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Abstract: While large language models (LLMs) have revolutionized the field of artificial intel-
ligence, reliably controlling their outputs remains a pressing challenge. This project aims to im-
prove a proposed technique called activation engineering where the outputs of pre-trained LLMs
are controlled by directly manipulating the models’ activations at inference time. Traditionally,
this manipulation involves the addition of a steering vector onto the models’ activations at a spe-
cific stage in the processing pipeline. In contrast to representing the steering target as a single
point (vector) in high-dimensional space, we explore the use of conceptors, mathematical objects
that can represent a set of activation vectors as ellipsoidal regions in their high-dimensional space.
For steering purposes, we use conceptors as (soft) projection matrices that can tune a given ac-
tivation vector toward a steering target. Due to the aforementioned properties, we hypothesize
that conceptors provide more precise control over capturing and steering toward complex activa-
tional representations compared to point-based methods. Our experiments show that compared
to traditional point-based steering methods, conceptors, especially when combined with a per-
formance enhancement called mean-centering, achieve higher accuracy across multiple steering
tasks. These findings suggest that conceptors are a promising tool for effectively controlling the
outputs of LLMs, paving the way for further research to fully establish their utility.

1 Introduction

1.1 Motivation

Over the past few years, large language models
(LLMs) have caused a major disruption in the field
of artificial intelligence (AI). Leveraging a large
number of parameters, novel attention mechanisms
(Vaswani et al., 2023), and trained on massive cor-
pora, these models have caused a significant leap
in AI capabilities (Xu & Poo, 2023). In a short pe-
riod of time, LLMs have rapidly transformed the
focus of industry and academia, and are on track
to greatly influence future technological advance-
ments and global societal progress (Zhao et al.,
2023; Bubeck et al., 2023; Chang et al., 2023).

The rise of LLMs also presents significant chal-
lenges, including the spread of misinformation (Pan
et al., 2023), the propagation of social biases (Gal-

legos et al., 2024), and the emergence of poten-
tially dangerous capabilities (Shevlane et al., 2023).
Therefore, as progress on LLMs continues to ad-
vance, understanding their internal workings and
developing methods to steer these models toward
desired (or away from undesired) behaviors is be-
coming an increasingly pressing challenge (Bow-
man, 2023).

In the context of this paper, ’steering’ refers to
the practice of reliably guiding a model’s outputs
toward or away from displaying the characteris-
tics of a given pattern. A pattern can be specified
through humanly interpretable examples, for exam-
ple demonstrating concepts or behaviors (e.g. love,
hate, etc.), but it can also include more complex
types of outputs that may not as easily be directly
described by humans.

Various methods have been proposed to steer
the outputs of LLMs toward desirable or away
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from (un)desirable patterns, including reinforce-
ment learning from human feedback (RLHF)
(Ouyang et al., 2022), supervised fine-tuning (De-
vlin et al., 2019), and prompt engineering (Liu et
al., 2021). RLHF uses human feedback to generate
a reward signal, which can then be used in rein-
forcement learning to steer the models toward the
preferred outputs. Supervised fine-tuning adjusts
the model’s parameters by minimizing the error on
a labeled input-output dataset using optimization
techniques. Lastly, with prompt engineering, the in-
put prompts are specifically designed to alter the
model’s outputs without changing the model’s pa-
rameters itself.
The current methods share common limitations.

Both RLHF and supervised fine-tuning require ex-
pensive optimization techniques like stochastic gra-
dient descent (SGD) making them computationally
expensive (Bottou et al., 2018). Additionally, both
methods can fail to generalize due to the variabil-
ity in human feedback and the specificity of the la-
beled datasets leading to inconsistent performance
(Amodei et al., 2016; Zhang et al., 2023). Prompt
engineering, while less computationally expensive,
can also have inconsistent steering performance due
to the variability and unpredictability of how dif-
ferent prompts affect the model’s outputs (Chen et
al., 2023).

1.2 Activation Steering

Recently, a new approach has been introduced
called activation steering (Li et al., 2024; Turner et
al., 2024) which aims to predictably control the out-
puts of LLMs by making direct modifications to the
model’s activations at inference time. This method
benefits from the fact that no changes are made to
the model’s parameters, eliminating the need for
expensive optimization techniques. Additionally, it
only requires a small set of prompts instead of a
large collection of labeled training data.
Activation steering typically involves caching a

set of token activation vectors from an LLM’s for-
ward pass on pre-specified prompts. These prompts
can demonstrate the desired pattern directly (e.g.
functions: “up→down”,“happy→sad”, etc.) (Todd
et al., 2024) or specify it through contrastive exam-
ples (e.g., “love” - “hate”) (Turner et al., 2024). In
the first case, the cached token activations would
be averaged to form the steering vector, in the lat-

ter they would be subtracted from each other. This
steering vector can then be added or subtracted to
the token activations of a new forward pass (reg-
ulated by an injection coefficient) at some point
(layer) in the processing pipeline to steer the model
toward or away from exhibiting the described pat-
tern. This method has shown to be effective at cap-
turing and steering toward or away from a wide
range of patterns describing things like specific fea-
tures/concepts (weddings, love, etc.) (Turner et al.,
2024), functions (antonyms, synonyms, etc.) (Todd
et al., 2024), and more complex behaviors (truthful-
ness, power-seeking, etc.) (Panickssery et al., 2024).

This type of steering does have its limitations.
Finding suitable contrasting prompts to demon-
strate complex patterns can be non-trivial (e.g.
for input-output functions). Most importantly, it is
not always reliable, sometimes showing inconsistent
performance (Turner et al., 2024). This may be ex-
plained by the inherent limitations that come with
reducing the representation of a complex steer-
ing pattern into a single point (vector) in high-
dimensional space. Compressing the representation
of the pattern this much could lead to a loss of im-
portant steering information. Intuitively, it might
therefore make more sense to describe these high-
dimensional representations in terms of ellipsoidal
regions compared to single points.

