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Abstract: Deep reinforcement learning methods require millions of samples to converge. Gathering
this many samples is expensive. Model-based algorithms claim to converge with less samples.
In this theses I test how online model-based algorithms work on environments with pixel-based
states. Furthermore, I test whether model-based algorithms can work on an environment where
the entire environment is not in frame. I compare the SimPLe algorithm (Kaiser, Babaeizadeh,
Milos, Osinski, Campbell, Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin, Sepassi,
Tucker, and Michalewski, 2020) and the Dreamer algorithm (Hafner, Lillicrap, Ba, and Norouzi,
2020a). Model-based algorithms converge to lower performance than when the agent is trained
directly with the environment, i.e. with a model-free method. The algorithms struggle to learn
the environment where the entire environment is not in frame. SimPLe and Dreamer can be more
sampling efficient when the environment is trained partially offline and the frames used for the
initial offline training are ignored.

1 Introduction

In this thesis I explore whether model-based rein-
forcement can outperform model-free approaches in
video games. I compare performance by looking at
convergence speed and sample efficiency, i.e. how
much time and how many interactions with the
environment were needed for convergence.

1.1 Motivation

A pilot first needs to complete several flights in
a simulation before they are allowed to fly a real
airplane. There are three reasons for that. Firstly,
practice flights are expensive. When the airplane
is in air, it consumes gas and wears out its engines.
Secondly, there is a risk of the airplane crashing.
This risk is especially high when the airplane is
in the hands of an untrained pilot. Thirdly, each
flight requires a lot of preparation time. The pilot
needs to travel to an airport and the plane needs
to be prepared. Therefore, the pilot trains in
a simulation, even if the practice is of lower quality.

The same trade-off happens in Reinforcement
learning. Model-free reinforcement learning algo-
rithms provide higher quality data. Model-based
reinforcement learning algorithms provide data
at a cheaper price and lower risk. The benefit of
model-based algorithms is clear for the field of
robotics (Polydoros and Nalpantidis, 2017). It is
intuitive that training a robot on a simulation

is much cheaper than training them in the real
world. Model-based approaches might also benefit
agents trained to interact in virtual environments.
More specifically, agents trained to play video
games. This is because video games cost significant
computational power to run. The interactions take
longer than they would if the agent interacted
with the transition model. Furthermore, we are
also limited in how many interactions we can run
in parallel. Interaction with the environment takes
more computational resources from GPU than an
interaction with the transition model (Kaiser et al.,
2020) (Hafner, Lillicrap, Norouzi, and Ba, 2020b).

Most model-free deep reinforcement learning al-
gorithms require millions of interactions to con-
verge. When we use a model-based reinforcement
learning algorithm, we can gather these interac-
tions from the transition model. Each interaction
will take less time and more can be computed in
parallel. This suggests that model-based reinforce-
ment learning methods can improve the conver-
gence speed of the agent. This benefit is even more
important for environments that have expensive
interactions, such as certain video games.

1.2 State of art

Atari environments have been a staple when it
comes to Reinforcement learning benchmarks.
Deep reinforcement claims to overcome human
performance in the Atari environments (Mnih,
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Kavukcuoglu, Silver, Graves, Antonoglou, Wier-
stra, and Riedmiller, 2013). This feat was
achieved with Deep Q-Networks (DQN). Deep
reinforcement learning algorithms have improved
since then. Recent algorithms show even greater
performance (Fan, 2021). Rainbow is an algorithm
developed by optimizing DQN and achieves state
of the art performance on a wide range of Atari
games (Hessel, Modayil, Van Hasselt, Schaul,
Ostrovski, Dabney, Horgan, Piot, Azar, and
Silver, 2018). Policy gradient algorithms have
also shown great performance. Many state of
art algorithms used as benchmarks follow the
actor-critic architecture (Fan, 2021). Proximal
policy optimization (PPO) follows said architec-
ture, and achieves comparable performance to
Rainbow on many atari games (Kaiser et al., 2020).

Model-based methods work together with the
model-free methods. Simulated Policy Learning
(SimPLe) and Dreamer provide a transition model,
i.e. a model that simulates how the environment
changes with the actions of the agent. The
transition model can be used by agent trained
using any of the model-free algorithms. The
main benefit of using SimPLe is sample efficiency
(Kaiser et al., 2020). Dreamer needs more samples
to converge (Hafner et al., 2020b). Dreamer
shows final performance comparable to model-free
methods (Hafner et al., 2020b).

Overall model-based algorithms do not achieve
the same final performance as the model free algo-
rithms in the Atari environments. The trend is that
the converged performance is lower and the sample
efficiency is higher (Fan, 2021). This is supported
by the results of Kaiser et al. (2020) and Hafner
et al. (2020b). They used the Atari environments
as benchmark. However, their results are usually
only cited and not replicated (Fan, 2021).

1.3 Research questions

The main hypothesis that I focus on in this
thesis is the following question. Are model-based
algorithms are more sampling efficient than
model-free algorithms? In certain model-based
approaches transition models are trained offline,
i.e. with randomly sampled data and before the
training of the agent. If the transition model of
model based algorithms have any part of training
happening offline, I count the data used for offline
training when I evaluate the sampling efficiency of
the algorithm.

