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Abstract
Myoclonus refers to brief, shock-like involuntary muscle contractions that can vary in intensity
and frequency. Electromyography (EMG) signals measure muscle activity and can record my-
oclonus bursts in patients with this movement disorder. Currently, clinicians manually detect
myoclonus bursts, a process that requires expert analysis and is time-consuming due to the sig-
nificant amount of EMG data. Machine learning offers potential solution to this problem.

This research is a follow-up to the study “Automatic detection of myoclonus bursts” [1], which
made the first step in myoclonus burst detection using machine learning. The focus of this study
is to potentially improve burst detection by using hybrid models that combine Convolutional Neu-
ral Networks with Long Short-Term Memory (CNN+LSTM) and Gated Recurrent Units (CNN+GRU).

Both models demonstrated the ability to identify bursts that corresponded to the annotated bursts
in the EMG data of myoclonus patients Additionally, the models predicted bursts in the EMG
data of healthy controls, which only contains non-bursts data. Although the models have shown
improvements and potential in detecting myoclonus bursts, further refinements are needed to
increase their accuracy and reliability.
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1 Introduction
Myoclonus refers to "brief, shock-like, involuntary" muscle contractions that can vary in intensity
and frequency [2]. These muscle contractions can happen to everyone and are considered normal
if they occur occasionally, such as in the case of hiccups [3]. However, if these contractions occur
frequently or disrupt daily activities, they could indicate an underlying and potentially serious
condition, such as epilepsy [1]. Myoclonus can be caused by a variety of factors, including med-
ications, neurological disorder, and genetic influences [1, 4], and it can take in different forms
affecting various parts of the body [3, 1].

For classification of myoclonus, physicians commonly distinguish myoclonus by its physio-
logical origin, which refers to where the impulse for the contraction originates [3]. The primary
subtypes include cortical, subcortical, segmental, spinal, peripheral and brainstem [3, 5]. This
subtype classification is crucial in diagnosing and choosing the most effective treatment strategy
[2], because the treatment of the subtypes differs from each other. [4, 6].

Electromyography (EMG) signals measure the muscle activity in voltage (millivolts) over time
(milliseconds) and consist of two types; surface and intermuscular EMG [3, 7]. Surface EMG
places electrodes on the skin covering the muscle, while intermuscular EMG inserts needle elec-
trodes or fine wires directly into the muscle [8]. Researchers typically use surface EMG for my-
oclonus burst measurement.

For burst classification, the clinician first identifies the myoclonus bursts in the data and then
classifies the bursts in one of the subtypes [1]. When dealing with significant amounts of EMG data
from patients, manually detecting myoclonus bursts is a highly time-consuming task, requiring
expert and accurate analysis, which can lead to delays in diagnosis and treatment. Fortunately,
machine learning techniques offer a potential solution to speed up diagnostics [1].

Machine learning is the study of developing algorithms and models that enable machines to
learn from input data, allowing them to make decisions and predictions [9]. Machine learning is
able to process large datasets, which reduces the computational cost while being able to maintain
high accuracy and efficiency in tasks as pattern recognition, classifications, and feature extrac-
tions in a diverse range of fields. Several studies have implemented successful machine learning
techniques in problems with similar EMG data sets [10, 11, 12, 13]. This inspired the previous
study "Automatic detection of myoclonus bursts in EMG data" [1] to use machine learning for the
detection of bursts in EMG data of myoclonus.

This research is a follow-up to the study "Automatic detection of myoclonus bursts in EMG data"
[1] and in collaboration with the Next Move in Movement Disorders (NEMO) study of Expertise
Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG) [14]. The
previous study made the first step in the automatic detection of myoclonic bursts.

The study suggested that the most suited model for the bursts detection in EMG data is a
recurrent neural network (RNN) with long short-term memory (LSTM), because of its ability to
handle sequential data, integrate contextual information and use supervised learning with the
labelled data (‘non burst’ and ‘burst’). The proposed model resulted in a detection accuracy of
76% for testing and 50% for the entire dataset.

The goal in this follow-up project is to improve myoclonus burst detection by proposing a new
model architecture. I will consider the research following question:
Can the detection algorithm be improved with respect to implementation, performance and ro-
bustness?

In this paper, I will discuss the previous study and investigate related studies to determine which
model to examine for potential improvement in section 2. In section 3, I will discuss the method-
ology. The results will be presented in section 4 and analysed in the section 5. Finally, the paper
will conclude with the findings and suggestions for future work in sections 6 and 7, respectively.
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2 State of the art
‘Automatic detection of myoclonus bursts in EMG data’ [1] made the first step in detecting my-
oclonus bursts in EMG data using a deep learning solution. This section will begin by summariz-
ing their process and findings.

2.1 Previous study
The research used EMG data from patients of UMCG with the movement disorder myoclonus,
obtained while performing specific tasks: resting (1), postural (17), and dynamic (22, 23), which
will be explained in section 3.1. In this data set, the myoclonus bursts were labelled manually.

The author suggested that EMG data from Task 17 would be most effective for creating an opti-
mal detection model, because patients experienced the most bursts and had the highest number
of labelled bursts.

Due to much noise in the data, a denoising Butterworth filter with a bandwidth of 10,450 and
an order of 6 was applied for preprocessing. For the detection strategy, they decided to use the win-
dow technique to classify 256-windows as ‘burst’ if bursts were present, or ‘non burst’ otherwise.
They used this dataset for both burst and non-bursts samples and applied data augmentation to
create additional bursts samples. The bursts and non-burst samples were distributed among the
training, validation and test set, ensuring that each set contained samples from each patient.

Analysing the EMG data, they detected that models capable of processing this sequential data
and incorporate the contextual information would be best suited for the detection.

A recurrent neural network (RNN) model meets these requirements but can struggle with long
term dependencies. The Long term-short memory (LSTM) extension addresses this problem.
Therefore, the research proposed a RNN model with LSTM. By experimenting with different model
architectures and hyperparameter settings, they retrieved the optimal combination that achieved
the highest accuracy. This looked as follows:

The model was trained with 250 epochs and batches of size 64. The input was an array of size
256x1. The model architecture was as follows: A LSTM layer with 300 hidden units, a dropout
layer with 0.25 drop rate, a dense layer with 128 units and ReLU and a dense output layer with 2
units and softmax activation. The Adam optimizer was used with a rate of 1-e5. See figure 1.

Figure 1: The architecture of the best model of [1].

The research resulted in an accuracy of 76% with the testing set and 55% with the entire dataset,
which included all four tasks (also explained in section 3.1). For future work, the author suggested
adding more complexity to the model, data cleaning and modifying the training, validation, and
test data set composition to enhance the performance on new, unseen data (model generalization).

2.2 Related work
As mentioned in section 1, several studies successfully applied machine learning to similar data
sets. To further this research, this section will also review other studies that applied machine
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learning, particularly RNNs, on similar data. By examining these approaches, I aim to discover
potential improvements and innovations for this follow-up research.

[15] evaluated LSTM, Gated Recurrent Unit (GRU), and Bidirectional RNNs for classifying EMG
signals related to five movements of the right upper limb. They pre-processed their EMG signals
with a Butterworth filter and applied a window technique with 250 milliseconds (ms) windows
and 190 ms overlap. The model architecture consisted of two RNN layers and one fully connected
(FC)/dense layer. With the Grey Wolf Optimization, they tuned their hyperparameters to obtain
the optimal model, achieving accuracies between approximately 95% and 99% for all RNNs. This
study demonstrated the impact of RNNs on the EMG signal classification in terms of effectiveness
and speed.

Much research has been done on the EMG data of gesture recognition. [16] and [17] used LSTM
for hand gesture classification, while [12] for human movements such as walking.

[12] developed an optimal detector tool for human movements using an architecture of two
LSTM layers, one FC (dense) layer with softmax activation function.

[17] applied various filters for denoising and signal smoothing, including a finite impulse re-
sponse (FIR) filter, a low-pass filter, and an additional moving average Filter (SMA). They also
standardize the data. They compared a one-dimensional convolutional neural network (1D-CNN)
model, comprised of three 1D-CNN layers and one max pooling layer, with a LSTM model, com-
prised of two LSTM layers and two dense layers. The LSTM model achieved an accuracy of ap-
proximately 95%, while the 1D-CNN model achieved 85%.

The study of [16] applied mean subtraction, the absolute value, SMA and normalization to filter
and smooth the signals. They evaluated six LSTM models, where the sixth model, comprised of
one dense layer, one LSTM layer followed by another dense layer using softmax activation function,
obtained the highest accuracy of 87% ± 7%.

The studies [18, 19, 20] proposed a CNN with LSTM model for the recognition of hand gestures,
and [21] for muscle classifications.

[18] obtained an average recognition accuracy of approximately 99% and 97% for two datasets.
They applied standardization as preprocessing step, scaling the data to have a mean of zero and a
standard deviation of one. The architecture included one convolution layer, one max pooling layer,
one LSTM layer, and one dense layer with a softmax transfer function, using a hyperbolic tangent
activation function.

