
Cost awareness in pull
requests of open source

repositories

Abel van der Til

University of Groningen

Cost awareness in pull requests of open source
repositories

Bachelor’s Thesis

To fulfill the requirements for the degree of
Bachelor of Science in Computing Science

at the University of Groningen under the supervision of
Prof. V. (Vasilios) Andrikopoulos (Computing Science, University of

Groningen)
and

dr. D. (Daniel) Feitosa (Computing Science, University of Groningen)

Abel van der Til (S4091469)

June 10, 2024

Abstract

When managed properly, hosting applications in the cloud can be afford-
able. However, cloud hosting can quickly become very expensive, for exam-
ple when developers configure their cloud environment to require more than
they need. This configuration can be done with the use of Terraform files, this
is a specific infrastructure configuration file that is stored as code.
In a previous research by Feitosa et al. [5], they looked for cost awareness in
commits that modified these Terraform files. We will expand on this by re-
searching pull requests that modify Terraform files. Through the use of Min-
ing Software Repositories (MSR) we collect pull requests that make use of
cost related keywords in the pull request or their containing commits. These
pull requests will then be labeled based on the human written text.
From this we find out that pull requests do not efficiently demonstrate cost
awareness for most repositories, but do show more insights on cost aware-
ness compared to commits. Furthermore, reviews on pull requests lead to
cost awareness in at least 23% of the cost related pull requests. Finally, pull
requests can be used as an intermediate step to find otherwise difficult to find
cost related commits.

Contents

1 Introduction 4
1.1 Infrastucture as Code . 4
1.2 Prior work . 5
1.3 Related work . 5
1.4 Scope . 6

2 Study Design 7
2.1 Methodology . 7
2.2 Labels . 7
2.3 Dataset update . 8
2.4 Pull requests . 9

3 Results 12
3.1 Commits update . 12
3.2 Descriptive statistics . 12
3.3 Keyword locations . 13
3.4 Labels . 15

4 Analysis 19
4.1 Descriptive statistics . 19
4.2 Keyword locations . 20
4.3 Commit and pull request linking 21

5 Discussion 22
5.1 Cost awareness in pull requests 22
5.2 Cost awareness in code review 22
5.3 Finding new commits . 23
5.4 Linked dataset . 23
5.5 Limitations & Future research 23

6 Conclusion 25

A Additional Data 27

1

List of Figures

2.1 Cost awareness labels . 8
2.2 Steps required to update commit dataset 9
2.3 Steps required to label pull requests 9

3.1 Label frequency of commits . 13
3.2 Pull request label frequency . 16
3.3 Co-occurrences of labels . 16
3.4 Frequency of sets of labels . 17
3.5 Label frequency of pull requests linked with commits 18
3.6 Label frequency of commits in unrelated pull requests 18

4.1 Infracost example . 20

2

List of Tables

3.1 Keyword frequency per location 14
3.2 Frequency of empty locations 14
3.3 Frequency of awareness per location. 14

A.1 Label definitions . 27

3

1 | Introduction

When hosting an application, costs are an inevitable consequence. In the
past, one had to purchase and manage a dedicated server, which was both
costly and complex [3]. In recent years Cloud computing has become more
popular. This allows for many websites to be hosted on a network of servers.
This way it is not required for a application owner to pay for the whole server
and does not necessarily need the technical expertise that one needs to host
a dedicated server [3]. Cloud providers often make use of the pay-as-you-
go model [8], this means that one only pays for what one consumes. Think
of what type of processor, how much system memory etc. This can save a
lot of money, compared to dedicated hosting, as it is easier to quickly scale
up and down. However, it is also possible for cloud computing to become
expensive. For example whenever the cloud instance is ill configured. When
one asks for more than the application needs, one needs to pay for it too. So
for example when one’s instance is configured for 128GB of RAM, while only
ever needing 32GB, you still end up paying for the full 128GB.

This begs the question whether developers are aware of the costs of hosting
on the cloud and whether they act to reduce costs. By finding out whether
developers are aware and what changes are commonly made to achieve this,
we could help other developers to reduce their costs.

1.1 Infrastucture as Code

Infrastructure as Code (IaC) uses a high-level descriptive coding language to
automate the provisioning of IT infrastructure [6].

This means that developers can create a machine readable file, like YAML,
that describes how an application is deployed. This deployment is automatic,
and does not need any user interaction [2]. For example, this file contains
data on what kind of virtual machine the application will run on [2], which
determines the CPU and amount of system memory. Changing this file has
great implications of the costs of the application. These artifacts are stored
in the source code of the application and thus are part of the version control.
This means they can only be modified through the use of commits. IaC is the
name of the process, which is then implemented by a tool. There are many
different of such tools, but common examples are Ansible and Terraform [6].