Furthermore I want to observe whether model-
based algorithms are able to converge in dynamic
environments, i.e. environments where the

entire environment does not fit the frame. By
convergence I consider any significant improvement
to the performance of the agent. Even if the
performance does not reach the performance
of model-free algorithms, the fact that a single
transition model is able to train many model-free
agents for cheap makes it worthwhile to consider
using them to boost the initial training of the
agent. This leads to another hypothesis. Are
model-based reinforcement learning methods able
to converge in dynamic environments?

I also compare the Dreamer algorithm and
the SimPLe algorithm. These two algorithms
use different architecture for transition model. I
compare and analyze which of the two algorithm
performs better. I compare them based on sample
efficiency and converged performance. This
leads to another hypothesis. Does the Dreamer
algorithm outperform the SimPLe algorithms,
when they have similar architecture and the same
preprocessing?

Finally, I compare different modifications that
can be done to the model-based algorithms. I com-
pare the performance of model-based algorithms
when the agent also learns from the actual envi-
ronment and when the agent only learns from the
simulated environment. Learning from the real
environment on top of learning from the transition
model is called hybrid learning. Hybrid learning
has shown to boost the performance of model-based
algorithms, e.g. Dyna (Sutton and Barto, 2014). I
analyse what is the impact of predicting episode
termination by the transition model. In certain
environments, e.g. Breakout, the episode length
heavily correlates with the episode returns. In such
environments predicting the episode termination
should improve the convergence of the algorithm
(Hafner et al., 2020b). Therefore my final two hy-
pothesis are related to these modifications. Does
using the interactions from the environment to train
the agent improve the performnace of model-based
algorithms? Does predicting episode termination in
environments where the episode termination corre-
lates with episode returns improve the performance
of SimPLe?

1.4 Contribution

Firstly I modify the model-based algorithms.
These modifications aim to improve the perfor-
mance of SimPLe and Dreamer. First modification
is that I make the agent learn from the real
environment on top of learning from the simulated
environment. I apply these modification to both
approaches. Next I modify the SimPLe approach
to predict episode termination. These modification
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were not in the original algorithms and therefore
are unique contributions. I use the results to
answer whether model-based algorithms can
outperform model-free algorithms.

Secondly I compare the performance of the
SimPLe and the Dreamer algorithms. Hafner et al.
(2020b) compares the two algorithms. However,
the original implementations have many differences
that are not strictly related to the algorithms.
Dreamer and SimPLe have different preprocessing
(Fan, 2021). Dreamer and SimPLe have different
agents (Hafner et al., 2020a) (Kaiser et al., 2020).
Dreamer predicts episode terminations (Hafner
et al., 2020b), SimPLe does not predict episode
termination (Kaiser et al., 2020). I modify the
implementations to not have these differences. I
compare the results achieved both by the modified
SimPLe and Dreamer.

Thirdly I observe how SimPLe and Dreamer
behave in more complex environments. I use the
Mario environment. The Mario environment has a
frame that follows the agent. I.e. when the agent
moves to the right, the frame shifts to the right.
This shows a new part of the environment. A better
performing agent sees parts of the environment that
a worse performing agent does not see. This means
that the transition model must be trained online,
i.e. trained during the training of the agent. I
observe how the SimPLe and Dreamer algorithms
perform in the Mario environment. I use the results
to answer whether model-based algorithms can be
scaled to dynamic environments.

2 Theoretical background

In reinforcement learning problems, we have an
agent and an environment. The environment is
treated as Markov’s decision process (Sutton and
Barto, 2014). That means that the environment
consists of a state space S and action space A. The
environment provides the agent with information
it can perceive, i.e. the state s ∈ S. The agent
performs an action in the environment, i.e. a ∈ A.
The environment also provides feedback to the
actions taken by the agent in form of a reward.
The cumulative rewards agent receives before
reaching a terminal state is a return Gt. The agent
keeps track of these returns using a value function
V (s)

.
= E [Gt | St = s] or an action-value function

Q(s, a)
.
= E [Gt | St = s,At = a]. The agents goal

is to maximize the reward it receives. For the
agent to perform well, it needs to learn a policy
π(a | s). The policy determines what actions the
agent takes in which situations (Sutton and Barto,
2014). The agent can use different algorithms to
learn this policy. These algorithms primarily differ

in their convergence speed and computational cost.
The algorithms can be separated into model-free
algorithms and model-based algorithms (Sutton
and Barto, 2014). Model-free algorithms train
the agent with the samples from the environment,
model-based algorithms train the agent by
sampling a transition model.

2.1 Model-free

Model-free algorithms learn the policy with the
information provided by the environment. The
agent chooses actions and observes which actions
give better rewards. Then the agent will take
actions that give it better rewards. In the most
simple case this is done using tabular methods.
In tabular methods, the agent keeps track of
what happened when it took an action at a state.
Than, when it visits the same state, it will make a
decision based on its prior experiences in that state.

Tabular methods suffer when the state space
is large. To make algorithms more viable on
bigger state spaces, tabular methods evolved
into function approximations (Sutton and Barto,
2014). Function approximation algorithms learn
a function that helps agent make its decisions.
The learned function can be the value function
Vθ(s), the action-value function Qθ(s, a), or the
policy πθ(a | s). The agent can learn more then
a single function. Algorithms where the agent
learns a value function or an action-value function
alongside the policy are called Actor-Critic algo-
rithms (Sutton and Barto, 2014). The actor-critic
architecture splits the agent into the actor and the
critic. The critic is used to train the actor. The
actor interacts with the environment.