1.3 Conceptor Steering

This paper introduces an alternative to the current
predominant approach for steering LLMs outputs
using activation engineering. Instead of averaging
or subtracting a set of cached activation vectors
to form a steering vector, the cached activations
are used to compute a conceptor, which we may
refer to as a steering matrix. Additionally, instead
of manipulating the LLM’s activations using vector
addition, the activations are (softly) projected us-
ing a matrix-vector multiplication with the steering
matrix.

Conceptors are mathematical constructs that can
be used for the management of neural activations
(Jaeger, 2014). A conceptor can be visualized as
a structure that describes the activational pattern
(state cloud) of a set of high-dimensional activation
points using an ellipsoid. This conceptor is math-
ematically represented by a positive semi-definite
matrix with eigenvalues between zero and unity
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that can be used to (softly) project a new set of
activations toward the described ellipsoid. Concep-
tors have been proven to be effective at control-
ling pattern-generating recurrent neural networks
(RNNs) across a wide range of behaviors (Jaeger,
2017). Furthermore, they have been applied in feed-
forward neural networks to prevent catastrophic
forgetting and enhance continual learning (He,
2023). Additionally, they have been used for identi-
fying and removing bias subspaces in LLMs such as
BERT and GPT (Yifei et al., 2023). Lastly, concep-
tors have been used to automatically distill linguis-
tic abstractions into a knowledge graph from con-
textual embeddings (Kuiper, 2024; Bricman, 2022).
Because conceptors are computed from the cloud

of activation vectors and encode the correlations
between activations (see Section 2.4), conceptors
may better capture the activation space of complex
patterns compared to simple point representations,
which discard information about correlations. Ad-
ditionally, since conceptors have been successfully
applied across various contexts, most importantly
in steering pattern-generating RNNs toward a wide
range of behaviors (Jaeger, 2017), it is reasonable to
also explore their potential steering properties for
LLMs. Collectively, these factors provide a strong
motivation for investigating how conceptors per-
form compared to traditional point-based vector
methods in reliably steering the output of LLMs.

1.4 Objectives & Methodology

To establish conceptors as a useful steering tool,
it is important that they can be used to extract a
representation of a pattern from a given set of ex-
amples. This representation should then be able to
function as a steering mechanism that can be used
to modify an LLM’s token activations such that
its outputs will be steered toward or away from
exhibiting the characteristics of the described pat-
tern.
For this paper, we will focus on conceptor steer-

ing in the context of input-output functions (e.g.
a function that takes a word and returns its
antonym). This would be a good first steering goal
as it is more complex than simple concepts but sim-
ple enough to formalize into a concrete experiment.
Furthermore, there is already a rich body of scien-
tific literature on this topic, so we can build on
established methodologies and practices (Todd et

al., 2024; Jorgensen et al., 2023).

More specifically, we will use the proposed con-
ceptor steering method for extracting and steer-
ing the model toward completing specific tasks
(input-output functions) and compare its perfor-
mance against the baseline (no steering) and addi-
tive steering. We will also test the methods with
and without a potential performance enhancement
called mean-centering. (Jorgensen et al., 2023)
This way, we hope to give a good overview of
each method’s performance and possible strengths
across different contexts.

The effectiveness of the steering mechanisms will
be evaluated based on their ability to guide the
model towards correctly performing the functions.
The performance will be measured using an accu-
racy metric that compares the model’s outputs with
the expected (correct) function outputs.

In summary, we aim to answer the question: will
conceptor-based steering methods achieve higher
accuracy in steering LLMs toward correctly ex-
ecuting input-output functions compared to tra-
ditional point-based steering methods? Given the
potential strengths of conceptors, we hypothesize
that conceptor-based steering methods will achieve
higher accuracy in steering LLMs toward correctly
executing input-output functions compared to tradi-
tional point-based steering methods.

2 Methods

2.1 The Model

For our experiments, we will make use of a decoder-
only transformer neural network. More specifically,
we will use EleutherAI’s GPT-J-6B (Wang & Ko-
matsuzaki, 2021) open-source 6 billion parameter
model, pre-trained on the Pile dataset (825GB,
∼300B tokens) (Gao et al., 2020). This was the
model of choice by Todd et al. (2024) who showed it
to be complex enough to have the representations of
various input-output functions (of the kind shown
in Section 3.1) encoded in its activation space.

The model contains a stack of 28 transformer lay-
ers, each with layer normalization, multi-head at-
tention (MHA), and a feed-forward network (FFN).
Central to the architecture is the residual stream,
which consists of a sequence of token activation
vectors of shape [num tokens, d model]. Here,
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Figure 2.1: High-level diagram of the infor-
mation processing pipeline of GPT-J-6B, only
showing one of 28 transformer layers, inspired
by (Elhage et al., 2021).

num tokens equals the number of tokens in the in-
put prompt, and d model represents the dimension-
ality of the token embeddings, which for GPT-J-6B
is 4096. A diagram of the full structure can be seen
in Figure 2.1.

The information processing pipeline begins with
the initialization of the residual stream using the
embedding(s) of the tokenized input prompt. Each
token’s embedded activation vector passes through
the residual stream. The MHA and FFN compo-
nents sequentially add information to the residual
stream at each transformer layer, with a normal-
ization after each addition. This way, there is a
continuous flow and transformation of information
throughout the layers of the network. It is for this
reason that the residual stream can be conceptu-
alized as the network’s ”communication channel”
(Elhage et al., 2021).

At the end of the forward pass, the final token ac-
tivation vectors in the residual stream are normal-
ized, unembedded, and processed by a softmax to
auto-regressively form the next-token predictions.

2.2 Point-Based Additive Steering

Adding steering vectors to the residual stream has
successfully been used to control the output of
LLMs across various domains (Turner et al., 2024;
Panickssery et al., 2024; van der Weij et al., 2024).
The use case that will mainly be focused on here are
the findings from the paper by Todd et al. (2024).
This paper showed that a steering vector can be

extracted from the residual stream that captures
the activation space of an input-output function
(e.g. a function that takes a word and returns its
antonym). This steering vector can then be added
to the residual stream at inference time to steer
the model toward performing the captured func-
tion. For example, by prompting the model with
“Hot” and adding the Antonym function vector to
the residual stream during a new forward pass, the
model would output “Cold”.