4

1.2. Prior work Chapter 1. Introduction

1.2 Prior work

Previously, a single study by Feitosa et al. [5] has looked into cost awareness
on the cloud. This study is based on GitHub issues and commits messages
where Terraform files have been modified. They only focussed on Terraform
as it was widely adopted and focusing on multiple tools would be too com-
plex. They looked for any commit that changed a Terraform file and extracted
the commit message. This way, many commits were found that talk about
changing these files because of cost related reasons. Issues did not seem to
contribute as much, but did allow them to look at the decision making pro-
cess. Combining the changes and the decision making process is not trivial,
as commits are rarely linked to issues. The study proposes to look at pull
requests as an attempt to get code changes and the decision making process
together.

1.3 Related work

There are no papers that specifically look into cost awareness in pull requests.
There are however many studies that use MSR to retrieve data from pull
requests. One of these studies was performed by Kononenko et al. [7]. In
this paper they looked at code reviews in pull requests in the repository of
Shopify and its forks. In these pull requests they looked at the way these pull
requests were merged with the main code base and the time it took to merge.
They collected meta data about each pull request, as well as the description
and comments. These pull requests have been labeled on the different merge
types. The labeling was independently done by two authors and afterwards
compared. The remainder of the study is not relevant for this paper.

In another study by Bertoncello et al. [1], they looked at the relative contri-
butions to open source software by so-called casual contributors. These are
developers who often contribute a single time to the project. This study is
based on another similar research where this was first researched by min-
ing commits. Similarly to our paper, the study improves on this by using
the same methodology but also applied to pull requests. They specifically
compared the commit and pull request approach for collecting data. For this
they used the same set of repositories as before. With this, they managed
to find more casual contributors with pull requests than with commits. Fur-
thermore, they found less false negatives with the use of pull requests. Even
though the type of data retrieved from this study (contributors) is different
than the data required for this paper (natural language), it shows that by col-
lecting data from pull requests instead of commits more relevant data can be
collected and that the data can be more accurate.

5

1.4. Scope Chapter 1. Introduction

1.4 Scope

As stated before, the previous study by Feitosa et al. [5] focused on cost
awareness in commit messages. This paper expands on that same idea in
the form of cost awareness in pull requests. Pull requests have certain ad-
vantages over commits, namely that they can contain multiple (related) com-
mits. This is useful, as before commits are easily missed if they do not con-
tain a keyword. If a pull request is relevant, all commits have an increased
chance of being relevant as well. Next off, when creating a pull request, the
author has the option of writing a more elaborate description than a com-
mit message of why those commits should be added to the main code base.
Furthermore, it also allows other developers to voice their opinion and start
a discussion. This makes it ideal for finding cost related changes together
with the reasoning why these modifications are made. This allows us to see
whether developers create new pull requests in order to reduce costs or if
it is of secondary importance. This paper will only focus on Terraform files
specifically, as it is a continuation of the previous paper.

In order to find out whether pull requests can be used as a tool to find de-
velopers’ awareness of costs, the following 4 research questions have been
formulated:

RQ1: Do pull requests show cost awareness, and to what extent?
RQ2: Do pull request review comments demonstrate cost awareness, and to
what extent?
RQ3: Do pull requests lead to commits that would not have been caught us-
ing the methods in the previous study, and how often?
RQ4: Does the linked data alter or strengthen the conclusion of cost aware-
ness, compared to the previous study?

In Chapter 2 the design of this study is laid out. After which, the results and
analysis are discussed in Chapter 3 and Chapter 4, respectively. At the end
there is Chapter 5 for the discussion, which answers the research questions
formulated above in detail and finally the conclusion in Chapter 6, which
summarizes most important takeaways of the paper.

6

2 | Study Design

In this chapter, we go over how the research is performed. This includes
methods, but also explanation of the different tasks, including their steps,
that need to happen in order to get to the results.

2.1 Methodology

In order to find meaningful data for cost awareness in pull requests we make
use of MSR (Mining Software Repositories) on the same repositories that
were used in the previous study [5], which can be found in their reposi-
tory [4]. As the source of the labels is the same in both cases, it allows us
to analyse the combination of the datasets from the two studies. The initial
study [5] has already composed a list of any repositories that are used for
their dataset, this list is also used for the current research. Furthermore, the
methods to retrieve relevant pull requests are heavily based on the methods
to retrieve the relevant commits [5]. We look for human written text on pull
requests that modify a TF file. The keywords that are used to search for pull
requests are used exactly in the same way as for commits. They are written
in the shortest form, such that any variations of the words are also captured.
These keywords are: ‘bill’, ‘cheap’, ‘cost’, ‘efficient’, ‘expens’ and ‘pay’.

