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Abstract: Estimating a value function for reinforcement learning (RL) in continuous spaces
is a challenging task. To address this, the field of RL employs various function approximators,
including linear models and deep neural networks. Linear models are interpretable but can only
model simple functions, while deep neural networks can model complex functions but tend to be
black-box models. Gaussian process (GP) models aim to offer the best of both worlds by being
able to model complex nonlinear functions while providing interpretable uncertainty estimates.
This includes extensions such as the sparse variational GP (SVGP) and deep GP (DGP). This
thesis presents a Bayesian nonparametric framework for off-policy and on-policy learning using
GPs for action-value function modeling. Results on the CartPole and Lunar Lander environments
show that SVGPs/DGPs significantly outperform linear function approximation, but do not yet
match the speed of convergence or performance of deep RL algorithms using neural networks.
These findings highlight the potential of GPs in RL as function approximators in tasks where
uncertainty and interpretability is mandatory.

1 Introduction

In reinforcement learning (RL), the goal is for an
agent to interact with an environment and learn be-
haviors, known as policies, by maximizing a reward
signal. Achieving this goal requires estimating com-
plex functions, such as value functions and policies,
that guide the agent’s decisions and learning.

Initially, RL relied on tabular methods, which
involve storing state-(action) values in a table. The
classical Q-learning algorithm (R. Sutton & Barto,
2018) is an example of the tabular approach. This
method is sufficient for problems where the num-
ber of states and actions are small, such as simple
gridworlds or mazes (R. Sutton & Barto, 2018).
However, the problem is that tabular methods do
not scale to more advanced RL problems. A criti-
cal challenge in RL is the approximation of value
functions and policies, especially in environments
with continuous state and action spaces.

Model-free RL, which assumes no model of the
environment, includes two subfields focused on
function approximation. Value-based methods pri-
marily use parametric models to approximate the
(action)-value function, from which a policy is de-
rived. Policy-gradient methods directly approx-
imate the policy. Both approaches can also be
combined in what are called actor-critic methods,
where an approximate value function (the critic)

is learned to aid in approximating the policy (the
actor).
Linear methods have been used to address the

limitations of tabular methods. R. S. Sutton (1988)
tackled this by introducing a linear gradient-based
temporal difference (TD) algorithm called TD(λ).
Traditional linear models, such as linear regression,
while simple and interpretable, often fall short in
capturing the dynamics of complex environments,
particularly when there are nonlinear relationships
in the state-action spaces.
To address this limitation, kernel-based meth-

ods transform the state-action space into a higher-
dimensional space where relationships become more
linear (Taylor & Parr, 2009). That said, kernel-
based methods are often limited by the chosen
kernel function and the computational complexity
involved in storing a kernel matrix over the training
samples (Bishop, 2006).
The sub-field of deep reinforcement learning

(DRL) seeks to address this problem by employing
neural networks as function approximators. State-
of-the-art RL algorithms, such as deep Q-network
(DQN) (Mnih et al., 2013) and proximal policy
optimization (PPO), (Schulman, Wolski, Dhariwal,
Radford, & Klimov, 2017), are DRL algorithms,
with the former being value-based and the latter
actor-critic based.
Deep learning models are black-box models
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(Rudin, 2019); however, unlike a linear model,
where each weight has an interpretable meaning.
The reason deep learning models are preferred is
that they are capable of learning a larger class of
functions and extracting features from data, as
demonstrated in tasks such as learning directly
from Atari image data (Mnih et al., 2013).

Despite their opacity, ongoing research aims to
enhance the interpretability and trustworthiness
of deep learning models, striving to make their
decision-making processes more transparent. The
field of explainable AI attempts to address this by
attempting to produce human-interpretable expla-
nations of machine learning model outputs. Uncer-
tainty quantification addresses this by allowing a
model to provide probabilistic outputs that reflect
its level of confidence. For example, outputting
a mean and standard deviation allows humans to
consider uncertainty when interpreting results.

In RL, it is useful for learned policies or value
functions to estimate their epistemic uncertainty,
which represents uncertainty in the agent’s knowl-
edge about the value function. High epistemic un-
certainty in a particular subset of the state space
corresponds to under-exploration of that subset.
This can help RL agents make more informed deci-
sions about the exploration-exploitation trade-off
(Lockwood & Si, 2022), reducing the amount of
environment interactions needed to learn policies.
This is in contrast to value-based methods like
DQN, which rely on random action selection for suf-
ficient exploration. Additionally, Safe RL utilizes
uncertainty quantification to adhere to safety con-
straints during the learning process (Berkenkamp,
2019), particularly vital in robotics applications
where exploration actions could lead to physical
harm.

A popular choice for interpretable function ap-
proximation is a Gaussian process (GP), a non-
parametric kernel-based model for regression or
classification. GPs provide powerful epistemic un-
certainty quantification by capturing a distribu-
tion over functions. Unlike linear models, they are
capable of modeling complex nonlinear functions
(Rasmussen & Williams, 2004; Murphy, 2023) and
their nonparametric nature allows them to scale in
complexity with the dataset size. GPs operate in
a Bayesian framework, which, combined with their
nonparametric nature, makes them inherently more
robust against overfitting compared to frequentist
approaches that obtain point-wise parameter es-
timates by optimizing a loss function (Bishop &
Bishop, 2024).

Originally, GPs were designed for spatial data
analysis, where it was known as Kriging (Cressie,
1990). Over the years, different variations of the GP
model have been developed to address limitations
of the base GP model. These include sparse varia-

tional GPs (SVGPs) (Cormen, Leiserson, Rivest, &
Stein, 2009), which enable GPs to handle the com-
putational complexity of the covariance matrix, and
deep GPs (DGPs) (Damianou & Lawrence, 2013),
which can be conceptualized as a neural network-
type model where each unit is a GP. DGPs are
shown to be strictly more general than traditional
GPs, as the latter are ultimately constrained by
the choice of kernel function (Murphy, 2023).

1.1 Related Work

Early work on GPs and RL used GPs for mod-
eling the transition function and value function
(Rasmussen & Williams, 2004).

Engel, Mannor, & Meir (2005) employed GPs to
approximate the value and action-value function, re-
sulting in a variant of the SARSA algorithm. This
approach was further extended to the off-policy
case by Chowdhary et al. (2014), who proposed a
variant of Q-learning using GPs alongside a proof
of convergence. Kameda & Tanaka (2023) applied
variation inference methods to reduce computa-
tional complexity in GP Q-learning.

This prior research on GPs in value function ap-
proximation did not explore different exploration
strategies beyond upper confidence bound and ϵ-
greedy, as discussed in Section 2.4. By not ex-
ploring alternative exploration strategies, such as
Thompson sampling, these studies potentially limit
the effectiveness of GP-based RL algorithms.

Extensions to the basic GP model, such as the
DGP model, have not been considered. DGPs can
potentially capture more complex relationships in
the data due to their hierarchical structure. Ig-
noring these advanced models might restrict the
applicability and performance of GP-based meth-
ods in more complex RL tasks.

Moreover, previous research has not directly com-
pared GP-based methods with linear function ap-
proximation nor neural network function approxi-
mation in DRL. Without such comparisons, it is
challenging to position GP-based methods within
the broader landscape of RL algorithms and to
identify scenarios where they might offer unique
advantages.

1.2 Contributions

This thesis focuses on the advantages and limita-
tions of GPs as function approximators for model-
free RL. With a particular focus on GP regression
for the action-value function and how it performs
compared to traditional TD learning approaches
such as DQN. Specifically, this thesis presents an
off-policy and on-policy Bayesian nonparametric
framework, based on Q-learning and SARSA, re-
spectively, which employ the GP model for the
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action-value function. Different exploration strate-
gies in the framework of Bayesian optimization will
be considered and extension of the GP model to
DGPs.
We expect that GP-based function approxima-

tion for the action-value function will outperform
linear function approximation but perform worse
than deep neural network (DNN)-based function
approximation.

2 Theoretical Framework

2.1 Mathematical Notation

The notation in this thesis is mainly based on
R. Sutton & Barto (2018), with adjustments for
consistency with Murphy (2023).

Sets are denoted by majuscule and curly charac-
ters, e.g., X , except for well-known sets like the real
numbers R, the complex numbers C, the natural
numbers N, and the non-negative reals R+.

Random variables (RVs) are denoted by capital
letters, e.g., X; latent variables in GPs are indexed
and written as fGP(xi) or fi for short to indicate
a RV at index xi. Realizations of RVs or scalars
use lower case letters, e.g., x ∈ R.
Vectors are lower case bold letters, e.g., x ∈

Rn, n ∈ N, except for states s, actions a, and re-
wards r in RL contexts, which remain lowercase.
Vectors are assumed to be column vectors by de-
fault. The transpose operation is denoted ⊤, i.e.,
x⊤ ∈ R1×n.

Matrices are bold capitals, e.g., X, with the iden-
tity matrix denoted I. |X| denotes the determinant
for matrices, and |X | denotes the cardinality for
sets.

Random vectors are italicized boldface, e.g., X =
[X1, X2, . . . , Xn]

⊤. A random vector X with a
Gaussian distribution of mean µ and covariance
matrix Σ is denoted X ∼ N (µ,Σ). A sample
x from this distribution is similarly denoted x ∼
N (µ,Σ).
Function composition is denoted with ◦, e.g.,

f(g(x)) = f ◦ g(x).
For asymptotic analysis, we focus on upper

bounds for time and space complexity. Given func-
tions f, g : N → R+, f(n) = O(g(n)) if there are
positive integers c and n0 such that for all n ≥ n0,
f(n) ≤ cg(n) (Sipser, 2018). Formally,

O(g(n)) = {f(n) : ∃c, n0 > 0 ∀n ≥ n0 f(n) ≤ cg(n)}.

2.2 Function Approximation in Re-
inforcement Learning

The versatility of RL stems from its ability to
address complex challenges requiring sequential
decision-making. If a problem can be described

as an agent interacting with an environment, for-
malized as a Markov decision process (MDP), then
RL can be applied. The end product is a policy,
defining what actions to take in each state such
that the cumulative reward received is maximized.
A Markov decision process is a 4-tuple M =

(S,A,p, r), where S is a set of states, A is a set
of actions, p : S × A × S → [0, 1] is a transition
function, and r : S ×A → R is a reward function.
Our RL agent is captured by a policy, which is
a conditional probability distribution over actions
given the state:

π(a|s) = P(At = a|St = s) ∀s, a ∈ S ×A, (2.1)

where St, At are RVs for the state and action at
time t. The goal is to learn an optimal policy π∗
that maximizes the expected discounted sum of
rewards:

π∗ = argmax
π

Eπ[Gt] = argmax
π

Eπ

[ ∞∑
k=0

γkRt+k+1

]
,

(2.2)
where G is the return, R is the reward and γ ∈ (0, 1]
is a discount factor. The hypothesis in RL is that
by interacting with the environment the agent is
able to learn intelligent behavior.

