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Abstract
Recent advancements in neural networks, particularly convolutional neural networks (CNNs), have
significantly improved performance in various machine learning tasks. However, the inherent black-
box nature of these models often impedes the interpretability of their decision-making processes,
which is crucial for gaining deeper insights and ensuring trust in critical applications. This thesis
addresses the challenge of explainability in high-dimensional data classification by proposing a hy-
brid approach that integrates Generalized Matrix Learning Vector Quantization (GMLVQ) with deep
learning techniques, specifically autoencoders.

The proposed method leverages the strengths of GMLVQ in providing interpretability through prototype-
based classification, combined with the dimensionality reduction capabilities of autoencoders. By
making use of the decoder part, the approach aims to map the reduced-dimensional space back to the
original feature space, thus offering a transparent view of the features influencing the classification
outcomes. This master’s thesis is based on our previous work on this topic, where we introduce the
method as a proof of concept and explore its properties and viability. In this study, we examine the
method in more ”breadth”, as opposed to depth; instead of fine-tuning a single model to optimize
accuracy, we aim to uncover how altering the moving parts of the algorithm affects the end result.
We perform experiments with different autoencoder architectures in order to see what works best, as
well as with different activation functions. Similarly, we study the relationship between the accuracy
of the predictor and the size of the bottleneck layer of the autoencoder, in addition to the number of
prototypes per class used. We also show how we can use the decoder to map the relevance matrix
from the encoded space to the original feature space and use it to make predictions.

Performance-wise, the results show pretty clearly that this method cannot rival modern state-of-the-
art models in the classification space. This was expected, since the main focus is interpretability,
and especially in this study the aim is to uncover the hidden properties of this method. Through our
findings, it becomes evident that using suitable hyper-parameters is crucial for success and how each
one affects performance is outlined in our report. One of the interesting results is the potential of the
predictor based on the decoded relevance matrix, which can approximate the teacher predictor to a
high degree under the right configuration.
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1 Introduction
In recent decades, there has been rapid development in the field of neural networks and convolutional
neural networks [1]. This progress is well-justified, as these technologies deliver state-of-the-art re-
sults in various machine learning tasks, such as classification, segmentation, and detection. However,
a significant drawback is their black-box nature; their inner workings are often incomprehensible to
humans, preventing us from gaining deep insights into the factors influencing their decisions. Conse-
quently, there has been a growing interest in explainable models and algorithms. In certain scenarios,
the ability to explain the reasoning behind an intelligent system’s behavior is more critical than its
accuracy or speed.

Learning Vector Quantization (LVQ) [2] is one such algorithm that addresses classification tasks while
offering interpretability through the use of prototypes. Each class is represented by a prototype, and
examples are classified based on their distance from these prototypes using a selected metric. Proto-
types can be seen as average representations of their respective classes. However, as the dimensional-
ity of datasets increases, the computational demands for training also rise. To address this challenge,
we propose combining a variation of LVQ, Generalized Matrix LVQ [3], with auto-encoders and con-
volutional neural networks. This approach aims to implement a dimension-reduction mechanism that
directly feeds into the classification algorithm while also providing a method for mapping from the
reduced-dimensional space back to the original feature space.

We start by introducing the core algorithms that are used in this study while reviewing relevant liter-
ature. We give a brief overview of how LVQ, convolutional neural networks and autoencoders work
and then showcase some previous work on very similar ideas to the one we are presenting. In the
next section we lay out the methodology we followed in our experiments. We describe in detail the
architectures of the autoencoders we use, as well as how the autoencoder and GMLVQ interact with
each other. In this section we also showcase how the decoder can be leveraged to map the relevance
matrix of GMLVQ from the latent space to the original feature space.

In the ”Experiments and Results” chapter we present the experiments we conducted and discuss our
findings. The experiments range from simple binary classification tasks to more complex multi-class
classification on different datasets. Aside from the quantitative analysis of the results based on pre-
defined metrics, we also attempt to gain a better intuition on the properties of the algorithm through
visual interpretation of the prototypes, the eigenvectors and the relevance matrices themselves. We
explore the relationship between various hyperparameters of the method with its performance, such as
the size of the bottleneck layer, the number of prototypes per class used and the activation function of
the decoder. Additionally, we test the viability of a classifier based on the decoded relevance matrix,
compared to both the classifier from the encoded space and the ground truth.



8 Chapter 2 BACKGROUND LITERATURE

2 Background Literature
In this section we will briefly introduce the core algorithms and models we have used throughout
the whole project: LVQ, GMLVQ, Autoencoders and CNNs. In addition, we will reference some
works in the literature that also fuse neural networks with LVQ in order to extend the flexibility of the
algorithm.

2.1 Learning Vector Quantization

Learning Vector Quantization (LVQ) [2] is a machine learning algorithm used for classification and
pattern recognition tasks. It is a supervised learning method that combines aspects of both clustering
and classification. LVQ is a variation of the more general k-nearest neighbors (k-NN) algorithm. The
goal of LVQ is to partition the input space into distinct regions corresponding to different classes or
categories. It achieves this by representing the training data as a set of prototype vectors or codebook
vectors. In LVQ, the codebook vectors are a set of representative vectors that define the different
classes in the dataset. Each codebook vector is associated with a particular class label and acts as a
prototype that represents the characteristics of its respective class. Figure 1 shows a simple visual-
ization of such a system.

