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Abstract

This study presents a few-shot embedding
learning approach to predict the behavior of
individual chess players, based on only 100
games. Traditional models have relied on ex-
tensive datasets, often requiring thousands of
games to achieve accurate move predictions. In
contrast, our method leverages a limited num-
ber of games to generate dense vector represen-
tations, or embeddings, that capture a player’s
unique style. We trained a neural network to
create these embeddings and used them to pre-
dict subsequent moves. Our results indicate
that the embedding model performs well across
various player sets and can accurately identify
players even at scale among a great player pop-
ulation, picking out players with 84% accuracy
from among 100k candidates. There are indi-
cations that including information on the clock
situation during the game improves the em-
bedding process, although our findings are in-
conclusive. Despite these limitations, our ap-
proach shows promise in making personalized
chess training more accessible and highlights
the potential for embedding learning in human-
centered AI applications. Future work will aim
to refine both the embedding and move predic-
tion models and explore its application in other
domains.

1 Introduction

Right now, machine learning models are sur-
passing human abilities in a growing number
of previously difficult domains, such as imper-

fect information games (Perolat et al., 2022),
visual tasks (Maslej et al., 2023), and common
sense question answering (Xu et al., 2022). For
humans to benefit and maybe also to survive
competition with them in the labour market,
finding beneficial ways of interaction and coop-
eration with these technologies is crucial (Or-
ganisation for Economic Co-operation and De-
velopment, 2023).

In chess, computer programs have long out-
performed human decision-making. In 1997,
Deep Blue became the first computer to beat
a human world chess champion in a match
(Campbell et al., 2002). The first match be-
tween a commercially available machine and
the human world champion was won in 2006 1.
Since then, progress on so-called chess engines
has continued and has made several big steps
forward. Humans no longer stand a chance.
Perhaps the most notable in recent history was
AlphaZero in 2017 (Silver et al., 2018), which
introduced neural networks into the world of
chess. Now, neural networks are dominating,
playing an important role in all leading engines.

While these advancements highlight the
dominance of AI in chess, they also leave a
gap: the integration of these technologies in
a way that directly complements human play-
ers. During this period of rapid progress, there
has been limited focus on designing models to
cooperate with or assist the learning process
of human chess players (McIlroy-Young et al.,
2020). McIlroy-Young et al. (2020) pioneered
the development of human-centered chess mod-
els that learn to predict the behavior of players

1https://en.chessbase.com/post/kramnik-vs-deep-
fritz-computer-wins-match-by-4-2, accessed: 04.07.2024
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in a certain skill range as per an Elo rating
system. The eventual aim is to build neural
networks that can help teach chess and make
game analyses.
To continue their work, they applied a meta-

learned fine-tuning strategy to adapt one of
their previously trained models to predict the
moves of individual players (McIlroy-Young et
al., 2020; Wang et al., 2020). This fine-tuning
approach required a player to have played 5,000
games in a Blitz time format to have any pos-
itive impact on move-matching accuracy. A
single Blitz game takes around 5 to 12 min-
utes, meaning a total time investment in the
ballpark of a full month of playing time and
up to 8 months for the greatest benefit for ac-
curacy. Even now that the online chess com-
munity is very large and has seen a great in-
crease in interest over the last years2, players
with this much activity are rare - about 1.3%
of all players3. Still, the availability of pub-
lic chess data has grown substantially over the
past years. Each month, one of the two largest
online chess websites, lichess.org, publishes
all rated games4 played on the platform 5. This
means that while there might still not be many
individuals with an amount of games at the or-
der of 5,000 Blitz games, there are more than
2 million players with at least 100 games. For
the scope of this work, criteria are applied that
limit the number of players to 105,110. These
criteria are specified in Section 6.1. One re-
quirement placed on the activity history is that
they need to have played 1000 games. This cri-
terion, along with others as the first/ last game
dates, can likely be relaxed in future work.
The specific goal of this project will be to fo-

cus on capturing the behavior of a chess player
in an embedding from a limited number of
games and subsequently predicting behavior in
novel situations. An embedding is a dense vec-
tor representation that captures the semantic
relationships within data, like words or images,

2https://www.chess.com/article/view/why-is-chess-
so-popular-right-now, accessed: 04.07.2024

3When looking at the time period 2018 to 2022 on
lichess.org.