In value-based methods this is achieved by learn-
ing a value function:

vπ(s) = Eπ[Gt|St = s], (2.3)

or an action-value function:

qπ(s, a) = Eπ[Gt|St = s,At = a], (2.4)

and then deriving a policy from it. As it turns
out, every optimal policy π∗ has the same optimal
value and action-value function (R. Sutton & Barto,
2018):

v∗(s) = maxπ vπ(s),
q∗(s, a) = maxπ qπ(s, a).

(2.5)

A deterministic optimal policy could then be de-
fined as π∗(s) = argmaxa∈Aq∗(s, a).
If S and A are small finite sets, then a value

function could simply be implemented as a table,
this requires O(|S||A|) storage. This approach
becomes infeasible when we have continuous state
and/or action spaces (e.g., S,A ⊆ Rm).
What we want then is an approximation v̂ or

q̂ that approaches the optimal value function and
generalizes well. In case of a parametric model, we
learn parameters w ∈ Rd. This can be a linear
model or a neural network.

2.3 Gaussian Processes

A GP is a collection of RVs {fGP(x) | x ∈ X},
any finite number of which has a joint Gaussian
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distribution (Rasmussen & Williams, 2004). Note
that fGP(x) is the notation used for an indexed
RV in GPs instead of the more typical Xt for a
RV at index t. In the context of regression, the
index set X is not related to time, but the input
of some function f : X → R that we want to
approximate (e.g., the action-value function). It
can be interpreted as: At each point x ∈ X , the
output of the GP regression model is a RV denoted
fGP(x).
A GP, denoted fGP(x) ∼ GP(m(x), k(x,x′)), is

fully specified by a mean function m : X → R and
covariance or kernel function k : X ×X → R which
are defined as:

m(x) = E[fGP(x)],
k(x,x′) = E[(fGP(x)−m(x))(fGP(x

′)−m(x′))].
(2.6)

A GP offers a Bayesian approach to nonpara-
metric regression. Without any data, the ker-
nel function represents our prior belief about the
function we are trying to model, by abuse of
notation denoted p(f), as it encodes similarity
between data points, with closer points having
higher covariance. A GP can then be condi-
tioned on a dataset, D, to get a posterior GP
fGP(x) ∼ GP(mpost(x), kpost(x,x

′)), which is our
posterior belief about the function, p(f |D).
Given a train set of noisy observations D =

(xi, yi)i=1,...,N , where xi ∈ X and yi = f(xi) + ϵi
with ϵi ∼ N (0, σ2

y). Suppose we are interested in

getting predictions f∗ = [fGP(x
∗
1), . . . , fGP(x

∗
N∗

)]⊤∗

for test inputs X∗ = (x∗
1, . . . ,x

∗
N∗

). By the defini-
tions of a GP it follows that the prior joint distri-
bution p(y, f∗|X,X∗) has the following form:

p(y, f∗|X,X∗) = N
([

µX

µ∗

]
,

[
Kσ KX,∗
K⊤

X,∗ K∗,∗

])
,

(2.7)
where µX = [(m(x1), ...,m(xN )]⊤, µ∗ =
[m(x∗

1), . . . ,m(x∗
N∗

)]⊤, KX,X = k(X,X) ∈ RN×N ,

Kσ = KX,X + σ2
yI, KX,∗ = k(X, ,X∗) ∈ RN×N∗ ,

and K∗,∗ = k(X∗,X∗) ∈ RN∗×N∗ are matrices of
all the covariances between relevant datapoints.
One can then condition on the observations to

get the Bayesian predictive distribution for the test
points. By Gaussian identities we can get this in
closed form:

p(f∗|X,y,X∗) = N (µ∗|D,X∗ ,Σ∗|D,X∗), (2.8)

where

µ∗|D,X∗ = µ∗ +K⊤
X,∗K

−1
σ (y − µX),

Σ∗|D,X∗ = K∗,∗ −K⊤
X,∗K

−1
σ KX,∗.

(2.9)

Assuming a zero mean function, this reduces for a

∗f∗ is implicitly assumed to be a realization of the random
vector.

single test point to:

E[fGP(x∗)] = µ(x∗) = k⊤
∗ K−1

σ y︸ ︷︷ ︸
α

=
∑N

i=1 αik(xi,x∗),

V[fGP(x∗)] = σ2(x∗) = k(x∗,x∗)− k⊤
∗ K

−1
σ k∗,

(2.10)
where k∗ = [k(x∗,x1), . . . , k(x∗,xN )]⊤.

To get the posterior mean and covariance func-
tion we consider (2.9) and (2.10) over an infinite
number of potential test points:

mpost(x∗) = m(x∗) + k⊤
∗ K

−1
σ (y − µX)

kpost(x∗,x
′
∗) = k(x∗,x

′
∗)− k⊤

∗ K
−1
σ k∗′ ,

(2.11)

where k∗′ = [k(x′
∗,x1), . . . , k(x

′
∗,xN )]⊤.

The generalization properties of GPs rely on the
selection of the appropriate kernel (Rasmussen &
Williams, 2004; Murphy, 2023). A common kernel
is the Matern kernel (see Appendix A.4), given by

kmatern(x,x
′; l, ν, σf ) = σf

21−ν

Γ(ν)

(√
2νd

)ν
Kν

(√
2νd),

(2.12)
with d = (x − x′)⊤l−2(x − x′), lengthscale pa-
rameter l, outputscale parameter σf , smoothness
parameter ν, Gamma function Γ and a modified
Bessel function Kν . As ν → ∞, the Matern ker-
nel approaches the Radial Basis Function (RBF)
kernel:

kRBF(x,x
′; l, σf ) = σf exp

(
− ∥ x− x′ ∥2

2l2

)
,

(2.13)
which when used results in smooth infinitely differ-
entiable functions being sampled.
For generalization it is also important to opti-

mize the GP hyperparameters, such as kernel pa-
rameters and noise variance, alongside computing
the predictive distribution as seen in (2.9). This
can be done by performing type-II maximum like-
lihood estimation (MLE) through maximizing the
marginal log likelihood (MLL) log p(y|X,θ), for
hyperparameters θ:

p(y|X,θ) =

∫
RN

p(y|f ,X)p(f |X,θ) df . (2.14)

As y ∼ N (0,Kσ) this integral can be computed
as:

log p(y|X,θ) = −1

2
y⊤K−1

σ y−1

2
log |Kσ|−

N

2
log(2π),

(2.15)
where the first term is a data fit term, the second
term a model fit term and the last a constant. The
negative MLL is differentiable with respect to θ
(A.3), so stochastic gradient descent can be used.

Using blackbox matrix-matrix multiplication
(BBMM) inference (Gardner, Pleiss, Weinberger,
Bindel, & Wilson, 2018), which leverages GPU ac-
celeration, the overall time and space complexity
of GP regression is O(N2). See Appendix A.2 for
details.
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2.4 Bayesian Optimization and
Multi-Armed Bandits

Bayesian optimization (BayesOpt) concerns itself
with global optimization of black-box functions
f : X → R (Murphy, 2023). Commonly a GP is
used as a regressor or surrogate for f based on the
data collected so far.
The BayesOpt algorithm as shown in 2.1 pro-

ceeds as follows: At each iteration n, a dataset
Dn = (xi, yi)i=1,...,n is maintained where the tar-
get outputs yi = f(xi)+ ϵi are assumed to be noisy
outputs of the function f we want to optimize. A
GP can then be used to estimate p(f |D), a distri-
bution over f . An acquisition function α(x;Dn) is
then used to select a new candidate x based on its
expected utility. Once yn+1 = f(xn+1) + ϵn+1 has
been observed, the GP is updated by computing
p(f |Dn+1).
There is an inherent tradeoff between selecting

points x ∈ X for which f is large (exploitation) and
points with high uncertainty, represented by the
variance, where one might be able to improve the
GP by finding higher values of f (exploration). For
this reason, next to its use in hyperparameter tun-
ing (Snoek, Larochelle, & Adams, 2012), the tech-
nique has also been applied to the Bandit problem.
In particular, Srinivas, Krause, Kakade, & Seeger
(2012) provided sublinear regret bounds using their
GP optimization algorithm with yn = Rn + ϵn as
targets, implying that the algorithm’s action se-
lection becomes optimal over time. However, this
algorithm is constrained to the bandits problem,
which learns a policy in a single-state, discrete-
actions environment.

Algorithm 2.1 Bayesian Optimization

1: Collect initial dataset D0 = (xi, yi)i=1,...,n0

from random queries xi or a space-filling design

2: Initialize model (e.g., a GP) by computing
p(f |D0)

3: for n = 1, 2, . . . until convergence do
4: Choose next query point xn+1 =

argmaxx∈X α(x;Dn)
5: Measure function value, yn+1 = f(xn+1)+ϵn

6: Augment dataset, Dn+1 = Dn ∪
{(xn+1, yn+1)}

7: Update model by computing p(f |Dn+1)
8: end for

2.4.1 Acquisition Functions

The acquisition function regulates exploration in
the input space, resembling behavioral policies in
RL, designed to favor inputs x with high uncer-
tainty in f(x) while minimizing selections of al-

ready explored points. This approach results in
more confident estimates for f(x). Various acquisi-
tion functions exist (Murphy, 2023):

Upper confidence bound (UCB) is an acqui-
sition function defined as:

αn(x;Dn) = µn(x) + βnσn(x), (2.16)

where µn, σn are the mean and standard devia-
tion outputs as is described in (2.10). βn is an
exploration parameter.

Another acquisition function isThompson sam-
pling. In the context of Bandits, this involves
sampling an action-value function q̃ from the GP
posterior predictive distribution, and greedily se-
lecting an action according to the sample:

an+1 = argmax
a∈A

q̃(a) q̃(·) ∼ p(q|Dn).