The CNN-LSTM model of [19] achieved a mean recognition accuracy of 90.55% ± 9.45% using
the window technique with a windows size of 300 datapoints and Short-Time Fourier Transform
for preprocessing. The model consisted of a convolutional layer with ReLU, one flatten layer, one
LSTM layer and one FC layer with softmax.

Study [20] obtained recognition accuracies between 87.0% and 99.7% depending on the differ-
ent gesture recognition dataset. Their model included two convolution layers, two locally connected
layers, three FC layers, one LSTM layer, followed by another FC layer with softmax.

For muscle classification, [21] succeeded to accurately classify various muscle groups in pa-
tients. Their architecture consisted of two (1D) convolution layers, one FC layer, one LSTM layer,
another FC layer, and ended with a FC layer with softmax.

[22] used a CNN with GRU model for hand gesture recognition, achieving a recognition accuracy of
approximately 76%. Their model used ReLU activation and included two convolution layers, one
dropout layer, followed by two more convolution layers, one dropout and one max pooling layer,
one GRU layer, followed by three blocks of one dense layer and one dropout layer.

The research of [13] compared CNN with LSTM and GRU for the recognition of lower limb ac-
tivity. They pre-processed the data using Butterworth and wavelet denoising filters, followed by
normalization. Additionally, they applied a windowing technique with a 256-window sample and
a 25% overlap. The model architecture consisted of two convolution layers, one max pooling layer,
two LSTM or GRU layers, and two FC layers. The CNN+LSTM model achieved an accuracy of ap-
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proximately 97%, while the CNN+GRU model achieved an accuracy of approximately 98%.

Observing these studies, the accuracy of detection using machine learning models such as LSTM,
CNN+LSTM and CNN+GRU is remarkably high. However, the architectures obtained in these
studies vary, and no single architecture emerges as the best model. Based on the findings of the
previous study and the related works using CNN and RNN, I will examine the hybrid models of
CNN with LSTM and CNN with GRU for the detection of myoclonus and draw inspiration from
these architectures to improve the detection model of the previous study.
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3 Methodology
In this section, I will discuss the methodology of this research. First the data for the research will
be discussed, followed by the explanation of the preprocessing techniques applied on this data.
Next, I will explain the different neural network architectures for the proposed framework, along
with the metrics used to evaluate the model’s performance. This will be followed by an overview
of the implementation of the code. And finally, an overview of the settings that will be tested.

3.1 Data
This study used the EMG data from the Next Move in Movement Disorders (NEMO) study of Exper-
tise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG). They
collected data from approximately two hundred selected UMCG patients, diagnosed with a move-
ment disorder or as healthy control [14]. The EMG data of patients with the movement disorder
(cortical) myoclonus, polyminimyoclonus and myoclonus dystonia (gen negative/SCGE) were se-
lected for myoclonus burst detection.

For non-bursts data, I used the healthy control group and a small set of non-burst annotations
from a few patients with the movement disorder. This approach differs from the previous study,
which did not incorporate the healthy control group.

The NEMO team obtained EMG data by attaching sixteen sensors to the patient’s arms, hands,
and face during procedures of rest, posture and action. For this research, I only used the right
and left sensors of the biceps (BiR and BiL), the extensor (ExR and ExL) and flexor (FlR and FlL),
which are denoted as sensors 3 up to 8, respectively. The patients with the movement disorder
had sensor data only from the side of the body where the myoclonus primarily occurs. Therefore,
for the ‘burst’ samples, data from sensors 3, 5 and 7 from the right side, or 4, 6 and 8 from the
left side are used, depending on the patient’s condition. For the healthy control group, data from
all six sensors are used.

The procedure of ‘rest’ is represented by Task 1, where the patients rested their hands on their
legs with palms facing upwards. The procedure of ‘posture’ is represented by Task 17, where the
patients kept their hands straight in front of the body with vertical palms. Lastly, the procedures
of ‘action’ are represented by Task 22 and 23, where the patients preformed a "finger-to-nose ma-
neuver" (22 for the left arm and 23 for the right arm) [2, 1].

Each of these tasks lasted for around thirty seconds, providing an average of 60.000 data points
at a measurment frequency of 2000 Hz. Afterwards, the NEMO team manually labelled the onset
and offset of the bursts in the EMG data, creating a dataset primarily used for analyzing burst
duration differences across multiple myoclonus subtypes (publication under revision). From a
few patients, they also annotated segments of EMG data where with certainty no bursts activity
occurred, which was used for the non-burst data. The EMG data from the healthy control group
consists of non-bursts only.

This research continued to focus on bursts detection in EMG data from Task 17, as it contains
the most identified bursts and where the patients experienced the most bursts [1].

3.2 Data preprocessing
This research used the same preprocessing techniques applied in the previous study, as they
improved the effectiveness of the detection model’s training. I will briefly go through these tech-
niques.
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3.2.1 Filtering and rectification

The previous study has shown that bandpass filtering the EMG data had a positive effect on model
performance. Therefore, I used the same Butterworth bandpass filter for the EMG data as the
previous and other studies have shown to be effective [1, 13, 23]. This filters helps removing the
low- and high-frequency noise, preserving clear muscle activity in the EMG signals [24]. The filter
applied a bandwidth of 10,450 with order six, decreasing the impact of frequencies outside the
range of 10 up to 450 Hz.

After applying the filter, the absolute value of the signal is computed. This rectification converts
the signal to all positive values, thereby improving the measured cortical signals in the EMG data
[25]. This process helps in better identifying the amplitude and strength of muscle contractions
of the muscle activity.

3.2.2 Windowing

The manually labelled data set, with their own assigned start and end times of myoclonus burst,
creates a potential human bias when training a model with these labelled bursts. With the win-
dowing technique I will not constrain the model to detect these exact start and end points, but
rather classifying sample windows into one of two classes: ‘bursts’ or ‘non-bursts’. The labelled
bursts in the dataset have a duration of approximately 50-70 milliseconds, which corresponds
to 100-140 datapoints. Therefore, a window size of 256 datapoints, the first power of two that
guarantees capturing the entire burst, was chosen for the data samples and was used for this
research.

3.2.3 Augmentation

The total number of bursts across all participants than can be sampled with a window size of
256 datapoints is relatively small. Therefore, I augmented the data to increase the number of
burst samples for the training, validation and testing datasets. I sampled ten different positions
of each burst within a 256 data point window, creating ten data samples per burst. Through
this augmentation strategy, the model learns to detect burst without bias towards their specific
location with the time window.

3.2.4 Scaling

One preprocessing technique that was tested in this research is the application of normalization,
standardization or neither to the dataset to improve the model accuracy. Both techniques aim to
make the data consistent for machine learning.

Normalization scales the data to a specific range, bringing all features to a consistent scale,
without disturbing the difference in their range of values. [26]. For this research, the Min-Max
normalization was applied with a range of [0,1]. The equation is as follows:

x′ =
x− xmin

xmax − xmin
(1)

Standardization scales the data to have a mean of zero and a standard deviation of one [26],
achieving a consistent scale across all features, improving their comparability.[26]. This is also
known as the Z-score standardization. The equation is as follows:

x′ =
x− µ

σ
(2)

,where µ is the mean of x and σ is the standard deviation of x.
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3.3 Proposed Framework
3.3.1 Convolutional neural network (CNN)

Figure 2: Convolution.

Convolutional neural networks (CNNs) are well-
known neural networks that are specialized in
analysing local patterns in data, such as signals
(1D), images (2D) and videos (3D) [27].

By extracting relevant features and patterns us-
ing convolutional operations, CNNs can be used for
classification, recognition, segmentation or detec-
tion. This research explored the detection of the
EMG sequence data; therefore, the most suitable
CNN model is the one-dimensional CNN.
The basic architecture of a neural network consists of the input, hidden and output layers. In
a convolutional neural network, the hidden layers primarily consist of three types of layers: the
convolution, the pooling and the fully connected (dense) layer [28].

The convolution layers in the 1D CNN extracts valuable features by sliding a filter (kernel) of
size k over the 1D input sequences and computing dot products with the signal values, generat-
ing a feature map capturing patterns [18], see Figure 2. In a convolution layer, you specify the
number of filters. Each filter applies the convolution operation to the input, generating a feature
map. Consequently, the number of filters determines the number of feature maps produced. In
this research, the number of filters is one of the parameters that was tested with various values.
To add non-linearity to the outcome, the CNN applies an activation function to the feature map
after the convolution layer. In this research, the rectified linear activation unit (ReLU) function
was used.

ReLU(x) = max(0, x) (3)

, where x is an input value.

Next, the result passes through pooling layers, which reduce the spatial dimensionality of the
feature maps and summarize the most important features [28, 29]. This research applied max
pooling that selects the maximum value within the pooling window, as shown in Figure 3, high-
lighting the most important features related to the muscle activity extracted by the convolutional
layer.

Figure 3: Max pooling. Figure 4: Fully connected layer.
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Finally, the fully connected (dense) layer converts the feature maps into a 1D array with a size
equal to the number of classes, see Figure 4. Each entry corresponds to the predicted score or
probability of a specific class. In this research, the fully connected layer was applied after the
recurrent neural networks’ variants.

