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Abstract: This thesis explores the efficiency of a hierarchical reinforcement learning algorithm
using a fixed, state-dependent compression function to manage complex tasks with sparse re-
wards. To enhance learning efficiency, a multi-headed neural network architecture was proposed,
enabling parameter sharing across subtasks while maintaining specialized outputs. However, ex-
perimental results indicated that this approach did not outperform the single neural network
for each option, likely due to overgeneralization and insufficient capacity in shared layers. The
study suggests future research should also focus on improving the multi-headed architecture to
better balance shared and specialized components, potentially enhancing flexibility and overall
performance.

1 Introduction

Reinforcement learning (RL) is a branch of machine
learning in which an agent learns to make optimal
decisions by interacting with its environment. RL
has been successfully applied to a variety of do-
mains, including robotics, game playing, and au-
tonomous driving (Sivamayil et al. (2023)), where
it enables systems to learn from experience and im-
prove autonomously.

One significant challenge in reinforcement learn-
ing is the problem of sparse rewards. Sparse rewards
occur when feedback from the environment is infre-
quent or delayed, making it difficult for the agent to
learn the optimal policy. In such settings, the agent
may struggle to discover which actions lead to re-
wards because the connection between actions and
outcomes is obscured by the rarity of positive feed-
back. This often results in inefficient learning and
poor performance, as the agent cannot effectively
explore the state space or understand the conse-
quences of its actions.

Hierarchical reinforcement learning (HRL) ad-
dresses the challenge of sparse rewards by decom-
posing complex tasks into simpler subtasks (Barto
& Mahadevan (2003); Dietterich (1999)). HRL in-
volves a hierarchical structure where high-level
policies break down the problem into manageable

subproblems, each with its own subgoals. This de-
composition enables the agent to focus on achieving
intermediate milestones, which are easier to learn
and yield more frequent rewards. Specifically, HRL
helps by creating a multi-level framework where
higher-level policies guide the selection of lower-
level actions, facilitating better exploration and
learning in environments with sparse rewards.

HRL has garnered significant attention for its
potential to efficiently solve complex tasks by de-
composing them into manageable subtasks. Recent
advancements have focused on improving the ef-
ficiency of HRL through various innovative ap-
proaches. For instance, an HRL method can ex-
ploit repeating sub-markov decision processes (sub-
MDPs) to enhance statistical efficiency, providing
a theoretical framework for model-based HRL al-
gorithms (Wen et al. (2020)). Additionally, a pro-
posed method using topologically sorted poten-
tial calculations to prioritize actions that lead to
higher-level goal accomplishment, thereby enhanc-
ing learning efficiency (Zhou et al. (2023)). Fur-
thermore, techniques that focus on subgoal discov-
ery and reward shaping to balance exploration and
exploitation to refine the performance of HRL sys-
tems (X. Gao et al. (2024); Wang et al. (2024)).
These contributions collectively underscore the on-
going efforts to make HRL more efficient and ap-
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plicable to complex, real-world tasks.
Building on these advancements, this thesis in-

vestigates the efficiency of an existing hierarchi-
cal reinforcement learning algorithm that uses
a fixed, state-dependent compression function to
break down complex tasks with sparse rewards into
simpler, more manageable components. By doing
so, the agent can define and focus on subtasks,
which involve moving through different segments
of the state space while simultaneously learning the
policies for each extended action. The compression
function facilitates the use of tabular methods at
the higher levels of the hierarchy, enabling efficient
exploration of extensive state spaces even when re-
wards are infrequent (Steccanella et al. (2020)).
Each subtask architecture comprises two separate
neural networks, one for the policy and one for the
value function. To improve efficiency, I propose a
multi-headed approach where a single neural net-
work with multiple heads is used for each subtask
(Lu et al. (2016); Neven et al. (2017)). This ap-
proach aims to enhance learning efficiency and per-
formance compared to the single neural network for
each policy, (Sener & Koltun (2018); Maninis et
al. (2019)) by sharing network parameters across
subtasks while maintaining specialized outputs for
different policies and value functions (Lee et al.
(2015); Kendall et al. (2017); Xu et al. (2018)).
Hence, I propose the research question: How can

a neural network architecture be designed to inte-
grate multiple option policies into a unified model
within a hierarchical reinforcement learning frame-
work, while effectively preserving optimal perfor-
mance?