4A rated game influences a player’s Elo rating on the
platform.

5https://database.lichess.org/, accessed: 04.07.2024

in a low-dimensional space (Wang et al., 2020;
Bengio et al., 2013). In this case, the data refers
to chess moves that, in a compressed form,
could serve as a foundation for future individ-
ualized training and analysis tools. Currently,
personalized chess training and lessons can only
be offered by human chess coaches. Personal-
ized models could make chess more accessible
to many people who cannot afford an expen-
sive coach. It should also be noted that the
potential impact on competitive chess is great,
as these methods could radically transform how
strategies are formed in preparation to a game
where the opponent is known (McIlroy-Young
et al., 2022).

The usage of embeddings for identifying play-
ers based on how they played will be explored
as well.

In summary, this thesis aims to investigate
the potential of embedding learning to generate
a representation of a chess player’s style, which
can 1) uniquely identfy them and 2) from which
their behavior can be predicted.

RQ How accurate can a few-shot embedding
learning approach be for identifying chess play-
ers at scale, and how does it compare to meta-
learning when predicting the moves of individ-
ual chess players?

2 Related Work

2.1 Few-Shot Learning

Few-shot learning encompasses the set of ma-
chine learning problems, where a task T has to
be learned with only a few labeled data points
x ∈ Dtrain (Wang et al., 2020).
One popular few-shot learning approach is

fine-tuning, where an existing set of parameters
θ0 and some, optional, new, additional parame-
ters θnew are adapted to T . For example, θnew
could be the classification layer at the end of a
BERT network with parameters θ0. The exist-
ing set of parameters θ0 has been optimized for
a task similar to T for which abundant data is
available. Thus, θ0 can be adapted to the new
task T quickly. Transfer learning takes this
a step further by assuming that θ0 is already
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optimal and only optimizing θnew is sufficient
(Wang et al., 2020).
Another approach to this is meta-learning,

where a meta-learner accumulates generic in-
formation over multiple different tasks, which
makes learning a new task easier, compensating
for the small size of Dtrain. The meta-learner
may refine some training parameters, such as
learning rate or restrict the model hypothesis
space H. Some approaches also learn the opti-
mizer, resulting in a model that can predict the
parameter updates based on the loss on Dtrain

(Wang et al., 2020).

Embedding Learning Embedding learning
is the technique to solve few-shot learning that
was chosen for this work. A model fe projects
samples x ∈ Rn into a lower-dimensional space
Z ⊆ Rm with n > m. In Z, semantically sim-
ilar samples are close by some distance met-
ric and semantically dissimilar samples are far
away from each other. Some popular metrics
include l1 and l2 distances or cosine similarity
(Wang et al., 2020). When projected into the
smaller feature space Z, the information in a
sample is more dense or less important features
have been filtered out. That is why classify-
ing samples in Z typically requires a less com-
plex model and therefore the model hypothesis
space H can be much smaller, saving a lot of
computation during the exploration of H. The
embedding model/ function fe : Rn 7→ Rm is
the crucial aspect of embedding learning and
represents the general knowledge that is gath-
ered from other similar tasks where training
data is abundant. In essence, this makes em-
bedding learning a variant of multitask learn-
ing, with the embedding model being shared
between tasks. After pre-training, the embed-
ding model can effectively function as an input
encoding module and as such be integrated into
another model.
In contrast to embedding layers for input en-

coding, embedding learning models are trained
to optimize a loss function specifically designed
to reach the goal of placing projected samples
close to semantically related and far from un-
related samples. To this end, multiple loss
functions can be used in embedding learn-

ing, such as various contrastive losses (Chopra
et al., 2005), the triplet loss (Weinberger et
al., 2005), or the generalized end-to-end loss
(GE2E) (Wan et al., 2020). For this work,
GE2E will be the method of choice, following
McIlroy-Young et al. (2021).

2.2 Stylometry

Stylometry is the study of finding a set of lin-
guistic features that uniquely identify an agent,
i.e. their style (Savoy, 2020). As Savoy (2020)
points out, the element of choice is important
in this case. Only when there are multiple op-
tions that can be seen as viable, can the be-
havior be characterizing of the deciding agent.
Take many such decisions, and a style emerges.