The intuition behind Thompson sampling is that
exploration is encouraged by maximizing q̃ because
the sampled function is within the credible inter-
val (standard deviations around the mean) with
high values around the areas with high uncertainty.
Maximizing q̃ involves selecting actions where there
is potentially high uncertainty on q. At the same
time, actions with a high mean value are also likely
to be sampled, which promotes exploitation.

2.5 Value-based RL using Gaussian
Processes

Using GPs for value-based RL is done by cap-
turing a distribution over possible q-functions,
qπ ∼ GP(m(z), k(z, z′)), where the input domain
is z ∈ S × A (Chowdhary et al., 2014). The core
idea behind the GP-Q algorithm (see Algorithm
2.2) is to perform a type of Bayesian optimization
on the TD error by setting the target values as
described in Algorithm 2.1 to the TD(0) target.
Using different acquisition functions, we now have
more options in designing the behavioral policy
other than just using ϵ-greedy. Chowdhary et al.
(2014) for example used a variant of GP-Q using
UCB.

The GP-Q algorithm is off-policy and uses

Rt+1 + γmax
a∈A

q̄(St+1, a) (2.17)

as the TD target, where q̄ is the mean output of
the GP (Chowdhary et al., 2014). An on-policy
variant, GP-SARSA, can be created by setting the
target to

Rt+1 + γq̄(St+1, At+1). (2.18)

Regarding the choice of kernel, Engel et al. (2005)
suggested to define the kernel function k : (S×A)×
(S ×A) → R as a combination of a state-kernel ks
and action-kernel ka,

k((s, a), (s′, a′)) = ks(s, s
′)ka(a, a

′), (2.19)
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as the states and actions are two different entities.
By properties of kernels (Murphy, 2023), k is also
a valid kernel function.

Algorithm 2.2 Online GP-Q for estimating
p(q∗|D)

1: Collect initial dataset D0 = (zi, yi)i=1,...,n0

with zi ∈ S ×A, yi ∈ R
2: Initialize GP by computing p(q|D0)
3: for each time step t do
4: Choose At from St using behavioral policy

(e.g., ϵ-greedy)
5: Take action At, observe Rt+1, St+1

6: let Zt = (St, At)
⊤ and yt = Rt+1 +

γmaxa′ q̄(St+1, a
′), where q̄ is the posterior

mean function.
7: Add state action pair to dataset, Dt+1 =

Dt ∪ {(Zt, yt)}
8: if |Dt+1| > Budget then
9: Delete some zi ∈ Dt+1

10: end if
11: Update model by computing p(q|Dt+1)
12: end for

2.6 Scaling Gaussian Process Infer-
ence to Large Datasets

To address the O(N2) time and space complexity
of exact inference, where N = |D|, different ap-
proximation approaches can be taken to allow GPs
to scale to larger datasets. This is especially of
concern in RL, where in theory we have a continu-
ally growing dataset. See Murphy (2023) for a full
overview of the available techniques.

2.6.1 Sparse Variational Gaussian Pro-
cesses

SVGPs (Titsias, 2009; Hensman, Matthews, &
Ghahramani, 2015; Bauer, Van der Wilk, & Ras-
mussen, 2016; Jankowiak, Pleiss, & Gardner, 2020;
Jakkala, 2021; Murphy, 2023) approximate the
GP posterior predictive distribution through vari-
ational inference. The core idea is to use a set of
inducing points Z = (z1, . . . , zM ) where M ≪ N ,
which serve as a sparse approximation of the full
dataset. The associated inducing variables are
denoted u = [fGP(z1), . . . , fGP(zM )]⊤. The varia-
tional posterior is defined as:

p̂(f ,u) = p(f |u,X,Z)p̂(u), p̂(u) = N (m,S),
(2.20)

where p(f |u,X,Z) is the conditional density of the
function values f = fGP(X) given train inputs
X, inducing points Z and inducing variables u.
p̂(u) is a Gaussian distribution with mean m and
covariance matrix S.

Variational inference aims to minimize the
Kullback-Leibler (KL) divergence DKL(p̂ ∥ p) be-
tween the variational posterior p̂ and the true pos-
terior p. Using the variational posterior in (2.20)
and the lower bound on the marginal likelihood,

Ep̂(f ,u)

[
log

p(y, f ,u)

p̂(f ,u)

]
, (2.21)

we obtain the evidence lower bound (ELBO):

LSVGP =

N∑
i=1

Ep̂(fi)[log p(yi|fi)]−DKL(p̂(u) ∥ p(u|Z)),

(2.22)
where p(yi|fi) is the Gaussian likelihood for the
observations given latent function values. See Ap-
pendix A.7 for more details. Since the bound is a
sum over the data, an unbiased estimator can be
obtained using mini-batch subsampling. The varia-
tional parameters Z, m, and S, are estimated by
maximizing the lower bound LSVGP. This approach
is guaranteed to converge because LSVGP is a lower
bound to the MLL, i.e., log p(y|X) ≥ LSVGP.

Posterior predictions for test points are now
made by marginalizing over the inducing variables
p(f∗|D,X∗) ≈

∫
RM p(f∗|u)p̂(u) du which results in

another multivariate Gaussian. The resulting mean
and variance predictions for a test point x∗ become:

µ(x∗) = m(x∗) + α(x∗)
⊤(m−m(Z)),

σ2(x∗) = k(x∗,x∗)− α(x∗)
⊤(KZ,Z − S)α(x∗),

α(x∗) = K−1
Z,Zk(Z,x∗),

(2.23)
where KZ,Z = k(Z,Z) and k(Z,x∗) =
[k(x∗, z1), . . . , k(x∗, zM )]⊤.

The time complexity for SVGPs is O(NM2), as
it can be shown that the likelihood term in (2.22)
can be computed in O(NM2) time (Murphy, 2023).
In terms of storage, we have an N×M and M×M
covariance matrix, which is in O(NM +M2).

SVGPs do not overfit with an increasing number
of inducing points, and as M increases, the approx-
imation quality of exact inference is recovered. Too
few inducing points may make the GP behave as if
it was underfitting (Bauer et al., 2016).

2.7 Deep Gaussian Processes

Another drawback of GPs is the inability for their
kernel functions to handle structured data where
the similarity between two data points require hier-
archical feature extraction, which occurs in image
data and also some vector datasets (Jakkala, 2021).
DGPs seek to address this issue, while still staying
in a Bayesian nonparametric framework.

A DGP is a composition of GPs (Damianou &
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Lawrence, 2013; Murphy, 2023):

DGP(x) = fL ◦ · · · ◦ f1(x),

fi(·) = [f
(1)
GP,i(·), . . . , f

(Hi)
GP,i(·)]⊤,

f
(j)
GP,i ∼ GP(mi(·), ki(·, ·)).

(2.24)
DGPs have a neural network-like structure with L
layers, each containing H GPs. Empirical results
suggest that DGPs do not overfit as the number
of layers increases, even with limited data, and
additional layers generally improve performance
on large datasets (Salimbeni & Deisenroth, 2017).
Salimbeni & Deisenroth (2017) also showed that
for the same computational budget, increasing the
number of layers can be more effective than increas-
ing the number of inducing points in an SVGP.

One can show that a DGP is strictly more general
than a GP (Murphy, 2023), as in a DGP is not
just another GP. That said, posterior inference in
DGP is quite expensive, as it requires marginalizing
over a large number of RVs, corresponding to the
hidden function values at each layer. Additionally,
the posterior predictive distribution needs to be
approximated using Monte Carlo samples, i.e., a
finite mixture of Gaussian distributions.
Salimbeni & Deisenroth (2017) addressed the

former by using a variational approach similar to
the SVGP method in Section 2.6 to allow DGP
to scale to larger datasets. This method is called
doubly stochastic variational inference, which is the
technique used for DGP modeling in this thesis.

The time and space complexity for DGPs using
doubly stochastic variational inference is anologous
to SVGPs. The ELBO also has a similar form,
shown in (A.20), and takes O(NM2(D1 + . . . +
DL)) time to compute for N train samples, M
inducing points and where Di is the number of
GPs in layer i. Similarly, the space complexity is
O((NM +M2)(D1 + . . .+DL)).

3 Methodology

3.1 Training Environments

Since we are comparing value-based algorithms that
involve taking an (arg)max over the action space,
we are constrained to environments with discrete
action spaces. The state spaces are required to
be continuous as we aim to compare function ap-
proximation methods for the action-value function.
Thus, for any environment we can assume s ∈ Rn

and |A| = m. The Gymnasium library (Towers et
al., 2023) is used to ensure all algorithms interact
with the environments using the same interface.

3.1.1 CartPole

First we have the CartPole environment, as shown
in Figure 3.1. The goal is to balance a pole on a

Figure 3.1: Visualization of the CartPole envi-
ronment.

cart by applying forces to move the cart left or right.
The agent must keep the pole upright for as long
as possible. The state space is S = {[x, ẋ, θ, θ̇] |
−4.8 ≤ x ≤ 4.8,−∞ < ẋ, θ̇ < ∞,−0.418 ≤ θ ≤
0.418} where x is the position, ẋ the velocity, θ
the pole angle and θ̇ the pole angle velocity. The
action space consists of two actions A = {0, 1},
pushing the cart to the left (0) or right (1). The
reward function provides a reward of +1 for every
time step the pole remains balanced:

r(s, a) =

{
1, if episode is not terminated

0, otherwise.
(3.1)

The episode ends when the cart position x ̸∈
[−2.4, 2.4] and the pole angle θ ̸∈ [−0.2095, 0.2095],
i.e., the cart goes out of bounds or the pole is no
longer balanced, or the episode length exceeds 500
time steps. This implies that the maximum return
each episode is 500.

3.1.2 Lunar Lander

The goal of the Lunar Lander environment is to
successfully land a lunar module on a designated
landing pad, visually shown in Figure 3.2. The
agent must control the lunar module’s thrusters
to navigate and stabilize the lander, minimizing
its speed and angle to achieve a safe landing. The
state space is similar to Cartpole:

S =





x
y
ẋ
ẏ
θ

θ̇
cleft
cright


∣∣∣∣

x ∈ [−1.5, 1.5],
y ∈ [−1.5, 1.5],
ẋ ∈ [−5, 5],
ẏ ∈ [−5, 5],
θ ∈ [−π, π],

θ̇ ∈ [−5, 5],
cleft ∈ {0, 1},
cright ∈ {0, 1}


(3.2)

where x, y is the horizontal and vertical position,
ẋ, ẏ the horizontal and vertical velocity, θ is the
angle of the lander relative to the vertical axis and
θ̇ is the angular velocity. cleft, cright are 1 if the
left/right leg of the lunar module are in contact
with the ground, else 0. The action space consists
of 4 discrete actions A = {0, 1, 2, 3} with

• 0: Do nothing: No thrusters are fired.