Their baseline method works as follows. First, a
set of in-context learning (ICL) prompts Pf that
demonstrate a particular task f (the execution of
an input-output function) are compiled. Then for

each prompt pfi ∈ Pf , the final token activations

hℓ(p
f
i ) are cached at a specific layer ℓ from the

residual stream h. The cached activation vectors
are then averaged into the steering vector h̄f

ℓ for
task f at layer ℓ:

h̄f
ℓ =

1

|Pf |
∑

pf
i ∈Pf

hℓ(p
f
i ) (2.1)

To steer the model towards performing this func-
tion, the function (steering) vector h̄f

ℓ can be added
(without additional re-normalization) to the resid-
ual stream at layer ℓ when the model would be
completing a prompt containing a previously un-
seen input. This method has been used to steer the
model toward executing a wide range of functions
in a zero-shot context meaning that the model was
not initially trained to do so, and was also not given
explicit examples of this task in its prompt.

This demonstrates that, at particular layers in
the model, activation vectors (cached from the
residual stream), can encode the execution of a spe-
cific function. A steering vector can then be formed

old:young, vanish:appear, dark:
awake:asleep, future:past, joy:
top:bottom, tall:short, accept:

hfl

(a) Extraction of the
antonym function (steering)

vector h̄f
ℓ at layer l using 3

ICL prompts.

simple: +    = complexhfl

encode: +    = decodehfl

(b) Antonym steer-
ing vector in 2 zero-
shot contexts.

Figure 2.2: Visualization of how an antonym
function (steering) vector can be extracted and
applied. Example from (Todd et al., 2024)

.
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by taking the average of these cached activation
vectors. This steering vector can then be added to
the residual stream of a new forward pass to steer
the model toward performing the encoded func-
tion. See Figure 2.2 for a rough visualization of this
method. This paper investigates whether this prac-
tice can be improved with the use of Conceptors.

2.3 Mean-Centering for Additive
Steering

An important improvement for additive steering
is a technique called mean-centering, put forward
by Jorgensen et al. (2023). This method enhances
the effectiveness of steering vectors by reducing
the inherent bias present in the activation space
of LLMs. Activation vectors in LLMs tend to be
anisotropic, meaning that they are not evenly dis-
tributed around the origin, but are instead offset in
a consistent direction. This can negatively impact
the steering vector’s performance as the bias vector
b representing this offset, does not encode any spe-
cific task-related information, diluting the steering
vector’s effectiveness.
Implementing the mean-centering performance

enhancement for steering toward the execution of
functions can be done as follows:
First, the steering vector h̄f

ℓ for a specific func-
tion f is computed by averaging the activations at
layer ℓ on a set of ICL prompts demonstrating the
input-output function Pf (as defined in Equation
2.1).

h̄f
ℓ now encodes the task-specific behavior but

may still be affected by biases in the model’s overall
activation space. Mean-centering attempts to mit-
igate this by subtracting the mean activation of a
broader dataset that represents the general activa-
tion space of the model. This is done by computing
the mean activation vector µtrain over a large, rep-
resentative set of prompts Dtrain from the model’s
training data (see Appendix B for more details):

µtrain =
1

|Dtrain|
∑

d∈Dtrain

hℓ(d)

The mean-centered steering vector can then be
obtained by subtracting this general mean activa-
tion vector from the task-specific steering vector:

h̄f,mc
ℓ = h̄f

ℓ − µtrain (2.2)

This refinement leads to a steering vector that
can more effectively guide the model toward the
specific task and has been shown to have a positive
impact on the overall steering effectiveness (Jor-
gensen et al., 2023).

2.4 Conceptors

To further enhance the performance of mean-
centered point-based additive activation engineer-
ing, we introduce a region-based steering mecha-
nism called a conceptor. Conceptors can broadly
be defined as a neuro-computational mechanism
designed to encapsulate and manipulate the state
space of neural activations (Jaeger, 2014).

A conceptor matrix C is a positive semi-definite
matrix that captures the principal directions and
variances of a set of neural activation vectors. This
structure can be visualized as a high-dimensional
ellipsoid that describes the overall shape and spread
of the activations’ “underlying pattern”, or state
space region. A simple 2D visualization can be seen
in Figure 2.3.

One way to formalize the conceptor matrix C, is
through an optimization that minimizes the recon-
struction error while incorporating a regularization
term. The objective function to be minimized is:

min
C

∥X −XC∥2F + α−2∥C∥2F

where X is a matrix of neural activation vectors
(stacked as rows), ∥ · ∥F is the Frobenius norm,
and α is the regularization parameter also referred
to as the conceptor’s aperture. The conceptor ma-
trix that minimizes this objective function is influ-
enced by the aperture parameter α that balances
the trade-off between accurately representing the
activation pattern and maintaining a generalized
representation.

C1 C2 C3

Figure 2.3: 2D visualization of 3 Conceptors that
describe the ”underlying pattern” or state space
region of 3 different sets of neural activations.
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The closed-form solution to this problem uses the
correlation matrixR of the activation matrixX and
the aperture parameter α to compute the conceptor
matrix C. The correlation matrix R is defined as:

R =
XTX

n

where n is the number of samples. The conceptor
matrix C can then be computed using the following
equation:

C(R,α) = R
(
R+ α−2I

)−1
(2.3)

where I is the identity matrix of the same dimen-
sionality as R.
The eigenvalues µi of the conceptor matrix C are

defined as:

µi =



λi

λi+α−2 for 0 < λi < 1 and 0 < α < ∞
0 for 0 < λi < 1 and α = 0

1 for 0 < λi < 1 and α = ∞
0 for λi = 0 and 0 ≤ α ≤ ∞
1 for λi = 1 and 0 ≤ α ≤ ∞

where λi represents the eigenvalues of the correla-
tion matrix R. These eigenvalues µi fall within the
interval [0, 1] and are influenced by the aperture
parameter α. When α is large, the eigenvalues µi

approach 1 and C approaches the identity matrix,
causing the conceptor to allow for more signal com-
ponents to pass through the projection of the states
with the conceptor matrix Cx. Conversely, when α
is small, the eigenvalues µi approach 0, causing the
conceptor to allow for less variability. In the ex-
treme case of α = 0, the conceptor collapses to the
zero mapping.
Using this mechanism, the conceptor matrix C

can be used to steer a new activation vector x with
a matrix-vector multiplication:

x′ = Cx

where x′ is the conceptor-steered activation vector.
We can think of this operation as a “soft projec-
tion”. A projection matrix has eigenvalues that are
either zero or unity, but the conceptor matrix has
“soft” values that can lie between zero and unity.
Thus, the operation “softly projects” the activation
vector x toward the pattern represented by C by
scaling its components according to the patterns’

principal directions. As a result, the directions and
magnitudes of the activation vector x are adjusted
to align more closely with the desired pattern cap-
tured by C.

3 Experimental Setup

The experimental setup aims to measure and com-
pare the conceptor and point-based additive steer-
ing mechanisms (with and without mean-centering)
on their ability to steer the model towards correctly
executing a set of functions. For each function, the
described experiment will be repeated 5 times with
different random seeds. For each experiment, a new
set of steering mechanisms will be generated (ad-
ditive, additive + mean-centering, conceptor, con-
ceptor + mean-centering). These mechanisms will
be used to steer the model toward executing the
described function on independent forward passes.
For each of the five experiments, the steering per-
formances of each mechanism will be measured and
compared.

3.1 Data

The examples of the input-output functions come
from the dataset used in the experiment by Todd
et al. (2024)∗. We will refer to this as the function
pairs dataset. For a range of functions, it provides
a large set of (input, output) pairs in JSON format.
The specific functions used for our experiments
are the same ones covered in the mean-centering
experiment by Jorgensen et al. (2023), namely:
antonyms (e.g. good→bad), present-past (e.g.
go→went), English-French (e.g. hello→bonjour),
singular-plural (e.g. mouse→mice), country-capital
(e.g. Netherlands→Amsterdam), and capitalize
(e.g. word→Word).

3.2 Hyperparameters & Configura-
tions

The experimental outcomes are influenced by sev-
eral carefully fine-tuned hyperparameters that aim
to maximize the performance of all steering mech-
anisms. The hyperparameters that were fine-tuned
include the aperture α (αreg for regular and αmc

for mean-centered conceptors), an injection coef-
ficient βadd for additive steering, and a rescaling

∗Link to the function pairs dataset
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coefficient βc for conceptor steering. Each hyperpa-
rameter was optimized through a grid search, the
details of which can be found in Appendix A.
All the experimental configurations (number of

experiments, number of ICL prompts and exam-
ples per prompt, accuracy metric, etc.) were unless
mentioned otherwise, adopted from the paper by
Todd et al. (2024) to ensure comparability of re-
sults.

3.3 Steering Mechanism Generation

For each experiment, to generate the 4 steering
mechanisms, we first compile Np = 100 (ICL)
prompts that demonstrate the respective input-
output function. The prompts are formed by ran-
domly sampling N = 10 input-output pairs from
the function pairs dataset. If for a specific func-
tion, the dataset contains less than Np ×N = 1000
input-output examples, this sampling is done with
replacement. For each prompt pfi , the last input-
output pair has the output stripped, resulting in
the format:

pfi = ”x1 : y1, x2 : y2, ..., xN−1 : yN−1, xN : ”

where x represents the input tokens of a ran-
domly sampled (input, output) pair, y represents
the corresponding output tokens, N represents the
number of sampled input-output pairs, and i ∈
{1, . . . , Np}. A very simple example where Np = 3
and N = 3 can be seen in Figure 2.2a.

Formally, for each function f ∈ F in our set of
in-context learning (ICL) tasks, we have compiled

a set Pf of ICL prompts pfi ∈ Pf . Each prompt

pfi is a sequence of tokens with N input-output ex-
emplar pairs (x, y) that demonstrate the function
f mapping between x and y. For each experiment,
we generate Np such prompts.
Now that the ICL prompts have been generated,

we need to extract the relevant activations. Todd et
al. (2024) showed that the neural representations of
the functions are encoded in the activation vector of
the last token (”:”) of the prompt, right before the
transformer would auto-regressively start generat-
ing the output token(s). Moreover, the point in the
residual stream h at which the functions were most
strongly encoded was shown to be at the beginning
of layers L = {9, . . . , 16}, right before MHA and
FFN (Todd et al., 2024).

Formally, for each function f ∈ F and each
prompt pfi ∈ Pf , the activation vectors hf

ℓ (p
f
i ) are

extracted from the residual stream h at each rele-
vant layer l ∈ L from the last token’s (”:”) activa-
tion vector.

For each function f ∈ F and each layer l ∈ L,
we now have Np cached activation vectors hf

ℓ (p
f
i )

aimed to encode the neural representation of f at
layer l. Using this, we can generate the layer-specific
steering mechanisms for each function as follows:

• The standard additive steering mechanism h̄f
ℓ

is generated by averaging over all the cached
activation vectors hf

ℓ (p
f
i ) respectively as de-

scribed in Equation 2.1.

• The additive steering mechanism with mean-
centering h̄f,mc

ℓ is computed by taking the pre-

viously generated steering mechanism h̄f
ℓ and

subtracting µtrain as described in Equation 2.2.

• The regular conceptor steering mechanism C is
computed as described in Equation 2.3 using
the aperture value αreg. The correlation matrix

R is computed as R = XTX
Np

, where X is the

matrix of all hf
ℓ (p

f
i ) stacked activation vectors.

• The mean-centered conceptor steering mecha-
nism Cmc is computed with some minor ad-
justments. The matrix X is formed by sub-
tracting µtrain from the activation vectors
hf
ℓ (p

f
i ) before stacking them. This results in

an adjusted correlation matrix R:

R =
(X − µtrain)

T (X − µtrain)

Np

The mean-centered conceptor matrix Cmc can
then be calculated as described in Equation 2.3
using the aperture value αmc and the adjusted
correlation matrix R.