Some classic applications of stylometry
include plagiarism detection (Alsallal et al.,
2013), (forensic) handwriting recognition
(Khayyat & Elrefaei, 2020; Chaski et al.,
2013), or the authorship attribution of text
(Chaski et al., 2013) and code (Caliskan-Islam
et al., 2015). However, many other suitable
domains of application can be found, such
as face (Liu et al., 2017) and fingerprint
recognition (Elsadai et al., 2022) or speaker
verification (Zhang et al., 2016). Especially the
field of speaker verification has brought forth
many embedding learning approaches (Wan et
al., 2020; Li et al., 2017).

Behavioral Stylometry Analyzing
decision-making styles is what McIlroy-
Young et al. (2021) call behavioral stylometry.
It provides a framework to view identification
tasks in behavior-defined situations, such as
games, but also driving, cooking, etc. Thus,
it encompasses most areas of application
for reinforcement learning. This thesis will
be concerned with the domain of chess in
behavioral stylometry.

2.3 Chess Engines

The quest to design an approximately optimal
artificial chess player has been pursued since
there have been computers (Copeland, 2004).
Humans cannot hold their ground against the

3



results of this quest for a long time already.
Silver et al. (2018) at DeepMind created Alp-
haZero, which has been adapted into the open-
source Leela Chess Zero (Lc0) project6. Alp-
haZero and Lc0 use Monte Carlo Tree Search
(MCTS), with a residual neural network (He et
al., 2016) as the evaluation function at its heart.
In the Lc0 project, there have also been success-
ful experiments with a transformer architecture
7. Another long-running open source chess en-
gine project is Stockfish8. It has been running
for a long time and is the leading chess engine
as of July 20249. They use efficiently update-
able neural networks (NNUEs) (Klein, 2022a),
which can be run on modern CPUs and achieve
very high evaluation speeds that are beneficial
for an alpha-beta search, as many chess engines
take much of their playing strength from a fast
and deep search.

2.4 Human-like Chess Engines

Although perfect play in chess has been stud-
ied extensively in the past, reasonably well-
performing human-like chess models are rel-
atively new in the field of machine learning
(Klein, 2022b). In 2020, McIlroy-Young et al.
published their work on Maia, a neural network
architecture whose models would exhibit more
human-like play, being able to correctly predict
the human move of players with about 2000 Elo
with 53% accuracy. This accuracy metric is the
average success rate of correctly predicting the
human move in many randomly selected posi-
tions and is therefore measured independently
of the game stage or other factors. However,
in the works by McIlroy-Young et al., the first
10 positions and positions where players had
less than 30 seconds left on their clock are ex-
cluded. These restrictions do not apply to the
move-matching accuracies given in this paper,
in order to make them more representative of
performance in a full game simulation.

6https://lczero.org/, accessed: 04.07.2024
7https://lczero.org/blog/2023/01/2022

-progress/, accessed: 04.07.2024
8https://stockfishchess.org/, accessed:

04.07.2024
9https://computerchess.org.uk/ccrl/4040/

index.html, accessed: 04.07.2024

The Maia architecture is based on Lc0, thus us-
ing a ResNet, but no MCTS is applied. A com-
pounding work discovered that when combining
Maia with KL-regularized MCTS, the predic-
tion accuracy can be improved to 54.3% (Jacob
et al., 2022). Furthermore, McIlroy-Young et
al. developed a fine-tuning strategy that would
allow for even more accurate predictions of in-
dividual play. For players with 1,000 games in
the database, they achieved 49.7% accuracy,
worse than the 52.7% achieved by a general
Maia baseline model, trained on many players
in the same Elo range. With 5,000 games, they
would get to an average of 55.0% move match-
ing accuracy, and up to 58.0% for players with
a total of 40,000 games or more.