2 Background

To provide a comprehensive understanding of my
implementation, we must first examine the perti-
nent background information and key theoretical
frameworks.
In RL, the agent observes the current state, takes

actions based on a policy, and transitions to a next
state as a result of its actions. A policy is a strategy
or a set of rules that defines the action the agent
should take in each state to achieve the best possi-
ble outcome. The agent aims to learn this policy to
maximize cumulative rewards over time. Through
this iterative process of receiving feedback in the

form of rewards and adjusting its actions accord-
ingly, the agent continually learns from the conse-
quences of its actions, allowing it to improve its per-
formance and adapt to changing conditions. This
approach is inspired by behavioral psychology and
is well-suited for tasks where decision-making is se-
quential and outcomes are uncertain (Subramanian
et al. (2022)).

2.1 Markov Decision Process

Consider a finite Markov Decision Process (MDP)
(Puterman (1994, 2014)) which is a tuple M =
⟨S,A, P, r⟩, where S is the finite state space, A
is the finite action space, P : S × A = ∆(S)
is the transition kernel. Let ∆(S) be the prob-
ability simplex on S defined as ∆(S) = {p ∈
RS :

∑
s∈S p(s) = 1, p(s) ≥ 0(∀x)}. The function

r : S × A → R is a reward function. The agent
at time t observers a state st ∈ S, takes an action
at ∈ A, obtains a reward rt with expected value
E[rt] = r(st, at), and transitions to a new state
st+1 ∼ P (·|st, at). We describe st, at, rt, st+1 as a
transition.
Let π represent a stochastic policy π : S → ∆(A),

mapping states to probability distributions over ac-
tions. As said before the agent’s objective is to
learn a policy that maximizes the cumulative re-
ward. To achieve this, we consider the discounted
reward function. The expected reward of a policy
π can be represented using a value function V π,
which is defined for each state s ∈ S as follows:

V π(s) = Eπ
[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s

]

here γ ∈ (0, 1] is a discount factor used to ac-
count for the present value of future rewards, bal-
ancing immediate and long-term gains by weight-
ing future rewards less heavily. The expectation is
over the action at ∼ π(·|st) and the next state
st+1 ∼ P (·|st, at).

Another way to model the expected future re-
ward is using an action-value function Qπ for state-
action pair (s, a) ∈ S ×A as follows:

Qπ(s, a) = Eπ
[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s, a1 = a

]
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The objective of the agent is to learn a policy
that maximizes the expected discounted cumulative
reward η(π). This is known as the optimal policy
π∗ which starts under some initial distribution d0 ∈
∆(S) over states as follows:

η(π) = Es∼d0 [V
π(s)]

π∗ = argmax
π

η(π)

2.2 Options

Given an MDP M = ⟨S,A, P, r⟩, an option is a
temporally extended action o = ⟨Io, πo, βo⟩, where
Io ⊆ S is an initiation set, πo : S → ∆(A) is a pol-
icy βo : S → [0, 1] is a termination function (Sutton
et al. (1999)). Adding options o to the action set
A of M creates a Semi-Markov Decision Process
(SMDP), which enables the agent to act on several
timescales.
At the highest level also known as the manager

in charge of the SMDP, the agent observers a state
st ∈ Io at time t, select an option ot, executes ac-
tions according to the option’s policy πo until it
reaches the next state st+k in which the termina-
tion condition βo(st+k) triggers. Even though the
option takes multiple actions from the perspective
of the manager in charge of the SMPD one action
is taken.
In order, to train the policy πo, it is common to

define an option-specific reward function ro, which
defines an option-specific MDP Mo = ⟨S,A, P, ro⟩.
The policy πo is implicitly defined as the optimal
solution to Mo.

