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Abstract: This study investigates the feasibility of classifying EEG signals recorded during
number perception and the transferability of these classification models across individuals. We
explore distinct brain activity patterns in subjects viewing numeric stimuli, using EEG recordings
from a consumer-grade, four-channel device. Our evaluation focuses on the distinguishability of
signals both within and across subjects to identify individual and subject-independent patterns.
While classification results do not support number-specific EEG recordings, statistical differ-
ences are observed in individual cases. Subjects vary in the informativeness of their data, with
more number-specific information found across individuals in tempo-parietal regions and 300-
400 ms after stimulus presentation. The present methodology appears limited in its capability
to consistently detect number-specific information within or across individuals. Future research
is encouraged to improve on our findings by utilizing sophisticated recording equipment, infor-
mative recording locations and temporal windows in EEG waveform, as well as extensive data
collection. We will discuss implications of the present findings with respect to current theoretical
knowledge, previous EEG classification endeavors, and practical applications in brain-computer
interface development. - Study resources, additional results, and the appendix to this paper can
be found at: https://osf.io/z3ctp/

1 Introduction

The fascinating concept of Mind Reading has long
been a matter of fictional narratives and served
as intriguing but fantastical fuel in many works of
popular culture (Luckhurst, 2002). With advance-
ments in modern technology, the once imaginary
idea now seems to gradually become a realistic
possibility (Coles, 1989; Nicolas-Alonso & Gomez-
Gil, 2012; Norman, Polyn, Detre, & Haxby, 2006;
Rathkopf, Heinrichs, & Heinrichs, 2023). Promising
approaches conduct analyses of brain activity mea-
sures, which are thought to relate to specific neural
patterns. Through the identification of these pat-
terns, researchers aim to trace distinct cognitive
processes, essentially reading the contents of the
mind holding them (Craik, He, & Contreras-Vidal,
2019; Kumar, Saini, Roy, Sahu, & Dogra, 2018;
Mishra, Sharma, & Bhavsar, 2021; Saeidi et al.,
2021; Yi et al., 2022). The present research aims to
explore these possibilities by examining electroen-
cephalographic (EEG) measures of neural activa-

tion to classify numeric stimuli perceived by par-
ticipants. By leveraging state-of-the art signal pro-
cessing and machine learning techniques, we inves-
tigate the neural correlates of numeric perception,
as well as the potential for realistic applications of
their classification.

Research into the technological realizations of
Mind Reading is exceedingly relevant, as it com-
bines the findings of cognitive neuroscience, engi-
neering, and machine learning in one scientific en-
deavor. Firstly, it provides insights about an indi-
vidual’s neural representation of numbers by iden-
tifying and characterizing the neural patterns asso-
ciated with perceiving and processing numerical in-
formation. The ability to classify EEG signals sug-
gests the presence of distinct neural representations
for different numbers, offering insights into how
the brain encodes numerical information. Secondly,
by evaluating the transferability of these methods
we gain a better understanding of the universality
and variability of numerical representations in the
brain. This knowledge can then inform the design
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of practical applications that extend and assist cog-
nitive functioning, for example in individuals with
learning disabilities. Overall, this strongly interdis-
ciplinary approach advances both fundamental and
practical knowledge and validates the ties between
all areas of research involved.

Throughout our research, we systematically dis-
tinguish four steps that we see as critical ele-
ments of Mind Reading as enabled by technological
means: First, we conceptualize thoughts as specific
patterns of neural activity. Second, neural activ-
ity is made quantifiable using EEG, a non-invasive
method that measures electrical activity on the
scalp corresponding to neural activation (Chaddad,
Wu, Kateb, & Bouridane, 2023; Khosla, Khand-
nor, & Chand, 2020). Third, after a collection and
processing of recordings, signals occurring during
the perception of numeric stimuli will be classified
to interpret the type of stimuli perceived. Fourth
and finally, the process of analysis and classification
will be evaluated to identify systematic patterns of
neural activity within and across individuals and
stimuli. The existence of such patterns may inform
the design of practical applications and validate or
extend fundamental knowledge in cognitive neuro-
science research. The methods applied in this re-
search as well as later sections below will largely
follow this four-step process.

1.1 Related Work

Current neuroscience evidence strongly supports
the notion of localized brain regions activated dur-
ing number perception. Research by Dehaene, Pi-
azza, Pinel, and Cohen (2003) identified three
parietal circuits responsible for number process-
ing by examining fMRI activations during numer-
ical tasks. Specifically, the horizontal segment of
the intraparietal sulcus was identified as a core re-
gion in which activation scales with the process-
ing of numbers and quantity, while more lateral
areas activate during verbal and spatial number
tasks. More recent research by Marlair, Crollen,
and Lochy (2022) supports these findings with ev-
idence from frequency-tagged EEG, which simi-
larly identified the bilateral intraparietal sulci as
a source of activity during number-related tasks.
Additional findings by Arsalidou and Taylor (2011)
further point to the involvement of parietal re-
gions in number representation, while additional

prefrontal regions are activated during number ma-
nipulation tasks. Nieder (2016) further identified
specific ‘number neurons’ in the intraparietal sul-
cus and lateral prefrontal cortex in non-human pri-
mates, which encode numerosity abstractly across
modalities. Emphasizing strong similarities in nu-
merical representation between human and non-
human primates, their research points to an evo-
lutionary pre-adaptation for semantic number rep-
resentations in the parietofrontal network. In sum-
mary, the current body of research indicates a po-
tential of using EEG to access specific brain re-
gions and record measurements of activation that
distinctly relate to numeric perception.

The possibility of interpreting neural representa-
tions from EEG recordings has been demonstrated
by a multitude of studies, which achieved substan-
tial accuracy in their predictions (see Saeidi et al.
(2021) for a review). Mahapatra and Bhuyan (2023)
successfully classified imagined numbers of a single
subject using a recurrent neural network (RNN)
architecture, reporting around 95% accuracy with
low-density EEG recordings. Similarly, Kumar et
al. (2018) applied a random forest method to clas-
sify imagined speech, achieving 67-80% accuracy
for a classification of digits, characters, and ob-
jects. Mishra et al. (2021) further validated the po-
tential of EEG-based classification by using a con-
volutional neural network (CNN) to decode visual
perception of digits, obtaining approximately 70%
accuracy. Many other reports of successful EEG
signal classification for various stimuli exist, using
various methods ranging from statistical regression
models to deep neural networks (Alazrai, Abuhi-
jleh, Ali, & Daoud, 2022; Bird, Faria, Manso, Ekárt,
& Buckingham, 2019; Kalita, 2023; Saeidi et al.,
2021; Yi et al., 2022). The abundance of research
provides strong support for the notion that EEG
signals can reliably indicate specific neural repre-
sentations and underlying cognitive processes.

Building on the success of classification meth-
ods working with measurements of neural activity,
brain-computer interface (BCI) design has emerged
as a fascinating field of study. BCIs, which enable
direct communication between the brain and exter-
nal devices without the need of peripheral nerves or
muscles (Nicolas-Alonso & Gomez-Gil, 2012), offer
potential for a variety of applications. Such appli-
cations include neuroprosthetics, assistive devices
for individuals with physical disabilities, and cogni-
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tive enhancement tools (Baniqued et al., 2021; Bird
et al., 2019; Nicolas-Alonso & Gomez-Gil, 2012).
However, using non-invasive EEG for its high tem-
poral resolution and affordability, BCIs suffer from
low signal-to-noise ratios in high dimensional data
and require computationally expensive preprocess-
ing and classification methods. Still, successful BCI
applications demonstrate the efficacy of EEG-based
methods (see Baniqued et al. (2021) for a review),
highlighting their potential to improve assistive
technologies and cognitive tasks.