Even though CNNs typically contain these three layers, additional layers can be added to improve
model performance. In this research, I expored the use of the dropout layer, which was tested in
both CNNs and RNNs . The dropout layer drops a fraction of the input data during training, to
add regularization and therefore prevent overfitting [30].

In this research, our model must classify the windows samples into the two categories: ‘non-
burst’ (0) and ‘burst’ (1). This categorization falls under binary classification. To achieve this, the
sigmoid activation function was used in the final layer (the dense layer) of the neural network. The
sigmoid function outputs probabilities in the range of 0 to 1, allowing us to interpret the result as
the probability that an input sample belongs to the class ‘non-burst’ (0) or ’burst’ (1). The sigmoid
activation function is as follows:

σ(x) =
1

1 + e−x
(4)

, where x is an input value.

3.3.2 Recurrent Neural Network (RNN)

What the recurrent neural network (RNN) differs from the convolutional neural network (CNN)
is its ability to analyse sequential time-series data, such as text, video or in our research, EMG
data (time vs amplitude) [31]. The RNN processes the input sequentially in the hidden layers with
recurrent connections. Due to these recurrent connections, the RNN can use the previous outputs
as extra input for analyzing the next data points, leading to an inherent memory that contains
information about all previous sequences.

However, when as RNNs becomes deeper, training can become slower and less effective due to
the vanishing gradient problem.This problem occurs during backpropagation when the gradients
decrease to very small values, which causes the weights in the earlier layers of the network to stop
updating and hinders the network’s ability to learn from long-term dependence [32]. This problem
leads to deficient performance of capturing the long-term dependencies in RNNs.

Long Short-Term Memory (LSTM)
To solve this problem, they introduced an extension of the RNN, namely the Long Short-Term
Memory (LSTM) [33]. The LSTM layer consists of multiple specialized memory LSTM cells, see
Figure 5, with gating mechanisms that regulate information flow and therefore improve the long-
term dependencies. Within the LSTM cell, there are three gates: the forget gate, the input gate,
and the output gate each with its own bias and weight vectors.

The forget gate, ft, determines the proportion of information that should be removed ("forgotten")
from the cell state Ct [1, 18]. The current data point Xt and the previous hidden state ht−1 are
passed through a sigmoid function with their own weights Wfx and Wfh and bias bf . The output,
ft, ranges from 0 to 1, determining to use all information (1) or none (0).

ft = σ(WfxXt +Wfhht−1 + bf ) (5)

The input gate, it, controls the addition of new information into the LSTM memory unit Ct−1.
Here, Xt and ht−1 are passed through a sigmoid function with weights Wix and Wih and bias bi to
determine how new current information to forget, similar to the forget gate.

it = σ(WixXt +Wihht−1 + bi) (6)
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Figure 5: The LSTM cell.

Then the new information C ′
t (cell activation), is processed through a hyperbolic tangent func-

tion with Xt and ht−1, using weight WC and bias bC . The outputs of the It and C ′
t are multiplied

to incorporate the new information into Ct, see equation 9.

C ′
t = tanh(WCXt +WCht−1 + bC) (7)

The output gate, ot, determines the proportion of information from the current cell state Ct for
current hidden state ht. Here, Xt and ht−1 are passed through a sigmoid function with weights
Wox and Woh and bias bo.

ot = σ(WoxXt +Wohht−1 + bo) (8)
The current cell state, Ct, is obtained by multiplying the previous cell state Ct−1 by the forget gate
output and adding the result to the product of the input gate output and C ′

t.

Ct = ft ⊙ Ct−1 + it ⊙ C ′
t. (9)

This Ct value is then passed through a hyperbolic tangent function and multiplied by the output
gate value to produce the new hidden state ht.

ht = Ot ⊙ tanh(Ct) (10)

Gated Recurrent Unit (GRU)
Another solution to the vanishing gradient problem is the gated recurrent unit (GRU), a modi-
fication of the LSTM [34, 35]. Similar to LSTM, GRU processes sequential data through gates,
but is uses only the hidden state to handle the memory, removing the separate memory cell (Ct

in LSTM). Additionally, the GRU cell consists of two different gates, namely the update and reset
gate, see Figure 6.

The update gate, ut, decides the amount of past information to be preserved for the future. The
current data point Xt and the previous hidden state ht−1 are passed through a sigmoid function
with their own weights Wux and Wuh and bias bu.

ut = σ(WuxXt +Wuhht−1 + bU ) (11)

The reset gate, rt, controls how much past information to forget. Here, Xt and ht−1 are passed
through a sigmoid function with weights Wrx and Wrh and bias br.

rt = σ(WrxXt +Wrhht−1 + br) (12)
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Figure 6: The GRU cell.

The internal activation h′
t, captures relevant past information. h′

t is computed by the output of rt
multiplied by ht−1, combined with Xt, and passed through a hyperbolic tangent function with the
weight Wh′x and Wh′h and bias bh′ .

h′
t = tanh(Wh′xXt +Wh′h(rt ⊙ ht−1) + bh′) (13)

The current hidden state, ht, is derived by multiplying ut with h′
t and adding it to the results of ut

multiplied by ht−1.
ht = ut ⊙ h′

t + (1− ut)⊙ ht−1 (14)

Having one fewer gate, GRU uses fewer parameters, increasing simplicity, efficiency, and speed.
However, GRU might to not process complex sequential patterns or very long-term dependencies
as good as LSTM. Both extensions have their advantages and disadvantages; therefore, in this
study I examined both RNN extensions [36].

In this study, I applied hybrid convolutional neural network models, which extract relevant fea-
tures from EMG data, with variants of the recurrent neural network, the LSTM and GRU, handling
the sequential time series data with their inherent memory. These hybrid models were explored
for the detection of bursts in the EMG data and examined for an improvement of [1].

3.4 Model evaluation
To develop the optimal model, I use the three datasets: training, validation, and testing set, with
a 60-20-20% distribution respectively.

The training set is used to train the model, while the validation set, which contains new un-
seen data, is used to finetune the hyperparameters. Based on the accuracy improvements from
the validation set, the optimal model is saved. The test set, also containing new unseen data, is
used to evaluate the final model’s performance, ensuring its generalizability to new data.

To evaluate the performance of the various models tested in this research, I used the following
metrics: Accuracy, Loss, Precision and Recall.
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Accuracy measures the percentage of correct predicted labels by calculating the ratio of correctly
predicted labels to the total number of true labels:

Accuracy =
Correct predicted labels

Total number of true labels
(15)

Loss evaluates how well the model predicts the true label. A lower loss indicates better per-
formance in predicting the true labels, while a higher loss implies less accurate predictions. For
the loss calculation, binary cross entropy (BCE) is used, which measures the differences between
predicted and true binary labels. The equation is as follows [37]:

BCE = − 1

M

M∑
m=1

[ym × log(hθ(xm)) + (1− ym)× log(1− hθ(xm))] (16)

, where M is the number of samples, ym is the true label of the m-th sample, xm is the predicted
label input of the m-th sample and hθ the model with neural network weights θ.

The metrics Precision and Recall use True Positives (TP), True Negatives (TN), False positives (FP),
and False Negatives (FN) to evaluate the prediction performance of a model. True Positives (TP)
are the number of positive samples correctly identified as positive. True Negatives (TN) are the
number of negative samples correctly identified as negative. False Positives (FP) are the number
of samples that are incorrectly identified as positive, and False Negatives (FN) are the number of
samples that are incorrectly identified as negative [15].

Precisions measures how accurate the positive predictions are. [38]. It computes the percentage
of positive predictions that are correct. The equation is as follows:

Precision =
TP

TP + FP
(17)

Recall measures the model’s ability to correctly identify positive samples. It computes the per-
centage of positive samples that are correctly predicted as positive. The equation is as follows:

Recall =
TP

TP + FN
(18)

Figure 7: The confusion matrix.

After obtaining the optimal CNN+LSTM and CNN+GRU
models, I evaluated their performance on the training, val-
idation, and testing sets using confusion matrices.

The confusion matrix provides an overview of pre-
dicted and true labels with the TP, TN, FP and FN,
as shown in Figure 7. In this research, a pos-
itive label (1) represents the detection of a burst,
while a negative label (0) represents the absence of a
burst.

Additionally, the models’ predictive performance are eval-
uated by applying them to EMG data from the test set,
which includes both myoclonus patients and healthy con-
trols, performing not only Task 17 but also the other dis-
cussed tasks. The evaluation included several decision
thresholds, which determines the cutoff for classifying a
sample as positive (‘burst’) or negative (“non-burst”).
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3.5 Implementation
The programming language used in this research was Python 3.10.10. The most important Python
package for this research was Keras 3.3.3. This research relied on the Keras framework for creat-
ing, training, and testing the neural networks. Keras also provided useful callbacks and offered
the advantage of tensors, which are optimized multidimensional arrays designed for GPU process-
ing.

Other helpful packages in this research were sklearn for the normalization or standardization
of the data confusion matrix, NumPy for arrays structures and matplotlib for the visualization of
the loss and accuracy during the training and testing process.

The models were trained on Linux Ubuntu 22.04 system with an NVIDIA RTX3090 GPU and
CUDA version 11.2 [39].