2.3 Task MDP Extension

A MDP, denoted as M, can be extended to de-
fine a specific task by introducing additional states
and actions. These additions enable an agent to in-
teract with new objects within the environment.
Formally, we define a task T using an extended
MDP, MT , which incorporates both the original
and task-specific components. The expanded model
is represented as MT = ⟨Si×ST , Ai∪AT , rT , Pi∪
PT ⟩. Here, ST includes task-specific states, and
AT includes additional actions that interact with
these new states. The transition function PT speci-
fies the dynamics of these interactions, determin-
ing how the environment’s state changes in re-
sponse to the task-specific actions. The reward

function rT assigns values based on the outcomes
of these interactions, promoting behaviors that are
desirable within the task’s context. The invariant
states Si, actions Ai, and transitions Pi remain the
same across different tasks and are also shared be-
tween tasks, ensuring a consistent foundation upon
which various tasks can be built (Steccanella et al.
(2020)).

2.4 Invariant MDP and Regions

We introduce a concept where the agent accesses
a partition of the invariant state space, denoted as
Z = {Z1, ..., Zm}. This partition divides the state
space Si into distinct non-overlapping regions Zi,
where each region represents a subset of the entire
state space. These regions are fundamental in con-
structing a Semi-Markov Decision Process (SMPD)
over the invariant aspects of the state-action space,
defined as S = ⟨Z,O, PZ⟩. Within this structure,
Z represents the set of regions, O is a collection
of options (complex actions composed of multiple
primitive actions), and PZ is the transition kernel
that models the probabilities of moving from one
region to another based on the selected options.

The neighborhood of a region z, denoted asN (z),
comprises regions that can be directly reached from
z through available actions. For each neighboring
region z′, we define an option oz,z′ , which is a policy
specifically designed to navigate from region z to re-
gion z′. This option starts in region z and aims to
terminate successfully in region z′. The definition of
these options and their corresponding policies plays
a crucial role in the efficient exploration and ex-
ploitation of the state space, facilitating the agent’s
learning and decision-making processes within the
invariant framework of the MDP (Steccanella et al.
(2020)).

2.5 Options MDP and Exploration
Strategies

In the framework, we define a specialized MDP
for each option, termed Mz,z′ = ⟨Sz, Ai, Pz, rz,z′⟩.
This MDP focuses on the states Sz within the ini-
tiating region z and its neighbors N (z). The action
set Ai remains consistent with the invariant part of
the MDP. This specialized MDP is crucial for eval-
uating and optimizing the options, as it directly
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models the outcomes and rewards associated with
transitioning from the region z to its neighbors.

The transition dynamics within this MDP, de-
noted as Pz, are carefully designed to reflect the
combined probabilities of moving from any state in
z to states in the neighboring regions. The reward
function rz,z′ is structured to incentivize reaching
the target region z′ directly by giving a positive
reward for reaching the correct region and a nega-
tive reward for the wrong region, thereby promot-
ing efficient navigation through the state space.
This setup helps in refining the strategies associ-
ated with each option, enhancing the overall ef-
fectiveness of the decision-making process in the
face of complex, multi-step tasks (Steccanella et al.
(2020)).

2.6 Algorithm for Learning and De-
cision Making

The algorithm proposed here, named INVARI-
ANTHRL (2.1), is designed to iteratively build and
refine a model of the SMPD by exploring the envi-
ronment through a sequence of options. Initially,
the agent starts in a single region, identified by
the state s and its corresponding region z, deter-
mined by a mapping function f : Si → N+. As
the agent explores the environment, it dynamically
constructs the set of regions Z and the associated
options O, adjusting its strategy based on the ob-
served outcomes and rewards.
Each exploration step involves selecting an op-

tion that is expected to yield the most information
about the environment or the highest reward, de-
pending on the specific objectives of the task at
hand. The option execution, guided by the policy
πz,z′ , provides empirical data that the agent uses
to refine its understanding of the environment’s dy-
namics.