1.2 The Present Study

The presented research lays the foundation for the
analyses done in this project, which aims to vali-
date and extend the existing fundamental knowl-
edge and investigate practical implications for BCI
development. It has been shown that EEG signals
can be classified to interpret such processes with
substantial accuracy. To further validate these find-
ings, the present study aims to use a lightweight,
consumer-grade EEG recording device for data col-
lection, which would greatly facilitate BCI devel-
opment due to its affordability and ease of use.
A replication of the classification accuracy encoun-
tered in existing works would have significant im-
plications for BCI design, since current applica-
tions come at a substantial cost, making them un-
affordable for most people. Additionally, this study
seeks to extend fundamental knowledge by evaluat-
ing the similarities and differences in recorded pat-
terns of neural activity across different participants.
By investigating the generalization of classification
methods and the consistency of numeric represen-
tation patterns, the present research may provide
insights into the robustness of EEG-based classifi-
cations and their potential applicability across indi-
viduals. In the pursuit of these goals we thus hope
to contribute to a growing body of knowledge on
BCI development while validating the fundamen-
tal insights of cognitive neuroscience on which this
development is rooted.

The remainder of this paper will follow the
four steps of technological Mind Reading outlined
above: First, we will experimentally induce the
thought of numbers in subjects. Second, the sub-
ject’s neural activity will be recorded using an EEG
device. Third, we will develop two classification
models that learn to interpret the EEG signals to

predict the original stimuli that subjects perceived
during recording. Fourth and finally, we evaluate
the systems for their effectiveness, while statisti-
cally analyzing the EEG signals for patterns indi-
cating significant similarities or differences of num-
ber representation between individuals. In doing so,
we aim to answer two fundamental questions:

1. Is it possible to achieve above-chance number
classification performance through the analy-
sis of EEG signals using a Random Forest or
Neural Network approach?

2. To what extent does a similarity in neural
number representation exist between users, as
evaluated through a comparison of EEG sig-
nals and classification models?

The first question intends to validate the proof
of principle that has previously been provided by
other works utilizing classification algorithms to in-
terpret EEG data (Alazrai et al., 2022; Kumar et
al., 2018; Mahapatra & Bhuyan, 2023; Mishra et
al., 2021), and we expect to obtain similar findings
by adapting their data processing and classification
methods for our purpose. The second question is
more open-ended, allowing for an exploration of the
classification results and patterns in the EEG data
itself. Based on neuroscience research on shared
neural circuitry for number representation (Arsali-
dou & Taylor, 2011; Dehaene et al., 2003; Marlair et
al., 2022; Nieder, 2016; Plodowski, Swainson, Jack-
son, Rorden, & Jackson, 2003), we expect to find
significant similarities in EEG interpretability be-
tween individuals. Ultimately, we will evaluate our
results under acknowledgement of the limitations,
draw conclusions for practical applications, and dis-
cuss implications for future research.

2 Data Collection and Pro-
cessing

This section outlines the first two steps of the re-
search process, namely the creation of numeric per-
ceptions in participants, and the capturing of corre-
sponding neural activation using an EEG recording
device. We thus talk about the experimental design,
recording, data processing and cleaning methods,
as well as the tools and software used to accom-
plish these tasks.
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2.1 Methods

2.1.1 Experimental Setup

Defining the numbers one to six as the distinct ex-
perimental conditions, we chose to present numeric
stimuli in the form of dice faces. This choice of stim-
ulus was intended to present a number as conceptu-
ally as possible, preventing potential noise in neural
activation that might result from a reading-process
(when presenting digits or number words) or se-
mantic interpretation (when presenting quantities
of other objects). Previous research indicates dif-
ferential processing for different numerical stimuli
(Plodowski et al., 2003; Wei, Chen, Yang, Zhang, &
Zhou, 2014), which highlights the need to induce a
conceptual thought of numbers in participants. Ad-
ditionally, the limitation to the numbers from one
to six allowed for a more simplistic research design,
in which less data was required to investigate classi-
fication performance and patterns in EEG signals.

The experimental design required participants to
visually perceive sequences of stimulus- or response
trials. Trials were presented in random order, with
at least one stimulus trial in between response tri-
als. Each stimulus trial consisted of two phases: (1)
the baseline period, in which a blank white square
is shown and neural activity is meant to return to
a baseline, and (2) the stimulus period, in which a
complete dice face is presented. Each phase lasted
exactly two seconds. Response trials similarly start
with a baseline period, but then prompt partici-
pants to indicate the most recently perceived stim-
ulus using a number key. Response trials differed
from stimulus trials in that they only continued
once a response was given and provided feedback
on the correctness of that response. Response trials
were included to assess and focus the attention of
participants during the task, and allowed for the re-
moval of participant data when too many incorrect
responses were made. A visualization of a recording
session can be seen in Figure 2.1.

2.1.2 Recording

EEG data were recorded using the Interaxon
Muse 2 device, with a sampling rate of 256 Hz,
over four channels: TP9, AF7, AF8, and TP10,
which were placed according to the 10-20 inter-
national system (Klem, Lüders, Jasper, & Elger,
1999) and can be seen in Figure 2.2. The de-

Figure 2.1: Flowchart of a typical recording ses-
sion with three experimental blocks containing
130 trials each. Six subjects were asked to com-
plete two such sessions, while the rest completed
one.

vice was used to record neural activation within
each experimental block, using the BlueMuse soft-
ware at version 2.4 (Kowaleski, 2024). Recordings
were synchronized with the stream of stimuli us-
ing the LabStreamingLayer (LSL), through the
LabRecorder software (Labstreaminglayer/App-
LabRecorder , 2024).

2.1.3 Processing and Cleaning

We performed various signal processing and clean-
ing steps to improve the signal-to-noise ratio of
the recordings. For this purpose, the MNE python
package (Gramfort et al., 2013; Larson et al.,
2024) was used within a Python 3.4.12 environ-
ment (Guido Van Rossum & Drake, 2009). Firstly,
we decided to exclude recordings from experimental
blocks in which more than two out of the ten re-
sponse trials were answered incorrectly, assuming
a lack of attention to the task. After concatenat-
ing individual recordings from each experimental
block, we applied a bandpass filter to extract fre-
quencies from the range of 0.1 to 40 Hz, remov-
ing the DC component and higher frequencies. We
thereby removed noise such as 50 Hz interference
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Figure 2.2: Electrode locations of the Muse2
headset. NZ indicates the location of a refer-
ence electrode.

resulting from power grid voltages. Ultimately, one
raw EEG signal per participant was saved for fur-
ther cleaning.