3.5.1 Samples

First, I filtered out the patients labelled with the movement disorder or as healthy controls from the
NEMO data. Patients with a movement disorder were labelled with the types (cortical) myoclonus
and myoclonus dystonia (gen negative/SCGE). Patients with polyminimyoclonus were included
and classified under the myoclonus group.

Within each group (myoclonus, myoclonus dystonia and healthy control), I divided the patients
into 60%-20%-20% distributions for the ’burst’ or ‘non-burst’ training, validation, and testing set,
respectively.

More specifically, there were twenty patients with myoclonus, twenty six patients with my-
oclonus dystonia, and fourty healthy controls. Twelve patients with myoclonus and sixteen pa-
tients with myoclonus dystonia were placed in the ‘burst’ training set, while twenty four healthy
controls were placed in the ‘non-burst’ training set.

The creation of samples differed for the burst and non-burst data. For each training, valida-
tion, and test set, I followed the same process:

Burst sets
For each patient in the respective list (train/validation/test), I looped through the list of tasks,
retrieved the list of timestamps and then looped through each sensor. For each sensor, if the
EMG data existed, I applied the Butterworth filter and rectified the data. Then, I retrieved the
corresponding list of bursts, align the bursts annotations with the time stamps and ordered the
bursts chronologically.

Next, I looped through the list of bursts. For each burst, I retrieved the start and end points
and extended the burst window to a size of 256 data points. I created samples by extracting the
corresponding EMG data for each window and applied data augmentation to generate ten burst
samples per burst, with each sample placing the burst at a different position within the window.
The samples from the patients were placed in one list and returned to the corresponding train/-
validation/testing set.
Some movement disorder patients also had non-burst annotations. For these, I retrieved the
non-burst data and checked if it did not overlap with burst-labelled data. If it did, I remove any
overlapping bursts and non-bursts from both lists. For each non-bursts, I sampled the non-burst
data with a 75% overlap if the non-burst is longer than 256 datapoints.

For each training, validation, and testing list, I also maintained a corresponding label list. Initially,
this list was created with the same size of the corresponding burst list and filled with one’s.

Healthy control group
For each patient in the respective list (train/validation/test), I retrieved the list of timestamps and
the EMG data from all six sensors. For each patient, I selected the EMG data from one sensor
and denoised it with the Butterworth filter. The sensor number changed after processing a pa-
tient. The non-burst samples were created by retrieving the EMG data within a window of 256
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datapoints window with a 25% overlap. All non-burst samples from the patients were stored in
one list and returned to the corresponding data set.

After retrieving the non-burst samples, I merged the two non-burst sample lists together for train-
ing, test, and validation sets. Then, I checked if the amount of burst and non-burst samples was
equal, such that I had a 50% division in each set. If the non-burst sample list is lesser, I created
additional samples using the same process but selected data from a different sensor than before
and cropped the list of non-burst samples to the same length as the burst samples.

After the check, I added the non-burst samples to the corresponding burst sample list and ap-
pended the number of zero’s, which is equivalent to the number of non-burst samples (and burst
samples), to the label list of the corresponding set.

Next, I applied normalization or standardization to the dataset. The scalers, obtained by the
training data, were saved using joblib. Depending on the model, the suitable scaler should be
applied to the new, unseen data before entering the model.

Finally, the sample lists are reshaped into a 3D shape array, ready for the training and testing
the model.

3.5.2 Models

The models are implemented using Keras. I looped over the list of batch sizes, epochs, and filters
values. For example, with [100] epochs, [16,32] batch sizes and [16, 32] filters, the model was
trained and tested with the combinations (100,16,16), (100,16,32), (100,32,16) and (100,32,32).

In a dictionary named parameters, I stored the following parameters: model_number, layer,
hidden_units, max_pool, droplayer, droprate, adam_rate, dense_units and kernel_size.

To observe how well a model performed, I did not rely on the results of a single training run.
Instead I took the average two runs. Therefore, in the implementation, the model could be trained
for a certain number of REPEATS. For each repeat, the obtained losses and accuracies of training,
validation, and test along with the parameters were saved in a csv file. After all the repeats, a sep-
arate csv saved the mean and standard deviations of all test accuracies along with the parameter
settings. For each repeat, the loss values of the training and validation set during the training of
X epochs were stored in separate Dataframe and were plotted after all repeats.

3.5.3 Confusion matrices and prediction plots

The confusion matrices for the training, validation and test set were generated with the confusion_matrix
function of sklearn and were plotted with the package sns.

For the predictions plots on the EMG data, the timestamps and the EMG data of the specific
test patient with a specific task and sensor were first retrieved. Both the raw unfiltered EMG
data and the filtered, scaled EMG were saved in two separate plots, which were the same for both
models.

A loop then slid over the EMG data with a step size of 1, saving each 256-window sample into
a separate list. Another list recorded the start times of these sample, which were the timestamps
of the middle data point of the 256-windows.

The EMG samples were then scaled with the scaler associated with the trained model. The
predict function of Keras returned a list of probabilities for each sample, representing the likeli-
hood of being a “burst”. Based on the selected decision threshold, each sample was classified as
either ‘burst’ or ‘non-burst’. The start and end times of detected bursts were listed in two separate
lists. Finally, these times were plotted as vertical lines on the scaled and filtered EMG data plot
to visualize the detected bursts.
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3.6 Models and Settings
In this research, I performed a grid search to obtain the optimal model implementing the CNN+LSTM
and CNN+GRU architecture.

These are the parameter settings that were tested:

1. The number of layers.

• Layer 1: CNN and LSTM/GRU
• Layer 2: CNN, CNN and LSTM/GRU
• Layer 3: CNN, CNN and LSTM/GRU, LSTM/GRU
• Layer 4: CNN, CNN, CNN and LSTM/GRU, LSTM/GRU
• Layer 5: CNN, CNN, CNN and LSTM/GRU, LSTM/GRU, LSTM/GRU

After each CNN layer, the ReLU activation function is applied.

2. The number of Drop layers, which are placed after a CNN and LSTM/GRU block:

• Drop layer 1: CNN block, LSTM/GRU block, Drop
• Drop layer 2: CNN block, Drop, LSTM/GRU block, Drop

3. The number of epochs, batch sizes, filters, hidden and dense units:

• Epochs = [50, 100, 300]
• Batch sizes, filters, hidden and dense units = [8,16,32,64,128]

4. Data preprocessing

• Standardization, Normalization or None

These are the fixed parameters:

• Max pooling = 2
• Kernel size = 3
• Dropout rate = 0.5
• Learning rate of the Adam optimizer = 0.001

The network tail of the model consist of two Dense layers. The first layer applied the ReLU activa-
tion function, while the second applied the sigmoid activation function.
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4 Results
In this section, I present the findings obtained during this research, aimed at improving the model
for the detection of bursts. I begin by showing the amount of samples and providing examples of the
input samples using the different scaling techniques, each with the 256-window. Following this, I
showcase the visual representations of the best obtained convolution neural network (CNN) with
long short-term memory (CNN+LSTM) and CNN with gated recurrent unit (CNN+GRU) models.

Next, I present plots showing the loss and accuracy during the training of three hundred epochs
for both the training and validation sets for each model, indicating the models’ training and val-
idation performance. The evaluation metrics of the test set are then presented to show the per-
formance of both models on unseen data samples. Additionally, the confusion matrices for the
training, validation, and test sets are provided to evaluate the models’ prediction accuracy.

Finally, I visualize the prediction performance of the models on unseen EMG data by plotting
the EMG data with annotated bursts and predicted bursts in separate plots. This visualization
is given for both patients with movement disorders, for the ’burst data’ analyses, and healthy
controls, for the ’non-burst’ data analyses.

4.1 Data samples
In this research, the ’bursts’ samples for training, validation and test sets, were created based
on the annotated bursts from each patient performing Task 17, recorded by sensors on a specific
body side. The number of annotated burst per sensor is presented in Table 1. Because of the
difference in annotated bursts, some sensors had more samples than the other sensors, as can
be seen for sensor four which has the half amount of samples than than sensor six.

Additionally, during data augmentation ten new samples were created from a burst. However
Table 1 shows that during data augmentation for ’burst’ samples, not all generated samples had a
window size of 256 data points. This deviation occurred because some bursts were labelled near
the beginning or end of the EMG data, causing the random positioning to prevent the window
from capturing 256 data points.

For the ’non-burst’ samples, data was retrieved from one sensor per patient performing Task 17.
For each patient, samples were created by sliding the 256-window with an overlap of 10% over the
EMG data. As shown in Table 1, sensors 7 and 8 had fewer ’non-burst’ samples than the other
sensors. Table 1 further shows the distribution of samples is well-balanced across the right and
left sides for each muscle sensor.

In terms of burst samples in the sets, the distribution was as follows: 8,764 samples for the
training set, 2,712 for the validation set, and 3,037 for the test set. An equal number of ’non-
burst’ samples were created for each set, maintaining a 50% split between ’burst’ and ’non-burst’
samples.