• 1: Fire left orientation engine: Applies a force
to the left.
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Figure 3.2: Visualization of the Lunar Lander
environment.

• 2: Fire main engine: Applies a force upwards.

• 3: Fire right orientation engine: Applies a
force to the right.

The reward function is based on proximity to the
landing pad, speed, angle, and leg contact. It
includes penalties for using engines and rewards
for successful landing or penalties for crashing:

r(s, a) =



100 successful landing,

−100 if lander crashes,

−0.3 for each time step,

−0.03(ẋ2 + ẏ2) penalty for speed,

−0.3|θ| penalty for angle.

(3.3)
An episode is considered a solution if the obtained
reward is at least 200.
The episode ends if the lander is motionless or

not awake, crashes, moves out of bounds, or lands
successfully.

3.2 Preprocessing

The type of normalization that was performed is
standardization, which means scaling the data such
that it has zero mean and unit variance:

xnorm =
x− x̄√
σ2
x + η

, (3.4)

where x̄ and σ2
x are the mean and variance of x and

η is a small constant (by default 1e-08) to prevent
division by zero errors.

One exception is that for the Lunar Lander envi-
ronment we only normalized the first 6 dimensions.
As cleft and cright are booleans.

3.3 Algorithm Design

The GP-Q and GP-SARSA algorithm were adopted
for the off-policy and on-policy case respectively
with the following modifications: The updates were

Algorithm 3.1 Adjusted GP-Q/GP-SARSA for
estimating p(q∗|D)

1: Initialize:
2: Collect initial dataset D0 = (zi, yi)i=1,...,n0

with zi ∈ S ×A, yi ∈ R
3: Initialize GP with p(q|D0), noise variance σ

2
y,

and hyperparameters θ
4: Set θ′

n = [θ, σ2
y]

⊤ and batch counter b = 0
5: for each time step t do
6: Choose action At from state St using a behav-

ioral policy (e.g., ϵ-greedy, UCB, Thompson
sampling)

7: Take action At, observe reward Rt+1 and
next state St+1

8: Increment batch counter: b = b+ 1
9: if Off-Policy then

10: yt = Rt+1 + γmaxa′ q̄(St+1, a
′)

11: else {On-Policy}
12: At+1 = π(St+1)
13: yt = Rt+1 + γq̄(St+1, At+1)
14: end if
15: Update dataset:
16: Form state-action pair Zt = [St, At]

⊤

17: Add (Zt, yt) to dataset: Dt+1 = Dt ∪
{(Zt, yt)}

18: if |Dt+1| > Budget then
19: Delete oldest (zi, yi) from Dt+1

20: end if
21: if b == batch size then
22: Update GP model, p(q|Dn+1):
23: Minimize negative MLL or negative

ELBO using stochastic gradient descent
w.r.t. Dn+1

24: Update hyperparameters to θ′
n+1

25: Reset batch counter: b = 0
26: end if
27: end for

done in batches, instead of per timestep. Mean-
ing, that for a batch size B, we wait B timesteps
before updating the GP. This was done to reduce
computational complexity and improve sampling
efficiency. Furthermore, this aimed to prevent the
inaccurate estimate of the q-function from changing
too much per timestep.

Initially, D0 = ∅. Updating the GP, i.e., comput-
ing p(q|Dn+1), should be interpreted as performing
type-II MLE of the hyperparameters and observa-
tion noise variance† θ′ = [θ, σ2

y]
⊤, and then com-

puting the predictive posterior distribution where
the test inputs are the state-action pairs of the
current batch. In the case of SVGP/DPGs we
also have the ELBO with variational parameters
Z,m,S as hyperparameters.
To estimate θ′

opt, which minimizes the negative
MLL (2.15) or the negative ELBO (2.22) (A.20)

†In DGPs we also have noise variance between layers.
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we utilized the Adam optimizer (Kingma & Ba,
2017) for stochastic gradient-based optimization.
It was implicitly assumed that any hyperparameter
values after optimization carry over to the next GP
update.

As explained in Section 2.6 SVGPs allow you
to perform mini-batching to compute the ELBO.
This helps keep memory usage under control as
SVGPs permit much greater dataset sizes. There
are two approaches to mini-batching here that are
reasonable in terms of time complexity. Either you
mini-batch over the entire dataset while assuming
the dataset is relatively small, in the hope that
the variational parameters retain information from
older thrown away data points. Or you keep a
bigger dataset and optimize over a random subset
of mini-batches every time. In the case of the
former the SVGP objective becomes:

LSVGP =

[
N
B

∑B
b=1

1
|Bb|

∑
n∈Bb

Ep̂(fn)[log p(yn|fn)]
]

−DKL(p̂(u) ∥ p(u|Z)),
(3.5)

where Bb is the b’th batch, and B is the number of
batches.

Regarding the removal and addition of data
points; data points were added unconditionally in
a first-in-first-out (FIFO) manner. If the maximum
dataset size (budget) is exceeded then the oldest
data points were removed. It is worth mentioning
that for SVGPs/DPGs it is feasible to have a large
dataset size of over 100, 000 data points while for
exact GPs there are actual VRAM limitations for
dataset sizes greater than 1000.

The following behavioral policies were considered:
ϵ-greedy, UCB and Thompson sampling. UCB was
implemented by taking (2.16) with x ∈ S × A.
Thompson sampling was extended from the Bandit
case by selecting the highest value action from the
sample q-function for a fixed state s ∈ S. This
was done by considering the points {(s, a) | a ∈ A}
sampling from the GP latent RVs, {fGP(s, a) | a ∈
A}, and selecting the action a for for which the
sample q-value is highest.

All the modifications made to the base GP-
Q/GP-SARSA algorithm are summarized in al-
gorithm 3.1.

To answer the hypothesis, we took as baseline
the random policy, and compared the GP based RL
algorithms to two variants of Stable-Baselines3’s
Deep Q-network (DQN) algorithm (Raffin et al.,
2021). One variant which used a linear function
approximator, and the other which used a multi-
layer perceptron (MLP) whose shape is as described
in Section 3.4.2.

3.3.1 Complexity Analysis of the GP-Q
and GP-SARSA Algorithm Variants

The time and space complexity of GP-Q and GP-
SARSA mainly depend on the GP model and how
the GP is updated with the dataset. As they only
differ in computing the TD target, their complexi-
ties are the same. These are summarized in Table
3.1.

3.4 Model Architectures

The computational backend for all the models is
PyTorch (Paszke et al., 2019). For the GP mod-
els, we used GPytorch (Gardner et al., 2018), a
high-performance GPU-accelerated library for GP
modeling, in conjunction with Botorch (Balandat
et al., 2020), a Bayesian optimization library that
extends GPytorch. An NVIDIA RTX 4090 with 24
GB of VRAM was used for GPU acceleration.
We were also interested in measuring VRAM

usage on the GPU, energy consumption, and ex-
ecution time. For VRAM usage, we used pynvml,
a Python interface for the NVIDIA Management
Library. For energy consumption and execution
time, we used the Zeus library (You, Chung, &
Chowdhury, 2023).

3.4.1 Gaussian Processes and Kernel Selec-
tion

For the choice of GP model, we primarily consid-
ered DGPs, which reduces to an SVGP when using
a single unit.
In Section 2.3, the derivations assumed an ob-

servation noise variance parameter σ2
y. In the RL

setting, it is hard to estimate the exact value of σ2
y.

To address this, instead of setting σ2
y a priori, we

infered it alongside the hyperparameters by includ-
ing σ2

y in the optimization process when minimizing
the negative MLL in (2.15) or the negation of the
ELBO in (2.22) and (A.20).

Regarding the choice of kernel for the states, ex-
isting literature on GPs and RL have used the RBF
(2.13) or Matern (2.12) kernel (Chowdhary et al.,
2014; Kameda & Tanaka, 2023). This implies that
those authors had as prior belief that the action-
value function is reasonably smooth. We assumed
that this assumption was reasonable. Among the
two, the RBF kernel was used.
Regarding Engel et al. (2005)’s suggestion to

use a separate kernel for the states and action is
sensible, but this causes issues with sparse varia-
tional methods when learning the inducing points
Z ∈ RMd using gradient methods (Murphy, 2023).
The actions are discrete, but the problem is that
the optimizer that optimizes the inducing points
zi ∈ S × A does not take this information into
account. Using a kernel for categorical features
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Table 3.1: Time and space complexity of the GP-Q and GP-SARSA algorithm’s GP update for
different GP models, assuming no mini-batching for uniformity. Here N is the size of the dataset
and M are the number of inducing points. Di is the number of GPs in layer i.

GP-Model Time Complexity Space Complexity

Exact GP (with BBMM) O(N2) O(N2)
Sparse Variation GP (SVGP) O(NM2) O(NM +M2)
Deep GP (DGP) O(NM2(D1 + . . .+DL)) O((NM +M2)(D1 + . . .+DL))

introduces issues since the actions may not be ex-
act integers anymore. For this reason, we used the
approach by Chowdhary et al. (2014); Kameda &
Tanaka (2023), and simply used one kernel for the
states and actions.

Using a constant mean function in DGPs makes
each GP mapping highly non-injective, leading
to issues with the DGP prior (Duvenaud, Rippel,
Adams, & Ghahramani, 2014). Following Salim-
beni & Deisenroth (2017), we used a linear mean
function, m(X) = XW, for all hidden layers. If
input and output dimensions match, W = I; other-
wise, W is set to the top Dl left eigenvectors from
the data’s singular value decomposition.

3.4.2 Neural Network Models

The linear model was treated as a single-layer feed-
forward network with an identity activation func-
tion:

y = Ws+ b, (3.6)

with W ∈ Rn×m and b ∈ Rm.
Regarding the choice of function approximator

for the DQN algorithm, we used the following MLP
as shown in Table 3.2.
Note the difference with how the q-function is

modeled compared to a GP. With a neural network
we have as input the state and an output neuron
for each action, containing q̂(s, a). This is different
for a GP, where the input is a state-action pair
z ∈ S × A, and the output is a Gaussian with a
mean and variance for the action-value.