3 Methodology

3.1 Data

Lichess10 is the second-largest online chess plat-
form. It is an open source project that pub-
lishes all rated games that are played on the
platform in an open database11. Since 2021,
the website has a volume of around 100M
games played per month, and the database con-
tains approximately 5.3B games, as of Febru-
ary 2024. For this work, games in Blitz time
format from January 2018 to December 2022
will be considered. The Blitz time format de-
fines a time limit between 3 minutes initial time
per player with no increment and 5 minutes
initial time with 3 seconds increment. Note
that these PGN (portable game notation) files
contain clock information in the form of time-
stamps. This is relevant because these times-
tamps will be included in the input, as a pro-
posed improvement over the work of McIlroy-
Young et al. (2021). The players which are
considered have to have played at least 1,000
Blitz games in the period from 2018 to 2022,
a mean rating between 1,000 and 2,000 and a
low rating variance of at most 75. More cri-
teria are specified in the appendix. This leads
to a selection of 105,110 players, of which the
chronologically first 1,000 games are used each,

10lichess.org, accessed: 04.07.2024
11database.lichess.org, accessed: 04.07.2024
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resulting in > 105M games. The players were
split 80:20 into training and testing set.

To compile the players, games and subse-
quently the move encodings (as explained in
the following subsection) from the Lichess game
PGNs, an AMD EPYC 7763 CPU runs for 27h
with 120GB of RAM available.

3.2 Model

This section specifies the model architectures
used for the player embedding, i.e. stylometry,
and move prediction tasks. The corresponding
training objectives and procedures are laid out
in Section 3.3.

3.2.1 Embedding Model

The embedding models are designed to map
players from their games into a discriminating
embedding space. This is a stylometry problem
and is approached similarly to McIlroy-Young
et al. (2021). Four model architectures are eval-
uated. For only two of them, clock information
is included in the input features. The mod-
els for which it is excluded are referred to with
(no clock). Additionally, there is a small and
a larger version of the models with or without
those input features. These different sizes are
referred to as 512d or 768d, alluding to the final
size of the embedding that they produce.

Move Encoding A move is represented by
either 34 or 42 channels of 8x8 binary matri-
ces that contain all relevant information. The
42-channel representation has, in contrast to
McIlroy-Young et al. (2021), an extra 8 chan-
nels for clock information. Table 6.1 in the ap-
pendix explains the variables encoded there in
more detail. Furthermore, there is 26 chan-
nels for piece positions before and after the
move and 8 channels for game state information
(castling rights, the active player’s side, the 50-
move-count rule and filler border information).
Only the 26 channels for piece positions contain
sparse topological information and benefit from
a corresponding CNN network architecture, as
the information in all other channels is uniform.

Nonetheless, the move representations are pro-
cessed by a residual network (He et al., 2016),
following the work by Silver et al. (2018). The
CNN architecture is so important because of
the many local patterns that a chess board con-
tains. First, a convolutional block processes the
input through a convolutional layer, batch nor-
malization (BN) and a ReLU activation. Then,
a series of squeeze-and-excitation (SE) residual
blocks is applied. Each block consists of a con-
volutional block, an SE block and a residual
connection (He et al., 2016; Ioffe & Szegedy,
2015; Hu et al., 2018). Finally, the output
of the residual block stack is passed through
a convolutional layer, BN and ReLU and pro-
jected by a Multilayer Perceptron (MLP) into
a 320- or 768-dimensional move encoding (see
Figure 3.1). The dimensionality is greater for
the larger model.

Game-Level and Player-Level Aggrega-
tion To generate an encoding of a game, an
encoder neural network of the Transformer ar-
chitecture is used (Vaswani et al., 2017). The
input series consists of the move encodings pro-
jected into 1,024 dimensions, with an added
sine and cosine positional encoding. The trans-
former is 12 layers deep, with multi-head at-
tention with 8 heads and 64 dimensions per
head12 and an MLP-layer of width 2,048. The
final game embedding is obtained by averag-
ing the transformer outputs over the series of
moves, applying a layer normalization, linearly
projecting the result into 512 or 768 dimensions
(depending on model size) and finally comput-
ing the tanh. A visualization of the architecture
can be seen in Figure 3.2. The resulting player
vector is obtained by averaging multiple game
vectors. For the purpose of player identification
and move prediction, the player vector will be
the average of 100 game vectors.