2.2 Labels

In order to gather data, we label each pull request. The labels are mostly
the same labels that were also used for labeling commits [5]. Some labels to
further define another label are added. These are ‘nat’ and ‘vpn’ for network-
ing, ‘cpu’ and ‘ram’ for instance. Furthermore, ‘test’ and ‘change’ have been
added to distinguish the action of the change.

The labels are separated in 3 different levels, as can be seen in Figure 2.1.

First we have the effect of a pull request. As the name suggests, it means what
the effect of this pull request is on the costs of the application. Awareness in
itself does not have a direct effect on costs, but is still added to show that the
developer is cost aware.

Next off, we have the action. This shows whether the change is a temporary

7

2.3. Dataset update Chapter 2. Study Design

Figure 2.1: Cost awareness labels in different categories. Labels that further
describe another label are linked with a dotted line.

test or whether it is a (semi) permanent change. Alert is used when costs are
not changed, but cost monitoring is changed.

Finally, we have the property labels. These labels are to define what the spe-
cific cost related changes are, according to the description. Because of this,
it is the largest set of labels. An example: the label is ‘instance’ is awarded
in case a cheaper instance type is used. Some of these labels are used to fur-
ther define what or why it is changed, for example the instance had too little
memory. Then it would receive both ‘instance’ and ‘ram’.

All the definitions of each label are described in the appendix in Table A.1.

Note that pull requests also receive an additional label to demonstrate where
awareness is first mentioned. This can be either ‘body’, in case awareness is
found in either the title or description. In case awareness is found in a review
comment it receives the label ‘comment’. As these labels are more meta data,
they are not treated as other labels. This means they are not included in any
tables or graphs unless otherwise specified.

2.3 Dataset update

As the pull requests are retrieved after the latest included commit of the pre-
vious dataset, it is important that the commit dataset is also updated. This
because it is possible that commits that are relevant, but not reviewed are
part of a pull request. In order to update the dataset, all commits are re-
trieved from the known set of TF repositories used in the previous study [5].

8

2.4. Pull requests Chapter 2. Study Design

Figure 2.2: Steps required to update commit dataset

Figure 2.3: Steps required to label pull requests

All commits that are created after the 1st of April 2022 are filtered on whether
they include a cost keyword as defined in Section 2.1 and modify a file ending
with ‘.tf’ or ‘.tf.json’. From the resulting list of commits, any commit that has
already been labeled is excluded, the remaining are manually labeled. The
labeling process is done separately by 2 reviewers, after which any disagree-
ments are discussed and resolved when both reviewers agree. Any remain-
ing disagreements are resolved by a 3rd person, i.e. one of the supervisors of
this work. See Figure 2.2 for a graphical overview of the process.

2.4 Pull requests

Since the data is collected from GitHub it is likely that not all repositories still
exist. Any repository that no longer exist, is therefore not be inspected for any
pull requests. Furthermore, not all repositories make use of pull requests,
therefore these are also not included.

As mentioned previously, the same list of repositories as for the commits are
used to find pull requests, which are stored in the repository of the previous
study [4]. The steps to find relevant pull requests are described below. See

9

2.4. Pull requests Chapter 2. Study Design

Figure 2.3 for a graphical summary.

• Step 1: Scrape pull request information for each repository in this list
from the GitHub API, this is then stored in a JSON file. For each pull
request, the url, title, description, review comments and the hash for
each commit is retrieved. It is important to note that only a maximum
of 250 commits per pull request can be retrieved, due to limitations of
the GitHub API. Any missing commits are therefore ignored in the next
steps.

• Step 2: Retrieve the commits of the repositories that still exist (as of May
2024) and have at least 1 pull request. Store all commits that modify a
TF file for later use.

• Step 3: Remove reviewed, but unrelated commits from the previous
study [5] from the list of step 2. Commits which have been reviewed
but did not receive a cost related label are said to be unrelated, either
because it was a false positive or because it does not demonstrate cost
awareness. Any commit that has been reviewed and is found to be
relevant remains in the list, just like any commit that has not been re-
viewed. This step is not strictly required but removes unnecessary com-
mits, which reduces work later on.