Overall, the dataset consisted of 17,528 samples in the training set, 5,424 samples in the
validation set and 6,074 in the test set, making a total of 29,026 samples in this study.

Sensor Annotated Bursts Augmented Bursts Samples Non Bursts Samples Total Samples
3: BiR 211 2110 2538 4648
4: BiL 150 1500 3222 4722
5: ExR 269 2681 2732 5413
6: ExL 311 3104 2222 5326
7: FlR 260 2596 1919 4515
8: FlL 253 2522 1880 4402

Table 1: The number of annotated bursts and the resulting ’burst’ and ’non-burst’ samples for
each sensor. The sensors include the right and left biceps (BiR and BiL), the right and left exten-
sors (ExR and ExL), and the right and left flexors (FlR and FlL).
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4.2 Input burst and non burst samples
Before the training and testing of the model, various scaling preprocessing methods, including
preprocessing methods, including normalization, standardization, and no scaling, were evaluated
to examine there impact on the models’ performances.

Figures 8 and 9, illustrate the effects of these scaling technique on a ’burst’ and ’non-burst’
sample, respectively. In Figures 8(b) and 8(c), both normalization and standardization highlighted
the burst peak in the ’burst’ sample around data point 190. In Figure 9, normalization highlighted
the peak around data point 100, while standardization scales the group of peaks and highlights
the peak at around 256 datapoints of the ’non-burst’ sample.

(a) No scaler (b) Normalization (c) Standardization

Figure 8: Plots of the amplitude (mV) across 256 data points for sample 100 (’burst’): (a) without
scaling, (b) with normalization, and (c) with standardization applied.

(a) No scaler (b) Normalization (c) Standardization

Figure 9: Plots of the amplitude (mV) across 256 data points for sample 17428 (’non-burst’): (a)
without scaling, (b) with normalization, and (c) with standardization applied.

After applying these preprocessing techniques and training the models with different parameter
settings and architectures, the differences in performance was minimal. However, standardization
consistently yielded slightly better results in the evaluation metrics and stability for both models.
Therefore, standardization was chosen as the preprocessing method for both optimal models.

4.3 The optimal models
The performance of various models was evaluated using the training, validation and testing set
in terms of the evaluation metrics: loss, accuracy, precision, and recall. While many models
showed optimal results in terms of the evaluation metrics, visualising their training process with
the training and validation set revealed inconsistency and very spiked curves in the loss and
accuracy plots.
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The optimal models of CNN+LSTM and CNN+GRU, shown in Figures 10 and 11, were chosen
not only for their average low loss and high accuracy, precision, and recall values of the test set,
but also because of their stability during training with the training and validation set. The results
on these models’ performance and stability are discussed in the following sections.

Figure 10: The architecture of the best performed CNN+LSTM model.

Figure 11: The architecture of the best performed CNN+GRU model.

Figures 10 and 11 visually represent the architectures of the CNN+LSTM and CNN+GRU model,
respectively.

The CNN+LSTM model with batch size 32 and standardization, includes the following layers:

– Convolutional block: Two convolution layers, each with a kernel size of 3 and ReLU activa-
tion. The first layer includes 32 filters, while the second has 16 filters.

– Dropout Layers: Two drop layers, each with dropout rate 0.5. One layer is placed after the
convolutional block, and the other after the LSTM block.

– Max Pooling Layer: One max pooling layer with a pool size of 2.
– LSTM block: Two LSTM layers, with the first layer containing 16 units and the second layer

containing 8 units.
– Dense block: And at the end there are two dense layers. The first layer contains 16 units and

applies the ReLU activation, while the second layer has 1 unit and applies sigmoid activation
layer.

The CNN+GRU model with batch size 16 and standardization, includes the following layers:

– Convolutional Block: Two convolution layers, each with a kernel size of 3 and ReLU activa-
tion. The first layer includes 16 filters, while the second has 8 filters.

– Max Pooling Layer: One max pooling layer with a pool size of 2.
– GRU Layer: One GRU layer containing 16 units.
– Dropout Layer: One drop layer with drop rate 0.5.
– Dense block: And at the end there are two dense layers. The first layer contains 16 units and

applies the ReLU activation, while the second layer has 1 unit and applies sigmoid activation
layer.
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Both these models used the Adam optimizer with learning rate 0.001, and the data were stan-
dardized before training and testing these optimal models.

4.4 Loss and accuracy of the training and validation sets
During the training of the models over 300 epochs using the training and validation set, the
history of loss and accuracy values was recorded. The loss and validation plots in Figures 12 and
13 show the stability that distinguished the optimal models of CNN+LSTM and CNN+GRU from
other models that displayed less consistent performance. The loss plots in Figure 12 show that
the CNN+LSTM model stabilized around a loss value of 0.3, whereas the CNN+GRU model showed
a slight increase towards the end, also around a loss value of 0.3. In contrast, other CNN+GRU
models showed greater instability in the last epochs compared to the selected model. The accuracy
plots in Figure 13 confirm the stability of both models, with each stabilizing at an accuracy value
of approximately 0.90.

(a) CNN+LSTM (b) CNN+GRU

Figure 12: Plots showing the training and validation loss values over 300 epochs of two rounds
for: (a) CNN+LSTM and (b) CNN+GRU.

(a) CNN+LSTM (b) CNN+GRU

Figure 13: Plots showing the training and validation accuracy values over 300 epochs of two
rounds for: (a) CNN+LSTM and (b) CNN+GRU.

4.5 Evaluation metrics of the test set
The performance of both the CNN+LSTM and CNN+GRU models on the unseen data of the test
set, evaluated with the discussed metrics, is presented in Table 2.
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The table shows that both models presented similar results, with only minimal difference in
their performance metrics. The high scores for loss, accuracy, precision, and recall indicate robust
performance in accurately predicting the true labels and predicting the positive samples, which
corresponds to the ’burst’ samples.

Model Loss Accuracy Precision Recall
CNN+LSTM 0.2784348130 0.8847547174 0.8708346486 0.9035232067
CNN+GRU 0.27918699384 0.8921633363 0.8555223942 0.9436944127

Table 2: Comparison of evaluation metrics (loss, accuracy, precision, and recall) between of the
CNN+LSTM and CNN+GRU models on the test set.

4.6 Confusion of the three sets
For the prediction performance of both models’ on the training, validation and test set is evaluated
with the confusion matrices. Figures 14, 15, and 16 show these confusion matrices for the train-
ing, validation, and test sets of the CNN+GRU and CNN+LSTM models. Each matrix displays the
number of samples for True Positive (TP, bottom right), False Positive (FP, top right), False Negative
(FN, bottom left), and True Negative (TN, top left) cases. Additionally, the matrices include the
percentage of positive predictions (TP and FN) and negative predictions (TN and FP) separately.

The confusion matrices for the training set, shown in Figure 14, reveal that True Negatives (TN)
are higher than True Positives (TP) for both models. Specifically, CNN+LSTM had 8,582 TN and
7,815 TP, while CNN+GRU had 8,541 TN and 8,098 TP. indicating better performance in predicting
‘non burst’.

(a) CNN+LSTM (b) CNN+GRU

Figure 14: Confusion matrices for the train set, displaying the number of samples for True Pos-
itive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) cases, along with the
percentage of positive predictions (TP and FN) and negative predictions (TN and FP) separately: (a)
CNN+LSTM and (b) CNN+GRU.

However, the validation and test set show that both models perform better in predicting ‘bursts’
samples. The matrix of the validation set, illustrated in Figure15, shows that CNN+LSTM had
2,424 TN and 2,575 TP, and CNN+GRU had 2,364 TN and 2,625 TP. The confusion matrices show
that approximately 11% of ’non-burst’ samples were falsely predicted as positive by CNN+LSTM,
and about 13% by CNN+GRU. Conversely, around 5% of ’burst’ samples were misclassified as
negative by CNN+LSTM, and approximately 3% by CNN+GRU.

Similarly, the matrix of the test set, illustrated in Figure16, shows that CNN+LSTM had 2,630
TN and 2,744 TP, and CNN+GRU had 2,553 TN and 2,866 TP. The confusion matrices show that
approximately 13% of ’non-burst’ samples were false predicted as positive by CNN+LSTM, and
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about 16% by CNN+GRU. Conversely, around 5% of ’burst’ samples were misclassified as negative
by CNN+LSTM, and approximately 3% by CNN+GRU.

Comparing the CNN+LSTM and CNN+GRU models in Figures 14 through 16, the confusion ma-
trices show that the LSTM+CNN model performs better at predicting ‘non-burst’ samples. Specif-
ically, CNN+LSTM achieved True Negative (TN) percentages of 97.92% in the training set, 89.38%
in the validation set, and 86.60% in the test set. In contrast, the CNN+GRU model achieved TN
rates of 97.46% in the training set, 87.17% in the validation set, and 84.06% in the test set.

However, the CNN+GRU performs better in predicting the ‘burst’ samples than the CNN+LSTM
models. Specifically, CNN+GRU achieved True Positives (TP) percentages of 92.40% in the training
set, 96.79% in the validation set, and 94.37% in the test set. In contrast, the CNN+LSTM model
achieved TN rates of 89.17% in the training set, 94.95% in the validation set, and 90.35% in the
test set.