Figure 1: Example of the use of a vector quantization,
taken from [4]

The learning process in LVQ involves it-
eratively adjusting the prototype vectors
based on the training examples. The algo-
rithm tries to minimize a distance metric
between the input patterns and the proto-
types. The distance metric used can vary,
but commonly used metrics include the Eu-
clidean distance and the Mahalanobis dis-
tance. During the learning phase, LVQ
updates the prototype vectors by moving
them closer to the input patterns that be-
long to the same class and pushing them
away from patterns belonging to different
classes. The degree of adjustment is con-
trolled by a learning rate parameter, which
determines the magnitude of the update.
Additionally, a winner-takes-all strategy is
employed, where the closest prototype to
an input pattern is identified and used for
updating. Below is a formal mathematical
description of how LVQ works.

Initialization

• Input space: Rn, where each data point x is an n-dimensional vector.

• Training set: {(xi,yi)}m
i=1, where xi ∈ Rn and yi ∈ {1,2, . . . ,C} is the class label of the i-th

sample.
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• Prototypes: Initialize k prototypes {w j}k
j=1 where w j ∈Rn and each prototype w j is associated

with a class label c j ∈ {1,2, . . . ,C}.

Training

• Learning rate: Define a learning rate α(t), which typically decreases over time t.

• Distance metric: Use a distance metric, usually the Euclidean distance d(x,w) = ∥x−w∥.

Training Process For each training sample (xi,yi):

1. Find the Best Matching Unit (BMU): Identify the prototype w j that is closest to the input xi:

j∗ = argmin
j
∥xi −w j∥

2. Update the BMU:

• If the class label of the BMU matches the class label of the input (c j∗ = yi):

w j∗(t +1) = w j∗(t)+α(t)(xi −w j∗(t))

• If the class label of the BMU does not match the class label of the input (c j∗ ̸= yi):

w j∗(t +1) = w j∗(t)−α(t)(xi −w j∗(t))

Convergence The training process continues iteratively over the training set, typically for a fixed
number of epochs or until the prototypes converge (i.e., changes in the prototypes are below a certain
threshold).

Classification After training, classify a new data point x by finding the prototype w j that is closest
to x and assigning the class label of that prototype:

ŷ = c j where j = argmin
j
∥x−w j∥

Summary of Parameters

• xi: Input data point.

• yi: Class label of the input data point.

• w j: Prototype vector.

• c j: Class label of the prototype.

• α(t): Learning rate, typically a function that decreases over time.
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2.2 Generalized Matrix Learning Vector Quantization

Generalized Matrix Learning Vector Quantization (GMLVQ) [3] is an extension of LVQ that incor-
porates principles from Generalized LVQ (GLVQ) [5] and Relevance Learning [6]. It incorporates
a relevance matrix to adaptively scale the input dimensions, improving classification performance by
emphasizing more relevant features.
GMLVQ differs from the standard LVQ algorithm in mainly 3 important aspects:

1. Distance metric: LVQ uses a fixed distance metric, typically the Euclidean distance, to measure
the similarity between data points and prototypes, while GMLVQ uses a modified distance
metric that includes a relevance matrix.

2. Learning Process: LVQ adjusts the prototypes based on the classification error. When a data
point is misclassified, the closest prototype of the correct class is moved closer to the data point,
and the closest prototype of the incorrect class is moved further away. GMLVQ adjusts both
the prototypes and the relevance matrix. The updates to the prototypes are similar to LVQ but
scaled by a function of the distance differences. Additionally, the relevance matrix is updated
to reflect the importance of different dimensions.

3. Updates: In LVQ, the prototypes are updated based on the scaled distance between the prototype
and the data point in question, while in Generalized LVQ (and subsequently GMLVQ) the
prototypes and the relevance matrix are updated using the steepest decent method.

Formally:

Initialization

• Input space: Rn, where each data point x is an n-dimensional vector.

• Training set: {(xi,yi)}m
i=1, where xi ∈ Rn and yi ∈ {1,2, . . . ,C} is the class label of the i-th

sample.

• Prototypes: Initialize k prototypes {w j}k
j=1, where w j ∈Rn and each prototype w j is associated

with a class label c j ∈ {1,2, . . . ,C}.

• Relevance matrix: Initialize a relevance matrix Λ ∈ Rn×n, typically as the identity matrix,
Λ = I.

Training

• Learning rate: Define a learning rate α(t), which typically decreases over time t.

• Distance metric: Use a quadratic distance metric incorporating the relevance matrix Λ:

dΛ(x,w) = (x−w)T
Λ(x−w)
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Training Process For each training sample (xi,yi):

1. Find the closest prototypes of the correct and incorrect classes:

• Identify the closest prototype w j+ that has the same class label as the input:

j+ = arg min
j:c j=yi

dΛ(xi,w j)

• Identify the closest prototype w j− that has a different class label from the input:

j− = arg min
j:c j ̸=yi

dΛ(xi,w j)

2. Compute the difference in distances:

D =
dΛ(xi,w j+)−dΛ(xi,w j−)

dΛ(xi,w j+)+dΛ(xi,w j−)

where dΛ(xi,w j+) is the distance of the sample xi from the closest prototype with the same class
label and dΛ(xi,w j−) the distance of the sample xi from the closest prototype with a different
class label.

3. Update the prototypes: The objective cost function to be minimized in GMLVQ is

∑
i

φ(D)

where φ is a continuous differentiable function such as the identity or logistic function. Based
on this cost function, the two prototypes are updated with these formulas:

• Update the prototype w j+:

w j+(t +1) = w j+(t)+α(t) ·2 ·φ′(D) ·Λ · (xi −w j+)

• Update the prototype w j−:

w j−(t +1) = w j−(t)−α(t) ·2 ·φ′(D) ·Λ · (xi −w j−)

4. Update the relevance matrix:

• The relevance matrix Λ is updated to emphasize more relevant dimensions and de-emphasize
less relevant ones:

Λ(t +1) = Λ(t)+β(t) ·
[

∂D
∂Λ

·φ′(D)

]
where β(t) is the learning rate for the relevance matrix.