The traditional training loop of model-free rein-
forcement learning algorithms is as follows (Plaat,
Kosters, and Preuss, 2020): The environment

Algorithm 2.1 Model-free training loop

initialize environment env
initialize agent
while not converged do
D ← data from env
Use D to update agent

is initialized and wrapped in necessary wrappers.
The agent is initialized with the action-space of
the environment. The agent interacts with the
environment and stores trajectories in D. These
trajectories are used to update the agent.

3



Figure 2.1: Model-based online training loop

Figure 2.2: Hybrid online training loop

2.2 Model-based

Model-based algorithms learn the policy with the
information provided by a transition model of
the environment. The transition model of the
environment can be either known or learned (Plaat
et al., 2020). Known transition model can be used
directly. This is the case for environments with
known rules, e.g. chess, go, etc. Learned transition
model needs to be trained to approximate the
actual environment.
The agent can either use the transition model for
planning, or use it for imagination (Plaat et al.,
2020). In planning, the agent peeks into the future
before choosing an action. The agent simulates
several possible trajectories, and chooses an action
that leads to the result it desires. The advantage
of this approach is that the agent can better
function in environments with sparse rewards. In
imagination, the agent trains a policy function
from the model of the environment. The agent
interacts with the model of the environment the
same way it would interact with the actual envi-
ronment. The advantage of this approach is that
the agent can replace sampling the environment
with sampling the transition model. Sampling the
transition model is cheaper (Plaat et al., 2020).

Transition models are trained online or offline,
i.e. during the training of the agent or before the
training of the agent (Kaiser et al., 2020) (Hafner
et al., 2020a). Online learning follows the schematic
shown in figure 2.1.

In hybrid learning, the data used to train
the transition model is used to update agent as
well. This means that the agent is trained both

using a model-free and a model-based method.
This method provides for faster convergence
in model-based algorithms (Plaat et al., 2020).
Schematic of hybrid learning can be seen in figure
2.2.

The online training loop for model-based algo-
rithms is as follows: The environment is initialized

Algorithm 2.2 Model-based training loop

initialize environment env
initialize model of environment env′

initialize agent
while not converged do
D ← data from env
Use D to update env′

D′ ← data from env′

if hybrid learning then
Use D to update agent

Use D′ to update agent

and wrapped in necessary wrappers. The agent is
initialized with the action-space of the environment.
The model of the environment env′ is the transi-
tion model of the model-based algorithm. The
agent interacts with the environment and stores
trajectories in D. These trajectories are used to
update transition model env′. The agent interacts
with the transition model env′ to gather additional
trajectories. The trajectories from the simulated
environment are stored in D′. The agent is up-
dated using trajectories from the transition model
env′ stored in D′. If hybrid learning is turned on,
agent is also updated using trajectories from the
environment stored in D.

2.3 PPO

PPO follows an actor-critic architecture. The critic
approximates the value function. The actor approx-
imates the policy. The critic calculates the episode
returns and uses that to update the value function
estimate using mean squared error. The critic uses
the bootstrapped value function to calculate the
estimated advantage (Schulman, Moritz, Levine,
Jordan, and Abbeel, 2018), i.e. difference between
the action-value and the bootstrapped value func-
tion for state s. The actor uses the estimated
advantages to update the policy with the follow-
ing formula (Schulman, Wolski, Dhariwal, Radford,
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Figure 2.3: The autoencoder transition model
used in the SimPLe algorithm. This is a simpli-
fied drawing of the autoencoder presented by
Kaiser et al. (2020).

and Klimov, 2017).

L = min

(
πθ (a, s)

πθold (a, s)
A (s, a) , g (ϵ,A (s, a))

)
(2.1)

g(ϵ, A)

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0
(2.2)

θ ← θ + α∇θ
1

|D| τ
∑
τ

T∑
t=0

L(s, a, θ, θold)

(2.3)

The policy πθ (a, s) represents probability of tak-
ing action a in state s when following policy πθ.
The loss is the advantage multiplied by the ratio
of current probability of taking action a in state
s and old probability of taking action a in state
s. The loss is clipped using a clipping function
g (ϵ,A(s, a)). The resulting loss is the minimum of
the original loss and the clipped loss. The parame-
ters θ are updating using a gradient ascent on the
loss function.

2.4 SimPLe

Simulated policy learning (SimPLe) algorithm uses
an autoencoder as its transition model, which can
be seen in figure 2.3. The autoencoder consists of
an encoder and a decoder. The encoder consists of
convolutional layers. The encoder encodes a stack
of frames into latent space, i.e. lower dimensional
space. Actions taken by the agent are injected
into the latent. The decoder consists of transposed
convolutional layer. The decoder uses the latent of
the agent to create per pixel logits. These logits
are used to predict the next frame. Furthermore,
the pixel logits and the latent are combined to
predict the reward. The frames are predicted
autoregressively. Each predicted frame is put
on top of the input stack stack. This is used to
generate trajectories.

Lo =

∑
h,w

|H| |W|

255∑
p=0

s′h,w,p · log
(
ŝ′h,w,p

)
(2.4)

Lr =
∑
r

r · log (r̂) (2.5)

L = − (αLo + βLr) (2.6)

The observation loss is average per pixel cross-
entropy loss. The activation of the pixel p consists
of integers in the range [0, 255]. All the possible
rewards are integers. The reward loss is calculated
using using the cross-entrophy loss. The losses are
combined using convex combination with weights
α and β. The loss is multiplied with −1 to achieve
proper convergence.