(a) CNN+LSTM (b) CNN+GRU

Figure 15: Confusion matrices for the validation set, displaying the number of samples for True
Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) cases, along with the
percentage of positive predictions (TP and FN) and negative predictions (TN and FP) separately: (a)
CNN+LSTM and (b) CNN+GRU.

(a) CNN+LSTM (b) CNN+GRU

Figure 16: Confusion matrices for the test set, displaying the number of samples for True Pos-
itive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) cases, along with the
percentage of positive predictions (TP and FN) and negative predictions (TN and FP) separately: (a)
CNN+LSTM and (b) CNN+GRU.
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4.7 Predictions on EMG test patients, all tasks
As mentioned in the section 3, the models were applied to EMG data from patients in the movement
disorder group and the healthy control group, taken from the test data set, performing the Tasks
17, 1, 22 and 23. For each patient, EMG data was plotted with manually labelled bursts for
myoclonus patients and no labels for healthy controls. Additionally, separate plots were created
with the filtered and scaled EMG data, showing the predicted bursts at decision thresholds 0.5,
0.8 and 0.9.

4.7.1 Myoclonus patients

After analysing the predicted burst on myoclonus patients across all tasks (1, 17, 22 and 23),
several distinct cases were observed. These cases are not related to specific sensors, tasks or
patients as they are consistently observed in all EMG data.

The distinct cases are presented in this section by different patients performing various tasks.

Annotated and Predicted Bursts aligned in EMG data of Patient NEMO_024
In Figure 17, the manually labelled bursts in the EMG data from patient NEMO_024 are shown.
These annotations were used to evaluate the accuracy of the predicted bursts, generated by the
model. Figure 18 shows the pre-processed data, which was filtered with the Butterworth filter
to remove noise, rectified to convert negative values to positive, and standardized for consistency.
The pre-processed data was used for the prediction process.

Figure 17: Manually labelled bursts in the un-
filtered EMG data of patient NEMO_024 per-
forming Task 17.

Figure 18: Filtered and scaled EMG data of
patient NEMO_024 performing Task 17.

Figures 19 and 20 display the predicted bursts of both models at a decision threshold of 0.9.
The plots show that while the annotated bursts of Figure 17 were present in the prediction plots,
additional bursts were also predicted that were not annotated. Moreover, the plots highlight that
high peaks in the filtered, rectified, and scaled data were usually marked as bursts.

Figure 19: Burst predictions by the CNN+LSTM
model on the EMG data of patient NEMO_024
performing Task 17, with decision threshold 0.9.

Figure 20: Burst predictions by the CNN+GRU
model on the EMG data of patient NEMO_024
performing Task 17, with decision threshold 0.9.
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Zoomed-in view on one burst of Patient NEMO_024, capturing bursts.
In Figure 21, I zoomed in on a specific annotated burst with a start time of approximately 25.06
seconds and an end time of approximately 25.12 seconds of patient NEMO_024 performing Task
17. To examine the predictions of both models, Figure 22 shows the results for each model with
the three decision thresholds.

Figure 21: Zoomed-in view of a manually labeled burst in the unfiltered EMG data of patient
NEMO_024 performing Task 17. The burst starts at approximately 25.06 seconds and ends at
approximately 25.12 seconds.

Figures 22(a), 22(b) and 22(c) illustrate the cases where the predicted bursts fully captured
this interval, while Figures 22(d), 22(e) and 22(f) show cases where the predicted bursts overlap
with the annotated burst. This demonstrates that both models can predict the annotated burst,
either by capturing the entire interval or by overlapping with the it, depending on the chosen
decision threshold and model.

Figure 22, also shows that bursts prediction by the models at the lower thresholds usually
have longer duration or consist of multiple smaller predicted bursts compared to those at a higher
decision thresholds. This is evident from the many red lines in the plots at 0.5 decision thresholds,
which is often observed across different patients and tasks.
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(a) CNN+LSTM with decision threshold of 0.5. (b) CNN+GRU with decision threshold of 0.5.

(c) CNN+LSTM with decision threshold of 0.8. (d) CNN+GRU with decision threshold of 0.8.

(e) CNN+LSTM with decision threshold of 0.9. (f) CNN+GRU with decision threshold of 0.9.

Figure 22: Zoomed-in view of predicted bursts with a decision thresholds 0.5 (a-b), 0.8 (c-d)
and 0.9 (e-f), in the filtered and scaled EMG data of patient NEMO_024 during Task 17. The
predictions, generated by the CNN+LSTM (a,c,e) and CNN+GRU (b,d,f) , are shown in the same
time range as Figure 21 (24.95 to 25.15 seconds).
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Annotated and Predicted Bursts in EMG data of Patient NEMO_026, no aligned bursts at
high decision thresholds
However, there are cases where the annotated bursts were not predicted at a higher decision
threshold, but only predicted at lower decision threshold. This can be seen in Figure 25 with the
EMG data from patient NEMO_026.

Figure 23: Manually labelled bursts in the un-
filtered EMG data of patient NEMO_026 per-
forming Task 17.

Figure 24: Filtered and scaled EMG data of pa-
tient NEMO_026 performing Task 17.

(a) CNN+LSTM with decision threshold of 0.5. (b) CNN+GRU with decision threshold of 0.5.

(c) CNN+LSTM with decision threshold of 0.8. (d) CNN+GRU with decision threshold of 0.8.

(e) CNN+LSTM with decision threshold of 0.9. (f) CNN+GRU with decision threshold of 0.9.

Figure 25: Burst predictions by the CNN+LSTM (a,c,e) and CNN+GRU (b,d,f) model on the EMG
data of patient NEMO_026 performing Task 17, with decision threshold 0.5 (a-b), 0.8 (c-d) and
0.9 (e-f).
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Most annotated burst are not predicted by the CNN+LSTM model for threshold 0.8 and 0.9,
as seen in Figure 25(c) and Figure 25(e), respectively. Similarly, some annotated bursts are also
not predicted by the CNN+GRU model, but predicted more annotated bursts than CNN+LSTM, as
shown in Figure 25(d) and Figure 25(d).

Zoomed-in view of bursts of Patient NEMO_026, capturing no bursts or close-by.
Additionally, there are cases where bursts are not predicted at all. This can be seen in the zoomed
in-view of the predicted burst by the CNN+LSTM in Figure 28(a), where no burst is marked, com-
pared to the zoomed-in view of the manually labelled burst in Figure 26 within the same range.
Conversely, the CNN+GRU model does predict a burst in this range, as shown in Figure 28(b).

Figure 26: Zoomed-in view of a manually la-
beled burst in the unfiltered EMG data of pa-
tient NEMO_026 performing Task 17. The
burst starts at approximately 21.79 seconds
and ends at approximately 21.81 seconds.

Figure 27: Zoomed-in view of a second manually
labeled burst in the unfiltered EMG data of pa-
tient NEMO_026 performing Task 17. The burst
starts at approximately 2.64 seconds and ends at
approximately 2.655 seconds.

(a) CNN+LSTM with decision threshold of 0.5. (b) CNN+GRU with decision threshold of 0.5.

Figure 28: Zoomed-in view of predicted bursts with a decision thresholds 0.5, in the filtered
and scaled EMG data of patient NEMO_026 during Task 17. The predictions, generated by the
CNN+LSTM (a) and CNN+GRU (b) models, are shown in the same time range as Figure 26 (21.72
to 21.86 seconds).

Moreover, some predicted bursts are close to the annotated burst, but do not capture the an-
notated burst, which can be seen in Figures 27, 29(a) and 29(b). These cases show that due to the
difference in the EMG data, the model also has difficulty determining the bursts and therefore is
not able to predict the annotated bursts or predict bursts close to the annotated burst.
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(a) CNN+LSTM with decision threshold of 0.9. (b) CNN+GRU with decision threshold of 0.9.

Figure 29: Zoomed-in view of a predicted bursts with a decision thresholds 0.9, in the filtered
and scaled EMG data of patient NEMO_026 during Task 17. The predictions, generated by the
CNN+LSTM (a) and CNN+GRU (b) models, are shown in the same time range as Figure 27 (2.6 to
2.7 seconds).

Annotated and Predicted Bursts in EMG data of Patient NEMO_093, peaks in the filtered,
rectified and scaled data
When looking at the results of the previous patient, NEMO_026, and compare the filtered, recti-
fied and scaled data without predictions, shown in Figure 24, with the predicted plots of patient
NEMO_026, shown in Figure 25, it revealed that outstanding peaks in the scaled data did not
always correspond to burst predictions.

However, in other EMG data, they can. During Task 22 with patient NEMO_093, the peaks
in the scaled data were clearly visible, as shown in Figure 31, and aligned with the annotated
bursts, as shown in Figure 30. In Figure 32, both models marked bursts around these peaks with
a decision threshold 0.9.

Figure 30: Manually labelled bursts in the unfil-
tered EMG data of patient NEMO_093 performing
Task 22.

Figure 31: Filtered and scaled EMG data of pa-
tient NEMO_093 performing Task 22.
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(a) CNN+LSTM with decision threshold of 0.9. (b) CNN+GRU with decision threshold of 0.9.