• step 4: Step 1 and 3 are combined; Ignore all commits for each pull re-
quest that does not appear on the list from step 3. This means that only
commits remain that modify a TF file and are not found to be unrelated.
If there are no more linked commits, the pull request is excluded. This
because it is known that all the commits of the pull request are not rel-
evant, and therefore assumed that the pull request is also not relevant.

• Step 5: Filter out any pull request that does not have a keyword in either
the title, description, any review comment or any commit message. The
place of where the keyword is found is stored.

• Step 6: Format the remaining pull requests to a dataset format compa-
rable to that of the previous study [5]. For the content, only the pull
request title, content and (review) comments are included. The commit
messages are not included, as they should not influence the labeling of
the pull request.

• Step 7: Label each pull request by giving it a label from the predeter-
mined list in Table 2.1. The labeling is done by looking at text that
is written by humans in the pull request title, description and review
comments. This means that any text that is clearly automatically gen-
erated is not used to award labels to said pull request. As mentioned
before, the commit message is not used to assign a label. Another label
is added that demonstrates where cost awareness is demonstrated for
the first time. This can be either in the body / title of the pull request,
or in the review comments.

10

2.4. Pull requests Chapter 2. Study Design

Due to the project being done alone, a single person does the labeling.

• Step 8: Remove any pull request that was deemed to be unrelated.

• Step 9: Perform statistical analysis. Results show how often pull re-
quests are found to be relevant, as well as how often code reviewers
initiate cost awareness. These results are required to answer RQ1 and
RQ2.

• Step 10: Link pull requests labels to the labels of their already labeled
commits.

• Step 11: Perform analysis on the linked datasets. This shows how many
commits are contained in the relevant pull requests, which in turn an-
swers RQ3. Furthermore, with the connected data we can answer RQ4.

11

3 | Results

This chapter will display the results gathered from the study in separate sec-
tions. Sections are separated by what kind of data is collected. This chapter
will only show results, the analysis on this data will be performed in the next
chapter.

3.1 Commits update

The initial dataset of commits contains 538 labeled commits. Between April
2022 and May 2024, a total of 282 new commits from the same repositories
have been found. Out of which 68 relevant commits have been added to
the dataset. For the new commits, some new labels have been included, as
described in Section 2.2. The initial dataset does not contain these new labels.
Therefore, in the following, these labels have not been included in figures
where commits are used. In Figure 3.1 one can see the frequency of labels in
the updated commit dataset.

3.2 Descriptive statistics

Out of the 1278 initial repositories, only 610 (48%) still exist and make use of
pull requests. From these, 469 (77%) have pull request(s) with a TF changing
commit. Out of these, 203 (43%) repositories have a pull request that has a
keyword in either the pull request itself or one of its commits. That is 33% of
the existing repositories with pull requests.

Within these 203 repositories, a total of 33797 pull requests which modify
a TF file exist, of which 899 pull requests contain a cost-relevant keyword
(2.7%). Out of these pull requests, 249 (27.7%) have received a label, and thus
are found to be relevant to this study. This is 0.0074% of the total amount of
TF pull requests from these repositories.

All 249 pull requests that received a label are from the same 100 repositories,
which means that 103 of the 203 repositories do not show cost awareness in
their TF pull requests that contain keyword(s).

All the pull requests that modify a TF file have 130720 commits combined.
Of these, 3816 (3%) modify a TF file. 754 (20%) of these commits are part of a

12

3.3. Keyword locations Chapter 3. Results

Figure 3.1: Label frequency of 606 commits that modify a Terraform file and
show cost awareness. These commits are combined from the dataset of the
previous study and the commits that have been added since the commits
update.

labeled pull request of which 203 (27%) contain a keyword.

3.3 Keyword locations

As mentioned before, there are 4 locations in which keywords can be found.
These are the pull request title, pull request description, pull request (review)
comments and commit messages. Table 3.1 shows the frequency of keywords
in each location. Pull requests can have keywords in multiple locations, all of
these are counted. Not all parts of a pull request are always used. Table 3.2
shows how often each location is left empty. Commit messages were not in-
vestigated in this case, as this text was not examined while labeling. It does
not mean that there is always awareness in a given location, even if that pull
request is deemed to be relevant. In Table 3.3 one can see where awareness
was first demonstrated. The title and description were combined, as the de-
scription did not always exist and also because the title and description are
often similar and they are both written by the author.