The main drawback of SimPLe is that the
amount of information it can remember is limited
by the size of the input stack. Information beyond
the size of the input stack is forgotten. Therefore,
SimPLe cannot learn transitions when action af-
fects the environment in amount of frames beyond
the size of the stack. To predict stochastic envi-
ronments, the autoencoder needs to be modified.
Kaiser et al. (2020) proposes a stochastic SimPLe
for stochastic environments. In stochastic SimPLe
there is a variational autoencoder (Babaeizadeh,
Finn, Erhan, Campbell, and Levine, 2018) predict-
ing mean and varience of stochastic latent. The
lantent is then sampled and discretized into bits
(Kaiser and Bengio, 2018). The discrete latent is
injected into the latent of the deterministic au-
toencoder. This simulates stochastic transitions in
the environment. During inference, the variational
autoencoder is replaced by a LSSM that predicts
the discrete latent autoregressively (Kaiser et al.,
2020).
Main benefits of SimPLe is improved sampling ef-
ficiency. This is because the agent can converge
using samples from the transition model. The sam-
ples from the transition model are cheaper. The
transition model is able to compute multiple tra-
jectories in parallel. This allows multiple agents
to interact with the simulated environment. This
leads to faster convergence (Kaiser et al., 2020).

2.5 Dreamer

Dreamer uses a modular architecture. The
transition model consists of the transition module,
termination module and the reward module.
The transition module is a recurrent stochastic
state machine (RSSM) (Hafner, Lillicrap, Fischer,
Villegas, Ha, Lee, and Davidson, 2019). The
architecture of RSSM is shown in figure 2.4.
RSSM predicts the state autoregressively using
the action of the agent as input. The RSSM
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Encoder module o′ = fθ (ot)
Representational module pθ (st | st−1, at−1, o

′
t)

Transition module pθ (st | st−1, at−1)
Reward module pθ (rt | st)
Observation module pθ (ot | st)
Discount module pθ (γt | st)

Table 2.1: Separation of the dreamer modules
(inspired by Hafner et al. (2020a) and Hafner
et al. (2020b). Reward and discount modules
predict the output of the transition model. Rep-
resentational module, encoder module and ob-
servational module are used to train the tran-
sition model. The transition module allows for
recurrent rollouts.

Figure 2.4: Reccurent stochastic space machine
schematic (RSSM) (Hafner et al., 2019). The
deterministic state, i.e. carry of the GRU, is
denoted with ht. The stochastic state of the
SSM is denoted with st. Dashed line represents
sampling from a distribution predicted by the
input. The version of RSSM used in the transi-
tion module does not use observations ot.

improves on exisiting recurrent architectures by
adding stochastic transitions. RSSM consists of a
gated recurrent unit (GRU) and stochastic state
machine (SSM). GRU propagates the deterministic
representation of the state. The input to the
GRU is the stochastic state and the previous
deterministic state. SSM propagates the stochastic
representation of the state. SSM predicts the
mean and variance of a normal distribution. The
stochastic state is sampled from that normal
distribution. The input to the SSM is the previous
stochastic state and the current deterministic state.
The state used by the agent, the termination
module, and the reward module consists of the
stochastic state and the deterministic state.

The state that the agent uses is different than
the state from the real environment. To make
this difference more explicit, the state from the
environment is referred to as observation in the

context of dreamer. Because of this difference, the
agent unable to act in the real environment. To
allow the agent to act in the real environment,
Hafner et al. (2020a) uses a representation model.
Representation model consists of representation
module, encoder module, reward module and
termination module. Encoder module encodes
the observation from the environment. The
representation module is very similar to the tran-
sition module. The only difference is that in the
representation module, the encoded observation is
combined with the deterministic state to predict
the stochastic state. This results in more accurate
prediction of the stochastic state.

The representation model and the transition
model are trained using reconstruction. The idea
behind this is conceptually similar to an autoen-
coder, i.e. store enough information in the latent
space to reconstruct the image. The representation
model tries to reconstruct the image. To recon-
struct the image, the observation module is added
to the representation model. The transition model
shares the weights for the GRU with the represen-
tation model. The stochastic state predicted by the
transition model is trained using kl loss to match
the stochastic state of the representation model.
The reconstruction loss Hafner et al. (2020a) uses
is following:

Lrec = −
∑

t

|T |
(
Lt
o + Lt

r + Lt
γ + Lt

T

)
(2.7)

Lo =

∑
h,w

|H| |W|

255∑
p=0

s′h,w,p · log
(
ŝ′h,w,p

)
(2.8)

Lr =
∑
r

r · log (r̂) (2.9)

Lγ =
∑
γ

γ · log (γ̂) (2.10)

LT = D(pθ (st | st−1, at−1, ot) ∥ pθ (st | st−1, at−1))
(2.11)

The observation and reward loss are the same as
for the SimPLe algorithm. Termination loss is de-
noted by Lγ . The termination loss is calculated
using the cross-entropy loss. The transition loss LT

minimizes the divergence between representation
module and transition module. The reconstruc-
tion loss is a summation of all four losses. The
reconstruction loss is multiplied with −1 to achieve
proper convergence.
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Figure 3.1: Frame from the breakout environ-
ment (Towers et al., 2023)

S {s ∈ ZH×W×C , sh,w,c ∈ [0, 255]}
A {NOOP, FIRE, LEFT, RIGHT}
R {0, 1}

Table 3.1: The state space, action space and
possible rewards in the Breakout environment.
In the original environment H = {1, · · · , 210},
H = {1, · · · , 210}, C = {1, 2, 3}. This is adjusted
by the wrappers. The NOOP action means no
action and FIRE action starts the game.