3.2.2 Stylometry and Player Identifica-
tion Pipeline

The aggregated player vector can be used to
identify individuals from a pool of potential

12In other words, query, key and value vectors have
64 dimensions.
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Figure 3.1: The Move Encoding Architecture (512d model)

Figure 3.2: Overview of the Embedding Model Architecture. Figure was taken from
McIlroy-Young et al. (2021)

candidates, or candidate pool. Given the com-
puted player vectors of each player in the can-
didate pool, a new, unidentified player vector
can be assigned by finding the closest match as
per the cosine similarity metric. To evaluate
the model’s performance on this task, an eval-
uation pool of players is chosen from the can-
didate pool. 100 games are provided per player
in the candidate pool. A set of 100 additional
games is provided for each player in the evalu-
ation pool. The model performance will be the
average accuracy with which player vectors are
assigned to the correct identity.

3.2.3 Move Prediction Model

For move prediction, the network architecture
is adapted from Silver et al. (2017) (McIlroy-
Young et al., 2020) and applied to multiple
models with different (training) hyperparam-
eters. Refer to Table 6.2 in the appendix
for a full list of models and hyperparameters.

The input consists of the board positions in
the last 8 ”ply” 13 up to the current position,
i.e. 4 moves per side, including clock informa-
tion but not opp clock and opp clock percent,
making a total of #ply · (position + clock) +
meta information = 8 · (13 + 6) + 8 = 160
8x8 channels. To process this input, the same
residual network architecture as specified for
the embedding move encoding is applied, of
which the output is flattened into N dimen-
sions and merged with the player vector of M
dimensions (either 512d or 768d). The player
vector is generated from 100 games using the
stylometry pipeline described in Section 3.2.2.
The resulting, merged N+M -sized vector is fed
through the final 1- to 3-layered MLP network.
The output of the network is a move encoded
in a policy map of 1,858 dimensions (see Fig-
ure 3.3). This policy map matches its indices
to all theoretically possible moves and promo-

13A single action taken by one player is called a “ply.”
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tions. It is position-dependent to account for
different castling rights (Silver et al., 2018).

3.3 Training Procedure

As has been shown in previous work, train-
ing an encoding network on the stylometry
task alone can produce representations which
contain useful information on player behavior
(McIlroy-Young et al., 2021). To save on com-
putational budget, the embedding network is
therefore trained separately from the move pre-
diction network.

3.3.1 Embedding Training

The full embedding model is trained end-to-end
to minimize the GE2E loss with the SGD opti-
mizer with momentum (Sutskever et al., 2013),
starting with an initial learning rate of 3 · 10−3

and momentum of 0.9. A learning rate schedule
is set up that reduces the learning rate every
40k steps by a factor of 0.5. Each step com-
putes the GE2E similarity matrix for N = 15
players, and M = 30 games per player. During
training, the games are limited to a window of
32 moves length, for which the start point, i.e.
position, is chosen randomly every time. The
ith game of the jth player is embedded in a
vector eji. For each player k, an average em-
bedding, or centroid, ck can be computed. The
similarity matrix is defined as the scaled co-
sine similarities between each embedding vec-
tor eji and each centroid ck (1 ≤ j, k ≤ N , and
1 ≤ i ≤ M):

Sji,k = w · cos(eji, ck) + b, (3.1)

where w and b are learnable parameters with
w > 0. Based on this, a softmax loss is defined
on each embedding vector eji as

L(eji) = −Sji,j + log

N∑
k=1

expSji,k. (3.2)

The final GE2E loss LG is the sum of all losses
over the similarity matrix S (1 ≤ j ≤ N, 1 ≤
i ≤ M):

LG(S) =
∑
j,i

L(eji). (3.3)

Equation 3.3 (Wan et al., 2020) is the train-
ing objective by which the entire embedding
network is trained, including the move encod-
ing residual network and the game-level aggre-
gation transformer network (McIlroy-Young et
al., 2021).

The model is trained over a total of 120k
steps, which requires an A100 40GB GPU to
run for 70h. This time span is about equal to
the longest job run time permitted on the em-
ployed high performance cluster.

3.3.2 Prediction Training

The move prediction model is trained to min-
imize a cross entropy loss across the 1,858-
dimensional output, with different optimizers
being tested. The embedding Each training
step contains 4,096 positions + move. The
learning rate is initialized between 10−2 and
10−5 per model and is multiplied by a factor of
0.1 or 0.3 every 40k or 10k steps respectively.
For the full training parameters for each model,
see Table 6.3.