13

3.3. Keyword locations Chapter 3. Results

Location Any location (relevant) Single location (relevant)
Title 111 (47) 28 (4)
Description 363 (161) 211 (59)
Comment 450 (70) 407 (54)
Commit message* 194 (122) 62 (7)

Table 3.1: Keyword frequency per location and frequency of relevance out of
899 pull requests. Keywords can appear in multiple locations. Whenever one
or multiple keywords are only found in a single location of a pull request, its
location is counted in the ‘single location’ column. The location is always
counted in the ‘any location’ column, even if keywords also appear in other
locations. For each case, the frequency of pull requests that have been found
relevant is stated between brackets.
* Note: unlabeled but reviewed commits have already been filtered out.

Location frequency
Title 0
Description 31
Comment 93

Table 3.2: Amount of pull requests that have no text in a location. All of these
pull requests modify a Terraform file and have a keyword.

Location frequency
Description / Title 192
Comment 57

Table 3.3: Frequency of awareness per location. Denotes the location of a
pull request where cost awareness was demonstrated first.

14

3.4. Labels Chapter 3. Results

3.4 Labels

A total of 783 labels are assigned between 249 pull requests, with a maxi-
mum of 5 labels for a single pull request and an average of 3.14 labels per
pull request. Note, this does not include the label for location of awareness.
Figure 3.2 shows the frequency of each label. Figure 3.3 shows the frequency
of co-occurrences of different labels within pull requests. Figure 3.4 shows
all combinations of labels in a pull request, combined with the frequency.

There are 166 pull requests that have labeled commits. 109 of these pull re-
quests are labeled, the remaining 57 pull requests are reviewed but not la-
beled. When comparing the labels of pull request with the set of the labels of
their commits, we have to separate the labeled and unlabeled pull requests.
If we would directly compare the labels of all pull requests with their com-
mits, the commits would be over represented. This because unlabeled pull
requests do not, as the name suggests, have any labels. In Figure 3.5 one can
see the intersection of the label frequency of related pull requests and their
commits. In Figure 3.6 one can see the frequency of labels in commits of un-
labeled pull requests. For these two figures, only labels that were also used
in the initial commit dataset are shown.

15

3.4. Labels Chapter 3. Results

Figure 3.2: Label frequency of 249 pull requests that modify a Terraform file
and show cost awareness.

Figure 3.3: Knowledge graph describing the frequency of co-occurrences of
labels within a pull request that modifies a Terraform file and shows cost
awareness.

16

3.4. Labels Chapter 3. Results

Figure 3.4: Upset plot showing the frequency of sets of labels in the dataset
of relevant pull requests.

17

3.4. Labels Chapter 3. Results

Figure 3.5: Label frequency of 109 labeled pull requests linked with their
commits. The set of labels of all commits of a pull request are compared to
the set of labels of the pull request itself. If label is both in set of pull request
and commit labels, it is a common label. Otherwise the label is either commit
only or pull request only.

Figure 3.6: Label frequency of commits in 57 pull requests that were re-
viewed, but did not demonstrate cost awareness in itself.

18

4 | Analysis

In this chapter we will analyse the results from the previous chapter. For
each section from Chapter 3 we will interpret the data and explain it in its
own section in this chapter.

4.1 Descriptive statistics

As can be seen in Section 3.2 the majority (77%) of the repositories that make
use of pull requests, have modified their TF file using a pull request. How-
ever, less than half of those also contain a cost-related keyword. Possible
reasons for this can be:

• developers do not explain why changes are made.

• developers do not explicitly mention cost related keywords while ex-
plaining, but use more general words.

• developers document their reasoning on an external websites like Trello.

• developers do not make modifications for cost saving reasons.

In the case of external documentation, we did find pull requests that con-
tained links to external websites, however none of them were publicly visi-
ble and therefore could not be further investigated. In order to see for what
reason these TF file were changed, one needs to look at the source code of the
changes.

Section 3.2 also states that only 27% of the TF modifying commits contain
a keyword, therefore almost 73% of TF changing commits in labeled pull
requests have not yet been investigated. Since these commits are part of a
labeled pull request, the chance of them being relevant is greater than a ran-
dom commit that modifies a TF file. Therefore, investigating these commits
can lead to more insights of how relevant commits are described, when they
do not contain a keyword.

19

4.2. Keyword locations Chapter 4. Analysis

Figure 4.1: Example of an Infracost message in a pull request.

4.2 Keyword locations

Next off, Table 3.1 shows that 50% of the pull requests with keywords have a
keyword in the comments. When we look at pull requests with keywords in
a single location they are also most commonly found in the comments. How-
ever, only 13% of these are found to be relevant. This is most likely because
of bots that automatically respond to pull requests. An example of such a
bot is ‘Infracost’, which appears in 29 (3.2%) of the TF pull requests with a
keyword. This bot gives an estimate of monthly hosting costs before and af-
ter the change, and calculates the difference between them. An example of
which can be seen in Figure 4.1. These bots logically contain cost related key-
words and the pull requests are therefore flagged. However, as mentioned
before, we are only interested in human written text. The addition of such a
bot shows awareness. However, these messages by themselves do not, as we
are looking for developer awareness.