Figure 32: Burst predictions by the CNN+LSTM (a) and CNN+GRU (b) models on the EMG data
of patient NEMO_093 performing Task 22, with decision threshold 0.9.

Zooming in on two specific notated bursts at 5 and 6 seconds, as shown in Figure 33 and
as peaks in Figure 31, revealed that the models predicted these peaked bursts with both high
and lower decision thresholds, as illustrated in Figure 34, but also smaller peaks in between for
decision threshold 0.8, by model CNN+GRU, and 0.5, by both models. This indicates the models’
sensitivity towards peaks in the EMG data and showing high accuracy in predicting annotated
bursts.

Figure 33: Zoomed-in view of manually labeled bursts in the unfiltered EMG data of patient
NEMO_093 performing Task 22. The burst starts at approximately 5.05 and 5.95 seconds and
ends at approximately 5.18 and 6.03 seconds.
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(a) CNN+LSTM with decision threshold of 0.5. (b) CNN+GRU with decision threshold of 0.5.

(c) CNN+LSTM with decision threshold of 0.8. (d) CNN+GRU with decision threshold of 0.8.

(e) CNN+LSTM with decision threshold of 0.9. (f) CNN+GRU with decision threshold of 0.9.

Figure 34: Zoomed-in view of predicted bursts with a decision thresholds 0.5 (a-b), 0.8 (c-d)
and 0.9 (e-f), in the filtered and scaled EMG data of patient NEMO_093 during Task 22. The
predictions, generated by the CNN+LSTM (a,c,e) and CNN+GRU (b,d,f) models, are shown in the
same time range as Figure 33 (5.0 to 6.1 seconds).
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4.7.2 Healthy Controls

To evaluate the models’ performance in predicting ‘non-bursts,’ I analysed the EMG data from
healthy controls, which guaranteed ‘non-burst’ in all data.

After analysing the predictions plots of the healthy controls across all tasks, I observed that also
for these patients there are several distinct cases but are not related to sensors, tasks or patients.
The scaled data sometimes showed detectable patterns, though not consistently.

Predicted Bursts in EMG data of Patient NEMO_002, with a high level of muscle activity
In many cases, when there was high level of muscle activity in the EMG data of patients perform-
ing one of the tasks, such as those of patient NEMO_002 performing Task 17 in Figure 35, and
patient NEMO_003 performing Task 1 in Figure 38, the scaled EMG data also showed numerous
peaks, as seen in Figure 36 of patient NEMO_002 and 39 of patient NEMO_003.

As a results, both models predicted bursts that often matched the outstanding peaks at a high
decision threshold of 0.9. However, not all such peaks were marked as bursts by both models, as
seen in Figures 37 and 40. Smaller peaks were also marked as bursts, indicating that the models
did not show a consistent pattern of burst prediction based on peak size.

Figure 35: Unfiltered EMG data of patient
NEMO_002 performing Task 17.

Figure 36: Filtered and scaled EMG data of pa-
tient NEMO_002 performing Task 17.

(a) CNN+LSTM with decision threshold of 0.9. (b) CNN+GRU with decision threshold of 0.9.

Figure 37: Burst predictions by the CNN+LSTM (a) and CNN+GRU (b) models on the EMG data
of patient NEMO_002 performing Task 17, with decision threshold 0.9.
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Predicted Bursts in EMG data of Patient NEMO_003, high level of muscle activity

Figure 38: Unfiltered EMG data of patient
NEMO_003 performing Task 1.

Figure 39: Filtered and scaled EMG data of pa-
tient NEMO_003 performing Task 1.

(a) CNN+LSTM with decision threshold of 0.9. (b) CNN+GRU with decision threshold of 0.9.

Figure 40: Burst predictions by the CNN+LSTM (a) and CNN+GRU (b) models on the EMG data
of patient NEMO_003 performing Task 1, with decision threshold 0.9.
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Predicted Bursts in EMG data of Patient NEMO_008, distinct peak
Another case involved consistent EMG data with occasional distinct peaks, which were also vis-
ible in the scaled EMG data. The data of patient NEMO_008 performing Task 23 showed this in
Figures 41 and 42. Both models predicted this as burst with at decision threshold of 0.9 or 0.8,
indicating the sensitivity to peaks, as seen in Figure 43.

Figure 41: Unfiltered EMG data of patient
NEMO_008 performing Task 23.

Figure 42: Filtered and scaled EMG data of pa-
tient NEMO_008 performing Task 23.

Predictions.

(a) CNN+LSTM with decision threshold of 0.8. (b) CNN+GRU with decision threshold of 0.8.

(c) CNN+LSTM with decision threshold of 0.9. (d) CNN+GRU with decision threshold of 0.9.

Figure 43: Burst predictions by the CNN+LSTM (a,c) and CNN+GRU (b,d) models on the EMG
data of patient NEMO_008 performing Task 23, with decision threshold 0.8 (a-b) and 0.9 (c-d).
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Predicted Bursts in EMG data of Patient NEMO_005, no burst at higher decision thresholds
Nonetheless, there were cases where no bursts were predicted in the scaled EMG data with consis-
tent peaks at the higher thresholds 0.9 and 0.8. This is illustrated in Figure 46, showing patient
005 performing Task 22, with unfiltered data presented in Figure 44 and filtered and scaled data in
Figure 45. This demonstrates the models’ ability to correctly detect non-bursts at higher decision
thresholds.

Figure 44: Unfiltered EMG data of patient
NEMO_005 performing Task 22.

Figure 45: Filtered and scaled EMG data of pa-
tient NEMO_005 performing Task 22.

(a) CNN+LSTM with decision threshold of 0.5. (b) CNN+GRU with decision threshold of 0.5.

(c) CNN+LSTM with decision threshold of 0.8. (d) CNN+GRU with decision threshold of 0.8.

(e) CNN+LSTM with decision threshold of 0.9. (f) CNN+GRU with decision threshold of 0.9.

Figure 46: Burst predictions by the CNN+LSTM (a,c,e) and CNN+GRU (b,d,f) models on the EMG
data of patient NEMO_005 performing Task 22, with decision threshold 0.5, (a-b) 0.8 (c-d) and
0.9 (e-f).
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Predicted Bursts in EMG data of Patient NEMO_004, number of bursts predictions from
CNN+LSTM and CNN+GRU models
Figure 47 presents the burst predictions for patient NEMO_004 performing Task 1. At the same de-
cision threshold, the CNN+LSTM model predicted fewer bursts compared to the CNN+GRU model.
This observation is in agreement with the confusion matrices in Figures 15 and 16, which showed
the prediction performance of both models on samples of the validation and test sets.

(a) CNN+LSTM with decision threshold of 0.5. (b) CNN+GRU with decision threshold of 0.5.

(c) CNN+LSTM with decision threshold of 0.8. (d) CNN+GRU with decision threshold of 0.8.

(e) CNN+LSTM with decision threshold of 0.9. (f) CNN+GRU with decision threshold of 0.9.

Figure 47: Burst predictions by the CNN+LSTM (a,c,e) and CNN+GRU (b,d,f) models on the EMG
data of patient NEMO_004 performing Task 17, with decision threshold 0.5, (a-b) 0.8 (c-d) and
0.9 (e-f).
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5 Discussion
The goal of this study is to improve the previous study [1] in the detection of bursts in EMG data
of myoclonus patients. After reviewing the findings of the previous work and exploring the use
of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in EMG data in
other fields, I decided to use hybrid models of CNN with long short-term memory (LSTM) and CNN
with gated recurrent unit (GRU) for burst detection in myoclonus. Through testing various models
with different parameter settings and comparing the evaluation metrics, loss and accuracy plots,
I obtained the optimal models of both architectures. These models were then applied to unseen
EMG data from myoclonus patients and healthy control group.

This section discusses the main findings from the evaluation of the optimal models with the
training, validation and test set. Additionally, I will discuss the strengths and weaknesses of
the optimal models based on their performance with unseen EMG data from both myoclonus pa-
tients and healthy controls. Finally, I will discuss the changes made in this study compared to
the previous one.

5.1 The evaluation on the training, validation and training set
The high values of the evaluation metrics in the test set in Table 2 show that the prediction
performance of both models indicate robust performance in accurately predicting the true labels
and positive samples, which are the ’burst’ samples. Specifically, the CNN+LSTM model achieved
an accuracy of approximately 88% for predicting the true labels in the test set, while the CNN+GRU
model achieved an accuracy of approximately 89%..

As mentioned in Section 7, the previous study achieved an accuracy of 76% on a different test
dataset. Therefore, a direct comparison of these accuracy metrics is not possible.

The confusion matrices of the unseen data from both the validation and test set show that
both models performed well in predicting true labels. Specifically, the CNN+LSTM predicted ap-
proximately 87% True Negativesv(TN) and 92% True Positives (TP) over the two sets. While the
CNN+GRU predicted approximately 85% TN and 95% TP over the two sets. This indicates that
both models are more effective at predicting True Positives, or ’burst’ samples, compared to True
Negatives, or ’non-burst’ samples.