Convergence The training process continues iteratively over the training set, typically for a fixed
number of epochs or until the prototypes and the relevance matrix converge (i.e., changes are below a
certain threshold).
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Classification After training, classify a new data point x by finding the prototype w j that is closest
to x using the distance metric dΛ and assigning the class label of that prototype:

ŷ = c j where j = argmin
j

dΛ(x,w j)

Summary of Parameters
• xi: Input data point.

• yi: Class label of the input data point.

• w j: Prototype vector.

• c j: Class label of the prototype.

• Λ: Relevance matrix.

• α(t): Learning rate for prototypes.

• β(t): Learning rate for the relevance matrix.

2.3 Autoencoders
Autoencoders [7] are a class of artificial neural networks primarily used for unsupervised learning
tasks, particularly in the field of deep learning and data compression. They are designed to encode
input data into a lower-dimensional representation and then reconstruct it as accurately as possible.
The architecture of an autoencoder consists of two main components: an encoder and a decoder.

The encoder takes in the input data and maps it to a compressed representation or code, often referred
to as the latent space. This process involves one or more hidden layers that progressively reduce the
dimensionality of the input data (Figure 2). The encoder’s goal is to capture the most salient features
of the input and extract meaningful representations.

The decoder takes the encoded representation and attempts to reconstruct the original input from it.
Similar to the encoder, the decoder consists of one or more hidden layers that gradually expand the
dimensionality back to the original input space. The objective of the decoder is to generate a recon-
struction that closely matches the original input.

During the training process, the autoencoder aims to minimize the reconstruction error, which is
the discrepancy between the input data and its reconstructed output. This is typically achieved by
optimizing a loss function, for example the mean squared error (MSE) or binary cross-entropy. By
minimizing the reconstruction error, the autoencoder learns to capture the underlying patterns and
structure of the input data.

2.4 Variational Autoencoders
Variational Autoencoders (VAEs) [9] are a class of generative models that enable efficient learning
and generation of complex data distributions. They merge the architecture of autoencoders with prin-
ciples from variational inference, providing a robust framework for both data compression and data
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Figure 2: An example of a traditional autoencoder architecture. We refer to the middle layer with the
fewest neurons as the ”bottleneck layer” or the ”latent representation”. Figure generated with [8].

generation.

In contrast to traditional autoencoders, VAEs do not compress the input data into a fixed latent vector,
but rather, the encoder outputs parameters of a probability distribution over the latent space, specifi-
cally a mean vector µ and a standard deviation vector σ (Figure 3). To introduce stochasticity, VAEs
sample from the Gaussian distribution produced by the encoder. However, to enable backpropagation
through the sampling process, the reparameterization trick is used: z = µ+σ⊙ ε, where ε is drawn
from a standard normal distribution N (0, I). This allows gradients to flow through the sampled latent
vector during training.

The ELBO loss function used for training a variational autoencoder is comprised of two parts, the
reconstruction loss (similarly to the loss in a traditional autoencoder) and the KL Divergence loss.
The KL Divergence loss term measures how much the learned latent distribution q(z | x) deviates
from the prior distribution p(z) (typically N (0, I) ). It acts as a regularizer to keep the latent space
well-behaved. This regularization ensures that the latent space is smooth and continuous, making it
possible to sample new data points that are meaningful and similar to the training data. The total loss
function for a VAE is:

L = Eq(z|x)[log p(x | z)]−KL(q(z | x)∥p(z))

2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [1] are a type of deep learning model designed specifically
for processing structured grid-like data, such as images, videos, and sound spectrograms. They have
achieved remarkable success in various computer vision tasks, including image classification, object
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Figure 3: A representation of a typical variational autoencoder. The latent vector in the middle is
replaced with the mean and standard deviation vectors, which are sampled for values to feed into the
decoder. Figure generated from [8].

detection, and image segmentation.

At the core of CNNs are convolutional layers, which perform local operations on the input data using
filters or kernels. These filters are small matrices that are convolved with the input to produce feature
maps. The convolution operation involves element-wise multiplication of the filter with the input,
followed by summing the results. This process is repeated for each overlapping region of the input,
producing a feature map that captures local patterns or features.

CNNs typically consist of multiple stacked convolutional layers, mixed with activation functions such
as ReLU (Rectified Linear Unit) [10] to introduce non-linearity. The initial layers learn low-level fea-
tures like edges, corners, and textures, while deeper layers learn more complex and abstract features.
Pooling layers are often inserted between convolutional layers to downsample the spatial dimensions
of the feature maps, reducing computational complexity and capturing translational invariance. Max
pooling is a commonly used pooling operation that selects the maximum value within a pooling win-
dow, while average pooling takes the average. After several convolutional and pooling layers, the
output is flattened into a vector and passed through one or more fully connected layers, also known as
dense layers. These layers combine the learned features to make high-level predictions, such as class
probabilities for image classification.

During training, CNNs employ a process called backpropagation to update the weights of the filters
and the dense layers. This is done by comparing the network’s predictions to the ground truth labels
using a loss function, such as cross-entropy loss. Optimization algorithms, such as stochastic gradient
descent (SGD) or its variants, are used to minimize the loss and adjust the network’s parameters.