3.4 Experimental Procedure

To test the performance of the generated steering
mechanisms, new sets of Nt = 1000 input-output
pairs are randomly sampled from the function pairs
dataset for each experiment. This is done with re-
placement for functions where the dataset contains
less than Nt pairs. An input prompt pt is formatted
as pt = ”x : ”, where x is a tokenized input from

7



an input-output pair. The tokenized output y from
the pair is left out from pt as it will be used to test
the accuracy of the steering mechanisms. For each
experiment, we now have Nt test input prompts pt.
To test the accuracy of the steering mechanisms,

we apply the layer-specific steering mechanisms on
independent forward passes and record their subse-
quent output. This means that for our experimen-
tal configuration, across the functions f ∈ F , the
5 experiments, the 4 steering mechanisms (exclud-
ing the baseline), the Nt number of test prompts,
and the number of layers l ∈ L, there will be
6 × 5 × 4 × 1000 × 8 = 960, 000 forward passes,
each with a steering intervention.
Each steering intervention will consist of a layer-

specific steering mechanism modifying the residual
stream h at the mechanisms’ respective layer l. This
modification can be defined as transforming the un-
modified residual stream activation vector hℓ into
the steered activation vector h′

ℓ. The steering mech-
anisms’ modification can be described as follows:

• For the standard additive steering mechanism,
the averaged activation vector h̄f

ℓ is multiplied
by the injection coefficient βadd and added to
the residual stream activation vector hℓ:

h′
ℓ = βadd h̄

f
ℓ + hℓ

• For the additive steering mechanism with
mean-centering, the mean-centered average ac-
tivation vector h̄f,mc

ℓ is multiplied by the injec-
tion coefficient βadd and added to the residual
stream activation vector hℓ:

h′
ℓ = βadd h̄

f,mc
ℓ + hℓ

• For the regular conceptor steering mechanism,
the residual stream activation vector hℓ is mul-
tiplied using the conceptor matrix C and fur-
ther multiplied with the rescaling coefficient
βc:

h′
ℓ = βc C hℓ

• For the mean-centered conceptor steering
mechanism, the residual stream activation vec-
tor hℓ is first adjusted by subtracting µtrain.
This adjusted vector is then multiplied with
the mean-centered conceptor matrix Cmc and
further multiplied with the rescaling coefficient
βc. Finally, µtrain is added back to the result:

h′
ℓ = βc C

mc (hℓ − µtrain) + µtrain

• For the baseline condition, no modifications
are made to the residual stream.

h′
ℓ = hℓ

After the respective modifications have been made
to the residual stream, the forward passes will con-
tinue as usual. At the end of each forward pass, the
final logits are converted into probabilities using a
softmax, and the token with the highest probabil-
ity is selected. This means that at the end of one
experiment, we have Nt single-token outputs for
each layer-specific steering mechanism. These to-
kens can now be compared with the first token of
output y that corresponds with the input x of the
initial prompt pt. Based on how many of the Nt

outputs were correctly identified, a top-1 accuracy
is calculated for each layer-specific steering mecha-
nism. This experiment is repeated 5 times for each
function f ∈ F to account for variability caused
by the random sampling for the generation of the
steering mechanisms and test sets.

4 Results

This section provides a comparison of the four
steering mechanisms (additive, additive with mean-
centering, conceptor, and conceptor with mean-
centering) across six functions: antonym, capital-
ization, country-capital, English-French, present-
past, and singular-plural. The performance is eval-
uated based on the top-1 accuracy of the layer-
specific steering mechanisms that make interven-
tions on layers 9 to 16. The baseline performance
is consistently low across all tasks, so it is not in-
cluded in the individual function discussions.

4.1 Function Steering Results

The following subsection outlines the performance
of each layer-specific steering mechanism on how
well it was able to steer the model toward correctly
executing each of the six functions.

• Antonyms: both additive methods show
moderate improvements, with the mean-
centered mechanisms performing slightly bet-
ter across all layers. Conceptor methods, par-
ticularly with mean-centering, achieve a signif-
icantly higher accuracy, peaking around layers
12 and 13.
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Figure 4.1: Plots displaying the layer-specific performance of the 4 steering mechanisms for 6
different functions.

• Capitalization: all four methods (except for
the regular conceptor method in the beginning
layers) show significant improvements, reach-
ing near-perfect performance.

• Country-Capital: additive methods show
moderate improvements, with additive mean-
centered performing significantly better.
Conceptor methods, especially when mean-
centered, achieve the highest performance,
peaking around layers 12 and 14.

• English-French: Although both additive
methods show slight improvements, the con-
ceptor methods significantly outperform them,
with the mean-centered mechanism showing
the highest accuracy across all layers.

• Present-Past: all four methods show equal
moderate improvements in the early layers.
Around layer 14, the performance of the meth-
ods increases significantly, with the conceptor
methods outperforming the additive methods.

• Singular-Plural: Although both additive
methods show consistent improvements, the
conceptor methods outperform additive them,
with mean-centered conceptors showing more
gains, especially in layers 13 to 15.

4.2 Overall Task Performance
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Figure 4.2: Averaged performance of the four
steering mechanisms across the 6 tested func-
tions.

The overall performance across all tasks and lay-
ers is outlined in Figure 4.2. This plot averages the
top-1 accuracy across all functions for each layer
and steering mechanism.

It can be seen that in the early layers where
the overall performance is low, conceptors slightly
underperform compared to the additive methods.
But from layer 11 onward, the conceptor methods
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outperform the additive methods, peaking around
layer 14.

4.3 Performance at Best-performing
Layers

The steering performances at layers 14 and 15
across all tasks were also analyzed in more de-
tail. These layers were chosen as across all steering
mechanisms, the performance was highest at these
locations indicating that this is where the functions’
representations are most strongly encoded in the
model. This is outlined in Figure 4.3 where it can
be observed that both conceptor methods signifi-
cantly outperformed the additive methods on all
functions.
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Figure 4.3: 2 plots showing the steering perfor-
mance of the 4 steering mechanisms on all 6
tested functions for the best-performing layers.