Furthermore, the confusion matrices reveals that the CNN+LSTM performs slightly better at
prediction the ’non-burst’ samples, whereas the CNN+GRU models performs slightly better in
predicting the ’burst’ samples.

5.2 Predictions in EMG data of Myoclonus patients
Before discussing the results of the predictions in the EMG data of myoclonus patients, it is im-
portant to mention that the manually labelled data from NEMO should not be considered ground
truth. Although bursts are labelled in data, this labelling does not guarantee that all bursts are
identified or that the intervals between labelled bursts can be classified as ’non-burst’. Therefore,
the data was not used for ’non-burst’ samples. Consequently, when evaluating the models’ pre-
dictive performance, ‘burst’ predictions that do not match the annotated bursts in the NEMO data
should not be classified as False Positives.

Due to this absence of ground truth, this research cannot compare the prediction performances
between the CNN+LSTM and CNN+GRU models on the ’burst’ data. Similarly, it is not possible to
compare the prediction performance across different decision thresholds or determine the optimal
thresholds.

The predictions on the EMG data from the myoclonus patients showed potential in burst detection
but also needs improvements. Both the CNN+LSTM and CNN+GRU models showed strengths and
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weaknesses in their performance.

One strength of the models is their ability to predict the annotated bursts in the EMG data.
The models were able to make accurate predictions, sometimes at higher decision thresholds and
other times only at lower thresholds. Another strength is their detection around peaks in the
EMG data. This was seen in the results of patient NEMO_093 in Figures 30 through 34 where
the models accurately predicted bursts at the prominent peaks, which were also manually labeled.

However, the both models also showed weakness. Both models sometimes detected bursts close
to the annotated bursts or failed to predict a annotated bursts at a decision threshold of 0.5 or
higher. Therefore, the biggest weakness of the models is the inconsistency when it comes to predict
burst in EMG data. This inconsistency may be due to the models’ sensitivity towards outstanding
peak or prominent peak behaviour, but also to the wide variability in muscle activity in patients,
making it difficult to determine bursts.

There are also debatable points regarding the models’ performance. One such point is the de-
tection of multiple bursts that are not annotated. It is possible that these bursts were undetected
by manual labelling, which could indicate a strength of the models for predicting multiple bursts.
However, there is also the possibility that many of these predictions are False Positives, which
indicate a weakness of both models. Therefore, without the ground truth, this point is debatable.

Another debatable point is the models’ sensitivity to smaller peaks in the EMG data. By the
absence of the ground truth, it is unclear whether these small peaks represent small myoclonus
bursts or are False Positives.

5.3 Predictions in EMG data of Healthy controls
The data from healthy controls guarantees ’non-burst’ data, allowing this research to evaluate
the models’ performance on ’non-burst’ predictions. Both the CNN+LSTM and CNN+GRU models
displayed strengths and weaknesses in their predictions on EMG data from healthy controls.

One strength observed in the results of the models, is predicting no bursts with higher decision
thresholds when the muscle activity is consistent. Additionally, the results show that distinct
peaks in the data are predicted as burst. This indicates the models’ sensitivity to distinct peaks,
which is a strength for the detection of bursts in the EMG data.

However, this sensitivity can also be a weakness of the models, as it leads to False Positives
when these peaks suck peaks occur in ’non-burst’ data, and possibly in ’burst’ data.

Additionally, the results of the ’non-burst’ data also showed that when the data contains high
level of muscle activity, both models predicted burst around the high peaks, including the smaller
ones. This is seen with patient NEMO_002 and NEMO_003 in Figures 35 through Figure 40.
The reason for these results may be because the models are trained to detect outstanding peaks
or prominent peak behaviour in the EMG data. This leads to sensitivity to these peaks in the
’non-burst’ data and results in ’burst’ predictions at these peaks rather than ’non-burst’, even at
a higher decision threshold.

Another cause could be the difference in EMG data of the healthy controls, which show less
spiked data but also data with prominent spikes. Therefore, the proposal to train with more
‘non-burst’ data to better distinguish ‘burst’ peaks from ‘non-burst’ peaks could help with these
shortcomings.

The comparisons between the results of the CNN+LSTM and the CNN+GRU models show that
the CNN+LSTM model predicts fewer bursts than the CNN+GRU, and thus performs better in pre-
dicting ’non-burst’ data. This was also demonstrate in the confusion matrices of the three sets,
see Figures 14, 15 and 16.
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Lastly, a higher decision threshold showcase fewer bursts, suggesting a high decision thresh-
old is the optimal threshold for ’non-burst’ data. However, due to the absence of ground truth,
this research cannot determine the optimal decision threshold for distinguishing between ’burst’
and ’non-burst’ data. Therefore, this research is unable to select the optimal threshold based on
the ’non-burst’ and ’burst’ data.

Both the predictions on EMG data of the myoclonus patient and healthy controls highlight the
potential of using CNNs with LSTM and GRU architectures for the detection of bursts. While
the results show significant strengths, they also reveal weakness and raise debatable points that
needs to be examined in the future.

5.4 Changes from the previous study.
Several important modifications are made in this research compared to the previous study. One
major change was the inclusion of EMG data from healthy controls for the ‘non-burst’ sampling.
This makes the data set more reliable but can make the models a bit more biased towards ‘non-
burst’ data from healthy controls, potentially making it more challenging to predict ‘non-burst’
data of myoclonus patients. Due to the absence of ground truth this cannot be tested.

Another change is the division of patient data. This research applies the 60-20-20 split between
patients for the training, validation, and test, respectively. Patients with the movement disorders
are categorized into the two types and each type divided with the 60-20-20 division. Similarly,
the health group is split into the 60-20-20 division. This division differs from the previous study,
which divided the augmented burst samples over the three datasets.

Additionally, the datasets are expanded with EMG data from all six sensors. Although not all
patients had data from each sensor, including data from all six sensors increases the total num-
ber of samples.

Finally, this research also includes the use of different scalers, or none, in the preprocessing
step to evaluate their effectiveness on the model performance.
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6 Conclusion
This follow up study examined hybrids models combining convolutional neural network (CNN)
with long short-term dependencies (LSTM) and gated recurrent unit (GRU) for the detection of
myoclonus bursts.

Both models showed the ability to predict bursts that aligned with the annotated bursts in the
EMG data of myoclonus patient, as well as predicting bursts that were not annotated. Due to the
absence of ground truth, it could not be determined if these additional bursts were False Positives
and should be investigated in the future.

The models also predicted bursts in the EMG data of healthy controls, which only contains
‘non-bursts’. The cause of these mistakes probably lies in the models’ sensitivity to outstanding
peaks and prominent peak behaviour.

Additionally, due to the absence of ground truth EMG data, it was not possible to definitively
compare the CNN+LSTM and CNN+GRU models to determine the optimal model for burst detec-
tion. However, for non-burst detection the CNN+LSTM model performed better than the CNN+GRU
model.

The research question was:
Can the detection algorithm be improved with respect to implementation, performance and ro-
bustness?

During this research, significant improvements were made in data usage. The inclusion of the
healthy control group for “non-burst” samples and the distribution of patient data across train-
ing, validation and testing made the data more reliable, improving the overall quality of training
and testing for burst detection models.

When evaluating the performance of both models on the training, validation and testing set, the
results showed higher values for the evaluation metrics compared to the previous model, which
was tested on a different dataset. Due to this and the absence of ground truth, this research can
not conclude that the obtained models are improvements of the previous model.

While there have been made improvements and the models show potential in the burst detection
myoclonus, there remains room for further improvement.
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7 Future Work
Although this research has shown significant improvements and valuable applications of the
model, there are several opportunities for further improvements and developments.

Improvements
The annotations of the non-burst data from patients with the movement disorder suitable for 256-
window samples was very limited. This study primarily used non-burst data from the healthy
control group. One approach to further enhance the model’s accuracy is to train and test using
more non-burst data from patients with the disorder.

For the preprocessing of data, the study [13] also applied a wavelet denoising filter after the But-
terworth filter, which contributed to improved signal clarity. Their models achieved high accuracy
(approximately 98%). Further denoising the EMG data could potentially enhance the model’s abil-
ity to detect burst with even greater accuracy.

In this research, fixed parameters were used due to time constraints. For future work, a new
model can be trained to determine if these fixed parameters affect model’s performance, or if the
chosen parameter values already provide the optimal result.

Another approach to potentially achieve even higher accuracy is to train and test a model with
different window sizes. This research used a window size of 256 datapoints based on the findings
of the previous study. To further this study, models can be created with different window sizes to
explore their impact on performance.

Lastly, expanding the dataset to include data from the other tasks (1,22 and 23), and poten-
tially other tasks, could further improve the training and testing the models.

Application
To extend this research, the model can be applied for burst detection in EMG data from other
movement diseases.

Follow-up Study
A follow-up study could focus on the next stage of the problem: classifying the labelled burst data
into the subtypes of myoclonus and its neural origin (cortical or subcortical) by training classifiers.

Ground truth
Finally, most important for future work is to acquire accurate ground truth data. This provides
a more precise comparison between the actual bursts and the predicted bursts, allowing better
evaluation of the models
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