2.7 Solving Task-Specific MDPs

As the agent continues to explore and expand its
knowledge of the environment through the SMPD
framework, it also needs to adapt these insights
to solve specific task MDPs, MT . Each task in-
troduces unique states and actions, necessitating
adjustments to the existing framework to accom-
modate these new elements. By integrating task-
specific options into the decision-making process,

Algorithm 2.1 INVARIANTHRL

Input: Action set Ai, oracle compression function
f
s⇐ initial state, z ⇐ f(s)
Z ⇐ {z}, O ⇐ {oez}
while within budget do
o⇐ GETOPTION(z,O)
s′ ⇐ RUNOPTION(s, o, Ai), z

′ ⇐ f(s′)
if z′ ̸∈ Z then
Z ⇐ Z ∪ {z′}
O ⇐ O ∪ {oez′}

end if
if oz,z′ ̸∈ O then
O ⇐ O ∪ {oz,z′}

end if
s⇐ s′, z ⇐ z′

end while

the agent can effectively navigate both the in-
variant and task-specific elements of the environ-
ment, optimizing its strategies to maximize rewards
and achieve task-specific goals. This integrated ap-
proach ensures that the agent can handle a wide
range of scenarios and adapt its strategies to meet
the challenges of diverse and dynamic environments
(Steccanella et al. (2020)).

3 Contribution

In this part, I explain the implementation of the
algorithm and the modifications made. We sepa-
rate the hierarchical implementation into two parts,
namely a manager and workers to effectively solve
complex decision-making tasks. The manager is re-
sponsible for solving the task SMDP ST , which in-
volves high-level decision-making and coordination
across various task states. The manager’s primary
role is to determine which option to execute in or-
der to transition between abstract regions or states,
guiding the overall strategy for task completion.

On the other hand, the workers are specialized
agents responsible for solving the option Markov
Decision Processes (MDPs)Mz,z′ orM

z
s,s′ for task-

specific options. Each worker focuses on a partic-
ular option, learning the detailed policy and value
functions necessary to transition between specific
states or achieve particular sub-goals within the
task framework. While the manager oversees the
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broader task strategy, the workers handle the ex-
ecution of these strategies by optimizing their re-
spective option policies.

3.1 Manager

Given that the space of regions Z is small, the
manager employs tabular Q-learning over the task
SMDP ST . This process is detailed in Algorithm
3.1. Similar to Algorithm 2.1, the task state space
ST and option set OT expand as the agent discovers
new states and transitions. The manager maintains
and updates Q-values for various tasks and options.
For each task, it initializes a Q-table, which is dy-
namically updated as new regions and transitions
are discovered.
To manage transitions effectively, the manager

creates or retrieves invariant and task-specific op-
tions for transitioning between regions or tasks. If
an option does not already exist for a given tran-
sition, a new worker is created to handle it. The
manager updates its policy using the Q-learning
update rule. It calculates the TD error based on
the received reward and the maximum Q-value of
the next state. This error is used to update the Q-
value for the current state-option pair, allowing the
manager to learn and improve its policies over time.
This implementation ensures that the manager

effectively learns and updates the optimal policies
for transitioning between regions. The manager be-
comes increasingly proficient at navigating the task
by adapting to new discoveries and continuously
improving through learning.

3.2 Worker

To facilitate the worker’s ability to transition be-
tween abstract states z and z′ (or task states s and
s′), we employ two distinct neural networks: one
for the policy and one for the value function. These
networks are responsible for learning the correct be-
haviors through Self-Imitation Learning (SIL) and
off-policy critic updates.
The original paper utilized a single neural net-

work for each option. To improve the efficiency of
this, I propose exploring a different approach.
In our approach, each network features a shared

component and multiple heads specific to various
options, allowing the worker to learn and update
policies and value functions dynamically.