4.4 Statistical Significance

To validate the observed differences between the
steering mechanisms, statistical significance tests
were conducted. These tests help determine if the
improvements seen with mean-centered conceptor
and mean-centered additive approaches are statis-
tically significant. We used independent t-tests to
compare the performance at layer 14 for each task

and a repeated measures ANOVA test to assess the
overall performance across all layers and tasks. A
significance level of 0.05 was used for all tests.

4.4.1 T-test

An independent one-tailed t-test was performed
to compare the performance of the mean-centered
conceptor and mean-centered additive methods at
layer 14 for each task. We focused on layer 14 be-
cause it consistently showed the highest average
performance across all tasks and steering mecha-
nisms, suggesting that this layer is where the func-
tional patterns are most richly encoded. We chose
to only focus on comparing the mechanisms with
mean-centering as these generally performed better
across tasks. The null hypothesis was that the per-
formance of the mean-centered conceptor method
is not significantly greater than the performance of
the mean-centered additive methods.

• Antonyms: The t-test between mean-
centered conceptor (M = 46.08, SD = 0.82)
and mean-centered additive steering (M
= 24.3, SD = 0.99) at layer 14 showed a
significant difference, t(8) = 37.91, p =
1.287e-10.

• Capitalize: The t-test between mean-
centered conceptor (M = 95.48, SD = 0.32)
and mean-centered additive steering (M =
94.62, SD = 0.92) at layer 14 showed a
significant difference, t(8) = 1.98, p = 0.042.

• Country-Capital: The t-test between mean-
centered conceptor (M = 79.36, SD = 1.19)
and mean-centered additive steering (M =
57.42, SD = 1.21) at layer 14 showed a signif-
icant difference, t(8) = 28.95, p = 1.097e-09.

• English-French: The t-test between mean-
centered conceptor (M = 47.96, SD = 1.11)
and mean-centered additive steering (M =
5.64, SD = 1.43) at layer 14 showed a signifi-
cant difference, t(8) = 52.37, p = 9.791e-12.

• Present-Past: The t-test between mean-
centered conceptor (M = 91.24, SD = 0.75)
and mean-centered additive steering (M =
82.9, SD = 1.23) at layer 14 showed a signifi-
cant difference, t(8) = 12.95, p = 5.993e-07.
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• Singular-Plural: The t-test between mean-
centered conceptor (M = 95.14, SD = 0.82)
and mean-centered additive steering (M =
87.06, SD = 1.24) at layer 14 showed a signif-
icant difference, t(8) = 12.17, p = 9.642e-07.

• Overall performance across all tasks: The
t-test between mean-centered conceptor (M =
75.88, SD = 27.47) and mean-centered additive
steering (M = 58.99, SD = 33.66) at layer 14
showed a significant difference, t(58) = 64.04,
p = 8.082e-56.

The results indicate that the null hypothesis was
rejected in all instances, showing that the mean-
centered conceptor method significantly outper-
formed the mean-centered additive method for all
functions at layer 14.

4.4.2 Repeated Measures ANOVA

A repeated measures ANOVA test was conducted
to compare the performance of the mean-centered
additive and mean-centered conceptor methods
across all layers and tasks. This analysis helps de-
termine which steering mechanism performs better
overall while accounting for the repeated measure-
ments within tasks.

• Main effect of layer: There was a significant
main effect of layer on performance, F(7, 35)
= 4.519, p = 0.0011.

• Main effect of steering mechanism: There
was a significant main effect of the steering
mechanism, F(1, 5) = 7.625, p = 0.0398, with
mean-centered conceptor steering (M = 68.27,
SD = 23.69) outperforming mean-centered ad-
ditive steering (M = 52.39, SD = 28.45) over-
all.

• Interaction effect: The interaction between
the layer and steering mechanism was signif-
icant, F(7, 35) = 3.726, p = 0.0041. This
indicates that while mean-centered concep-
tor steering generally outperformed mean-
centered additive steering, the degree of this
difference varied across layers.

4.5 Summary

The conceptor steering mechanisms, particularly
with mean-centering, had superior performance

across all tasks and layers compared to the additive
methods. The statistical significance tests, includ-
ing independent t-tests for performance at layer
14, and a repeated measures ANOVA for overall
performance across all layers and tasks, confirmed
that these improvements are statistically signifi-
cant. The results suggest that conceptor methods
are more effective at capturing and steering LLMs
toward correctly executing functions. Further im-
plications of these findings will be analyzed in the
discussion and conclusion sections.

5 Discussion

5.1 Interpretation of Results

The results align with our initial hypothesis that
conceptor methods result in a higher steering per-
formance than point-based methods. Our findings
showed that, across several contexts, conceptor-
based steering mechanisms performed better com-
pared to point-based steering mechanisms. This
suggests that conceptors may offer a more pre-
cise and flexible approach to capturing the rep-
resentation of patterns in the activation spaces of
LLMs. In addition to this, we found that the mean-
centering enhancement appears to boost the per-
formance even further. This indicates that just like
with point-based methods, reducing the effects of
anisotropy in LLMs can improve the steering effec-
tiveness of conceptors.

In addition to this, the conceptor methods con-
sistently performed best in layers where the pat-
terns were thought to be most strongly encoded.
However, in layers with lower overall performance,
the differences between the mechanisms were less
consistent. This indicates that conceptor methods
excel when applied to layers where the pattern is
likely to be encoded, but their advantage is less
clear in other layers.

5.2 Comparison with Previous Work

Todd et al. (2024) showed that function (steering)
vectors can be extracted and injected in the for-
ward pass of an LLM to steer it toward execut-
ing a set of input-output functions. We successfully
replicated their findings using the same experimen-
tal configurations. In addition to this, we were able
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to build on their research, showing that the steer-
ing mechanism does not just have to be limited to
a point-based (vector) representation, but in our
tested contexts, can even benefit from a region-
based representation using conceptors.