The additional processing steps consisted of
epoching, baseline correction, outlier removal, de-
trending, and a discrete wavelet transformation.
During epoching, we confined each signal to the
interval of 0.2s before, and 0.5s after the presen-
tation of the stimulus. In doing so, we allowed for
an observation of signal changes in immediate re-
sponse to the stimulus, and were able to apply a
baseline correction using the mean amplitude of the
0.2s interval before stimulus application. Since ini-
tial recordings with the Muse 2 showed extreme
fluctuations in amplitude during body movements
or adjustment of the headband, we defined signals
with amplitude values of two standard deviations
from the mean as outliers. Along with epochs con-
taining missing measurements, such outliers were
removed from the data. The remaining signal was
then detrended to correct for a potential increase
in average amplitude, which may occur from ex-
ternal influence or an accumulated sensor error
over time. Finally, we performed a discrete wavelet

transformation (DWT) on each epoch to further
remove artifacts and noise. The DWT decomposes
an original signal into a set of wavelet coefficients
at varying scales and positions. This is achieved
by passing the signal through a sequence of high-
and low-pass filters, separating the signal into dif-
ferent frequency components. Resulting coefficients
provide a time-frequency representation of the sig-
nal, allowing an identification and removal of noise
and artifacts while preserving the underlying neu-
ral activity (Chaddad et al., 2023; Dautov & Özer-
dem, 2018). We adopted the choice of a level three
Daubechies-4 wavelet for the DWT, based on sim-
ilar work on Muse recordings by Mahapatra and
Bhuyan (2023). The use of this wavelet enabled us
to retain or discard specific frequency components,
enhancing the signal quality for further analysis
without removing its distinctive features.

2.2 Results

EEG data was successfully recorded from all 18 par-
ticipants, albeit with a considerable loss of data
due to connectivity problems and the subsequent
cleaning process. We recruited nine male and nine
female participants for our study, who reported
to have normal or lens-corrected eyesight and no
learning disabilities. Their average age at the time
of recording was 21.44 years (SD = 2.39), and two
of the 18 participants reported left-handedness. Six
participants (three male and three female) com-
pleted six experimental trials, resulting in an av-
erage of 706.3 (SD = 65.83) recorded signals out
of 720 maximally possible. No recordings were dis-
carded due to inattention during response trials.
The data cleaning procedure resulted in an addi-
tional removal of signals which contained missing
measurements or exceeded the amplitude threshold
of two standard deviations. After removing an av-
erage of 107 signals for each of the six participants,
the remaining number of recordings were reduced
to 598.7 (SD = 79.05) across subjects. For the re-
maining twelve participants who completed three
experimental trials, the average number of record-
ings was reduced from 284 (SD = 157, 45) at the
completion of the experiment to 216 (SD = 150.5)
after cleaning. Ultimately, we are left with an av-
erage of 1031.3 (SD = 13.16) recordings per con-
dition overall, out of the 1440 that were maximally
possible, assuming perfect connectivity and signal-
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to-noise ratio. While the removal of noisy data can
be expected in EEG research, the loss of record-
ings due to connectivity issues pose a serious limi-
tation on the use of the Muse 2 headset for our re-
search and its application for potential BCI imple-
mentations. Despite its ease of use and precautions
against signal interruptions taken during the exper-
iment, it appears that a reliable connection cannot
be established in all cases. Nonetheless, a substan-
tial amount of usable data has been collected, and
further analyses and classification attempts can be
made.

3 Classification

We made use of two approaches to examine the
classifiability of the recorded EEG data. Firstly,
we trained Random Forest models on frequency-
band features extracted from the power density
spectrum representation of each participant’s EEG
signal. Importantly, the Random Forest serves as
an interpretable architecture, which can be com-
pared between individuals to explore differences in
classification and underlying EEG, highlighting its
suitability for this study. Secondly, a recurrent neu-
ral network was trained on the EEG amplitude se-
quences to investigate the importance of tempo-
ral patterns for classification success. The follow-
ing sections outline both architectures and their
specific implementation in detail and present the
results of their application to the collected data. In
doing so, we aim to cover steps (3) and (4) of the
research process: the classification of EEG record-
ings, and an evaluation of individual differences.

3.1 Methods

3.1.1 Random Forest

Random Forest (RF) classifiers are an ensemble
learning method that combines multiple decision
trees to enhance classification accuracy and ro-
bustness (Breiman, 2001). Each tree is trained
on a different data subset using bootstrap aggre-
gating, reducing overfitting and improving gener-
alization. This approach is particularly effective
for classifying data with feature vectors,as it can
handle large datasets with many non-parametric
features (Genuer, Poggi, & Tuleau-Malot, 2010).
RF classifiers also evaluate feature importance by

quantifying each feature’s contribution to predic-
tions (Breiman, 2001; Scornet, Biau, & Vert, 2015;
Speiser, Miller, Tooze, & Ip, 2019). This allows for
an identification and prioritization of the most sig-
nificant features in their data, facilitating model
comparison and selection based on the relative
importance of different features for classification
tasks. RF models are thus suited for classifying
perceived numbers from EEG data and comparing
individual models by assessing features that drive
classification success.

RF models have successfully been applied to the
task of EEG classification (Dweiri, Jadallah, Shan-
naq, & Alasasleh, 2022; Kumar et al., 2018; Zhang,
Chen, & Li, 2018), demonstrating their suitability
for the present study. Specifically the work of Ku-
mar et al. (2018) highlights the ability of RF clas-
sifiers to distinguish between the imagined speech
of digits, characters, and objects, based on features
extracted from EEG recordings. Taking inspiration
from their research, we extracted 140 features from
the power spectral density of each signal. For each
frequency band and electrode, seven metrics were
computed which may reflect signal differences re-
lating to specific number perceptions. Specifically,
computed the (1) mean, (2) minimum, (3) maxi-
mum, (4) standard deviation, (5) root mean square,
(6) simple sum, and (7) sum of squares for the
power spectral density values of Delta (0.1− 4Hz),
Theta (4 − 7Hz), Alpha (8 − 12Hz), Beta (12 −
25Hz), and Gamma (25 − 40Hz) frequency bands
(Nayak & Anilkumar, 2023). In doing so, we defined
each signal as a feature vector of length 5·7·4 = 140
(nfrequency bands ·nmetrics ·nchannels). For the train-
ing of various RF models, we utilized the entirety of
recorded signals as well as subject-specific record-
ings for individual models, each of which were split
into training (80%) and evaluation sets (20%). A
comprehensive approach was intended to utilize
the robustness and feature selection capabilities of
RF classifiers to detect unique patterns in EEG
data which link to the perceived number stimuli.
We implemented the Random Forest classifier ar-
chitecture using the sklearn library (Pedregosa et
al., 2011) in Python. The final model specifications
were determined after conducting a hyperparam-
eter grid search across various parameters on an
initial set of data, including data split criterion,
the number of estimators, maximum depth, and
bootstrap options. The final classifier used the Gini
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impurity criterion to measure the quality of splits
at each node in the decision trees. The ensemble
consisted of 500 individual decision trees of unre-
stricted depth, while the minimum number of sam-
ples required to split was set to two. In order to
determine the best split at each node, the model
considered a random subset of features equal to the
square root of the total number of features. Such
randomness further helped in reducing overfitting
and improving generalization. Overall, the Random
Forest classifier was intended to effectively handle
numerous features, providing accurate and reliable
predictions. For the classification of the EEG sig-
nals, as well as an evaluation of the underlying
data in terms of informative features chosen by the
model, we fitted an RF classifier to both the full
set of data, and to subject-specific data sets. For
these specific models, we utilized only the data from
subjects who attended six experimental blocks, to
ensure a larger amount of training data. The clas-
sifier was trained on 80% of data, with the remain-
ing 20% serving for performance evaluation. The
data split was randomized and stratified on the tar-
get variable, accounting for potential imbalances.
Fitted models were evaluated on their final predic-
tion performance in terms of accuracy and f1 score.
A confusion matrix was generated, indicating the
specific predictions on the validation set. In addi-
tion, we assessed the feature importances of models
that achieved above-chance classification accuracy,
to explore potential similarities and differences in
the way such models make predictions.