Overall, CNNs have revolutionized the field of computer vision and have become a fundamental tool
for many visual recognition tasks, enabling machines to perceive and understand images and videos
at a remarkable level of accuracy.
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2.6 Relevant Work
This master’s thesis is a continuation of our previous work in [11] where we first introduce this com-
bination of autoencoder networks with GMLVQ as a proof of concept. In that context, we performed
a number of experiments using the MNIST dataset in order to explore both the performance capabil-
ities of the method, but also mainly the interpretability it can offer. As evident from this study, we
considered the results promising enough to warrant deeper experimentation with and testing of the
method.

In [12] the authors combine LVQ and its variants with Multi-Layer Perceptron and deep architec-
tures. In such models, the neural networks act as adaptive filters, extending the flexibility of LVQ.
This approach introduces the issue of reduced interpretability of the prototypes in LVQ, since they
now live in the feature space and no mapping back to the original space can be contstructed.

The authors of [13] propose a bimodal biometric verification system based on face and voice traits.
An autoencoder neural network is employed to extract characteristics from the image of the face,
which are then passed through LVQ for classification. A similar procedure is followed for the voice
trait and a decision is made based on the combination of the results. The observed performance is
satisfactory and shows that this method is promising.

Another approach of explainability in neural networks through prototypes is presented in [14], al-
though it does not utilize LVQ. The proposed architecture integrates an autoencoder with a prototype
layer, where each unit in this layer stores a weight vector resembling an encoded training input. This
allows the model to provide explanations for its predictions by comparing new inputs to these stored
prototypes in a latent space. The network is trained with a multi-term objective function that bal-
ances accuracy, prototype similarity to encoded inputs, encoded inputs’ proximity to prototypes, and
faithful reconstruction by the autoencoder.



16 Chapter 3 METHODS

3 Methods

3.1 Autoencoder architectures

In our previous work [11] we considered autoencoders with fully connected layers and fully convo-
lutional autoencoder architectures. In this study, we keep the focus on Fully Convolutional Autoen-
coders (FCAE) and also explore Convolutional Autoencoders (CAE) with a fully connected layer
acting as the bottleneck layer, as well as Variational Autoencoders (VAE).

3.1.1 Fully Convolutional Autoencoder

Figure 4 presents the proposed architecture for the Fully Convolutional Autoencoder we use for our
experiments. The encoder takes as input an image of size N ×N ×C and chains a series of con-
volutional operations, altering between non-strided convolutions for feature extraction and strided
convolutions for down-sampling. After the final convolution layer, a vector of adjustable size is pro-
duced, the vector we will call the ”latent space representation”. The decoder is essentially mirroring
the encoder. It takes this vector as input and through a series of convolutions and transposed convo-
lutions for up-sampling, it generates an image of the original N ×N ×C size. This is passed through
an activation size to make sure that it can be interpreted as an image.

In our experiments, we consider the sigmoid and the hyperbolic tangent functions. The sigmoid
function is a natural candidate, since it restricts the output between the values 0 and 1, allowing for
straightforward interpretation of the images and easy comparison with the originals. The hyperbolic
tangent, on the other hand, may look like an odd choice initially, due to the fact that the output range
of [−1,1] does not align very well with the original feature space, but the networks using it display
some interesting properties as we will see later.

During training, no pre-processing or normalization is applied to the training images, neither is batch

(a) (b)

Figure 4: The proposed architecture of the Fully Convolutional Autoencoder. The encoder (a) is
composed of only convolutional operations and the decoder (b) mixes convolutions with transposed
convolutions for up-sampling. The image was generated with the help of the package from [15].
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Name Type Sizes Activation Formats Learnables

imageinput Image Input [28,28,1,1] SSCB 0
conv 1 2-D Convolution [14,14,8,1] SSCB 80
conv 2 2-D Convolution [14,14,16,1] SSCB 1168
conv 3 2-D Convolution [7,7,16,1] SSCB 2320
conv 4 2-D Convolution [7,7,32,1] SSCB 4640
conv 5 2-D Convolution [4,4,32,1] SSCB 9248
conv 6 2-D Convolution [1,1,10,1] SSCB 5130

Table 1: Detailed overview of the encoder architecture

Name Type Sizes Activation Formats Learnables

imageinput Image Input [1,1,10,1] SSCB 0
transposed-conv 1 2-D Transposed Convolution [4,4,32,1] SSCB 5152
transposed-conv 2 2-D Transposed Convolution [8,8,32,1] SSCB 9248
conv 7 2-D Convolution [7,7,16,1] SSCB 2064
transposed-conv 3 2-D Transposed Convolution [14,14,16,1] SSCB 2320
conv 8 2-D Convolution [14,14,8,1] SSCB 1160
transposed-conv 4 2-D Transposed Convolution [28,28,1,1] SSCB 73
layer Sigmoid [28,28,1,1] SSCB 0

Table 2: Detailed overview of the decoder architecture

normalization is employed between layers. The objective function to be optimized during training
is the pixel-wise MSE and we use the ADAM optimizer [16] with a learning rate of 1e− 3 until
convergence or a variable maximum number of epochs.

For reproducibility, in Tables 1 and 2 we provide a more detailed description of one of our Fully
Convolutional Autoencoders, with input size 28×28×1, bottleneck layer size = 10 and the sigmoid
as the activation function of the decoder. In the ”Activation Formats” column of the tables (S) stands
for the Size dimensions, (C) for Channel dimension and (B) for Batch dimension. This architecture
can be altered slightly to accommodate for other image sizes, such as CIFAR-10’s 32×32×3.