3 Methods

3.1 Environment

3.1.1 Breakout

I use the gymnasium API (Towers et al., 2023) to
interface the Breakout and the Mario environments.
I take the breakout environment directly from
the Atari learning environment database. I
use the fifth version of the environment. In
the breakout environment the agent controls a
platform. The agent uses this platform to bounce
a ball in a pong-like fashion. The agent receives a
reward for destroying bricks with the ball. The
agent looses a life when the ball is not bounced
up by the platform and falls out of frame. The
episode terminates when the agent looses all 3 lives.

S {s ∈ ZH×W×C , sh,w,c ∈ [0, 255]}
A {RIGHT, RIGHT + JUMP}
R {r ∈ Z, r ∈ [−15, 15]}

Table 3.2: The state space, action space and
possible rewards in the Mario environment. The
state space and the action space is filtered by
wrappers. The filtered state and action space
is H = {1, · · · , 84}, H = {1, · · · , 84}, C = {1}. The
original action space is too long to include.

Figure 3.2: Frame from the Mario environment
(Kauten, 2018)

3.1.2 Mario

I take the Mario environment from Kauten (2018).
The environment provides rendering styles. I use
the rectangle rendering style. This style limits
the complexity of the environment by rendering
the image as mono rectangles. The agent controls
the Mario character within the environment. The
agent looses lives when it hits a hostile mob or falls
into a pit. The episode terminates when the agent
looses all lives. The agent is rewarded for moving
right. The agent is punished, i.e. receives negative
reward, when it looses a life. The calculation of
the reward follows the following rules.

• v: reward for moving right. v = x1−x0 where
x0 is the x-coordinate before taking action a
and x1 is the x-coordinate after taking action
a.

• c: punishment for slow progress c = c0 − c1
where c0 is the game clock before taking action
a and c1 is the game clock after taking action
a term c is always constant

• d: a penalty for dying upon death d = −15

r = c+ v + d. The reward is clipped into the range
(−15, 15) (Kauten, 2018). The reward is rounded
to nearest integer.

3.1.3 Wrappers

I use the wrappers provided by gymnasium API
provides to modify the data from the environments.
I scale the observations to 84 × 84. I change the
observations from rgb to grayscale. Both these
steps decrease the dimensions of the state space. I
set up a frame skip of 4 frames. This means that
each action is repeated for 4 frames and the reward
is the sum of the rewards during those 4 frames.
In the case of model-free algorithms and SimPLe, I
add a wrapper that stacks the last 4 frames. This
allows the transition model and the agent to use
the information from most recent frames to make
a more informed decision. E.g. the agent which
direction an object is moving based on where it was
the in last frame and where it is in the current frame.
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Figure 3.3: Model following the SimPLe archi-
tecture. The model implementation is closely re-
lated to the implementation proposed by Kaiser
et al. (2020)

I reshape the frame stack to have the 4 frames
in the channel dimension. Frame stacking is not
needed for Dreamer, because Dreamer is based on
a recurrent architecture. Therefore the information
from past frame is already in the transition model.
This makes the frame stack superfluous (Hafner
et al., 2020a).

3.2 Model architecture

3.2.1 SimPLe transition model

The architecture of the SimPLe transition model is
in figure 3.3. Each convolution and transposed con-
volution is preceded with and layer normalization.
The pixel embedding is a dense layer which has the
same weights for each pixel. The pixel embedding
weights the inputs from different frames. The pixel
embeddings allows the model to allocates different
weight to the data from different frames in the
frame stack.
The convolution, transposed convolution, and dense
layers are followed by ReLu activation function.
The exception to this are the add and mul dense
layers. The add layer does not have any activation
funciton and the mul layer has a softmax activa-
tion funciton. I add the skip connections to the
activation of the layer they are connected to. After
I add the skip connections, I normalize the layer.
I inject the action into the latent of the autoen-
coder. I encode the action with one hot encoding.
I match the dimensions of the encoded action to
the latent dimension using the add and mul layers.
The action is first multiplied with the latent and
then added to the latent.
When predicting trajectories using the transition
model, I turn off the dropout.

Figure 3.4: Model following the Dreamer ar-
chitecture (Hafner et al., 2020a). The architec-
ture uses an encoder and decoder inspired from
Kaiser et al. (2020)