3.1.2 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a class
of neural networks designed to handle sequential
data by maintaining a memory of previous inputs
in the sequence. Unlike feedforward neural net-
works, RNNs have loops in their architecture, al-
lowing information to persist and influence future
inputs, which is essential for processing time-series
data containing temporal dependencies (Sherstin-
sky, 2020). This method is thus especially use-
ful for the classification of data characterized by
sequential patterns, such as amplitude sequences
in EEG recordings (Al-Saegh, Dawwd, & Abdul-
Jabbar, 2021; Lipton, Berkowitz, & Elkan, 2015;
Saeidi et al., 2021). Furthermore, advanced vari-
ants like Long Short-Term Memory (LSTM) net-

works address the limitations of traditional RNNs
by handling long-range dependencies and mitigat-
ing issues like vanishing gradients (Hochreiter &
Schmidhuber, 1997). The ability to model tempo-
ral relationships makes RNNs suitable for classify-
ing EEG signals, where the sequence of amplitude
values over time can provide insights into the per-
ceived stimuli. For our purpose, RNN models are
thus well-suited to demonstrate the feasibility of
classifying perceived numbers based on amplitude
sequences from EEG data.

The successful application of RNNs for the task
of EEG classification has been demonstrated previ-
ously (Ma, Wang, Hu, Zhang, & Hua, 2021; Saeidi
et al., 2021, see Craik et al. (2019) for a review).
Specifically, Mahapatra and Bhuyan (2023) report
the use of a recurrent neural network for the classi-
fication of Muse-recorded EEG with high accuracy.
We took inspiration from their multilayer bidirec-
tional LSTM architecture, which was reported to
classify EEG recordings of the imagined speech of
single-digit numbers with an accuracy of 96.18%
(Mahapatra & Bhuyan, 2023). Following their ex-
ample, our model consisted of three layers of bidi-
rectional LSTM cells, with 440, 220, and 110 units
in layers 1, 2, and 3, respectively. The input to the
model was a sequence of 180 timesteps, with each
timestep represented by a feature vector of 4 ele-
ments containing the z-standardized measurements
per electrode at this time. The output layer was a
dense layer with six units, using softmax activation
to provide a confidence estimate for each classifi-
able number. The network was trained to minimize
categorical cross entropy loss using the Adam opti-
mizer with a learning rate of 0.001. The model and
training schedule were implemented using the ten-
sorflow package in python (TensorFlow Developers,
2024). Models were trained over ten epochs using
a batch size of 32, using the same data splitting
procedure as for the RF models.

Successfully classifying EEG signals to match
the stimuli presented during recording will sup-
port the notion of distinctive neural activity relat-
ing to number perception. In addition, such a find-
ing would complement the results of the Random
Forest-based approach outlined above, since the in-
formative value of a time or frequency-based repre-
sentation of the EEG signals may differ. Different
performances may thus inform future applications
of EEG-based number classification, both in terms

7



of data representation and choice of classifier archi-
tecture.

3.2 Results

3.2.1 Random Forest

Subject-Independent Effects We fitted one
Random Forest classifier to the entirety of recorded
data, testing the assumption that EEG signals
across individuals contain distinct patterns relating
to perceived numbers. However, an evaluation of
the model’s performance does not support this as-
sumption. The final RF classifier predicts perceived
numbers with an accuracy of 16.16% on the eval-
uation data, slightly less than the random guess-
ing accuracy of 16.67%. An additional 20-fold cross
validation run on subsets of the stratified train-
ing data produced an average accuracy of 16.65%
(SD = 0.35), indicating that the model indeed per-
forms at baseline accuracy. Investigating its feature
importances, the quantification of the contribution
each feature makes to the prediction accuracy of the
model, we observed average importances of 0.007
(SD = 0.001) across the set of 140 features. An
overview of all feature importances can be found
in Appendix 1∗. The low average, in conjunction
with low variability between importances points to
a lack of predictive value across all features. The
failure of the model to learn from its training data
is further exemplified by the pattern of predictions
shown in Figure 3.1 and the F1-scores per condition
listed in Table 3.1. The model appeared to predom-
inantly predict the three most common conditions,
here the numbers 1, 3, and 6, of which a few more
training examples existed. Overall, we can conclude
that no shared patterns exist in frequency spec-
trum information of the EEG signals, from which
an RF classification algorithm could predict per-
ceived numbers.

Subject-Dependent Effects Since the creation
of an overarching RF model trained on all recorded
EEG did not succeed, we investigated the possibil-
ity of subject-specific activation patterns by fitting
RF models to individual data from the six partic-
ipants attending six experimental blocks. The re-
sults parallel those of the overarching model. A low
average classification accuracy of 19.59% (SD =

∗See https://osf.io/z3ctp/ for all appendices

Figure 3.1: The confusion matrix of the Random
Forest classifier trained on all available data.

4.04) indicates a lack of distinct relations between
signal features and perceived numbers. Low F1-
scores, as well as confusion matrices further sup-
port the notion that the individual models per-
formed at baseline, essentially guessing the target
numbers. Additionally, overviews of the feature im-
portances show a lack of significantly informative
features, with no importance values exceeding 0.012
in any subject-specific classifier. The F1-scores on
prediction performance on single numbers for each
subject can be found in Table 3.1, while detailed
reports, feature importances, and confusion matri-
ces can be found in Appendix 1. While we can ob-
serve individual results exceeding baseline predic-
tion performance, for instance in subject 1, these
findings are likely chance effects. In summary, we
conclude that the training of subject-specific RF
classifiers using frequency features extracted from
EEG signals cannot identify distinct patterns relat-
ing to perceived numbers.

3.2.2 Recurrent Neural Network

Subject-Independent Effects To investigate
the subject-independent predictability of perceived
numbers based on the temporal sequence of
recorded EEG amplitudes, we trained a recurrent
neural network on the entirety of recorded data.
As with the RF models described above, its results
do not support the notion of shared activity pat-
terns that can be linked to perceived numbers. The
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Digit All Data Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
1 (F1-score) 0.188 0.383 0.111 0.279 0.148 0.118 0.083
2 (F1-score) 0.116 0.216 0.154 0.182 0.108 0.2 0.204
3 (F1-score) 0.174 0.158 0.218 0.171 0.303 0.148 0.255
4 (F1-score) 0.153 0.279 0.217 0.111 0.235 0.103 0.158
5 (F1-score) 0.145 0.158 0.276 0.195 0.207 0.146 0.085
6 (F1-score) 0.182 0.343 0 0.35 0.312 0.14 0.216
Accuracy 0.162 0.261 0.169 0.219 0.219 0.142 0.165

Table 3.1: Classification results of the RF model on subject-independent and subject-specific EEG.

classifier performed with a near-chance accuracy of
19%, while individual F1-scores fluctuated around
a mean of 0.181 (SD = 0.055), indicating low clas-
sification success for all conditions. Accuracy and
F1-scores can be found in Table 3.2. Examining the
specific predictions made by the model in a confu-
sion matrix (Figure 3.2) further suggests the ran-
dom guessing behaviour of the model, where no re-
lation between target and predicted classes can be
identified. In addition, the history of training and
validation loss show a very early divergence of losses
before the second epoch, after which validation loss
increases and training loss decreases as the model
starts to overfit. The loss history and a detailed
classification report can be found in Appendix 2. In
summary, these results support our previous find-
ings with the RF classifier, which point to the ab-
sence of distinct patterns of activation in recorded
data. It appears that, in addition to frequency fea-
tures, no subject-independent patterns of temporal
waveform can be identified.