The least common location for keywords is the pull request title. These ti-
tles are quite short and frequently do not mention why a change is made.
Often the title and the description are very comparable, which explains why
so little keywords are exclusively found in the title. As can be seen in Fig-
ure 3.2, the description is left empty in 31 cases, in which case the title often
functions as a short summary of the changes. This is comparable to that of
a commit message. Whenever the description is the only location that con-
tains a keyword, almost 28% of the pull requests are relevant. This is the
highest percentage out of all the exclusive locations. The lowest percentage
of relevant pull request out of the exclusive locations is for commit messages.
This can be explained by the fact that these messages are not included while
labeling the data. Interestingly, 7 pull requests are still given a label, even
though they did not contain any keywords. This shows that pull requests
can demonstrate awareness, even if they do not contain a keyword.

When we look at Table 3.3, we see that most often a pull request is created
with cost awareness in mind. In approximately 23% of the pull requests, a

20

4.3. Commit and pull request linking Chapter 4. Analysis

reviewer mentions cost awareness in a pull request that was not intended
for this purpose. This clearly does show that reviewing helps to reduce
costs. Furthermore, as can be seen in Figure 3.2, many pull requests do not
have any review comments. This number is even higher if we filter out any
bot comments from pull requests. This means that the percentage could be
higher than 37%, depending on the amount of pull requests with only bot
comments.

4.3 Commit and pull request linking

In Figure 3.5 we can see the frequency of labels that are common between la-
beled pull requests and their labeled commits. For most labels, a clear over-
lap is visible, for example for the ‘saving’ label and ‘instance’ label. For labels
like ‘cluster’ and ‘provider’ no overlap is recorded. The labels ‘provider’,
‘feature’ and ‘awareness’ are often only found in commits. The case for
‘awareness’ can be explained by the fact that pull requests can only get ei-
ther ‘awareness’ or ‘saving’, while the commits in the pull request can have
both. When the pull request only has ‘saving’, it means that ‘awareness’ is
commit only. However, this rule does not apply for the ‘saving’ label to the
same extent, as it is mostly a common label. This could be because these pull
requests are more elaborate and therefore are more easily identified as ‘sav-
ing’, instead of the more general label ‘awareness’. Another thing that can
be seen in this figure, is the fact that the more specific labels are more often
pull request only. A good example are the labels ‘storage’, ‘policy’ and ‘clus-
ter’. This could be explained by the fact that pull requests are documented in
more detail compared to commits. Therefore these labels appear more often.

21

5 | Discussion

In this chapter we will go over all of the research questions and give answers
with an explanation. Afterwards, we will go over how future work could
look like and why it is worth doing beyond addressing the limitations of this
work.

5.1 Cost awareness in pull requests

RQ1: Do pull requests show cost awareness, and to what extent?

From Figure 3.2 we can see that there are 249 pull requests created that in
some way show awareness. All of these show clear awareness. Most of them
in the form of a cost reduction. Therefore, we can conclude that pull requests
can show cost awareness.

Not all repositories make use of pull requests. From the 610 repositories that
make use of pull requests, only 100 repositories have at least 1 pull request
that shows cost awareness. From our findings, it seems that for most reposi-
tories, pull requests are not an efficient method to identify cost awareness.

5.2 Cost awareness in code review

RQ2: Do pull request review comments discuss costs, and to what extent?

In Table 3.3 we can see that most often the awareness originates with the au-
thor. In about 23% of the time, it originates in the comments because of a re-
viewer. The percentage could be higher when only factoring in pull requests
that have been reviewed. Furthermore, many pull requests exist without any
human written comments. Thus, review comments in pull requests are re-
sponsible for cost awareness in at least 23% of the reviewed pull requests.

22

5.3. Finding new commits Chapter 5. Discussion

5.3 Finding new commits

RQ3: Do pull requests lead to commits that would not have been caught us-
ing the methods in the previous study, and how often?

Section 3.2 shows that only 27% of the TF commits that are a part of a labeled
pull request contain a keyword. That means that 73% of these commits do
not have a keyword in their message, but have a higher likelihood of showing
cost awareness. Using pull requests as a mean to efficiently find previously
hidden commits shows to be quite effective in order to find more commits
that can show cost awareness.

