Liu et al. (B. Liu et al., 2023).
PARIS(Seungeunrho, 2020) is a model that was cre-
ated and made open source as a result of the Google
Research Football Competition Addison Howard,
2020, which it achieved 6th place in. Our shaped
reward model achieved a average goal difference of
-1.02, which is a similar score to most of the models
reported results at this timestep.

7 Discussion

The experimental results highlight several key find-
ings regarding the performance of our analytics-
based shaped reward model in comparison to ex-
isting models in both Academy and 11v11 scenar-
ios. In the chosen Football Academy scenarios, our
shaped reward model consistently outperforms the
default scoring reward model, achieving a signif-
icant increase in goal difference in the 3v1 sce-
nario compared to the default model. This trend
continues in the counter-attack scenarios, where
our model outperforms the default model on both
easy and hard difficulties, achieving a goal differ-
ence higher than 0 at 1 million timesteps. Notably,
there is a difference in complexity between these
two scenario types. The 3v1 scenario always op-
erates with 5 agents (including goalkeeper) total,
while the counter-attack scenarios always initializes
agent positions in a 4vX situation, but all 22 agents
are present as if it were a 11v11 game. This suggests
that the analytics-based shaped reward approach
is more effective in scenarios with fewer agents and
therefore, a simpler state space.

The 11v11 scenarios presents a more complex
scenario, where our shaped reward trained with
5 million timesteps did not outperform the de-
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Figure 6.1: Academy Scenario goal difference
comparisons by reward type. Note that the
Analytics-Based Reward outperforms the de-
fault Scoring reward in all scenarios.

Figure 6.2: Average goal difference on medium
difficulty by reward type. Note the difference in
trained timesteps.

Figure 6.3: Average goal difference on easy dif-
ficulty by model technique.
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fault models trained with 20 million timesteps in
medium difficulty. Despite this, the results at 5 mil-
lion timesteps in the easy difficulty scenario indi-
cate that our model’s performance is comparable
to other models created in the same domain. Many
of the models used for comparison, most of which
were trained to a standard of approximately 20 mil-
lion timesteps, successfully converged to a positive
goal difference in the full 11v11 scenario. Our model
achieving similar performance suggests it has the
potential to do the same. However, this assumption
is only based on observing the increasing average
return over training, as it is difficult to interpret
model stability from other training metrics. The
complexity of the environment means that even the
highest performing parameters from the original
Google Football parameter sweep do not yield the
most optimal or expected training metrics typically
seen in simpler RL environments. This highlights
a broader issue in the RL domain: the challenge
of generalizing expected training metrics across di-
verse environments. Studies have shown that RL
algorithms often do not operate or model as in-
tended based on traditional training metrics, advo-
cating for a shift beyond evaluation methods solely
based on these metrics (Engstrom et al., 2020).

Initially, we avoided the use of negative reward
signals for the purpose of promoting exploration,
and for a general dissatisfaction of the negative re-
ward modeling done by Liu et al. (B. Liu et al.,
2023). However, studies exist (Dayal et al., 2022)
which show that models trained with a negative
reward class tend to converge with lower variance
in training, despite having a slower overall conver-
gence. This could be beneficial for future investiga-
tion, by using domain analytics to shape an effec-
tive negative reward.

8 Conclusions

In this paper, we present the conception and im-
plementation of a dense reward function motivated
by specific analytical domain knowledge. Experi-
ment results confirm that our method was able to
improve performance of trained models in certain
scenarios, achieving a higher goal difference perfor-
mance in environmental scenarios compared to the
results reported using the default rewards. Our re-
ward function was also able to achieve similar per-

formance to comparative models with higher archi-
tecture complexity, showing that reward shaping
can be an effective strategy in RL for navigating
complex, stochastic environments.
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Top Bottom Left Right
Top-Left Top-Right Bottom-Left Bottom-Right
Short Pass High Pass Long Pass Shot
Keeper Rush Sliding Dribble Stop-Dribble

Sprint Stop-Moving Stop-Sprint Do-Nothing

Table A.1: Action Set
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