Subject-Dependent Effects To investigate
subject-specific patterns between conditions in
EEG amplitude sequence, we fitted six additional
models to data of the participants attending six
experimental blocks. We thus extended the previ-
ous classification attempt using the RF approach
with the RNN method previously applied to the
complete data. Again, results do not support
the notion of distinct patterns in EEG differing
between experimental conditions. With an average
classification accuracy of 0.185 (SD = 0.027) none
of the models exhibited clear above-chance perfor-
mance, which is further supported by low F1-scores
and random confusion matrices. Furthermore, the
loss trajectories of all subject-specific models recre-
ated the development of the subject-independent

Figure 3.2: The confusion matrix of the RNN
classifier trained on all available data.

model, where each model almost immediately
begins to overfit. Both accuracy and F1-score
metrics can be found in Table 3.2, while confusion
matrices, detailed classification reports, and loss
histories can be found in Appendix 2. Again, we
conclude that, within subjects, an RNN could not
identify temporal patterns in EEG amplitude that
can reliably predict the number perceived.

4 Statistical Analysis

Since a classification of recorded signals proved
unsuccessful, we performed statistical analysis on
EEG waveforms to examine differences between ex-
perimental conditions for significance. The lack of
classification success suggested that the recorded
data does not contain distinct patterns relating to
perceived numbers, both in temporal sequences and
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Digit All Data Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
1 (F1-score) 0.178 0.222 0.108 0.125 0.214 0.164 0.227
2 (F1-score) 0.107 0.067 0.162 0.065 0.069 0.128 0.233
3 (F1-score) 0.236 0.14 0.163 0.333 0.148 0.163 0.178
4 (F1-score) 0.239 0.346 0.226 0.186 0.292 0.154 0.138
5 (F1-score) 0.109 0.195 0.207 0.133 0.188 0.163 0.261
6 (F1-score) 0.216 0.056 0.129 0.393 0 0.108 0.167
Accuracy 0.19 0.185 0.169 0.228 0.167 0.149 0.211

Table 3.2: Classification results of the RNN model on subject-independent and subject-specific
EEG.

frequency spectrum information. However, it is pos-
sible that the classification methods were unsuit-
able for this specific task or data. To investigate
this possibility, we can directly compare recorded
signals using functional data analysis (FDA). In the
sections below, we define the concept of FDA along
with its application for our purpose and describe
the results obtained.

4.1 Methods

Functional data analysis is a statistical tool suited
to handle the increasing abundance of sequential
data generated by advanced longitudinal measure-
ment capabilities. Consequently, FDA usually con-
siders many repeated measurements per subject, of-
ten represented as curves or continuous processes,
and focuses on covariance structure and smooth-
ing techniques (Mart́ınez-Camblor & Corral, 2011).
The main purpose of FDA is to provide methodolo-
gies for statistically describing and modeling these
sets of functions or curves (Górecki & Smaga, 2015;
Ramsay, 2005; Ramsay, Hooker, & Graves, 2009).
In our analysis, FDA treated the EEG data as ran-
dom functions, characterized by their mean and
variance functions. This approach allowed us to ex-
amine and quantify differences between groups of
data for statistical significance. These groups cor-
respond to signals recorded during different exper-
imental conditions, namely the perception of num-
bers one to six. Specifically, we applied functional
ANOVA and post-hoc t tests to examine the po-
tential differences between such groups. Previous
studies have already demonstrated the efficacy of
such methodology in EEG classification and anal-
yses (Thivierge, 2007; Tian, 2010; Yi et al., 2022),
leveraging the expression of EEG as a function over

time. As a result, we see FDA as a useful tool
for comparing groups of EEG signals, facilitating
a functional analysis of differences between condi-
tions.

4.1.1 Functional Analysis of Variance

Functional Analysis of Variance (fANOVA) is a
statistical method used to analyze significant dif-
ferences between groups of EEG waveforms. In
this analysis, we investigated six such groups cor-
responding to the six experimental conditions for
each channel to determine significant differences.
Importantly, each channel was analyzed separately
to capture localized patterns that may hold relevant
information. The EEG signals consisted of 180 mea-
surements taken over an interval of 0.7 seconds (0.2
seconds before and 0.5 seconds after the stimulus).
The data were represented as six groups of indepen-
dent random functions Xij(t), where i ∈ [1, 6] and
j = 1, . . . , ni, defined over the interval T = [1, 180].
We assumed these functions to be stochastic pro-
cesses with mean functions µi(t), t ∈ T and covari-
ance functions γ(s, t), s, t ∈ T (Górecki & Smaga,
2015). The functional ANOVA tested the null hy-
pothesis H0 : µ1(t) = µ2(t) = . . . = µ6(t), t ∈ T .,
implying that all groups of functions share the
same mean function over time. The alternative hy-
pothesis stated that the true mean functions are
not equal across all groups (Górecki & Smaga,
2015). Tests of the null hypothesis are based on the
pointwise F-test statistic (Ramsay, 2005), allowing
us to examine whether the signals recorded un-
der different conditions were significantly different
both across and within individuals. This approach
should provide more detailed insight into the EEG
data than classification models alone, highlight-
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ing significant functional differences corresponding
to varying conditions. We conducted a Functional
Analysis of Variance (fANOVA) both across and
within subjects, using data from all subjects. Tests
will be conducted using the fdANOVA package
(Górecki & Smaga, 2015) in R 4.4.1 (Team, 2024).
Specifically, we used the permutation F test devel-
oped by Górecki and Smaga (2015), which han-
dles functional data in the form of basis function
representations. Basis function representations pro-
duce an approximation of a given function through
a combination of simpler, predefined functions. In
this case, the basis function representation was cre-
ated using splines, which are piecewise polynomi-
als connected smoothly at so-called knots. For the
across-subjects analysis, we assumed that all sig-
nals originate from the same source and performed
one fANOVA for each channel. Per channel, we will
thus obtain an F statistic and a significance value,
with significance values adjusted for multiple com-
parisons using Bonferroni correction (Bonferroni,
1936). Significant F statistics indicate the existence
of differences between conditions across individu-
als. For the within-subjects analysis, we applied the
same procedure to each subject’s data. Significant
F statistics indicate the existence of significant dif-
ferences between conditions within a single subject.
Based on the RF and RNN classification results, we
expected to see no or few significant differences.

4.1.2 Functional Post-Hoc t Testing

In order to examine the results of the fANOVA
more closely, and to find specific pairs of signif-
icantly different conditions, a series of functional
post-hoc t tests were conducted. This approach
paralleled the fANOVA described above in the as-
sumptions it makes about the groups of functional
data and tested the null-hypothesis of equal mean
functions H0 : µ1(t) = µ2(t) (Ramsay, 2005; Ram-
say et al., 2009). The tests were conducted us-
ing the fda package (Ramsay, 2003) in R 4.4.1
(Team, 2024), and made use of its pointwise func-
tional permutation t test. Again, tests were ap-
plied both across and within subjects, to inves-
tigate shared and individual effects. Specifically,
we extracted every channel or subject-channel pair
that has been found to contain significant differ-
ences between conditions during the across-subjects
or within-subjects fANOVA, respectively. Signals

from each condition were then transformed into ba-
sis function representations. A 1000-permutation t
test was used to obtain a sequence of test statistics
over the signal interval, as well as significance lev-
els for the pointwise sequence and the overall test.
One test was applied to each of the 15 pairs of con-
ditions, and significance values were adjusted ac-
cordingly using Bonferroni correction (Bonferroni,
1936). Notably, the sequence of t statistics over the
signals allowed for a localization of significant ef-
fects, where the global significance threshold is ex-
ceeded by a pointwise test result. As a consequence,
the tests offer detailed insights into the temporal
differences in EEG waveform between conditions.
Assuming perfect predictability of perceived num-
bers based on EEG signals, we would have expected
to see significant differences between all combina-
tions of conditions (see Figure 4.2.1 for an illustra-
tion).