3.2.2 Dreamer transition model

The architecture of the Dreamer transition model
and representation model is in figure 3.4. Each con-
volution and transposed convolution is preceded
with layer normalization. The layer normalization
for the first convolution layer is only possible be-
cause the pixel is embedded. Otherwise, for single
feature pixels the layer normalization results in
activation of 0. I do not use dropout, because the
latent space of Dreamer is stochastic. Therefore
adding additional stochasticity by using dropout
layers is not necessary.
The convolution, transposed convolution, and dense
layers are followed by ReLu activation function.
The exception are the output layers, and the lay-
ers that predicts the mean and standard devia-
tion. The layer predicting the mean has no ac-
tivation function. The layer that predicts the
standard deviation has a softplus activation func-
tion with minimum lower bound of δmin. The
stochastic state is sampled using reparameteriza-
tion trick (Kingma and Welling, 2013). I.e. using
sstochastic = µθ + σθ · N (0, I).
The dreamer transition model can be separated
into different modules. This separation into differ-
ent modules achieves two benefits. First benefit is
that certain modules can be turned off when not
needed. E.g. the observation module is only used
during training. Second benefit is that we can make
modules without a recurrent unit to work in paral-
lel. This leads to a more efficient training. I first
encode the observations with the encoder module
in parallel. Then I predict the states sequentially
using the representation module. Finally I predict
the discount, termination and the reconstructed
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observation in parallel. This limits the drawbacks
of the recurrent architecture.
The transition module shares most layers and
weights with the representation module. There-
fore these two modules should not be thought of
as separate. The transition module is a part of the
representation module. The representation module
wraps the environment. The agent interacts with
the representation module when gathering samples
from the real environment. Then when agent is
learning from the transition model, it interacts with
the transition module.
Initial stochastic and deterministic state is a vector
with zeros. The stochastic and the deterministic
state is reset when the environment terminates.
This means that data after termination does not
affect the data before termination. Empirically this
results in more stable learning. When the agent
interacts with the transition model, predicted ter-
mination plays similar role. When the transition
model predicts termination, the reported state is
not affected. However it is not fed autoregressively
into the transition model. Instead, I feed the zero
state into the model.

3.3 Transition model outputs

Image is represented using one integer per pixel.
The integer has values from 0 to 255. The inte-
ger represents the grayscale value of the pixels.
I predict the pixel activation using softmax dis-
tribution. I use probability distribution because
there is no correlation for similar colours inside
the environment for Mario and Breakout. Possi-
ble rewards from the environment are represented
using a categorical distribution. Each reward has
an associated integer. I represent termination as a
categorical distribution with 2 possible categories,
i.e. True and False. I use a categorical softmax for
pixel activation, reward and termination. I predict
the image, reward and termination by taking the
most probable option. The loss function is the
cross-entropy loss function. The cross-entropy loss
compares categorical distribution predicted by the
model with the actual result. The resulting loss
is 0 when the predicted probability of the actual
category is 100%. The loss for each of the outputs
is clipped using L = max(C,L). This means that
we only require the model to predict the actual
category with 1− C probability.

3.4 Training of the transition model

I train the transition model using a random agent
for the first Ninit updates. Then the transition
model is trained with the data gathered by the
model-free agent. I use all gathered data when I
update the model. The data is passed in batches
to limit the memory requirements on the GPU.

In the case of SimPLe, the sequence in which the
data was gathered is not important. Therefore the
data is randomly shuffled. In the case of Dreamer,
the sequence in which the data was gathered is
important. Therefore the data is not shuffled and
training batches consist of the data from the same
environment. Each update of the model consists
of Nepoch epochs.

3.5 Training of the PPO agent

I use combined actor critic loss. I add the entropy
of the agent policy as an additional loss term with
weight wentrophy. These two modifications modify
the equation 2.3.

Lc =
(
V̂ (st)−Gt

)2

(3.1)

Le = −
∑
a

πθ(a | s) · log (πθ (a | s)) (3.2)

L = La + Lc + wentropy · Le (3.3)

Using a shared loss for the actor critic allows me
to use a combined architecture for the actor critic.
Combined architecture requires less updates be-
cause of the shared parameters. The entropy loss
helps the agent explore by dissuading policy that is
too deterministic (Shen, 2024). The data is passed
in batches to limit the memory requirements on
the GPU. Each update of the model contains of
Nepoch epochs. The data is passed to the network
in random order. This decreases the risk of getting
stuck in a local minimum.

3.6 Experiment details

I train the algorithms for 12 hours or for a max-
imum of 4000 updates. Update happens every
400 frames. If the agent reaches termination in
any environment within the 400 episodes, I re-
set the environment and set the discount factor
at the terminating state to 0. I do this so the
data gathered after termination does not affect
value of states before the termination. I train The
transition model either fully online or partially on-
line. The algorithm is trained fully online when
Ninit = 0. When the agent interacts with the tran-
sition model, I update the agent each 50 frames. I
perform Nmodelupdates updates using the transition
model for each update using the environment. Up-
dates using the transition model are not counted
in the 4000 update limit.

3.7 Materials

I use Habrok cluster to train the agent. The agent
is trained on the GPU. The agent is trained on
a node with 4 NVIDIA A100 cards with 40GB
memory each. The program is compiled on to the
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parameter description value
wentrophy Weight of the entropy co-

efficient in PPO
0.01

Ninit Number of initial updates
of the transition model

0, 20,
100

Nepoch Number of training epochs 4
C Lower bound of the cross-

entropy loss
0.03

δmin Minimum standard devia-
tion of Dreamer Gaussian
distributions.

0.1

optimizer Optimizer used to update
the parameter

ADAM

Table 3.3: Hyperparameter table. In these table
are all the hyperparameters mentioned in the
method section of these thesis.

GPU using accelerated linear algebra open source
software (XLA).

To train the models I use the jax library (Brad-
bury, Frostig, Hawkins, Johnson, Leary, Maclaurin,
Necula, Paszke, VanderPlas, Wanderman-Milne,
and Zhang, 2018). The jax library achieves optimal
GPU usage with its just in time compilation. Jax
uses pure functions. I use tools for automatic
differentiation and vectorization. To build the
models I use the flax library (Heek, Levskaya,
Oliver, Ritter, Rondepierre, Steiner, and van Zee,
2023). I use the implementations for commonly
used layers and modules, e.g. convolution layer,
GRU, etc. I use reinforcement learning functions
from the jax ecosystem to implement commonly
used functions, e.g. one hot encoding of actions.
I use tools from the jax ecosystem to track the
data and save the models. Using tools instead of
manually coding everything results in more concise
and readable code. I chose these tools because
they are integrated with the jax library.