Moreover, Jorgensen et al. (2023) showed that
the inherent bias (anisotropy) in the activation
space of LLMs can reduce the effectiveness of the
extracted point-based (function) steering mecha-
nisms. By removing this bias from the extracted
mechanism, its steering performance was shown
to be improved. We successfully replicated these
findings and showed that this method (mean-
centering) can also improve the steering perfor-
mance of region-based conceptor steering mecha-
nisms.

Lastly, several studies showed that conceptors
are a useful neuro-computational mechanism for
the management of neural activations in sev-
eral contexts. This includes controlling pattern-
generating RNNs (Jaeger, 2017), enhancing contin-
ual learning in FFNs (He, 2023), reducing bias in
LLMs (Yifei et al., 2023), and creating knowledge
graphs from contextual embedding spaces (Kuiper,
2024; Bricman, 2022). Our study supports that just
like in the aforementioned studies, conceptors can
be used for many types of neural management ap-
plications, in this case highlighting their usability
in steering toward patterns in the activation space
of LLMs.

5.3 Limitations

5.3.1 Methodological Limitations

Although we performed some fine-tuning to identify
the optimal parameters for the injection/rescaling
coefficients (βadd and βc) and the apertures (αreg

and αmc), these parameters were computed only
based on performances on the antonym task. It is
conceivable that specific layers or tasks might bene-
fit from slight parameter modifications, potentially
leading to different outcomes. Unfortunately, our
ability to perform more extensive fine-tuning was
limited by computational restraints.

Our study focused solely on steering LLMs to-
ward executing functions, and just like in the exper-
iments by Todd et al. (2024), only the first output
token was checked for correctness. Consequently,
it is not immediately clear what the implications

of this steering method are on grammar or overall
model capabilities. More complex experiments, in-
cluding testing for more complex behaviors, would
need to be conducted to examine this.

The experiments by Todd et al. (2024) demon-
strated that the effectiveness of function (steering)
vectors scales to a set of larger models that they ex-
perimented with, including GPT-NeoX and Llama
2 (70B). While there is no reason to believe that for
conceptor steering, this would not scale similarly, it
has not been proven in our experiment.

Manual inspection of the function pairs dataset
revealed that some of the outputs were quite
ambiguous and non-trivial (e.g. for antonym,
’cavity→healthy tooth’), potentially limiting the
performance potential. Especially given that the ac-
curacy metric used was top-1 accuracy, it may not
have given the model enough flexibility to perform
optimally.

5.3.2 Conceptor Challenges

Using conceptors to steer LLMs does present its
own set of challenges. To form a meaningful con-
ceptor that accurately captures an underlying pat-
tern from a set of neural activations, more than one
data point is required, and preferably many more.
This is in contrast to point-based steering mech-
anisms where technically only a single activation
point is needed. That said, in practice, often many
points are averaged to more accurately describe the
desired pattern using a point-based representation
(Todd et al., 2024).

Generating a conceptor is relatively more expen-
sive compared to generating a point-based steer-
ing mechanism due to the necessary extra com-
putational steps. This includes computing a cor-
relation matrix and performing a matrix inversion,
instead of simply averaging over a set of vectors.
Additionally, conceptors also take up more space
in memory as they are represented as a matrix in-
stead of a vector. Lastly, applying a conceptor is
also slightly more computationally expensive as it
involves a matrix-vector multiplication instead of a
simple vector addition.

The aperture parameter, which acts as a regu-
larization term, needs careful calibration. Proper
fine-tuning is needed to ensure that the ellipsoidal
representation of the conceptor strikes a good bal-
ance between maintaining a generalized representa-
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tion and precisely capturing the principal directions
and variances of the desired pattern.
Despite their potential, much more research is

needed to fully establish the best practices and lim-
itations of the use of conceptors in the context of
LLMs. This includes understanding the most effec-
tive ways to use conceptors across different tasks
and models, as well as identifying any limitations
that may restrict their broader applicability.

5.4 Wider Implications

This paper suggests a fundamental shift in how
activation steering is typically performed. It hints
towards a paradigm shift in how we think about
capturing and steering toward patterns in neu-
ral activation spaces. More specifically, suggest-
ing that region-based representations may allow
for more flexible and nuanced steering compared
to point-based representations. This paper demon-
strates that this is not only possible but can ac-
tually increase the overall steering performance.
Although this research primarily addresses simple
input-output functions, it lays the groundwork for
investigating more complex behaviors. If more re-
search is done and conceptor-based steering contin-
ues to be demonstrated as a useful method for steer-
ing LLMs, it could have significant positive impli-
cations for debiasing models, aligning models with
human values, and overall AI safety.
Furthermore, given that the proposed steering

method is less expensive than some of the current
methods (RLHF and supervised fine-tuning) that
require expensive optimization techniques (Bottou
et al., 2018), it has a low alignment tax (i.e. the
additional cost of opting for safety) (Turner et al.,
2024). This economic advantage increases the feasi-
bility of its widespread adoption, making it relevant
for both current and future frontier AI models.

5.5 Future Research

There are several areas that future research on con-
ceptor steering could focus on to address the limi-
tations and maximize their utility.
Firstly, it is crucial to investigate the effect of

different parameters such as the injection/rescaling
coefficients (βadd and βc) and the apertures (αreg

and αmc), on the steering mechanisms’ performance
across different contexts. Establishing standards for

determining the right parameters and how to most
efficiently find them would make conceptors much
simpler and cheaper to work with.

Another promising extension of this research
would be multi-layer steering. Given that concep-
tors have been successful in steering the behav-
ior of pattern-generating RNNs which inherently
use dynamic time-series activation data, they might
also be effective in capturing and steering patterns
across multiple LLM layers. Exploring this poten-
tial could lead to even more nuanced control and
possibly further enhance the steering performance.