Algorithm 3.1 MANAGER

Input: Task action set AT , invariant SMDP S
z ⇐ initial region, s⇐ initial task state
ST ⇐ {s}, OT ⇐ ∅
while within budget do
o⇐ GETOPTION(πT , (z, s), O ∪OT )
(z′, s), r ⇐ RUNOPTION((z, s), o, Ai ∪AT )
UPDATEPOLICY(πT , (z, s), o, r, (z

′, s′))
if s′ ̸∈ ST then
ST ⇐ ST ∪ {s′}

end if
if os,s

′

z ̸∈ OT then
OT ⇐ OT ∪ {os,s′z }

end if
(z, s) ⇐ (z′, s′)

end while

The Policy Network (πθz,z′ ), parameterized by θ,
is tasked with learning the policy that dictates the
actions a the agent should take to transition be-
tween states s. The network includes shared lay-
ers that process the input state s into a shared
representation. This shared representation is then
fed into option-specific heads, each consisting of a
fully connected layer with 64 units followed by a
Softmax activation function. This setup allows the
network to output a probability distribution over
actions for the selected option. The architecture
is flexible, enabling the addition of new heads as
new options are discovered. On the other hand, the
Value Network (Vψz,z′ ), parameterized by ψ, esti-
mates the value function for each option. It also
includes shared layers that process the input state
s into a shared representation, which is then passed
through option-specific heads. Each head ends with
a linear layer that outputs the value estimation for
the corresponding option. Like the policy network,
the value network can dynamically add new heads
for new options, ensuring it can handle an expand-
ing set of tasks.

The agent uses mini-batch stochastic gradient
descent to minimize a composite loss function,
which includes the policy loss, the entropy regu-
larization term, and the value loss. The overall loss
function is expressed as

L(θ, ψ) = L(η̂θ) + αHπ + L(V̂ψ)

Here, L(η̂θ) represents the loss associated with the
policy network, encouraging the agent to imitate
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successful past experiences through self-imitation.
The term αHπ is the entropy regularization compo-
nent, ensuring sufficient exploration by penalizing
low-entropy (overly deterministic) policies. Finally,
L(V̂ψ) is the loss associated with the value network,
measured as the mean squared error between the
predicted values and the target values.
The training process involves on-policy training,

where the agent collects transitions through inter-
actions with the environment and uses these sam-
ples to update both the policy and value networks.
Additionally, off-policy critic updates with rela-
beling are employed to accelerate the learning of
correct behaviors. This approach, similar to Hind-
sight Experience Replay (HER) (Andrychowicz et
al. (2017)), involves relabeling failed transitions
to interpret unsuccessful experiences in the con-
text of achieving alternative goals. In addition, the
worker implements Self-Imitation Learning (SIL).
This method involves storing experiences in a re-
play buffer and periodically sampling from this
buffer to reinforce successful behaviors. Transitions
are stored in the memory buffer, and batches are
sampled from this buffer to update the networks
based on these samples. SIL provides an explo-
ration bonus by encouraging the worker to repeat
actions that previously led to high rewards, enhanc-
ing the learning process.
The key difference between the modified worker

and the previous worker lies in their network ar-
chitectures and how they manage multiple options.
The previous worker employs separate, static neu-
ral networks for each option, with each network in-
dependently learning the policy and value functions
for its specific task. In contrast, the modified worker
uses shared layers in both the policy and value net-
works, which process the input state into a common
representation. This shared representation is then
fed into option-specific heads that are dynamically
added as new options are discovered. The difference
between the two architectures can be seen in Fig-
ure 3.1. This approach allows the modified worker
to efficiently scale and adapt to new tasks without
requiring a complete reconfiguration of the network
architecture for each new option.
This framework ensures that the agent effectively

learns the policies and value functions required to
transition between states, leveraging both on-policy
and off-policy learning techniques to optimize per-
formance.