4.2 Results

4.2.1 Functional Analysis of Variance

Subject-Independent Effects Conducting a
fANOVA for each channel on all collected signals
independent of subjects, we found significant dif-
ferences in both tempo-parietal (TP) channels. As
shown in Table 4.1, we observed a greater variance
between conditional mean functions than within
conditions when considering the amplitude mea-
surements of the TP9 channel (F = 1.74, p < .001).
The same could be observed for recordings of the
TP10 channel (F = 2.47, p < .001). Both variance
ratios were interpreted as significant at α = 0.05.
For the anterior-frontal (AF) channels, we observed
p-values above this threshold after correcting for
multiple comparisons. As a result, we conclude that
significant differences between conditions exist be-
tween groups of EEG as recorded by TP electrodes,
but not in recordings of AF electrodes.

Subject-Dependent Effects An fANOVA con-
ducted on groups of signals recorded for each sub-
ject suggests the existence of significant differences
in some subject-channel pairs. Specifically, five out
of the 72 pairs of subjects and channels indicate the
existence of significant differences between experi-
mental conditions. A complete list of F-statistics
and significance values can be found in Appendix
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Channel F p p (corrected)
TP9 1.735 < .001 < .001
AF7 0.921 .752 3.008
AF8 1.202 .047 .188
TP10 2.472 < .001 < .001

Table 4.1: fANOVA results of subject-
independent data.

3. Interestingly, three of the subject-channel pairs
involved the TP10 channel with F = 2.24 (p <
.001), F = 1.38 (p = .008), and F = 1.31
(p = .044), with one involving the TP9 channel
(F = 2.04, p < .001). Recordings of the AF8 chan-
nel have been found to differ significantly in one
subject (F=1.215, p=0.032). Finally, no differences
have been found in recordings of the AF7 channel in
any of the subjects. These findings parallel those of
the subject-independent analysis, where conditions
varied most notably in the TP10 channel record-
ings, followed by the TP9 recordings, with the AF8
recordings missing the significance threshold after
correction. It can be concluded that differences be-
tween conditions can only be found in very few sub-
jects and channels. The majority of the data did
not allow a rejection of the null-hypothesis of equal
mean functions between groups of EEG amplitude
functions.

4.2.2 Functional Post-Hoc t Testing

Subject-Independent Effects Application of
functional post-hoc t tests on groups of signals
recorded from the TP channels indicate very low
distinguishability between pairs of conditions. Con-
sidering the TP9 and TP10 channels, which were
flagged as sources of significant differences in the
previous fANOVA, we compared 15 pairs of con-
ditions in each channel’s recordings across individ-
uals. Per channel, 4 pairs were found to differ sig-
nificantly after correcting for multiple comparisons,
which can be observed in the detailed results in Ap-
pendix 3. The results of these tests are illustrated
in Figure 4.2.2, where significantly different pairs of
conditions are represented as nodes connected by a
line. Thicker edges between nodes indicate signif-
icance in both TP9 and TP10, which is the case
only for pairs 3-4 and 3-6. For the pairs of condi-
tions that do differ, the functional t test also pro-

Figure 4.1: An example of pointwise t statis-
tics for the functional t test of the subject-
independent difference between numbers one
and five. Both stimuli were presented at time
0.

vided a temporal localization of the difference, as
can be seen in Figure 4.1. For the result of compar-
ing numbers one and five in the TP9 recordings, it
can be seen that a significant difference in wave-
form occurs between 300 and 400 ms after stimulus
presentation. Other significant pairs of conditions,
which can be seen in Appendix 3, exhibit a similar
result and suggest a generally informative interval
between 300 ms and 500 ms. Given additional sig-
nificant findings, such a temporal evaluation can be
helpful in identifying the time during which per-
ceived numbers can be distinguished. However, the
lack of more distinguishable pairs further points to
an absence of informative value in our EEG data,
with the individual findings lacking the consistent
distinguishability that would be needed to conclude
number-specific differences.

Subject-Dependent Effects A post-hoc,
within-subject analysis of differences between
pairs of conditions provided similar results as the
subject-independent analysis, but points to the
existence of subject-specific differences in data
quality. A functional t test was applied to test for
the difference between 15 pairs of conditions for
each of the four subject-channel pairs identified
in the previous fANOVA. For the TP9 channel, 4
out of 15 comparisons were found to be significant,
while 5 out of 45 comparisons of the TP10 channel
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were found to be significant. A detailed report of
test results can be found in Appendix 3. Averaged
results are illustrated in Figure 4.2.3, where thicker
edges between nodes indicate consistently signifi-
cant differences between conditions. Interestingly,
all the significant results were obtained from the
data of a single subject, with other subject’s
results proving insignificant after correction.
This indicates a subject-specific difference in the
informative value of data, while suggesting that
previous fANOVA results may have rested predom-
inantly on this subject’s recordings. The subject’s
individual results are illustrated in comparison
with cross-subject findings in Figure 4.2.4. An
illustrative t test result shown in Figure 4.3 demon-
strates a functional difference between conditions
starting at 300 ms after stimulus presentation. In
conjunction with other t test results of significant
pairs, this finding supports the previous conclusion
of a temporal localization of condition-specific
information at 300-400 ms. The total of nine out of
30 significant test results do not suggest consistent
distinguishability of this subject’s recordings,
however. The temporal exclusivity of a functional
difference between signals, paired with the sparse
occurrence across the four channels and 15 pairs
of conditions, leaves very little information for
classification models to work with. This sparsity of
information also explains the previous inability of
a subject-specific classifier to distinguish between
perceived numbers. However, our identification of
informative channels and time-periods may inform
future designs of classification models based on
EEG sequences.

In summary, the application of functional anal-
ysis methods offered more detailed insights into
recorded data than previous classification methods
did, identifying temporally and physically local-
ized differences in EEG waveform between condi-
tions. Despite the clear informative value of the TP
channels in the detection of significant differences
in both subject-independent and subject-specific
analysis, the general signal-to-noise ratio is low.
This is evidenced by an overall lack of significant
differences between conditions in the data of most
subjects, as well as the exclusion of the anterior-
frontal channels as sources of relevant information.
Nonetheless, the identification of subject-specific
variations in data quality point to the possibility
of a successful distinction between perceived num-

Figure 4.2: An illustration of functional t test
results, showing significant differences in EEG
waveform between pairs of conditions. Figure
(1) demonstrates perfect distinguishability be-
tween conditions; (2) shows the results of the
across-subject analysis, averaging the results
across both TP channels investigated; (3) shows
the results of the within-subject analysis, av-
eraging the results across all subject-channel
pairs; (4) shows the results of subject 1 alone,
averaging across both TP channels. Thicker
lines correspond to a larger proportion of sig-
nificant differences across subjects and/or chan-
nels.