3.1.2 Convolutional Autoencoder

The second type of architecture we explore is a minor modification to the Fully Convolutional Au-
toencoder discussed above. The last convolutional layer of the encoder and the first transposed con-
volutional layer of the decoder are replaced with fully connected layers. This change allows us to test
whether disrupting the chain of convolutions with fully connected layers causes a ”corruption” of the
extracted features, and thus worse reconstructions and lower classification accuracy.
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3.1.3 Variational Autoencoder

We test this method with a Variational Autoencoder as well. The architecture of the VAE we use is
very similar to the CAE. The bottleneck layer is replaced with two concatenated fully connected lay-
ers and a sampling layer after that. The loss function to be optimized is the ELBO loss, as described
in Section 2.4. The reason behind employing a VAE is to examine how the regularized feature space
will affect (a) the reconstruction of the prototypes and the relevance matrix and (b) the predictive
capabilities of the method.

There are two possibilities as to what we will consider the encoded feature space. On the one hand,
we could suggest that the features are the concatenated vectors of means and standard deviations, and
thus GMLVQ would be trained on those representations. On the other hand, we could consider the
sampling layer as part of the encoder and define the latent space representation as the outputs of the
sampling layer. We chose the later approach, as it allows us to deal with the random element of the
VAE more easily; each vector from the encoded feature space will always be decoded to the same
image, which means that we can faithfully decoded the prototypes and the relevance matrix to the
same values every time.

3.2 GMLVQ
The core idea of this project is to combine the GMLVQ algorithm with the encoder from an auten-
coder network in order to perform classification on a high dimensional dataset. Specifically, we train
the autoencoder described above on the MNIST (28×28 = 784 input dimensions) / FashionMNIST /
CIFAR-10 dataset and then isolate the encoder part of the network. We use the activations from the
bottleneck layer as low level representations of the input images and train the GMLVQ algorithm in
this low dimensional space. After the training is completed, we obtain the prototypes and pass them
through the decoder, which allows us to project them back to the original feature space and display
them as images again. The process of classifying a new image involves encoding it using the encoder
part of the autoencoder, finding the closest prototype based on the metric defined by the relevance
matrix and then assigning its label to the image.

One of the benefits of this scheme is the reduction of the computation needed for the calculation of
the distance between the datapoints and the prototypes by reducing the number of features. This is
important during the training of GMLVQ, since it is iterative and the distance metric is calculated
many times per data point.

One of the things we would like to evaluate using this method is the interpretability of the obtained
prototypes. As mentioned above, we can use the decoder to map the prototypes back to the original
feature space and display them as images in order to qualitatively judge how well they correspond to
their classes.

3.2.1 Decoding the relevance matrix

Another thing we would like to translate from the encoded space back to the decoded space is the
relevance matrix. The relevance matrix in the encoded space by itself is not very intuitive, since we
cannot (fully) interpret the features that are extracted from the convolutional neural network. Mapping
it back to the original dimensions would allow us to see which pixels, in this case, contribute more
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to the decision-making. The relevance matrix can be reconstructed based on the eigenvectors, by
following these steps:

1. Train the GMLVQ algorithm in the encoded space and obtain the relevance matrix.

2. Perform eigen-decomposition on the relevance matrix to obtain a matrix V of eigenvectors and
a vector D of eigenvalues.

3. Decode each eigenvector back to the original space and reshape the result from matrices to
vectors.

4. Construct the matrices Ωc =


−

√
λ1u⊤

1 −
−

√
λ2u⊤

2 −
...

...
...

−
√

λNu⊤
N −

 and Ω⊤
c =

 | | . . . |√
λ1u1

√
λ2u2 . . .

√
λNuN

| | . . . |

,

where ui is the i-th decoded eigenvector and λi is the corresponding eigenvalue.

5. Calculate the decoded relevance matrix as Λ = ΩcΩ⊤
c

It is possible to follow this construction without using all of the eigenvectors, but rather only a few,
without significant degradation of the quality of the decoding. This is especially true when the clas-
sification task concerns very few classes, since the leading eigenvectors/ eigenvalues are enough to
capture the directions of changes in the data. Intuitively, this observation can be understood by ana-
lyzing the results of the eigen-decomposition and locating the non-zero eigenvalues. Let’s look at an
example from a binary classification task:

Figure 5: The eigenvalues of the relevance matrix, sorted in descending order.

In Figure 5, we present the eigenvalues of the relevance matrix from one of our experiments. The
relevance matrix is included in Appendix A. We observe that only one eigenvalue is significantly
greater than 0. In this implementation of GMLVQ, the relevance matrix is normalized so that the
trace, and thus the sum of the eigenvalues, is equal to 1. Since the eigenvectors are scaled by their
corresponding eigenvalues during the construction of the relevance matrix, even if we include the rest
of the eigenvectors beyond the leading one in the computation, they would contribute next to nothing
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to the result, since they would be multiplied by a near-zero value. To confirm this, we construct the
matrix Λβ = u1u1⊤, where u1 is the leading eigenvector corresponding to the eigenvalue above. This
matrix should be matching the relevance matrix at an exceptional level (from the eigenvalue). In this
specific case, if we use the 2-norm of the difference between the two matrices as our distance metric,
we get a distance of 1.7124e−05, which confirms our statement.

Predicting using the decoded relevance matrix We can use the decoded relevance matrix in com-
bination with the decoded prototypes from GMLVQ to classify data samples from the original feature
space without the need to include the encoder network in the pipeline. We can employ the dis-
tance metric defined by Λdecoded to calculate the distance between an image and every prototype:
d(y,z) = (y− z)⊤Λdecoded(y− z). Then we assign to the image the label of the prototype to which it
is closest to.

3.2.2 Pre-processing: z-score transformation

Before GMLVQ is trained, a z-score transformation is applied on the encoded training data: x̃i =
xi−mi

si
,

where xi is the i-th feature value, mi is the mean value and si is the standard deviation. This means
that we have to take it into account and reverse it when we either want make make predictions in the
encoded space or need to go back to the original feature space:

1. Prototypes: Before passing the prototypes through the decoder, we reverse the z-score trans-
formation by applying xisi +mi, using the s and m we found during training.