Figure 3.1: Neural Network representation of
the worker’s architecture. Showing the neural
network with multiple heads for each option (on
the left) and the single neural network for each
option (on the right)

3.3 Properties

The multi-headed architecture of the workers, ex-
emplified by the multi-headed policy network, of-
fers several theoretical key advantages over creating
multiple separate policy networks for each option.
One of the primary potential benefits is efficiency
(Huang (2024); Vandenhende et al. (2019)). The
shared layers in the multi-headed policy network
allow for common computations to be done once
per input state, reducing redundant calculations.
This would lead to significant savings in computa-
tional resources and time (Kokkinos (2016)). More-
over, the overall memory usage would be lower since
the shared layers are not duplicated across multi-
ple networks (Lu et al. (2016); Guo et al. (2018);
Kendall et al. (2017)). Only the heads, which are
typically smaller, require additional memory for
each new option, which would result in a more ef-
ficient memory footprint.

For example, consider an environment with a
length and width of 8 creating a total of 64 states
s and these states split into 4 different regions z.
Giving each region 16 states s. Using this we can
calculate the total parameter count using the fol-
lowing formula:

P = (s× h) + (h× a) + h+ a

Where h represents the number of neurons in the
hidden layer and a represents the number of neu-
rons in the output layer. In a shared neural network
with multiple heads for each option, the shared
layer has 16 × 64 + 64 = 1088 parameters. Each
head, contributes 4 × (64 × 4 + 4) = 1040 pa-
rameters. Thus, the total number of parameters
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is 1088 + 1040 = 2128. In contrast, using sep-
arate neural networks for each option results in
4× ((16× 64) + (64× 4) + 64 + 4) = 5392 param-
eters for the same four options. This setup leads
to a parameter reduction of approximately 60.5%,
calculated as(

1− 2128

5392

)
× 100 ≈ 60.5%

Furthermore, the multi-task learning capability
of the network would enable the agent to learn and
generalize across multiple tasks. By sharing com-
mon representations in the shared layers and main-
taining option-specific and task-specific outputs in
the heads, the network can effectively handle a
variety of tasks simultaneously (Lu et al. (2016);
Kendall et al. (2017)).
The multi-headed architecture also promotes im-

proved generalization (Vandenhende et al. (2019)).
Shared representations learned in the common lay-
ers would allow the network to leverage information
across different options, which would lead to better
performance on new or unseen tasks. Additionally,
the shared layers act as a form of regularization,
encouraging the network to learn more robust and
generalized features that are effective across multi-
ple heads. (Y. Gao et al. (2019)) This regularization
effect should help prevent overfitting and enhance
the network’s ability to generalize well across dif-
ferent tasks (Ghosh et al. (2018)).
Furthermore, this architecture could be expected

to learn faster and take less time compared to im-
plementing separate neural networks for each op-
tion. By reusing shared computations, the train-
ing process becomes more efficient, reducing the
overall training time. (Lu et al. (2016); Neven et
al. (2017)) The shared layers enable the network
to benefit from transfer learning, where knowledge
gained from one task can aid in learning another,
thereby speeding up convergence (Huang (2024);
Vandenhende et al. (2019)).
Overall, the policy network’s multi-headed archi-

tecture combines efficiency, flexibility, adaptability,
and improved generalization, making it in theory a
powerful and versatile solution for complex, multi-
task environments. This architecture should ensure
that the worker is able to efficiently learn and up-
date the optimal policies and value functions for
each option, dynamically adapting to new discov-
eries.