3.5 Experimental Setup

3.5.1 Hyperparameter Tuning

Hyperparameter selection for DQN was based on
pre-tuned settings from the Stable-Baselines3

Zoo GitHub repository (Raffin, 2020). Since the
ϵ-greedy schedule in Stable-Baselines3 is based
on timesteps, we adjusted to compare policies over
the same number of episodes by running DQN for
the recommended timesteps, recording the episodes
passed, and then running the remaining episodes
without training.

To estimate expected resource consumption,
time and space, we analyzed how regular GPs
scale on a dataset D = (xi, yi)i=1,...,N ,xi ∈

R4, yi ∈ R (64-bit floating point) that simu-
lated the samples collected for CartPole, as N ∈
{100, 500, 1000, 3000, 5000, 8000, 10000} increases.
Additionally, we analyzed resource consumption
for an SVGP with a fixed N = 10000 dataset
size but with increasing inducing points M ∈
{50, 200, 350, 500, 650, 800, 950}. The data col-
lected from this procedure is averaged over 10 trials.

For GP-Q/GP-SARSA, due to the experimen-
tal nature of the algorithm and the computational
complexity of certain hyperparameter settings, in-
formal testing was performed on both CartPole and
Lunar Lander to identify effective hyperparameter
settings. This involved examining the reward curve
on runs with different configurations. We tuned
GP fitting settings, such as the initial learning rate
of the Adam optimizer and how optimization over
the dataset was performed at each GP update.

The hyperparameters used in the experimenal
setup are summarized in Table D.1. A moderate
dataset size of 10,000 or 20,000, with each GP up-
date involving a random subset of approximately
3,500 samples, works well when optimized in mini-
batches. Using a small learning rate (0.001 or
0.005) for the Adam optimizer ensures that hy-
perparameters are not too tightly fitted on early
inaccurate q-value estimates. However, the learn-
ing rate should not be too low to allow the agent
to learn a meaningful policy. The discount factor
γ was set to 0.99, the same as with the DQN algo-
rithm. The selected behavioral policy chosen was
Thompson sampling, but a small comparison was
made to ϵ-greedy and UCB in Lunar Lander.

What was tested more rigorously is the perfor-
mance difference going from an SVGP to a DGP.
According to Salimbeni & Deisenroth (2017), a
DGP with a relatively small (∼ 100) number of in-
ducing points generally outperforms a single-layer
DGP/SVGP with a larger number of inducing
points (∼ 500) on regression and classification.

Increasing the number of inducing points and
units improves performance, but there is a point
of diminishing returns. We adopted a similar ap-
proach to Salimbeni & Deisenroth (2017), validat-
ing performance using an SVGP with 512 inducing
points and four-layer DGP with 128 inducing points
per unit. For the number of units per layer in the
DGP, we use min(30, D0) for all inner layers, where
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Table 3.2: Summary of neural network parameters. n is the input state dimensionality and m is the
number of actions.

Layer (type) Output Shape Param #

Linear (layer1) + ReLU [batch size, 256] n× 256
Linear (layer2) + ReLU [batch size, 256] 256× 256
Linear (layer3) [batch size, m] 256×m
Total Parameters n× 256 + 65, 536 + 256×m

D0 is the input dimensionality, and the same RBF
kernel is used for all layers.

Learning was stopped for GP-Q/GP-SARSA if
a close-to-optimal policy was found, defined as
achieving a return of 500 for 5 consecutive episodes
in CartPole and a return of ≥ 200 for 5 consecutive
episodes in Lunar Lander.

3.5.2 Experiment Setup

We compared GP-Q with DQN using both an MLP
and a linear model, as well as a random policy
during both training and evaluation. In Lunar
Lander we also compared with GP-SARSA. The
expectation was that both GP-Q and GP-SARSA
will behave similarly and so it is sufficient to mainly
compare with GP-Q. All algorithms were trained
for 1000 episodes on Cartpole and 3000 episodes
on Lunar Lander. Evaluation was performed for 30
episodes. The episode counts were estimated such
that all algorithms would converge.

This comparison involved examining the reward
curve/return graph for policy convergence and per-
formance, including the maximum return obtained,
and measuring computational complexity and en-
ergy usage during training and evaluation‡. Time
complexity was measured by considering execu-
tion time during training and evaluation. Space
complexity was measured by examining VRAM
usage during training. Energy usage was measured
in kilojoules (kJ) during training and evaluation.
Additionally, we measured the average negative
ELBO for each environment over the number of
GP updates.

At evaluation time, we also compared the means
of returns. A two-sample one-tailed Wilcoxon rank-
sum test was performed to compare the average
return between a specific RL agent and a ran-
dom policy after training. The null hypothesis
was H0 : Eπagent [G] = Eπrandom

[G] and the alterna-
tive was HA : Eπagent

[G] > Eπrandom
[G], where G is

the undiscounted sum of rewards over an episode.

We also measured the stability of the GPQ with
a DGP by examining how many times out of Cr

runs of at least Ce episodes the algorithms per-

‡As GP-Q and GP-SARSA are the same, except for the
computation of the TD target, such measurements were
omitted from GP-SARSA for brevity.

formed better than random. For CartPole Cr = 10,
Ce = 200 and Lunar Lander Cr = 7, Ce = 1000. If
an algorithm is stable, we expect the same hyperpa-
rameter configuration and environment to produce
consistent results w.r.t. random in most runs.

Finally, we recorded the agent environment in-
teraction after training and described the general
behavior in cases where it was insightful§.

4 Results

The following showcases the results from the exper-
iment described in Sections 3.5.1 and 3.5.2. The
results for GP scaling on toy datasets can be found
in Appendix B.2. Comparison of exploration meth-
ods is found in Appendix B.1.

It is important to note that the hyperparameter
configuration for GP-Q/GP-SARSA is not neces-
sarily optimal. Meanwhile, the DQN hyperparam-
eter settings are optimal according to empirical
results from Raffin (2020). The results for each
algorithm were based on a single run, and each
run can vary slightly in terms of the learned policy
and its convergence. This approach is acceptable
if the deviations between runs are not significant,
which also helps save on computational costs. It is
also not uncommon in RL research to follow this
practice (Kameda & Tanaka, 2023).

Based on the hyperparameter tuning that was
performed, we can generally assume that GP-
Q/GP-SARSA is reasonably consistent on Lunar
Lander. However, this does not hold for CartPole.
Here, the policies can converge too early, resulting
in a policy that is, at best, as good as a random
policy, and performance can degrade as training
continues. The latter issue is mitigated by the early
stop reward condition.

4.1 GP-Q vs GP-SARSA

GP-Q and GP-SARSA appear to have similar per-
formance characteristics. There is at the very least
no case where GP-SARSA clearly outperforms GP-
Q.

§Select recordings are available on the GitHub page.
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Algorithm Train (1000 episodes) Eval (30 episodes)

Avg. Return Max Return Avg. Return Max Return Sig. BTR

DQN (MLP) 266.43± 219.66 500 451.53± 147.89 500 True
GP-Q (DGP) 326.34± 191.95 500 222.9± 157.24 500 True
GP-Q (SVGP) 270.48± 208.33 500 276.60± 209.82 500 True
RANDOM 22.16± 11.83 96 22.23± 11.27 52 NA
DQN (Linear) 12.01± 5.19 55 9.33± 0.99 12 False

Table 4.1: Reward metrics for CartPole. Optimal reward per episode: 500. Sig. BTR: significantly
better (avg. return) than random (Wilcoxon test, p < 0.05).

Algorithm Train (1000 episodes) Eval (30 episodes)

Time (s) Memory (GB) Energy (kJ) Time (s) Energy (kJ)

GP-Q (DGP) 5995.15 1.80 252.07 121.11 4.29
GP-Q (SVGP) 2116.31 0.566 16.11 40.02 1.57
DQN (MLP) 64.01 0.414 2.15 5.48 0.16
DQN (Linear) 12.01 0.414 0.49 0.29 0.0087

Table 4.2: Time, memory and energy usage on CartPole.

Figure 4.1: Comparison of cumulative average
return (±0.1 · std) in CartPole.

4.2 CartPole

The reward curve is displayed in Figure 4.1, reward
metrics in Table 4.1, and resource consumption in
Table 4.2. GPQ (SVGP) stopped learning around
episode 150, GPQ (DGP) around episode 170, and
DQN (MLP) around episode 450.
The general behavior of GPQ and DQN (MLP)

was similar; both were able to balance the pole for
the duration of the episode most of the time, with
DQN achieving this more often. They achieved
balance by moving the cart left and right. Specif-
ically, the cart was moved left, causing the pole
to move slightly to the right. Before the pole lost
its balance, the cart was moved right, causing the
pole to move slightly to the left, and this process
continues. One behavior observed in GPQ (SVGP)
but not in GPQ (DGP) was that sometimes the
agent stops balancing and moves off-screen to the
right or left.
DQN (Linear) failed to learn any meaningful

policy for balancing the pole, resulting in the pole
losing its balance immediately.

Figure 4.2: Comparison of cumulative average
return (±0.1 · std) in Lunar Lander.

4.3 Lunar Lander

The reward curve is displayed in Figure 4.2, reward
metrics in Table 4.3, and resource consumption in
Table 4.4. DQN (MLP) stopped learning around
episode 600. For GPQ (DGP) and GP-SARSA
(DGP), the reward stopping condition was reached
around episode 1500. GPQ (SVGP) did not reach
the stopping condition and converged to a sub-
optimal policy.

DQN (MLP) typically landed the module in the
designated landing spot reasonably quickly. Right
before landing, an upward force was applied to slow
down, and upon landing, the right or left engines
were used for corrections. GP-Q (DGP) also landed
the module reasonably well. GP-Q (DGP) kept the
module upright and typically landed it successfully,
though it applied more upward force, resulting in a
more gradual and slow landing compared to DQN,
which almost free-falled initially. GP-Q (SVGP)
did not control the module as well as GP-Q (DGP)
and as a result was not as successful in landing the
module at the landing spot.
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Algorithm Train (3000 episodes) Eval (30 episodes)

Avg. Return Max Return Avg. Return Max Return Sig. BTR

DQN (MLP) 188.17± 126.85 323.55 177.58± 120.07 312.30 True
GP-Q (DGP) 13.09± 156.93 316.62 104.06± 128.34 271.29 True
GP-SARSA (DGP) 49.69± 164.58 315.95 −56.73± 188.40 273.29 True
GP-Q (SVGP) −110.67± 121.80 269.63 −99.61± 85.71 142.78 True
RANDOM −181.95± 110.02 80.22 −191.07± 104.94 −71.85 NA
DQN (Linear) −441.17± 178.65 33.8 −539.79± 156.03 −186.96 False

Table 4.3: Reward metrics for Lunar Lander. Optimal reward per episode: ≥ 200. Sig. BTR:
significantly better (avg. return) than random (Wilcoxon test, p < 0.05).