The models were trained on a V100 GPU for
10h to 70h. Training was stopped when reach-
ing the maximum job run time or manually if
the training curve showed no signs of improve-
ment for more than 10k steps.

4 Results

4.1 Stylometry Results

This section compares the accuracy of various
stylometry networks. The 512d model embeds
games into 512 dimensions, and its residual net-
work is comprised of 6 blocks with 64 filters
in the convolutional layers. The 768d model
is larger, embedding into 768 dimensions with
a residual network of 10 blocks depth and the
convolutional layers 80 filters wide.

As Table 4.1 shows, our models do not per-
form better on data from players that it was
specifically trained on, i.e. seen players, com-
pared to previously unseen ones. Furthermore,
there is a significant performance gap between
our models and the McIlroy-Young et al. model

7



Figure 3.3: The Prediction Architecture. Position embedding and player embedding are
passed through an MLP to arrive at the policy decision

With clock No clock
|E| Metric 512d 768d 512d 768d

|all| = 105,110 P@1 81.8% 84.0% 0.121% 0.219%
P@5 88.3% 88.6% 0.366% 0.669%

|seen| = 84,088 P@1 81.7% 83.9% 0.119% 0.227%
P@5 88.3% 88.6% 0.373% 0.666%

|unseen| = 21,022 P@1 81.8% 84.1% 0.122% 0.177%
P@5 88.3% 88.9% 0.332% 0.659%

Table 4.1: Stylometry performance (P@1 and P@5 accuracy) on selected Lichess players
with more than 1000 games. Reference and query sets consist of 100 games each. E
stands for the evaluation pool, i.e. which players had to be identified. The candidate pool
contained all 105,110 players. Seen players were part of the training set. Unseen players
were part of the testing set. Random identification accuracy on this task is 9.51 · 10−4%.

at a candidate pool size of 2844, as indicated in
Table 4.2.

4.1.1 Scaling the candidate pool

Figure 4.1 shows that the identification accu-
racy does not have an inverse relationship to
the cardinality of the candidate pool as one
would expect. This contrast is shown in Figure
4.1 (c), where the simple inverse 1/|C| shrinks
to 0 much quicker than even the curves for the
models without clock information. Though the
accuracy is decreasing with increasing |C|, this
decrease is very gradual. For a more precise
description of the relationship between identifi-
cation accuracy and |C|, future will have to ex-

pand the candidate pool or train models with
significantly smaller embedding sizes.

4.1.2 Analysis of Vector Embeddings

Clock Information The identification accu-
racy of the embedding models trained without
clock information is about 400x smaller than
that of those trained with clock information.
This does not meet expectations. To try and
understand this, Table 4.3 gives an idea of the
relevance of the different clock features to the
network’s output. Especially the move time
and opp clock features seem to have a large in-
fluence, reducing top-1 identification accuracy
by 16.3% and 63.3% respectively. Further re-

8



|E| |C| 768d (ours) 512d (ours) McIlroy-Young et al.
2844 2844 91.8% 91.6% 98.2%

Table 4.2: Stylometry performance (P@1) comparisons on a candidate pool of 2844 players.
For our 768d and 512d models, this is the average performance over 50 trials on a randomly
selected subset of all Lichess players with more than 1000 games in our dataset. The
McIlroy-Young et al. performance metric can be found in their paper (McIlroy-Young et
al., 2021).

Figure 4.1: The plots show the identifica-
tion accuracy for all players on an increasing
candidate pool size, averaged over 50 ran-
dom subsets per candidate pool size. The
evaluation pool was limited to 2000, thus
|E| = min(|C|, 2000). Note: For illustrative
purposes, there are differing scales on the y-
axis.

search will be necessary to determine the reason
for their large influence. Setting low time to 0
slightly increased top-5 identification accuracy
by 0.6%, which warrants further investigation
as well.

Elo Strength The player embedding vec-
tors generated by the 768d model could not
be shown to contain information from which
the player’s playing strength could be inferred.
To test this, two models were trained, a least
squares linear regression and a two-layer MLP,
with the MSE loss. Instead of uncovering any
patterns in the data, both learn to predict the
mean value of the training data.