5.4 Linked dataset

RQ4: Does the linked data alter or strengthen the conclusion of cost aware-
ness, compared to the previous study?

Figure 3.5 shows that commits and pull requests do not receive the same
labels in the same way. Having labels for both the commits and pull re-
quests therefore increases the amount of labels for a certain change and thus
strengthens the evidence of cost awareness.

5.5 Limitations & Future research

Firstly, an assumption that was made in step 4 of Section 2.4 might not hold
in practice. In this step a pull request is rejected if all TF modifying commits
are reviewed but not found to be relevant. In theory it is possible that the au-
thor did not put enough detail in the commit message, knowing that the pull
request would contain all the required details. This means that it is possible
for a relevant pull request to be rejected in this step. It would be interesting
to see whether developers omit such details from commit messages, but not
from pull request descriptions.

As described before, automated bot messages are a frequent occurrence in
pull requests. The same is true for (example) code that has been included in
a message. All of this text is a hindrance in the research and should be rela-
tively straight forward to filter out. Removing this will result in less false pos-
itives, which would greatly speed up the manual labeling process. It would
also be interesting to see how the removal of bot review comments has an
effect on the percentage of cost awareness in review comments. Especially
when comparing to other pull requests that have other developers reviewing
the pull request.

Moreover, as described in Section 4.2, pull requests can show cost awareness
even if they do not contain a keyword. This shows that the current list of

23

5.5. Limitations & Future research Chapter 5. Discussion

keywords is not necessary complete. However, adding to this list might also
increase the frequency of false positives. A further study about deciding ap-
propriate keywords could give insights how different keywords lead to more
pull requests, comparing the amount of resulting relevant pull requests to the
amount of false positives.

Furthermore, the current set of labels and their definitions should be im-
proved upon. Many definitions leave room for interpretation and not all la-
bels are specific enough. It should be intuitive and clear for a new researcher
to label a dataset using the set of labels. Rules should be put in place on
how to label and when to award each label. Currently the policy and feature
label especially have a vague definition that can be interpreted in multiple
ways. A policy can be to not allow developers to debug on expensive cloud
instances, but this is not explicitly an implemented rule. Should it then re-
ceive the label? Feature is defined by 3 examples of features, but in practice
means anything that is not a specific label, which is not evident from the
definition. Furthermore, the alert label should not be awarded when a user
receives access to certain cost reports. But one might assume this by looking
at the definition. An example of a rule that can be put into place is that there
should always be exactly one effect and action type label. As multiple re-
searchers will be labeling different datasets, it is important that there should
be the least possible room for a researchers own interpretation. This is to
improve the accuracy of the labels awarded.

Next off, how does the selection of repositories have an effect on the outcome.
For this research only older repositories are used that were created in or be-
fore 2022. Many of these might be abandoned repositories that were merely
created for a study project. When including new repositories and only select
repositories that are actively being worked by multiple developers and are
actually being hosted in the cloud, it would most likely give better insights
into many of the research questions.

Last off, it would be interesting to see what the unlabeled commits show
in relevant pull requests. Finding out the reason why these commits were
not found before might give us more insight in cost awareness for develop-
ers. Perhaps the messages were generic and do not show cost awareness
or maybe cost awareness is described with words other than the used key-
words. Furthermore, it might also be worth to study the code changes them-
selves. Perhaps, changes are made that show cost awareness, but are not
described as such.

24

6 | Conclusion

Using MSR to retrieve pull requests which modify Terraform files and make
use of cost related keywords, a total of 899 pull requests in 610 unique open
source repositories were found. All of these are manually reviewed and re-
ceived labels where appropriate. This results in a total of 249 pull requests
in 100 unique repositories that show cost awareness. From this we conclude
that pull requests can show cost awareness, but pull requests by themselves
are not effective at showing cost awareness for most repositories. When pull
requests are linked to their commits, they can strengthen the reason of cost
awareness, compared to commits. This because pull requests are often more
detailed and therefore more precisely explain why changes are being made.

In 23% of these pull requests, the pull request shows cost awareness because
of a reviewer. This shows that code reviewing can be effective at reducing
costs. Linking commits to relevant pull requests, shows that 73% of these
commits do not contain a keyword in the commit message, even though
these commits have an increased likelihood to be created out of cost aware-
ness. This shows that many commits that could show cost awareness do not
necessarily make use of the keywords used. Pull requests can function as an
efficient intermediate step to retrieve these types of commits.

25

References

[1] Marcus Vinicius Bertoncello et al. “Pull Requests or Commits? Which
Method Should We Use to Study Contributors’ Behavior?” In: 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). 2020, pp. 592–601. DOI: 10 . 1109 / SANER48275 .
2020.9054855.