4 Results

I trained the three different algorithms shown in
figure 4.1 for different number of frames. This
is because the algorithms took different times to
update. The dreamer takes roughly 2 times as long
to update as SimPLe. SimPLe takes roughly 3
times as long to update than the model-free PPO.
The converged performance is significantly lower
in the model based version. The model-based
algorithms stop improving and start to stagnate at
much lower episode return. In Breakout, SimPLe
stops improving at around 5 destroyed bricks per
episode. Dreamer stops improving at 3 destroyed
bricks per episode. The model-free PPO is able

200

250

300

350

400

E
p

is
o

d
e

 l
e

n
g

th

Episode information upon termination in Breakout

2.5

5.0

7.5

10.0

12.5

0M 1M 2M 3M

Frames

E
p

is
o

d
e

 r
e

tu
rn

s

algorithm

dreamer

ppo

simple

Figure 4.1: Episode length and episode returns
for model-based algorithms in breakout com-
pared to the model-free agent in Breakout. The
algorithms do not reach the same number of
frames in the 12 hour training time. The results
are smoothed using Generalised Additive Model
(GAM). The smoothing makes it seem that the
models start at different performance, despite
starting at the same performance.

to reach 13 destroyed bricks per episode. Both
Dreamer and Simple collapse during the training,
i.e. the performance starts decreasing. The episode
length is highly correlated with the episode return
in the Breakout environment (0.77 for model-free
PPO, 0.88 for Dreamer, 0.8 for simple). This
suggests that predicting episode termination is
important.

In Mario, SimPLe and Dreamer end up with
a suboptimal deterministic policy. This happens
when the agent trains on a poorly trained
transition model. This can be solved by training
the transition model partially offline. When the
transition model of SimPLe is trained partially
offline, the policy remains stochastic. However,
even with a transition model trained partially
offline, the algorithm does not converge. The
reward loss and the observation loss remain high.
This means that the transition model is not able
to properly learn the higher dimensional reward
distribution and the changing observation. The
agent does not outperform the model-free PPO in
any of the model-based versions.
The episode length is highly correlated with the
episode return in the Mario environment for
model-free PPO and Dreamer (0.83 for model-free
PPO, 0.71 for Dreamer). However, it is negatively
correlated for partially online SimPLe (-0.096).
This difference is explained by the fact that the
agent can get stuck when moving right. Getting
stuck increases episode length but does not provide
positive rewards. I still believe the correlation
is high enough to justify predicting episode
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Figure 4.2: Episode length and episode returns
for model-based algorithms compared to the
model-free agent in Mario. The algorithms do
not reach the same number of frames in the 12
hour training time
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Figure 4.3: Results for partially online versions
of Dreamer and Simple shifted to the moment
when the learning went from offline to online.

termination.

Both Dreamer and SimPLe can be modified
to partially online learning. This means that
the model is first trained offline before we start
training the agent. If we ignore the frames trained
offline, the model-based methods have sample
efficiency comparable or better than the sample
efficiency of the model-free PPO for the first
100 000 frames of updating the agent. Dreamer
outperforms model-free version of PPO after
50 000 frames. SimPLe outperforms model-free
version of PPO after 100 000 frames. These results
assume pretrained transition model for both
SimPLe and Dreamer. These results show that
the offline learned transition model can be used
to accelerate learning. These results can not be
used to support the hypothesis that model-based
methods are more sample efficient than model-free
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Figure 4.4: The episodic return of SimPLe with
different design decisions. The base algorithm
predicts episode termination and has dropout
layers

algorithm time [ms] parallel agents
Mario env 20 8

Breakout env 1.4 8
SimPLe env’ 0.72 16
Dreamer env’ 0.028 100

Table 4.1: Time needed to interact with the tran-
sition models compared with the time needed to
interact with the environment. The interaction
is done with different number of parallel agents.

methods for online learning.

SimPLe is stable across wide range of hyperpa-
rameters Predicting episode termination seems to
have no effect on the algorithm in the long term.
In the short term predicting episode termination
makes the algorithm converge more slowly. Re-
moving the dropout layer does not seem to have a
significant effect on the algorithm. Using hybrid
learning speeds up the convergence. Moreover,
hybrid learning allows the agent converge to higher
episode return. Training the world model partially
online results in slightly faster convergence speed
and better performance.

The inference time for SimPLe is higher than

Algorithm env interactions env’ interactions
PPO 100 000 0

SimPLe 100 000 100 000
Dreamer 100 000 625 000

Table 4.2: Number of interactions done with the
transition model compared with the number of
interactions with the environment. Different ar-
chitectures allow for different number of agents
to be trained in parallel.
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inference time for Dreamer as can be seen in table
4.1. SimPLe is able to generate 16 frames in paral-
lel in 0.72 milliseconds. Dreamer is able to generate
100 frames in parallel in 0.028 milliseconds. Both
are able to generate the frames much faster than
the original environment. SimPLe and Dreamer
are able to predict more frames in parallel. The
amount of frames that are predicted in parallel, i.e.
the number of parallel agents, are limited by the
GPU. These statistics confirms the assumption that
sampling the transition model is computationally
cheaper and faster. The model-based algorithms
have different number of agents trained in paral-
lel. This means that number of samples from the
real environment mean different number of samples
from the transition model as can be seen in table
4.2. This explains the differences in sample effi-
ciency between dreamer and simple that is present
in figure 4.3

5 Conclusions

The model-based methods converge to a lower
episode return than the model-free agent. The
performance is bounded by the quality of the tran-
sition model. The significantly worse performance
and lower sample efficiency of model-based algo-
rithms does not meet the expectations from original
research (Hafner et al., 2020b) (Kaiser et al., 2020).