Figure 4.3: An example of pointwise t statis-
tics for the functional t test of the difference
between numbers one and four in recordings of
subject 1. Both stimuli were presented at time
0.

bers based on EEG waveform. Through a collection
of additional data, and a greater focus on informa-
tive channels and temporally localized patterns, the
creation of a successful classifier appears feasible in
theory.
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5 Discussion

The present study aimed to validate and extend
the current research on the analysis of number per-
ception through an assessment of neural activity
measurements. Seeking to contribute to a small-
scale, technological realization of Mind Reading,
we investigated the possibility of classifying visu-
ally perceived numbers. To that extent, neural ac-
tivity was recorded using a 4-channel EEG device
and classified using two machine learning archi-
tectures. Additionally, we explored the extent to
which subject-independent classification is possible
by evaluating and comparing classifiers trained on
individual or overall data, and by statistically an-
alyzing EEG data recorded during the perception
of different numbers. Our findings aim to validate
existing knowledge of the shared functional local-
ization of number processing in the brain and to ex-
tend previous studies which succeeded in the task
of EEG data classification. Furthermore, the overall
endeavor of interpreting recordings of neural activ-
ity and the use of a consumer-grade EEG device
informs the design of practical applications such as
brain-computer interfaces.

The application of a Random Forest (RF) clas-
sifier, an ensemble method fitted to features ex-
tracted from frequency spectrum representations
of signals, was unsuccessful in classifying subject-
independent and subject-specific data. None of the
models achieved notable prediction performance
above baseline, either in terms of overall accu-
racy or condition-specific F1-scores. Additionally,
an analysis of feature importances indicating the
informative value of specific features for predic-
tion success suggests an overall lack of information
across all metrics and frequency bands assessed. As
a result, we cannot conclude a proof of principle for
the overall possibility of interpreting EEG signals
by using a Random Forest model on our data. We
thus fail to replicate the success of previous stud-
ies such as Kumar et al. (2018). This discrepancy
can be attributed to several factors, for instance
the lack of suitable data and the limited sensitiv-
ity of the EEG recording equipment. Notably, their
use of a 14-channel headset with higher sampling
rate and larger amounts of data from more partic-
ipants may have provided a necessary advantage,
especially since all their data was used for the train-
ing of a single overall model (Kumar et al., 2018).

As suggested by findings in cognitive neuroscience
(Dehaene et al., 2003; Marlair et al., 2022; Nieder,
2016), as well as our own statistical analysis, the
inclusion of parietal electrodes may be critical for
the detection of number-specific information. The
availability of such information marks an additional
difference between our work and that of Kumar et
al. (2018). Independent of such limitations, how-
ever, a frequency spectrum-based approach may
prove unsuitable for the classification of perceived
numbers. This is suggested by our statistical re-
sults, which show a temporal localization of differ-
ence effects between conditions. An approach eval-
uating a time-invariant frequency spectrum repre-
sentation of the entire signal may disregard such
effects, which would further explain the failure of
our RF models to learn. It can be concluded that
the use of RF models working with frequency do-
main features is to be discouraged when aiming to
interpret perceived numbers. Future research may
want to emphasize the use of time-dependent fea-
tures or a different classification architecture alto-
gether, while making sure to collect sufficient data,
ideally including parietal sources.

The application of a recurrent neural network
(RNN) model, interpreting the temporal sequence
of EEG amplitudes, was also unsuccessful in clas-
sifying subject-independent and subject-specific
data. Prediction performances in terms of accuracy
and F1-scores, as well as loss trajectories both sug-
gest a random-guessing behaviour due to a lack
of information in the data. These results align
with those of the RF model, indicating that nei-
ther frequency features nor temporal waveforms
of EEG signals contain patterns predictive of per-
ceived numbers. Our results contrast previous work
such as that of Mahapatra and Bhuyan (2023), who
succeeded in the use of a sequence-based classi-
fier for the task of EEG classification. Again, sev-
eral factors may have contributed to our inability
to replicate their findings. Firstly, their work uses
a very large dataset of a single subject, collected
over 2 years (Vivancos & Cuesta, 2022), which may
have provided more consistent learning data. More
importantly however, their success may have been
overstated, since a direct replication of their study
using the same methods and data, as well as the
present study using largely analogous methods, did
not yield comparable results. Unfortunately, the
authors did not provide their specific implementa-
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tion or a statement on this discrepancy as of yet.
In conjunction with the results of the RF classifi-
cation above, we conclude that a significant limi-
tation exists in the type and amount of data col-
lected, while the efficacy of our specific RNN imple-
mentation is questioned. Furthermore, the classifi-
cation results do not support the existence of dis-
tinct, classifiable patterns in the temporal domains
of EEG signals. While the effectiveness of RNN-
based classifiers should remain under investigation,
statistical results do support their suitability for
perceived number classification as a result of their
capability to detect temporal features in amplitude
sequences. Future research is thus encouraged to
continue exploring their usability, while aiming to
collect larger amounts of higher-dimensional data.

The application of functional data analysis meth-
ods, specifically the functional analysis of variance
(fANOVA) and functional t-tests, allowed for some
more nuanced insights into EEG waveforms and the
existence of shared features. The fANOVA iden-
tified significant differences between experimental
conditions in the tempo-parietal (TP) channels, but
not anterior-frontal (AF) channels. This finding is
in line with cognitive neuroscience research pin-
pointing the parietal lobes as most active during
number processing (Dehaene et al., 2003; Marlair
et al., 2022; Nieder, 2016). While results based on
the four electrode locations investigated here are
limited, a greater focus on more parietal recording
locations may prove useful for future applications of
perceived number classification. Further post-hoc
tests examining differences between pairs of condi-
tions identified very few sources in which significant
differences could be observed. In the across-subject
analysis, only four pairs of conditions could be dis-
tinguished from each other in either TP channel,
indicating a lack of number-specific waveform pat-
terns that would be needed for predictability. Sim-
ilarly, a subject-specific analysis identified a single
subject whose data contained significantly differ-
ent waveforms between conditions. This points to a
subject-specific difference in the informative value
of EEG data, but also suggests the potential for
better distinguishability between conditions when
more higher-quality recordings can be obtained.
Nonetheless, it emphasizes the sparsity of informa-
tion contained in the collected data and explains
the lack of success of our previous classification at-
tempts. Interestingly, the functional t-tests allowed

for a temporal analysis of amplitude sequences, and
consistently identified the interval of 300-400 ms
as the source of significant differences. While the
absolute number of differences itself is low, this
finding suggests a pattern which can inform sub-
sequent analyses and prediction attempts. If fu-
ture research manages to identify this time interval
as a consistent source of information, applications
of EEG classification may perform efficiently with
lower amounts of data. This will be especially use-
ful if the inclusion of additional electrodes proves
necessary, since higher-dimensional data can still
be reduced to maintain fast performance. Conse-
quently, optimizing data collection and focusing on
this informative time window could pave the way
for more successful EEG-based classification mod-
els.