Algorithm Train (3000 episodes) Eval (30 episodes)

Time (s) Memory (GB) Energy (kJ) Time (s) Energy (kJ)

GP-Q (DGP) 27349.92(≈ 7h) 2.35 2134.39 135.99 4.87
GP-Q (SVGP) 9568.53(≈ 3h) 0.936 645.86 39.23 1.16
DQN (MLP) 349.91 0.678 7.92 4.22 0.093
DQN (Linear) 124.44 0.02 2.79 1.95 0.042

Table 4.4: Time, memory and energy usage on Lunar Lander.

DQN (Linear) did not learn any meaningful
policy. Typically, the lunar module flipped and
crashed.

4.4 Algorithm Stability

For CartPole, out of 10 runs, the success rates were
100% for DQN (MLP), 40% for GP-Q (DGP) and
0% for DQN (Linear). For Lunar Lander out of 7
runs, the success rate were 100% for DQN (MLP),
100% for GP-Q (DGP) and 0% for DQN (Linear).

5 Discussion

The goal of this thesis was to compare a GP-based
RL algorithm with linear and NN-based function
approximations in two environments, using DQN
with a linear model and an MLP. This aimed to
highlight the advantages and limitations of GPs in
RL and their position among function approxima-
tors in RL.

The findings from the simulations, as presented
in Section 4, align with the hypothesis. The current
GP-based algorithm is able to significantly outper-
form DQN using linear function approximation,
but not DQN using an MLP.
In CartPole, GP-Q using at least an SVGP is

able to approach a close-to-optimal policy. DQN
with linear function approximation fails to learn
any meaningful policy on any of the environments.
In fact, learning often diverges, and the resulting
policy is worse than random. Although GP-Q can
perform quite well in CartPole, training can be
unstable, occasionally converging to a sub-optimal
policy. Worst case, an always go right or left pol-
icy, which is more common when using an SVGP.
A possible explanation is that the uninformative
reward function, which gives +1 reward for every

timestep until the episode terminates, may bias
the agent to one action, which is then propagated
at each update. That said, GP-Q can converge to
a close-to-optimal policy much faster than DQN,
and this is without the need for any random action
selection.

In contrast, Lunar Lander’s results are more sta-
ble and outperform DQN with linear function ap-
proximation, though not DQN with an MLP. Here,
DQN (Linear) also performs worse than random,
suggesting that linear regression is unsuitable for
both CartPole and Lunar Lander. This is unsurpris-
ing, as there is likely no close-to-linear relationship
between state-action features and the associated
action-value¶.
The primary difference between GP-Q (DGP)

and DQN (MLP) in Lunar Lander is that GP-Q
takes more episodes to achieve a similar policy,
typically with a return of ≥ 200 on most episodes,
and this result is reasonably stable across runs,
although the policy learned by GP-Q might be
slightly less optimal. This stability could be at-
tributed to the more informative reward function.
It takes around 1000 more episodes for GP-Q/GP-
SARSA to reach a close-to-optimal policy com-
pared to CartPole, which may be due to the larger
state space. This does bring into questions how
well GP-Q/GP-SARSA converge for increasingly
large state and action spaces. At the very least,
benchmarks from Salimbeni & Deisenroth (2017)
did suggest DGPs are able to handle reasonably
high-dimensional data.

In any case, it is clear that DGPs generally pro-
duce better policies, yielding higher rewards, com-
pared to SVGPs in both environments. The per-
formance uplift going from an SVGP to a DGP

¶With random action selection, we mean uniform sam-
pling on the action space.
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could be explained by DGPs ability to handle less
smooth/discontinuous functions much better, even
when each unit uses an RBF kernel (see Appendix
B.5). It is sensible to believe that the q-functions
resulting from a space S × A where A is discrete
may not be entirely smooth.

In both Lunar Lander and CartPole, the perfor-
mance of the GP-Q/GP-SARSA algorithm may de-
grade as training continuous. Specifically, the close-
to-optimal policy achieved at the reward threshold
is often better than one trained for a longer number
of episodes. This result might seem counterintu-
itive, as one would expect the TD(0) targets to
converge to the true q-values. However, this de-
cline can be attributed to a phenomenon known
as forgetting: As the GP is updated with newer
samples, earlier samples from previous episodes are
increasingly excluded from the training process. A
reasonable alternative to reward thresholding is to
use a learning rate schedule for the optimizer that
decays over time.

One interesting property of GP-Q/GP-SARSA
is that Thompson sampling appears to automati-
cally allow the agent to balance exploration and
exploitation without the need for random action
selection. It is possible that this introduces some
stochasticity in the final policy, though as the un-
certainty in the q-value estimates decreases, the
policy would become more deterministic, as can be
seen in Appendix B.4. It is possible that some ar-
eas with moderate uncertainty remain. This can be
observed in the results for CartPole, where not ev-
ery episode reaches the maximum possible reward.
That being said, in more complex environments,
this stochasticity could be more of an advantage.

The loss (negative ELBO) over time was also
recorded as shown in Figure B.4. In general,
SVGPs and DGPs exhibit similar convergence char-
acteristics. For CartPole, the loss remains relatively
constant and low at each update, while for Lunar
Lander, the loss decreases more gradually. The lack
of increases in loss as new datapoints are added sug-
gests that the added datapoints are related, which
makes sense given the fact we are computing TD(0)
targets, but it may also indicate redundancy in the
datapoints. This redundancy is partially alleviated
by using inducing point methods, where the induc-
ing points and associated inducing variables act as
a summary of the data.

Regarding computational complexity, the results
indicate the following ranking: DQN (Linear) <
DQN (MLP) < GP-Q (SVGP) < GP-Q (DGP).
The extended training times for the GP-based al-
gorithms are due to two main factors: computing
the posterior distribution and sampling q-values
is more resource-intensive than performing a for-
ward pass in an MLP. Additionally, calculating the
ELBO at each update is more costly compared to

the mean squared error objective of DQN (A.21).
GP-Q (DGP) especially has quite a significant

time cost in Lunar Lander, which can be signifi-
cantly reduced by reducing the number of units or
number of inducing points. GP-Q training can also
further be optimized by balancing dataset fitting
frequency, considering the quick convergence of the
loss it is possible that the GP update frequency
can be decreased. However, updates that are too
infrequent may hinder the agent’s learning. It is
important to note that GP-Q/GP-SARSA remains
computationally more intensive even during infer-
ence even when using just a single SVGP, as evi-
denced by the evaluation results. Therefore, despite
potential optimizations in the training phase, GP-
Q/GP-SARSA still incurs higher computational
time and energy costs. Nonetheless, ongoing ad-
vancements may lead to improvements in efficiency
in the future.
There is also a clear correlation between com-

putational complexity and energy usage, where
higher computational demands typically lead to
increased energy consumption. While this may not
be surprising, overall energy usage provides a useful
metric to better understand the effects of increased
time and memory requirements.

One important point to discuss when it comes to
this comparison of function approximation meth-
ods is that a large reason DRL algorithms like DQN
perform so well is not just related to the choice
of function approximator, but also numerous algo-
rithmic ”tricks” that help stabilize learning. For
instance, DQN uses experience replay to break the
correlation between consecutive experiences and
target networks to provide stable learning targets.
Additionally, techniques such as entropy regular-
ization, adaptive learning rate schedules, gradi-
ent clipping, and batch normalization play crucial
roles in ensuring stable, efficient, and generalizable
learning. These “tricks“, combined with function
approximation methods, drive the success of mod-
ern DRL algorithms. In comparison, the proposed
nonparametric algorithm using GPs is not quite
as mature. DGPs are close to the state-of-the-art
in GP modeling, but the base GP-Q/GP-SARSA
algorithm is relatively simple, maintaining TD(0)
targets, which are used to periodically update the
GP.

6 Conclusions

6.1 Future Works

An important next step is extending the proposed
algorithm to continuous action spaces. Currently,
we are limited to discrete actions due to the need
to compute an argmax over the action space. This
could be achieved by integrating GPs into an actor-
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critic framework. According to Lockwood & Si
(2022), uncertainty quantification in RL has mainly
focused on the critic (value functions) because it is
directly affected by aleatoric (data) uncertainty and
this uncertainty propagates to the actor through
updates of the form ∇θJ = E[∇θ log(πθ)δ], where
δ depends on the critic.

There are also some unexplored extensions of
the proposed algorithm. Currently, the algorithm
uses the TD(0) target to estimate the action-value
function. This approach can be generalized to the
λ-return. This may help reduce bias in the q-value
estimates at the cost of computational complexity
(R. Sutton & Barto, 2018).

Another important point to consider is how to
manage the dataset of state-action-q-value pairs in
the GP-Q/GP-SARSA algorithm. It was demon-
strated that for SVGPs/DGPs the dataset size
can be set large enough such that a policy can
be learned. Still, there may be redundant data
points, so exploring information-theoretic methods
could help reduce redundancy and improve the
approximation quality of the inducing points.

Additionally, the GP-Q/GP-SARSA algorithm
would also be well-suited for offline settings where
a dataset of q-value estimates is available a priori.
In terms of pre-processing, the primary focus was
on normalization, but there is nothing stopping one
from applying other techniques such as clustering
or dimensionality reduction to optimize dataset
construction.

Kernel selection is another important considera-
tion. Existing literature using GPs in RL (Engel
et al., 2005; Chowdhary et al., 2014; Kameda &
Tanaka, 2023) has mainly used RBF or Matern ker-
nels. However, a variety of kernels exists, such as
the spectral mixture kernel, detailed in Appendix
A.3, which can approximate any stationary kernel
to arbitrary precision (Murphy, 2023).