2. Relevance matrix: Before the eigen-decomposition, the z-score transformation is reverted by
applying Λy =Z⊤ΛZ. Here, Z is defined as the diagonal matrix of which the element at position
Zii is si.

3.3 The hyperbolic tangent and interpreting the decoded images
The datasets we use in this study contain images with values ranging from 0 to 1, representing either
the light intensity of a specific pixel in the case of grayscale images, or the intensity of red/green/blue
in the case of colored images. However, as we mention above, in some of our experiments we use
the hyperbolic tangent as the output activation function of the decoder, which produces values in the
range [−1,1]. This raises two concerns:

1. Aligning the targets with the output space: In order to account for the mismatch between
the output space of the decoder and the original feature space of the images, we can employ a
simple rescaling of the input images (and thus the target images) to the range [-1,1]. We explore
the effects this change has and compare it to the case where no rescaling is used at all.

2. Interpreting the output images: The way that most software interpret images is by displaying
the value 0 as black and the value 1 as white, with anything in between being displayed as
various shades of grey. Any value below 0 is displayed as if it was 0 and any value greater that
1 as 1. For the hyperbolic tangent case, this means that half of the output range would basically
be discarded ([−1,0]). To combat this, when we display the images produced by the decoder
(such as the decoded prototypes or the eigenvectors), we sometimes display the value -1 as
black and the value 0 that was previously black is now gray. In some cases, obtaining insights
from the visualization is the objective rather than producing a faithful representation, such as
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interpreting the primary eigenvector of the relevance matrix. In such cases, we limit the display
range to the actual range of values of the specific image.

3.4 Structural similarity index measure
The Structural Similarity Index Measure (SSIM) [17] is a perceptual metric that quantifies the simi-
larity between two images. Unlike traditional methods like Mean Squared Error (MSE) that primarily
focus on pixel differences, SSIM considers changes in structural information. It evaluates three key
factors: luminance, contrast, and structure. Luminance measures the average brightness, contrast
measures the range of pixel intensity values, and structure assesses the correlation of pixel patterns
between the two images. By combining these three components, SSIM provides a more holistic and
perceptually relevant assessment of image similarity.

SSIM is computed on various windows of an image, and the overall SSIM index is the mean of these
local SSIM values. This method helps to better mimic the human visual system’s sensitivity to local
image features. The resulting SSIM values range from -1 to 1, where 1 indicates perfect structural
similarity and -1 indicates no similarity. SSIM is widely used in image processing tasks such as
image compression, denoising, and quality assessment, as it provides a more accurate representation
of perceived image quality compared to traditional error metrics.
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4 Experimental Setup
In this section we will summarize our experimental setup and will go over the common elements
between all of our experiments.

4.1 Tools and Technologies
The programming language of choice for all the experiments Matlab (2023a version). We used the
functionality provided by the Deep Learning toolbox to build and train our autoencoder. The Par-
allel Computing toolbox is used to parallelize the numerous executions of the experiments. For the
GMLVQ algorithm, we used the A no-nonsense beginner’s tool for GMLVQ toolbox as provided
in [18]. The hyper-parameters for the algorithms vary from experiment to experiment, so we will
mention them individually. Some of the experiments were performed on the Hábrók HPC cluster of
the University of Groningen.

4.2 Dataset
For our experiments, we use three datasets: MNIST, FashionMNIST and CIFAR-10.

4.2.1 MNIST

The MNIST dataset [19] contains a training set of 60,000 examples and a test set of 10,000 examples.
Each example in the dataset consists of a grayscale image of size 28x28 pixels, representing a single
handwritten digit from 0 to 9. The digits are centered within the image and have a consistent size and
orientation.

The simplicity of the MNIST dataset makes it a good starting point for beginners in the field of
machine learning. It provides a relatively straightforward and well-defined task of classifying hand-
written digits, while still presenting some challenges due to variations in writing styles and noise
in the images. Due to its popularity, numerous machine learning frameworks and libraries provide
built-in utilities for loading and working with the MNIST dataset, making it easily accessible for ex-
perimentation and research. We use a version of this dataset that simplifies the procedure of importing
the images to Matlab and converting them to useable matrices [20].

4.2.2 FashionMNIST

The FashionMNIST dataset [21] serves as a direct drop-in replacement for the original MNIST
dataset. FashionMNIST, contains images of various fashion items, making it more challenging and
relevant for modern applications. The dataset is composed of 70,000 grayscale images, each of 28x28
pixels, divided into a training set of 60,000 images and a test set of 10,000 images. Each image
depicts one of 10 different fashion categories, such as T-shirts, trousers, pullovers, dresses, coats,
sandals, shirts, sneakers, bags, ankle boots, and flats, with each category being equally represented.

The primary motivation behind FashionMNIST was to provide a more complex and realistic dataset
than MNIST, to push the boundaries of machine learning algorithms. Unlike MNIST, which can be
overly simplistic and potentially lead to overfitting on more complex real-world tasks, FashionMNIST
offers a higher level of variability and intricacy in the visual patterns of the items. This encourages
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the development and evaluation of models that can generalize better across a wider range of visual
recognition tasks.

4.2.3 CIFAR-10

The CIFAR-10 dataset [22] is a widely recognized benchmark in the field of computer vision and
machine learning. It consists of 60,000 color images, each with dimensions of 32x32 pixels, divided
into 10 distinct classes. These classes represent common objects and scenes such as airplanes, auto-
mobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is split into a training set
of 50,000 images and a test set of 10,000 images, with each class being equally represented, providing
a balanced dataset for model training and evaluation.