Our first question of research - ‘Is it possible to
achieve above-chance number classification perfor-
mance through the analysis of EEG signals using
a Random Forest or Neural Network approach? ’
- must be concluded with a ‘No’ in light of the
present results, methodology, and data. Impor-
tantly, this null-result is limited to the context of
the present study, and is likely not indicative of
a general impossibility of its overall aim. As previ-
ously discussed, recent research has provided strong
support for the general feasibility of EEG-based
classification of perceived numbers. The inability
of our results to further validate this idea is likely
due to the study’s limitations already broached
above, but will be discussed in more detail below.
With respect to the second question of research -
‘To what extent does a similarity in neural num-
ber representation exist between users, as evaluated
through a comparison of EEG signals and classifi-
cation models? ’ - we can draw subject-independent
and subject-specific conclusions: Overall, we ob-
serve a lack of patterns, shared or otherwise, in
recorded EEG data. Across individuals, there ap-
pears to be a sparsity of significant differences
which can be detected between pairs of perceived
numbers. Nonetheless, it appears that electrodes
in the tempo-parietal regions are more sensitive
to such differences when they do occur, indepen-
dent of subject identity. Furthermore, our data sug-
gest a subject-specific variability in the informative
value of EEG recordings. This finding may result
from individual differences in neural activation in
response to perceived numbers, but also from differ-
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ences in behaviour or conditions during the experi-
ment. A differentiation of such sources of variability
in signal-to-noise ratio is critical for the further de-
velopment of subject-independent approaches, and
should be pursued in future research. Another re-
sult which is likely to generalize across individu-
als is the temporal localization of differences be-
tween EEG waveforms. Despite overall significant
differences being sparse, a somewhat shared tempo-
ral localization is still conceivable. Since the iden-
tification of visually presented numbers is likely
realized in a biologically-determined sequence of
early, low-level perceptual processes and later se-
mantic interpretation, there should be a common
window during which number-specific differences
are most salient. Similar to the P300 ERP compo-
nent, which appears during the perception of unex-
pected stimuli (Valakos et al., 2020; van Dinteren,
Arns, Jongsma, & Kessels, 2014), a number-specific
difference in EEG may be located at the intersec-
tion of visual perception and semantic processing.
In conclusion, despite the limitations in the present
study, the potential for EEG-based number classi-
fication remains promising, encouraging future ef-
forts to concentrate on enhancing data quality, un-
derstanding individual differences, and identifying
shared temporal patterns.

While we perceive the theoretical and method-
ological foundation of the present study as robust,
several factors must be considered as potential
causes for an inability to reliably classify recorded
EEG. Firstly, we may have underestimated the
amount of data required to effectively train clas-
sification models. Unexpected loss of data during
recording, in addition to further removal during
data cleaning likely resulted in insufficient informa-
tion for the classifiers to learn from. To address this,
further research should aim to collect extensive
data sets, potentially focusing on fewer subjects to
ensure depth over breadth. Secondly, the quality
of collected data may have been compromised by
several factors, such as interference during collec-
tion, and differences in participants’ approaches to
the experimental task. For instance, some might
internally visualize or vocalize numbers upon pre-
sentation, or use their hands to represent numbers
physically for easier recall during response trials.
Furthermore, recording on different days may have
contributed to variation between subject-specific
signals. However, we aimed to investigate realistic

applications of our approach for instance in BCI im-
plementations, which should be robust to such vari-
ability in recordings. It must therefore be concluded
that the presently used equipment and processing
methods do not suffice to adequately capture the
necessary information. Future studies should pri-
oritize high-quality recordings to establish a proof
of principle before investigating the robustness of
working classification methods to variable partici-
pant behaviour. Third, and finally, we see a major
limitation in the use of a four-channel recording de-
vice for our purpose. Specifically the Muse 2 model
used may have been inadequate, given that chan-
nel locations do not cover the parietal areas iden-
tified to activate during number processing. Addi-
tionally, a low sampling rate and connection issues
during recording further limit the device’s utility.
Future studies may want to employ more compre-
hensive recording systems with additional parietal
electrodes and higher sampling rate to capture de-
tailed and relevant neural activity.

Our findings suggest the current infeasibility of
performing perceived number classification using
practical applications such as brain-computer in-
terfaces (BCIs). Lightweight, consumer-grade head-
sets like the Muse2, while cost-effective and easy
to use, are likely insufficient for capturing the nec-
essary information for the task. Additionally, our
results indicate that subject-independent informa-
tion is unreliable for creating out-of-the-box BCI
tools that perform universally without additional
fine-tuning. Instead, substantial amounts of data
are needed to train reliable and accurate classi-
fiers, especially when creating subject-specific ap-
plications. However, considering these suggestions,
future research may progress towards practical ap-
plications of EEG classification. Specifically when
realizing perceived number identification, we deter-
mined that a focus on parietal electrodes and tem-
poral windows in waveform may provide additional
benefits. While current methods may face limita-
tions, the insights gained suggest key areas for im-
provement and future exploration. With targeted
efforts, the potential of reliable EEG-based num-
ber classification - and a small realization of actual
Mind Reading - remains within reach.
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Dautov, Ç. P., & Özerdem, M. S. (2018, May).
Wavelet transform and signal denoising us-
ing Wavelet method. In 2018 26th Sig-
nal Processing and Communications Applica-
tions Conference (SIU) (pp. 1–4). Retrieved
2024-06-29, from https://ieeexplore.ieee

.org/document/8404418 doi: 10.1109/SIU

.2018.8404418
Dehaene, S., Piazza, M., Pinel, P., & Cohen,

L. (2003, May). THREE PARIETAL
CIRCUITS FOR NUMBER PROCESS-
ING. Cognitive Neuropsychology , 20 (3-6),
487–506. Retrieved 2024-02-20, from
http://www.tandfonline.com/doi/

abs/10.1080/02643290244000239 doi:
10.1080/02643290244000239

Dweiri, Y., Jadallah, S., Shannaq, Y., & Alasasleh,
A. (2022, April). Sleep Stage Classifica-
tion Using Random Forest Method. In Pro-
ceedings of the 12th International Conference
on Biomedical Engineering and Technology
(pp. 84–88). Tokyo Japan: ACM. Retrieved
2024-04-17, from https://dl.acm.org/doi/

17

https://linkinghub.elsevier.com/retrieve/pii/S0957417422007576
https://linkinghub.elsevier.com/retrieve/pii/S0957417422007576
https://www.sciencedirect.com/science/article/pii/S1746809420303116
https://www.sciencedirect.com/science/article/pii/S1746809420303116
https://linkinghub.elsevier.com/retrieve/pii/S1053811910013017
https://linkinghub.elsevier.com/retrieve/pii/S1053811910013017
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-021-00820-8
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-021-00820-8
https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-021-00820-8
https://www.hindawi.com/journals/complexity/2019/4316548/
https://www.hindawi.com/journals/complexity/2019/4316548/
http://link.springer.com/10.1023/A:1010933404324
http://link.springer.com/10.1023/A:1010933404324
https://www.mdpi.com/1424-8220/23/14/6434
https://www.mdpi.com/1424-8220/23/14/6434
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1989.tb01916.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1989.tb01916.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1989.tb01916.x
https://dx.doi.org/10.1088/1741-2552/ab0ab5
https://dx.doi.org/10.1088/1741-2552/ab0ab5
https://ieeexplore.ieee.org/document/8404418
https://ieeexplore.ieee.org/document/8404418
http://www.tandfonline.com/doi/abs/10.1080/02643290244000239
http://www.tandfonline.com/doi/abs/10.1080/02643290244000239
https://dl.acm.org/doi/10.1145/3535694.3535709
https://dl.acm.org/doi/10.1145/3535694.3535709


10.1145/3535694.3535709 doi: 10.1145/
3535694.3535709

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C.
(2010, October). Variable selection using ran-
dom forests. Pattern Recognition Letters,
31 (14), 2225–2236. Retrieved 2024-03-18,
from https://linkinghub.elsevier.com/

retrieve/pii/S0167865510000954 doi: 10
.1016/j.patrec.2010.03.014
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