Another approach is deep kernel learning (Wil-
son, Hu, Salakhutdinov, & Xing, 2016a,b), which
combines neural networks with GPs by using a
neural network as a feature extractor before apply-
ing the GP. However, a GP atop a deep network
remains a GP, while deep GPs are strictly more
general (Murphy, 2023). Additionally, deep kernel
learning with highly parameterized neural networks
introduce the well-known downsides of deep learn-
ing, such as the need for explicit regularization
(Salimbeni & Deisenroth, 2017). In contrast, DGPs
learn a representation hierarchy nonparametrically
with a relatively small number of hyperparameters
to optimize.

Regarding DGPs, Jankowiak et al. (2020) have
proposed an alternative parametric model called
deep sigma point process (DSPP). This model re-
tains many properties of DGPs without needing
to approximate the predictive posterior distribu-

tion. Empirical results suggest that DSPPs achieve
better-calibrated predictive distributions and can
outperform deep kernel learning and DGPs on uni-
variate and multivariate regression tasks. For this
reason, it is an important model to consider for
future research in GPs and RL.

GPs are not the only models that offer uncer-
tainty quantification; they have a close connection
to Bayesian neural networks, a parametric model
that learn a distribution over the weights. For fu-
ture work in uncertainty quantification in RL, it is
crucial to compare different methods of uncertainty
quantification to GPs.

Lastly, steps need to be taken to reduce the
overall time complexity, as there currently is a
noticeable difference in training and inference speed
compared to DQN. Ongoing research can tackle
this from two angles: Make the algorithm itself
more efficient, or work on developing a faster GP
model, particularly in an online setting.

6.2 Conclusion

The thesis aimed to compare a GP-based RL al-
gorithm with linear and neural network function
approximators, specifically against DQN using lin-
ear and MLP models. The goal was to assess the
strengths and limitations of GPs in RL.

Findings from simulations‖ align with the
hypothesis: GP-based algorithms (GP-Q/GP-
SARSA), particularly using SVGPs and DGPs,
outperform linear function approximation in Cart-
Pole and Lunar Lander. However, they do not
match the stability of DQN with an MLP in Cart-
Pole or the overall performance in Lunar Lander.
Additionally, GP-Q and GP-SARSA are more com-
putationally expensive, even during inference.

Utilizing uncertainty quantification, GP-based
agents via Thompson sampling automatically bal-
ance exploration and exploitation, unlike DQN
which relies on random action selection.

These results underscore the potential of GPs,
particularly DGPs, as function approximators in
RL tasks requiring uncertainty quantification and
interpretability, such as safe RL, where understand-
ing the confidence in predictions can mitigate risks
and ensure robust decision-making.
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A Miscellaneous

A.1 The ϵ-greedy Policy

Given an action-value function q : S ×A → R, the ϵ-greedy policy is given by:

π(a|s) =


ϵ

|A(s)| + (1− ϵ), if a = argmax
a′∈A(s)

q(s, a′),

ϵ
|A(s)| , otherwise.

(A.1)

Where A(s) is the set of actions available in state s and ϵ ∈ [0, 1] is the probability of selecting a random
action.

A.2 Complexity Analysis of Exact Gaussian Process Inference

When it comes to computational complexity there are two points of interest: Computing the predictive
posterior distribution (2.10) and computing the MLL (2.15).

To ensure numerical stability, the Cholesky decomposition of Kσ = LσL
⊤
σ ∈ RN×N is used, which is in

O(N3). After computing α = K−1
σ y, predictions for each test point take O(N) time for the mean and

O(N2) time for the variance. Space complexity is O(N2) since an N × N covariance matrix must be
stored.

BBMM inference (Gardner et al., 2018), used in the GPytorch library, allows for computing the GP MLL
(2.15) and other expensive GP operations using only matrix multiplication, leveraging GPU acceleration.
This reduces the time complexity for exact GP inference from O(N3) to O(N2). Note that this does not
reduce the space complexity.

A.3 Derivative of the GP Marginal Log Likelihood

Let Tr(·) denote the trace operation on matrices. The partial derivative of the MLL:

L(θ|X, y) = log p(y|X,θ) ∝ −y⊤K−1
σ y − log |Kσ|, (A.2)

w.r.t. a hyperparameter θj from a vector of hyperparameters θ, is given by:

∂L
∂θj

=
1

2
y⊤K−1

σ

∂Kσ

∂θj
K−1

σ y − 1

2
Tr

(
K−1

σ

∂Kσ

∂θj

)
(A.3)

=
1

2
Tr

(
(αα⊤ −K−1

σ )
∂Kσ

∂θj

)
, α = K−1

σ y. (A.4)

If the dataset size is N , computing K−1
σ using the standard Cholesky decomposition requires O(N3)

time, followed by an additional O(N2) time per hyperparameter to compute the gradient (Rasmussen &
Williams, 2004; Murphy, 2023). However, with BBMM, the overall time complexity is reduced to O(N2).
Typically, instead of maximizing L, we minimize −L.

A.4 The Matern Kernel

The Matern kernel (Rasmussen & Williams, 2004) is given by:

kmatern(x,x
′; l, ν) =

21−ν

Γ(ν)

(√
2νd

)ν
Kν

(√
2νd), (A.5)

with d = (x− x′)⊤l−2(x− x′) and lengthscale parameter l, smoothness parameter ν, Gamma function Γ
and a modified Bessel function Kν .
The Gamma function is a function defined for a complex numbers z ∈ C, except for the non-positive

integers, and is given by the following improper integral:

Γ(z) =

∫ ∞

0

tz−1e−t dt, ℜ(z) > 0. (A.6)

The Gamma function is commonly used as an extension of the factorial function to complex numbers.
That is ∀n ∈ N, Γ(n) = (n− 1)!.
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Kν(z) is a modified Bessel function. Specifically, a modified Bessel function of the second kind, which
is a solution to the modified Bessel’s differential equation:

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0, (A.7)

where w : C → C is the unknown function of the differential equation. Kν(z) is defined for complex order
ν and complex argument z. One of its integral representations is given by:

Kν(z) =

∫ ∞

0

e−z cosh(t) cosh(νt) dt, ℜ(z) > 0. (A.8)

For the Matern kernel, the Gamma function and modified Bessel function play key roles defining the
smoothness and decay properties as the smoothness parameter ν changes. Loosely speaking, the Gamma
function ensures proper normalization as ν → ∞ and the Bessel function determines the smoothness
properties.
Evaluating the Matern kernel for arbitrary ν can be computationally expensive, due to needing to

evaluate the modified Bessel function. Luckily there are special cases for ν, specifically for ν ∈ { 1
2 ,

3
2 ,

5
2}

and ν → ∞ which are considerable cheaper to compute. For this reason, when performing type-II MLE
on the kernel hyperparameters for the Matern kernel, the smoothness parameter ν is typically kept fixed
and not optimized.
For ν = 1

2 , the Matern kernel reduces to the absolute exponential kernel function:

k(x,x′; l) = exp

(
−
√
2
∥ x− x′ ∥

l

)
. (A.9)

For ν = 3
2 we get once differentiable functions when used in a GP:

k(x,x′; l) =

(
1 +

√
3
∥ x− x′ ∥

l

)
exp

(
−
√
3
∥ x− x′ ∥

l

)
, (A.10)

and similarly for ν = 5
2 we get twice differentiable functions:

k(x,x′; l) =

(
1 +

√
5
∥ x− x′ ∥

l
+

5

3

∥ x− x′ ∥2

l2

)
exp

(
−
√
5
∥ x− x′ ∥

l

)
. (A.11)

As ν → ∞, the Matern kernel simplifies to:

kRBF(x,x
′; l) = exp

(
−∥ x− x′ ∥2

2l2

)
, (A.12)

which when used in a GP gives infinitely differentiable functions. In general, functions sampled from a
GP with a Matern kernel are k-times differentiable iff ν > k.
Finally, it is common to introduce an outputscale parameter σf to the kernel function, resulting in

the modified kernel k′(x,x′; l, σf ) = σfk(x,x
′; l). The output scale parameter σf controls the amplitude

of the kernel function, affecting the overall vertical variation. Meanwhile, the lengthscale parameter l
determines how quickly the similarity between points decreases as their distance increases. A smaller l
implies that points need to be relatively close to be considered similar, while a larger l allows for similarity
over greater distances.

A.5 Spectral Mixture Learning

The spectral mixture kernel is defined for one-dimensional inputs x, x′ ∈ R as:

k(x, x′) =
∑
j

wj cos((x− x′)(2πµj)) exp(−2π2(x− x′)2vj), (A.13)

where wj are mixture weights and µj and vj means and variances of the Gaussians in the spectral density.
As it turns out, the spectral density is the dual form of any shift-invariant stationary kernel and is obtained
by taking the Fourier transform (see Appendix A.6). The spectral mixture kernel is obtained by taking
the inverse Fourier transform of a Gaussian mixture. Taking the Fourier transform of a RBF kernel gets a
Gaussian spectral density centered at the origin and for the Matern kernel you get a Student spectral
density centered at the origin (Murphy, 2023).
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A.6 Random Fourier Features

For GPs it is possible to perform exact inference, but approximate the kernel with random features. The
method, called random Fourier features (RFF), uses Bochner’s theorem (Churchill, Bochner, Tenenbaum,
& Pollard, 1960). Bochner’s theorem states that a continuous and stationary kernel that satisfies
k(x,x′) = k(δ) with δ = x − x′ is positive definite if and only if it can be represented by its Fourier
transform:

k(δ) =

∫
Rd

p(ω)eiω
⊤δdω, (A.14)

where i2 := −1, ω is the frequency, and p(ω) is known as the spectral density which is a normalized
probability measure if k(0) = 1. One can then take a Monte Carlo approximation of (A.14) by constructing
the random Fourier feature φ(x) ∈ R2M :

φ(x) =

√
1

M



sin(ω⊤
1 x)
...

sin(ω⊤
Mx)

cos(ω⊤x)
...

cos(ω⊤
Mx)


, ω1, . . . ,ωM ∼ p(ω), (A.15)

and calculating k(x,x′) ≈ φ(x)⊤φ(x′) which is equivalent to the sum:

k(x,x′) ≈ 1

M

M∑
i=1

cos(ω⊤
i (x− x′)). (A.16)

One can show that this approach reduces the time complexity to O(NM +M3) (Murphy, 2023). That
said, the approximation of the kernel, results in reduced expressive power.