CIFAR-10 was created by the Canadian Institute for Advanced Research (CIFAR) and is part of
the larger CIFAR dataset collection. The relatively small size of the images and the presence of
various object categories make CIFAR-10 a challenging dataset for image classification tasks. The
complexity arises from the low resolution of the images combined with the significant variation in
object appearance, position, and background clutter. This dataset has become a standard benchmark
for evaluating the performance of various machine learning algorithms, particularly convolutional
neural networks (CNNs).

4.3 Performance Criteria
We evaluate the method both quantitatively and qualitatively. We determine how suitable an autoen-
coder network is for implementing it into the method’s pipeline by inspecting the Mean Squared Error
(MSE) in combination with the quality of the reconstructed images. Further, in the general case, we
use the classification accuracy as a way to judge whether the method provides good results, while
specifically for the binary classification problems we can also use the AUROC [23] for evaluation.
We will also evaluate the method based on the interpretability of the decoded prototypes, as well as
of the eigenvectors of the relevance matrix.
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5 Experiments and results
In this section, we present the experimental procedures and the corresponding results that were ob-
tained in the study. The results are then presented and analyzed, with a focus on performance metrics
such as accuracy, as well as interpretability.

5.1 CAE vs FCAE vs VAE
In this first experiment we will compare the three architectures described in the methods section: the
Convolutional Autoencoder, the Fully Convolutional Autoencoder and the Variational Autoencoder.
We first train the autoencoder with on the images from the classes we pick for the classification,
and then train the GMLVQ on the features extracted from encoder. We chose simple datasets and
relatively easy tasks in order to first showcase that the architectures can work in these settings and
that the prototypes we obtain are interpretable. These are the details of the experiments:

• Dataset: MNIST/FashionMNIST

• Task: Binary Classification (0 and 1 /”Bag” and ”Trousers”)

• Architecture: CAE/FCAE/VAE

• Decoder activation function: Sigmoid

• Autoencoder training epochs: 20

• Hidden Size: 10

• GMLVQ prototypes per class: 1

• GMLVQ training steps: 30

In Table 3 we present the accuracy of the predictions on the validation set for each case, averaged
over 10 runs. Overall, in all cases the accuracy is very high and tightly close to each other case. This
is not surprising, since the datasets are relatively ”easy” and the classification task is significantly
simplified. In Figure 6 we visualize the prototypes of the two classes from the FashionMNIST dataset
obtained from each of the three decoders. In all three cases, the pairs of prototypes look highly alike;
they clearly resemble a member of the class they represent and could be easily confused with a real
image from the training data. In Figure 7 we present four original images from the test set and the
reconstruction each autoencoder produces for demonstration and comparison purposes.

MNIST FashionMNIST

CAE 0.996 0.992
FCAE 0.997 0.991
VAE 0.989 0.980

Table 3: The accuracies of the classifiers that are based on the autoencoders for the binary classifica-
tion task on the MNIST and FashionMNIST datasets.
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Figure 6: The decoded prototypes for the two classes ”Bag” and ”Trousers” for each of the the three
cases. First row is from CAE, the second from FCAE and the third from VAE.

Figure 7: Four original images from the test set and the reconstructions produced by each autoencoder.
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MNIST FashionMNIST

CAE 0.772 0.736
FCAE 0.764 0.734
VAE 0.562 0.610

Table 4: The accuracies of the classifiers that are based on the autoencoders for the 10-class classifi-
cation task on the MNIST and FashionMNIST datasets.

The simplicity of the first task does not allow us to observe any significant differences in performance
between the three architectures. So, as a continuation of this experiment, we put the three architec-
tures to the test once again, but we use the whole datasets for training the autoencoders and train
GMLVQ to categorize the images into 10 classes. We show the final accuracies in Table 4. In general,
performance for all three cases is a bit underwhelming, especially compared to modern methodolo-
gies, but we need to keep in mind that we are using a fairly small size for the bottleneck layer and only
one prototype per class. The accuracy of the classifier based on the CAE is very close to the one of
the classifier based on the FCAE for both cases, while in the VAE case we notice a substantial decline.

5.2 The hyperbolic tangent
As we explained previously, we use two different activation functions as the final layer of the decoder:
the sigmoid and the hyperbolic tangent. In this section we will compare the two in terms of perfor-
mance and interpretability.

We start with a simple experiment: binary classification on the FashionMNIST dataset. These are the
details of the experiment:

• Dataset: FashionMNIST

• Task: Binary Classification (”Bag” and ”Trousers”)

• Architecture: FCAE

• Decoder activation function: Sigmoid/Tanh

• Autoencoder training epochs: 20

• Hidden Size: 10

• GMLVQ prototypes per class: 1

• GMLVQ training steps: 30

Figure 8 shows a comparison between the decoded prototypes obtained from the two experiments.
The prototypes obtained from the autoencoder with the sigmoid activation function are a bit more
well defined, but they are fairly similar. They also perform similarly in the classification task, with
the sigmoid version achieving 99.1% accuracy and the hyperbolic tangent version 99.2% accuracy.
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Figure 8: The decoded prototypes from the experiments with the sigmoid activation function and the
hyperbolic tangent.

An interesting difference emerges when we inspect the decoded leading eigenvectors of the relevance
matrices, as we can see in Figure 9. The leading eigenvector from the sigmoid experiment is mostly
illegible, while the one from the hyperbolic tangent looks like the pixel-wise difference of the two
prototypes. This is a property that we explored in our previous work, and it is hinting at the ability
of the relevance matrix to capture the direction in which the members of the two classes differ the
most. This comparison suggests that the hyperbolic tangent makes it easier for the relevance matrix to
contain this information, at least when the Fully Convolutional Autoencoder architecture is concerned.