From my experience, the transition model
is sensitive to hyperparameter changes. Small
change in the architecture causes the model to
converge to higher performance. This is because
the transition model propagates any error in
predicting the next state to future predictions.
That makes predicting the state after an erroneous
state also erroneous. Furthermore, any wrong
prediction about the reward or termination
impact the stability of PPO. This results in more
unstable learning than the model-free PPO. The
differences in my implementation of SimPLe and
implementation of SimPLe by Kaiser et al. (2020)
explain the difference in performance between my
reproduction, and the performance reported by
Kaiser et al. (2020).

The Dreamer often stops improving, and the
episode returns achieved by the agent start
decreasing. This should not be the case in the
implementation by Hafner et al. (2020b). There
are many potential reasons for this. Firstly, Hafner
et al. (2020b) do not share the architecture of
their model. Therefore, the architecture I use is
different. Secondly, the stochastic architecture of
dreamer might make the transition model more
unreliable. Thirdly, I do not take the precautions
against instability that Hafner et al. (2020a) take.

Hafner et al. (2020a) use a random agent to
gather initial samples for the transition model.
When Hafner et al. (2020a) update the transition
model, Hafner et al. (2020a) store the data used
to update the model instead of discarding them.
Then during the following update, they use all
stored data instead of just the most recent data.
I did not do this due to memory constraints. I
use the differences between my implementation
to explain the difference in performance between
my reproduction and the performance reported by
Hafner et al. (2020b).

According to my results sample efficiency of
model-based algorithms is worse than the sample
efficiency of model free algorithms. However
this can be circumvented when the transition
model is trained offline. In that case the agent
can be trained on the cheaper samples from the
transition model. Despite the convergence to
low episode returns, model-based reinforcement
learning with offline learned transition model can
be used to boost initial learning. This might be
especially useful when we need to train multiple
model-free agents in an environment. In such cases
the samples saved by training the model of the
environment offset the frames needed to train the
model of the environment. This results in better
sampling efficiency even when when I include the
samples from offline learning of the transition
model.

Model-based reinforcement learning methods
struggle to converge in a dynamic environment.
Because big part of the frame changes with each
action, the model needs more updates to learn the
transition. I conclude this based on the image loss,
which decreases much slower than when the entire
environment is in the frame. Higher image loss also
causes all the other losses to converge more slowly.
Therefore the transition model will need many
more updates and possibly different architecture
to make model-based algorithms converge.

Hybrid learning allows the agent to perform bet-
ter than if it was only trained with the model
of the environment. Furthermore hybrid learning
improves sampling efficiency of model-based algo-
rithms, because the agent does more updates and
converges faster with the same amount of sam-
ples. Predicting episode termination for Breakout
and Mario seems logical, because episode length is
highly correlated with episode returns. However,
the results do not show significant benefit in doing
so.
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5.1 Future research

The agent was unable to perform in the Mario
environment. This is due to the higher dimensional
reward distribution and the changing observation.
Both these problems need to be tackled separately.
Model-based algorithms need to be observed on
more environments. These environments need to
be chosen specifically so only one of these problems
is present in them. Therefore in these different
environments, one of the two problems that were
present in the Mario environment can be tackled
at a time.

The same agent converged to lower performance
when trained from the world model. Therefore
main bottleneck for model based reinforcement
learning is the quality of the transition model.
MLP based model is unable to catch information
from beyond the last 4 frames. Recurrent based
model need sequential training and therefore
converge more slowly. Using a transformer archi-
tecture for the transition model should help with
the problems mentioned above (Chen, Wu, Yoon,
and Ahn, 2022). Furthermore, some information
about the environment can be integrated into the
transition model. E.g. for breakout the transition
model needs to focus mostly on the position of
the ball and the agent controlled reflecting mirror.
Therefore the transition model only needs to
predict the location of these two stimuli.

The agent modified to be more robust to
incorrect predictions of rewards. This limits
the negative impact caused by errors from the
transition model. Therefore the convergence
performance of model-based methods would
improve. This can be achieved by either using
different model-free algorithms or by changing the
architecture of the agents actor critic network. E.g.
adding a dropout layer to the network architecture
might make the agent more robust to occasional
mistakes from the transition model (Baldi and
Sadowski, 2013).

Learning of multiplayer video games requires
more frames to converge than learning of single
player games (Silver, Huang, Maddison, Guez, Sifre,
Van Den Driessche, Schrittwieser, Antonoglou, Pan-
neershelvam, Lanctot, et al., 2016). This means
that the agent needs to gather more samples from
the environment to converge. This is because the
agent needs to learn how to react to the actions
of the other player, which creates more variety.
However, the environment transitions inside the
environment are not necessarily more complex. E.g.
the environment transitions between a multiplayer
pong game are comparable to the environment
transition inside breakout. This means that it is

not that more difficult to train a transition model
for multiplayer games than single player games.
Therefore multiplayer games should not need more
samples to converge than single player games when
we use model-based algorithms. I recommend ex-
ploring how model-based methods can be applied
to multiplayer games.
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