Additionally, although combining steering vec-
tors could potentially allow for a more nuanced
way to steer toward more complex patterns, it has
not been shown to work reliably yet with point-
based representations (van der Weij et al., 2024).
This could potentially be solved using conceptors
that support boolean operations (like NOT, AND,
OR) (Jaeger, 2017). The ability to perform logi-
cal operations on conceptors could be very useful
for steering a model toward or away from more
complex patterns that a single conceptor may not
as easily capture. We conducted a simple exper-
iment where two conceptors representing different
functions (singular-plural and capitalize) were com-
bined using the OR operator. This new conceptor
was successfully able to steer an LLM towards exe-
cuting a new ’singular-capitalized plural’ function.
Even more promising is that its steering accuracy
was almost twice as high compared to the point-
based steering mechanism formed by adding the
two individual mechanisms to each other. The re-
sults can be found in Appendix D.

To establish conceptors as versatile and universal
mechanisms for steering LLMs, it is important to
test their steering effectiveness on a broader set of
tasks and behaviors. This includes an evaluation of
the impact on the model’s grammatical and over-
all capabilities, ensuring that these are not nega-
tively affected. One way this could be achieved is
by building on the work by Turner et al. (2024) and
Panickssery et al. (2024) who did this for point-
based steering methods. They used point-based
(contrastive additive) steering mechanisms to steer
different LLMs toward a broad set of concepts and
behaviors, and tested the overall steering impact
on the models’ capabilities. As a proof-of-concept,
we modified the (open-sourced) experiments from
Turner et al. (2024) to work with conceptors in
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addition to point-based steering methods. Prelimi-
nary results outlined in Appendix C show that con-
ceptors can successfully be used to steer an LLM,
more specifically GPT-2-XL (Radford et al., 2019),
toward the concepts of ”love” and ”wedding”, pro-
ducing multi-token syntactically sensible outputs.
Finally, an important detail to look into is scala-

bility. While this study showed that conceptors can
be used as an effective steering mechanism for the
GPT-J-6B model, it is important to prove that this
scales to larger models as well. This way it will re-
main useful as LLMs continue to scale in size. Fu-
ture work could explore whether conceptor-based
steering methods naturally scale to larger mod-
els and examine the possible associated increase in
computational expenses. Moreover, if other NLP
architectures become competitive to transformers
(e.g., state space models), it would be valuable to
investigate whether conceptor-based steering meth-
ods transfer to those architectures as well.

6 Conclusion

This study introduced conceptors as a novel mecha-
nism for steering large language models through ac-
tivation engineering. We theorized that the region-
based structure of conceptors would provide more
nuanced and precise steering control over the ac-
tivation space of LLMs compared to traditional
point-based representations. The results of our
experiments supported this as conceptor-based
steering mechanisms outperformed the traditional
point-based steering methods across all tested
tasks. These findings suggest that conceptors may
be a promising tool for controlling the outputs of
LLMs. However, to establish them as a universally
versatile steering mechanism, further research is
needed to better understand their limitations and
applicability across broader contexts.
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A Hyperparameter Optimiza-
tion

The performance of the steering mechanisms in the
experiments was optimized through a grid search
over four key hyperparameters (based on just the
antonym function steering accuracy): the aperture
(α), the injection coefficient (βadd), and the rescal-
ing coefficient (βc).

For the aperture parameters, both the regular
aperture (αreg) and the mean-centered aperture
(αmc) were optimized by initially searching over
a wide range of values {10−4, 10−3, . . . , 103, 104}.
Upon identifying promising regions, the search was
refined with intervals relative to the identified
scales, achieving a precision of 0.0125. The final op-
timized values were αreg = 0.0125 and αmc = 0.05.

The injection coefficient (βadd) and the rescal-
ing coefficient (βc) were optimized in a two-stage
process. An initial search was conducted over the
range [0, 10] with an interval of 1. After identify-
ing a suitable range, a finer search was performed
within a ±1 window around the best initial esti-
mate, using an interval of 0.1. This process led to
the final values of βadd = 2.3 and βc = 3.9.

B Mean Training Data

The mean activation vector µtrain was calculated
using the same procedure described by Jorgensen et
al. (2023): A subset from the dataset used to train
GPT-2 was compiled (Gokaslan et al., 2019). The
subset was constructed by storing all entries from
the folders urlsf subset01-1 data and urlsf subset01-
182 data. After this, only entries that contained less
than 500 tokens (using the GPT-2 Tokenizer) were
retained. This resulted in 210 entries from which
the final 10 were removed, leaving a dataset of 200
entries. The mean activation vector µtrain was then
computed by averaging the activations over this
dataset.

C Advanced Steering

Our preliminary results show that conceptors can
also be used to steer longer sets of outputs on
more complex topics without breaking the model’s

(GPT-2-XL) overall grammatical/syntactic capa-
bilities. In short, two conceptors were generated
using prompts that demonstrate the concepts of
”love” and ”weddings”. This conceptor was then
applied onto a set of forward passes to steer the
model toward the respective pattern. There were
also forward passes with no steering intervention
to isolate the actual steering effectiveness. As can
be seen in Figure C.1, the conceptors appear to be
successful at steering the model toward exhibiting
the characteristics of the steering targets.

(a) Love Conceptor

(b) Wedding Conceptor

Figure C.1: Qualitative results from the appli-
cation of the ”love” and ”wedding” conceptors.
The left-side showing the unsteered comple-
tions, and the right-side showing the conceptor-
steered completions.
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D Combining Conceptors us-
ing Logical Operators

We conducted a simple experiment where two con-
ceptors representing different functions (singular-
plural and capitalize) were combined using the OR
operator. This new conceptor was successfully able
to steer an LLM towards executing a new ’singular-
capitalized plural’ function. The input-output ex-
ample dataset for this function was generated us-
ing GPT-4o. The point-based steering mechanism
was formed by adding the two individual point-
based mechanisms to each other. As can be seen
in Figure D.1, the combined conceptor performed
significantly higher than the combined point-based
steering mechanism.

Figure D.1: Results showing the performance of
the two combined steering mechanisms, along-
side their non-combined mechanisms. With the
conceptor-based mechanisms on the left and the
point-based mechanisms on the right.
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