Removed input metric top-1 top-5
none 84.0% 88.6%

low time 84.0% 89.4%
move time 67.7% 78.8%
opp clock 20.7% 31.5%

opp clock percent 81.3% 87.2%
post clock percent 82.0% 87.7%

Table 4.3: Top-1 and top-5 accuracy of 768d
model on all players with the input layer for
the corresponding aspect of the clock set to
0.

4.2 Move Prediction Results

For the personalized move prediction task, mul-
tiple models were trained. None of them per-
formed well, compared to the 52.7% of the gen-
eral Maia models developed by McIlroy-Young
et al.. One significant difference is, that our
models lack the second training task of eval-
uating how good a given position is (McIlroy-
Young et al., 2020). The two models evaluated
here are numbers 11 and 12 from Tables 6.2 and
6.3, referred to as AdamW and SGD respec-
tively. The highest testing accuracy that was
achieved is 2.6%. Figure 4.2 shows the pro-
gression of training and testing cross-entropy
loss and accuracy during training for models 12
(SGD) and 11 (AdamW). It can be observed
that the model in (a) and (c) converged very
quickly and did not continue learning past the
initial steps of training. By contrast, the model
in (b) and (d) shows gradual improvement dur-
ing training but does not reach a better testing
loss/ accuracy.
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Figure 4.2: (a) & (b): Cross-entropy loss
in relation to the number of training steps
taken, of the (a) SGD- and (b) AdamW-
optimized move prediction models. (c) &
(d): Accuracy in relation to the number of
training steps taken, of the (c) AdamW- and
(d) SGD-optimized move prediction models.

5 Discussion

In this study, we explored the potential of an
embedding learning approach to capture and
predict the behavior of individual chess play-
ers. By focusing on a few-shot learning method,
we aimed to address the limitations of previous
models that required extensive data for accu-
rate predictions. Our approach involved cre-
ating dense vector representations of players’
styles from a limited number of games, which
can be used for personalized training and anal-
ysis.

The results demonstrated that our model
could effectively generate embeddings that en-
capsulate individual playing styles, achieving
notable accuracy in identifying players from
a large pool. However, the accuracy of our
model did not show a significant improvement
for players it was trained on compared to un-
seen players, while at the same time gaining
performance from increasing model and embed-
ding size. This indicates that further scaling up
of the model and embedding size can result in
performance gains.

Additionally, our analysis revealed that the
applied identification method scales very well
with the size of the candidate pool, as the ac-
curacy decreases at a much slower rate than the
rate at which pool grows. The scaling is pre-
sumably limited by the dimensionality of the
embedding. While this was not specifically in-
vestigated in this study, research by McIlroy-
Young et al. (2021) indicates the same conclu-
sion. They found a model with 128 dimensions
to plateau much quicker than one with 512 di-
mensions.

Despite the promising results, the impact of
time information in the embeddings remains in-
conclusive, as the no clock models’ performance
should still be comparable to that of McIlroy-
Young et al. (2021), highlighting an area for
future research. Moreover, while the player em-
beddings could not be shown to capture infor-
mation related to playing strength, this aspect
warrants further investigation to enhance the
model’s utility. It is plausible that including
Elo data could significantly improve move pre-
diction accuracy, similar to training separate
models per Elo range in the work by McIlroy-
Young et al. (2021).

Overall, this work contributes to the ongo-
ing efforts in human-centered AI by proposing
a method that could make personalized chess
training more accessible. The findings under-
score the potential impact of embedding learn-
ing in creating AI systems that cooperate with
human players, paving the way for more intu-
itive and effective training tools in chess and
beyond. Future work will focus on refining the
model, incorporating additional features, and
exploring the broader applicability of embed-
ding learning in other domains of human be-
havior prediction.
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6 Appendix

6.1 Player Selection Criteria

The criteria to select a player to be included
in the full (training + testing) dataset are as
follows:

blitz_game_count > 1000

AND std_elo < 75

AND mean_elo < 2000

AND mean_elo > 1000

AND blitz_white_count / blitz_game_count

< .55

AND blitz_white_count / blitz_game_count

> 0.45

AND blitz_lost_count / blitz_game_count

< .6

AND blitz_lost_count / blitz_game_count

> 0.4

AND first_game before 2022.01.01

AND last_game after 2022.12.01

These criteria were also used by McIlroy-Young
et al. (2020) to select players for their fine-
tuning method. The limits on white/ black
rates and win rates were used to filter out play-
ers that manipulate their match-ups through
so-called colour cheating or the like. The games
that count towards these statistics are rated
games from the years 2018 to 2022.