[2] Leonardo Rebouças de Carvalho and Aleteia Patricia Favacho de Araujo.
“Performance Comparison of Terraform and Cloudify as Multicloud Or-
chestrators”. In: 2020 20th IEEE/ACM International Symposium on Clus-
ter, Cloud and Internet Computing (CCGRID). 2020, pp. 380–389. DOI: 10.
1109/CCGrid49817.2020.00-55.

[3] Dirox. The Evolution of Web Hosting. 2023. URL: https://dirox.com/
post/the-evolution-of-web-hosting.

[4] D. Feitosa et al. Dataset and population information regarding hosting
costs. 2023. URL: https://github.com/feitosa-daniel/cloud-
cost-awareness.

[5] Daniel Feitosa et al. “Mining for cost awareness in the infrastructure as
code artifacts of cloud-based applications: An exploratory study”. In:
Journal of Systems and Software 215 (Sept. 2024), p. 112112. ISSN: 0164-
1212. DOI: 10.1016/j.jss.2024.112112. URL: http://dx.doi.
org/10.1016/j.jss.2024.112112.

[6] IBM. What is IaC? Accessed in 2024. URL: https://www.ibm.com/
topics/infrastructure-as-code.

[7] Oleksii Kononenko et al. “Studying Pull Request Merges: A Case Study
of Shopify’s Active Merchant”. In: 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP). 2018, pp. 124–133.

[8] Sujatha R. What is pay-as-you-go Cloud Computing (PAYG)? 2024. URL:
https://www.digitalocean.com/resources/article/pay-
as-you-go-cloud-computing.

26

https://doi.org/10.1109/SANER48275.2020.9054855
https://doi.org/10.1109/SANER48275.2020.9054855
https://doi.org/10.1109/CCGrid49817.2020.00-55
https://doi.org/10.1109/CCGrid49817.2020.00-55
https://dirox.com/post/the-evolution-of-web-hosting
https://dirox.com/post/the-evolution-of-web-hosting
https://github.com/feitosa-daniel/cloud-cost-awareness
https://github.com/feitosa-daniel/cloud-cost-awareness
https://doi.org/10.1016/j.jss.2024.112112
http://dx.doi.org/10.1016/j.jss.2024.112112
http://dx.doi.org/10.1016/j.jss.2024.112112
https://www.ibm.com/topics/infrastructure-as-code
https://www.ibm.com/topics/infrastructure-as-code
https://www.digitalocean.com/resources/article/pay-as-you-go-cloud-computing
https://www.digitalocean.com/resources/article/pay-as-you-go-cloud-computing

A | Additional Data

Label Definition
alert text expressing concerns related to billing alarms enforcing an

upper threshold on costs
area text expressing concerns related to server or instance

geographical location.
awareness text simply mentioning taking cost into account. (without

necessarily implying action).
billing_mode text expressing concerns related to the type of billing plan

being used (e.g., on-demand for development or normal plan for
production).

change text expressing a (permanent) change in production code
cluster text expressing concerns related to cluster configuration.
cpu text expressing concerns related to cpu configuration.
domain text expressing concerns related to domain name system and

IP addresses
feature text expressing concerns related to various features such as

logging, load balancers or usage of third party libaries.
increase text expressing concerns related to increase in cost due to

a change.
instance text expressing concerns related to computational instances

(e.g., Amazon AWS t2.micro) used in the deployment.
nat text expressing concerns related to nat configuration
networking text expressing concerns related to networking configuration
policy text expressing concerns related to the implementation of general

rules to prevent charges.
provider text expressing concerns related to choosing a service providers

(e.g., Amazon, Azure, Google).
saving denotes mentioned changes made to save costs.
storage text expressing concerns related to storage solutions

(e.g., Amazon gp2) used in the deployment.
ram text expressing concerns related to ram configuration.
test text expressing a temporary change in production code for

testing purposes
vpn text expressing concerns related to vpn configuration

Table A.1: Label definitions, taken in the context of cost awareness.

27

	Introduction
	Infrastucture as Code
	Prior work
	Related work
	Scope

	Study Design
	Methodology
	Labels
	Dataset update
	Pull requests

	Results
	Commits update
	Descriptive statistics
	Keyword locations
	Labels

	Analysis
	Descriptive statistics
	Keyword locations
	Commit and pull request linking

	Discussion
	Cost awareness in pull requests
	Cost awareness in code review
	Finding new commits
	Linked dataset
	Limitations & Future research

	Conclusion
	Additional Data