Figure 4.1: Key-Door-Treasure GridWorld 8x8
environment with red lines showing the com-
pression function splitting the environment into
4 regions

4 Experiments

To compare this work with the study detailed in
the paper ”Hierarchical Reinforcement Learning for

Table 4.1: Hyperparameters used for the exper-
iments

Hyperparameter value
Network Architecture
Shared-Layer FC(64)
Heads FC(64)
Worker
Learning rate 0.0007
Gamma (Discount Factor) 0.99
SIL Replay Buffer size 104

SIL Batch size 512
SIL loss weight 1
SIL value loss weight 0.01
Epsilon (numerical stability) 1e-8
SIL updates per iteration 4
Manager
Steps per iteration update 6
Bias correction 0.1
Gamma (Discount Factor) 0.9
Epsilon Decay 0.95
Environment
Key-door-Treasure 8x8, 16x16
Number of iterations 1000
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Efficient Exploration and Transfer.” (Steccanella et
al. (2020)) I employed several key evaluation met-
rics: total rewards per episode, total steps taken
per episode, and the overall time taken to run the
algorithm. Total rewards and steps were used to as-
sess the performance of the models, while the total
time taken provided a measure of their computa-
tional efficiency.

To perform these evaluations I use two different
sizes of a Minigrid environment namely the Key-
Door-Treasure GridWorld 8x8 and 16x16. In both
of these environments, the agent has to pick up a
key to open a door, enabling the agent to reach
the goal. The invariant part of the state consists
of the agent’s location, and the compression func-
tion f imposing a grid-like structure on top of the
environment as shown in figure 4.1. Important to
note is that the compression function for the 8x8
Key-Door-Treasure GridWorld splits the environ-
ment into 4 regions, where each region has a total
of 16 states. Whereas the 16x16 environment is split
into 16 regions resulting in also 16 states per region.

For both environments, the agent receives a re-
ward for each intermediate goal. Meaning a reward
is given for picking up the key, opening up the door,
and reaching the goal. Another important property
to note is that the agent takes a random action with
a probability of 20 %. The agent also has a budget
of 300 time steps before the environment resets. I
average the results over 5 seeds and the experiment
is run for 1000 episodes. In table 4.1 the hyperpa-
rameters are shown to run the algorithm. In all 5
of the runs, the starting location of the agent, key,
and door is random but the location of the goal is
always in the bottom right corner of the environ-
ment.

To validate my hypothesis, I expect the algo-
rithm to learn and converge to achieve the max-
imum sum of rewards in the environment consis-
tently. Additionally, I anticipate that the algorithm
will converge to the minimum number of steps re-
quired to solve the environment. Crucially, for my
hypothesis to be accepted, the total time taken
after 1000 episodes should be less for the multi-
headed neural network compared to the single neu-
ral network for each option.

Figure 4.2: Total rewards for 8x8 environment

Figure 4.3: Total rewards for 16x16 environment

Figure 4.4: Total steps for 8x8 environment

Figure 4.5: Total steps for 16x16 environment
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4.1 Results

In the figures, my algorithm is labeled as HRL-
Head, while the implementation of the paper ”Hi-
erarchical Reinforcement Learning for Efficient Ex-
ploration and Transfer” is labeled as HRL (Stecca-
nella et al. (2020)). The results indicate that the
multi-headed implementation is indeed still learn-
ing. In figure 4.2 by blue it is evident that the
total rewards show a steady increase. After ap-
proximately 1000 episodes, the rewards stabilize at
just below 3, though they have not fully converged
to the maximum reward and still exhibit a high
amount of variation. In contrast, the single neu-
ral network for each option shown by the red line
in figure 4.2 converges more quickly, maintaining a
steady total reward of 3 for the remainder of the
episodes.

In Figure 4.4 a similar pattern is observed in the
total steps taken per episode: the multi-headed im-
plementation shows a clear decrease in steps but
with significant variation, failing to converge to the
optimal number of steps required to solve the en-
vironment. Conversely, the single neural network
implementation demonstrates a rapid decrease in
steps and quickly converges to the minimum num-
ber needed to solve the environment. In the 16x16
environment, Figure 4.3 and 4.5 shows that this
trend persists, with the single neural network for
each option achieving higher average rewards and
requiring fewer steps than the multi-headed neural
network.