6.2 Move Prediction Models

Variable name Description
pre_move_clock The player’s total time re-

maining on their clock af-
ter the previous move in sec-
onds.

post_move_clock The player’s total time re-
maining on their clock after
the current move in seconds.

pre_clock_percent The fraction of the player’s
time remaining on their clock
after the previous move, di-
vided by the total time given
to the player as per the
game’s time control.

post_clock_percent The fraction of the player’s
time remaining on their clock
after the current move, di-
vided by the total time given
to the player as per the
game’s time control.

opp_clock The opponent’s total time re-
maining on their clock after
their last move in seconds.

opp_clock_percent The fraction of the oppo-
nent’s time remaining on
their clock after their last
move, divided by the total
time given as per the game’s
time control.

move_time The time it took the player
to make the current move in
seconds.

low_time A binary variable indicating
if the player has less than 30
seconds remaining on their
clock after the current move.

Table 6.1: Clock Information Variables
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Model
N°

# Residual
blocks

# Convolu-
tional chan-
nels (residual
stack)

SE
ratio

# Convolu-
tional chan-
nels (layer
before fc)

# FC
layers

FC
width

FC ac-
tivation

# embedding
dimensions

1 12 128 8 128 5 4096 ReLU 512
2 12 128 8 128 5 4096 ReLU 768
3 12 128 8 128 5 4096 ReLU 512
4 12 128 8 128 5 4096 Swish 512
5 12 128 8 128 5 4096 Swish 512
6 12 128 8 128 5 4096 Tanh 512
7 8 64 8 80 3 3072 ReLU 768
8 6 64 8 64 2 3072 ReLU 512
9 6 64 8 64 3 3072 Swish 512
10 6 64 8 80 3 3072 Tanh 512
11 6 64 8 80 3 3072 Tanh 512
12 6 64 8 64 3 3072 ReLU 512

Table 6.2: Move prediction architectures

Model
N°

#
steps

Train
loss

Test
loss

Optimizer Momen-
tum

lr
(init)

Weight
decay

Scheduler
step size

Scheduler
gamma

# players
per batch

1 40k 7.48 7.51 SGD 0.9 0.01 0.0001 40k 0.1 40
2 27.5k 7.48 7.51 SGD 0.9 0.01 0.0001 40k 0.1 40
3 27.5k 7.51 7.51 AdamW 0.003 0.0001 40k 0.1 40
4 27.5k 7.51 7.51 Adam 0.0003 0 40k 0.1 40
5 47.5k 7.51 7.53 SGD 0.1 0.0003 0 10k 0.3 40
6 48k 7.49 7.51 SGD 0.9 0.1 0.0001 10k 0.3 40
7 54.5k 7.51 7.51 Adam 0.01 0 40k 0.1 32
8 72k 7.51 7.51 Adam 0.1 0 40k 0.1 32
9 92k 7.48 7.51 Adam 0.0001 0 40k 0.1 32
10 89k 7.52 7.52 AdamW 0.1 0.0001 40k 0.1 32
11 54.5k 7.5 7.5 AdamW 0.01 0.0001 10k 0.3 32
12 133.5k 7.48 7.51 SGD 0.1 0.001 0 40k 0.1 32

Table 6.3: Move prediction training parameters and results

15


	Introduction
	Related Work
	Few-Shot Learning
	Stylometry
	Chess Engines
	Human-like Chess Engines

	Methodology
	Data
	Model
	Embedding Model
	Stylometry and Player Identification Pipeline
	Move Prediction Model

	Training Procedure
	Embedding Training
	Prediction Training


	Results
	Stylometry Results
	Scaling the candidate pool
	Analysis of Vector Embeddings

	Move Prediction Results

	Discussion
	Appendix
	Player Selection Criteria
	Move Prediction Models