A.7 Evidence Lower Bound for Sparse Variational Gaussian Processes

Let y, f ∈ RN ,u ∈ RM be (the realization of) the observation, GP output and inducing variables, where
X = (x1, . . . ,xN ) are the input points and Z = (z1, . . . , zN ) the inducing points. The variational bound
of the marginal likelihood is of the form (Salimbeni & Deisenroth, 2017):

log p(y|X) = log
∫
RN×RM p(y|f)p(f |u,X,Z)p(u|Z) dfdu

≥ Ep̂(f ,u)

[
log p(y,f ,u)

p̂(f ,u)

]
=

∫
RN×RM p̂(f ,u) log p(y|f)p(f |u,X,Z)p(u|Z)

p̂(f , u) dfdu.

(A.17)

Where, assuming a zero mean function, p(y|f) = N (KX,ZK
−1
Z,Zu, σ

2
yI) is the Gaussian likelihood for the ob-

servations given latent function values, p(u|Z) = N (0,KZ,Z) and p(y|u,X,Z) = N (KX,ZK
−1
Z,Zu,KX,X −

KX,ZK
−1
Z,ZK

⊤
X,Z + σ2

yI). See also the correspondence to (2.9).

Plugging in (2.20) into equation A.17 to get the ELBO:

LSVGP =
∫
RN×RM p(f |u,X,Z)p̂(u) log p(y|f)(((((p(f |u,X,Z)p(u|Z)

(((((p(f |u,X,Z)p̂(u) dfdu

= Ep(f |u,X,Z)p̂(u)[log p(y|f)]−DKL(p̂(u) ∥ p(u|Z)).
(A.18)

In GPytorch (Gardner et al., 2018) the ELBO is slightly adjusted and computed as follows:

LSVGP = Epdata(y,x)[Ep(f |u,X,Z)p̂(u)[log p(y|f)]]− ρDKL(p̂(u) ∥ p(u|Z))
≈

∑N
i=1 Ep̂(fi)[log p(yi|fi)]− ρDKL(p̂(u) ∥ p(u|Z)), (A.19)

where ρ, 1 by default, is a scaling constant that reduces the regularization effect of the KL divergence.
Here pdata(y,x) is the data distribution and N is the number of training samples.
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A.8 Evidence Lower Bound for Deep Gaussian Processes

For DGPs, the evidence lower bound has a similar form to (2.22):

LDPG =

N∑
i=1

Ep̂(fLi )[log p(yi|fLi )]−
L∑

l=1

DKL(p̂(U
l) ∥ p(Ul;Zl−1)), (A.20)

where N is the number of training samples, p(yi|fLi ) is the Gaussian likelihood for the observations given
latent function values at the L-th (final) layer for the i-th data point. p̂(fLi ) is the variational distribution
at the L-th layer for the i-th data point. Ul are the inducing variables for each dimension (depth) at
layer l and Zl−1 are the inducing points at the previous layer l − 1. p̂(Ul) is the variational distribution
for the inducing variables at layer l. p(Ul|Zl−1) is the prior distribution of the inducing variables from
the previous layer.
The full derivation of this lower bound can be found in Salimbeni & Deisenroth (2017).

A.9 Deep Q Network

DQN uses the TD(0) target in the following loss function, optimizing this loss means approaching the
true action-value function:

L(θ) = E(St,At,Rt+1,St+1)∼D[(Rt+1 + γmax
a∈A

q̂(St+1, a,θ
−)− q̂(St, At,θ))

2], (A.21)

where D is an experience replay buffer and θ are the parameters of the function approximator. Additionally,
DQN uses a target model θ− containing frozen parameters periodically copied from θ. This improves
performance and stability because supervised learning theory assumes a stationary distribution and
independent and identically distributed samples.
The DQN update, which involves calculating the gradient ∇θL(θ), has linear time complexity in the

number of parameters due to the use of backpropagation.
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B Additional Results

B.1 ϵ-greedy vs Upper Confidence Bound vs Thompson Sampling

The UCB and ϵ-greedy settings were not extensively tuned. UCB’s β parameter (2.16) was set to 1.5, and
the ϵ-greedy schedule was based on DQN for a specific environment.
Thompson sampling outperforms UCB and ϵ-greedy in Figure B.1, making it a preferred policy for

the GP-Q/GP-SARSA algorithm. The performance gap in UCB may be due to its tendency for over-
exploration, as noted by Chowdhary et al. (2014). Additionally, the ϵ-greedy schedule effective for DQN
may not suit GP-Q. Thompson sampling’s advantage is the lack of exploration parameters to tune.

Figure B.1: Comparison of cumulative average return (±0.1·std) in Lunar Lander between behavioral
policies for the same DGP model.

B.2 GP scalability on toy dataset

Figure B.2 and B.3 display the results.

Figure B.2: Exact GP execution time and VRAM usage for D = (xi, yi)i=1,...,N ,xi ∈ R4, yi ∈ R (64-bit
floating point) as dataset size N increases. Averaged over 10 trials.

B.3 Loss Curve of Experiment

Figure B.4 showcases how the negative ELBO changes per update during training.

B.4 Visualizing the Posterior Predictive Distribution

For functions f : R → R, we can visualize the GP mean and variance predictions as {(x, µ(x)±βσ(x)) | x ∈
R, β ∈ N}. However, for CartPole or Lunar Lander, we deal with the action-value function q : S ×A → R,
where S ⊆ RD with D ≥ 4. This complicates visualizing the posterior predictive distributions. Still, we
can visualize by fixing a state s ∈ S and plotting a Gaussian with mean µ(s, a) and variance σ2(s, a) for
each a ∈ A. Figure B.5 shows such Gaussians, indicating that as training progresses, GP-Q/GPSARSA
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Figure B.3: SVGP execution time and VRAM usage for D = (xi, yi)i=1,...,N ,xi ∈ R4, yi ∈ R, N = 10000
(64-bit floating point) as the number of inducing points increases. Batch size: 128, averaged over
10 trials.

Figure B.4: Average loss (negative ELBO) (±0.1 · std) in CartPole and Lunar Lander.

agents with Thompson sampling become more greedy as uncertainty decreases and the mean q-values for
each action shift.

Figure B.5: Predictive action distribution for a given state for each action a ∈ A. From top to
bottom: The first two figures are taken from a GPQ (DGP) agent before training on Lunar Lander,
and the last two are after training. As training continues, the action distributions shift and the
standard deviations around the mean decreases.
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B.5 Comparing GP Regression for a Step Function

Consider a GP fGP(x) ∼ GP(m(x), kRBF(x,x
′)) with an RBF kernel and a zero mean function. Also,

consider an SVGP with the same kernel, and a 4-layer, single unit per layer DGP with the same kernel.
We compare GP regression on a step function with Gaussian noise ϵ ∼ N (0, 0.05):

s(x) =

{
1.0 + ϵ if x < 0.5,

−1.0 + ϵ if x ≥ 0.5.
(B.1)

Given the smoothness of functions from a GP with an RBF kernel, the fit on the step function for a
standard GP will be poor. However, a DGP can overcome these limitations and learn to regress the
discontinuity at x = 0.5, despite each unit using an RBF kernel.
We sample 150 points from this function with x ∈ [0, 1] for training data. The test data contains 50

sample points where x ∈ [−0.2, 0) ∪ (1, 1.2]. Using an Adam optimizer with a learning rate of 0.01, we fit
each GP on the train data for 500 epochs without mini-batching.
Figures B.6 and B.7 show the predictions for each GP model. The regular GP has a poor fit, but

surprisingly, the SVGP fits the training samples well. However, the SVGP’s test predictions are poor,
especially when examining the posterior mean function. In contrast, the DGP has the best overall fit
among training and test samples.
Figure B.7 displays the DGP predictions per layer, which we can visualize as we have one GP per

layer and one-dimensional input and outputs. The predictions from the first layer resemble those from
a standard GP with an RBF kernel. However, as we go through each layer, the outputs transform,
resembling a step function more each time.

Figure B.6: GP (left) and SVGP (right) predictions with a ±2σ credible interval.

Figure B.7: DGP predictions with a ±2σ credible interval. The final layer is the output of the DGP
as a whole.
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C Summary of Abbreviations

Table C.1: Summary of Abbreviations.

Abbreviation Definition
BayesOpt Bayesian Optimization
DGP Deep Gaussian Process
DNN Deep Neural Network
DQN Deep Q-network
DRL Deep Reinforcement Learning
DSPP Deep Sigma Point Process
ELBO Evidence Lower Bound
FIFO First-In-First-Out
GP Gaussian Process
GPU Graphics Processing Unit
MDP Markov Decision Process
MLE Maximum Likelihood Estimation
MLL Marginal Log-Likelihood
MLP Multi-Layer Perceptron
NN Neural Network
PPO Proximal Policy Optimization
RBF Radial Basis Function
RL Reinforcement Learning
RV Random Variable
SARSA State-Action-Reward-State-Action
SVGP Sparse Variational Gaussian Process
TD Temporal Difference
UCB Upper Confidence Bound
VRAM Video Random Access Memory
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D Hyperparameters

Hyperparameter CartPole Lunar Lander

Learning Rate 2.3e-3 6.3e-4
Batch Size 64 128
Buffer Size 100000 50000
Learning Starts 1000 0
Gamma 0.99 0.99
Target Update Interval 10 250
Train Frequency 256 4
Gradient Steps 128 -1
Exploration Fraction 0.16 0.12
Exploration Final Epsilon 0.04 0.1
Number of timesteps 5e4 1e5

Table D.1: Hyperparameters for DQN Algorithm in CartPole and Lunar Lander Environments.

Hyperparameter CartPole Lunar Lander

Fitting (with Adam optimizer)
GP Fit Num Epochs 1 1
GP Fit Batch Size 128 512
GP Fit Num Batches 30 7
GP Fit Learning Rate 0.001 0.005
GP Fit Random Batching True True

Exploration
UCB Beta NA 1.5
GP E-Greedy Steps NA 100,000

Model
Discount Factor (γ) 0.99 0.99
Batch Size 32 128
Max Dataset Size/Budget 10,000 20,000
Kernel Type RBF RBF
Behavioral Policy Thompson sampling Thompson sampling
Posterior Observation Noise False False

Table D.2: Hyperparameters for GP Models in CartPole and Lunar Lander Environments.
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