In Table 4.2 it can be seen that the single neural
network for each option takes less time for 1000
episodes than the multi-headed neural network.

Table 4.2: Average time take in hours for the
multi-headed neural network and the single
neural network for each option in the 16x16
and 8x8 key-door-treasure environment for 1000
episodes

8x8 16x16
Multi-head 10.71 47.88
Single 9.14 46.10

5 Discussion

Based on the results, we cannot accept our hypoth-
esis, as the time taken has actually increased when
using the multi-headed implementation compared
to a single neural network for each option. The over-
all increase in time is likely due to the algorithm’s
inability to learn the optimal policy πo for each re-
gion. This inefficiency results in the algorithm tak-
ing more steps per episode, thereby increasing the
time required for each episode. The multi-headed
approach has led to worse performance due to sev-
eral potential reasons.

One significant issue is overgeneralization. In the
multi-headed neural network, shared layers are de-
signed to learn common features across multiple
policies. However, these shared features might be
too general and not specialized enough for the spe-
cific requirements of each individual policy. This
lack of specialization can lead to suboptimal per-
formance, as the shared layers may fail to capture
the nuanced details necessary for each policy to op-
erate optimally. To address this, it is essential to de-
sign and tune the network carefully to ensure that
while the shared layers capture essential common
features, they do not lose critical policy-specific de-
tails.

Another factor to consider is insufficient capacity
in the shared layers. The shared layers might not
have the capacity to adequately learn and represent
the complexities inherent in all the policies they
serve. This limitation can result in underfitting,
where the network fails to capture important fea-
tures for each policy, thereby compromising perfor-
mance. To mitigate this, the capacity of the shared
layers can be increased by adding more neurons or
layers.

Furthermore, inadequate head networks can con-
tribute to the suboptimal performance of the multi-
headed network (Narayanan et al. (2021)). If the
head networks are too simple, they may not effec-
tively leverage the features learned by the shared
layers. This inadequacy can lead to poor policy out-
puts and decreased overall performance. Ensuring
that the head networks have sufficient capacity and
complexity is vital. A higher capacity head net-
work can potentially process the shared features
more effectively and produce high-quality policy
outputs, thereby enhancing the entire network’s
performance.
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Another limitation regarding the whole algo-
rithm is that the compression function is hard-
coded in our approach to create specific regions,
enabling the agent to break down complex tasks
into simpler, more manageable components. How-
ever, it is feasible to design an automatic compres-
sion function, which could enhance the flexibility
and adaptability of the algorithm. Implementing an
automatic compression function would involve us-
ing clustering algorithms or neural network-based
methods to dynamically identify and segment re-
gions based on state-space similarities and task-
specific features. For instance, techniques like K-
means clustering (MacQueen (1967)). By Leverag-
ing this, the algorithm could automatically adapt
to different environments and tasks, potentially im-
proving its overall performance and efficiency.

6 Conclusion

This paper explored the implementation and effi-
ciency of a hierarchical reinforcement learning al-
gorithm using a fixed, state-dependent compression
function to decompose complex tasks with sparse
rewards into simpler subtasks. The introduction of
a multi-headed neural network architecture aimed
to enhance learning efficiency by sharing network
parameters across subtasks while maintaining spe-
cialized outputs. However, experimental results in-
dicated that the multi-headed approach did not
outperform the single neural network for each op-
tion, potentially due to overgeneralization, insuf-
ficient capacity in shared layers, and inadequate
head networks.
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7 Appendix

The code for the single neural network imple-
mentation, as well as the multi-headed imple-
mentation, can be found on this GitHub page:
https://github.com/Niclas-J-M/BP
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