We repeat the experiment above but this time with all 10 classes, so that we can see more clearly if
there are any differences in the classification accuracy. The hyperbolic tangent version has a 78.85%
accuracy on the validation set and the sigmoid version has 78.30%, so the performance is still almost
the same. We present a comparison of the decoded prototypes in Appendix B for completeness.

5.2.1 Rescaling the autoencoder’s targets

One of the concerns with using the hyperbolic tangent as the output activation function of the decoder
is the mismatch between the its output range and the value range of the target images. We will test
how this affects our method by rescaling the target outputs of the decoder (but not the inputs) from the
range [0,1] to [−1,1] and then compare the results with the approach where no such pre-processing
takes place. The details of the experiment are the same as above.

The accuracy of the GMLVQ algorithm that was trained on the features encoded by the autoencoder
with the rescaled targets is 99%, which is very close to the one without the rescaling. The prototypes
also look almost identical between them (Figure 8, second column), after adjusting the display range
for the former. One difference is that the rescaled version of the decoder is using the full space be-
tween -1 and 1 for its outputs; the prototypes, for example, have values between -1 and 0.83. On
the other hand, the autoencoder with the original targets has learned to almost exclusively use half
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Figure 9: The decoded leading eigenvector from the experiments with the sigmoid activation function
and the hyperbolic tangent. In each case, the display range of the image is the actual range of the
values of that image instead of the typical [0,1].

of the range, not producing values between -1 and 0. This was expected, since the function we are
optimizing during training is the MSE and the targets are in that range. We repeat the experiment with
MNIST dataset and observe similar results.

5.3 Bottleneck layer size
One of the things we want to investigate with this project is how the size of the bottleneck layer (hid-
den size) of the autoencoder affects both the quality of the reconstruction of the prototypes and the
classification performance of GMLVQ. It is clear that with higher dimensionality more information
is preserved and thus the performance should be better, but we consider it worthwhile to quantify this
effect. These are the details of the experiment:

• Dataset: FashionMNIST

• Task: Binary Classification (”Bag” and ”Trousers”)

• Architecture: FCAE

• Decoder activation function: Tanh

• Autoencoder training epochs: 50

• Hidden Size: 5-125

• GMLVQ prototypes per class: 1

• GMLVQ validation runs: 10
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Figure 10: The prototypes for each class for hidden size = 5, 20 and 125.

• GMLVQ training steps: 30

In Figure 10 we present the decoded prototypes for each class and in Figure 11 the decoded leading
eigenvector of the relevance matrix for hidden sizes = 5,20 and 125. It seems that the size of the
bottleneck layer does not affect much the quality of the final prototypes or how detailed they are.
The prototype for ”trousers” remains identical through different sizes, while for the ”bag” prototype,
the only thing that changes is an artifact that is eliminated at higher sizes. The eigenvectors are also
decoded to similar images: a superposition of the two prototypes, one prototype with low intensity
and the other with high, even though the prototype for ”trousers” is dominant.

In Figure 12 we plot the MSE of the autoencoder on the validation set over the hidden size. We
observe a very clear trend of the error decreasing logarithmically as the hidden size is increasing,
revealing diminishing return for higher numbers of latent feature space sizes. Figure 13a shows how
the Area Under the Receiver Operating Characteristic (AUROC) varies with the changes in the hid-
den size, while Figure 13b shows how the accuracy changes. Even with the lowest hidden size (=5)
the algorithm manages to classify the data correctly at a very satisfactory level, and any more than
20 hidden neurons do not lead to any improvements in performance (there is not much space for
improvement anyway). This is, of course, not surprising, since we chose an ”easy” dataset and we
even simplify the task from 10-class classification to 2-class. One conclusion we can draw by com-
paring the plots is that even though there might not be enough information preserved in the encoded
representations of the images to produce good reconstructions for lower hidden sizes, there is enough
information to correctly classify them. This again agrees with our expectations and intuition.
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Figure 11: The decoded leading eigenvectors for hidden size = 5, 20 and 125.

Figure 12: MSE plotted over hidden size

(a) AUROC plotted over hidden size (b) Accuracy plotted over hidden size

Figure 13
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(a) MSE plotted over hidden size for the 10-class ex-
periment

(b) Accuracy plotted over hidden size for the 10 class
experiment

Figure 14

The effect of the latent space size for the 10-class task Due to the simplicity of the previous task,
the classifier was able to achieve pretty high accuracy even with a very small number for the size of
the bottleneck layer, so we couldn’t infer much about how this size affects the classification perfor-
mance. To combat this, we repeat the experiment with all 10 classes. The rest of the details of the
experiment are the same, besides changing the size in increments of tens rather than ones.

We plot the same statistics in Figures 14a and 14. The Mean Squared Error of the autoencoder is fol-
lowing the same trend as in the binary classification problem, decreasing as the hidden size increases,
with this decrease tapering off. The accuracy starts quite low with hidden size equal to 5 and sharply
increases for the next few greater sizes up to about 25. After that, it keeps increasing but is gradually
slowing down. From the trend we can assume that with even higher values for the hidden size we
could see increased performance, but then we would have to start considering the trade-off between
the cost of the autoencoder and the actual value of the latent representations, since the compression
ratio would be less than 5.

5.4 Prototypes in the CIFAR-10 dataset
The CIFAR-10 dataset is a much harder dataset to ”solve”, due to the 3-channels of the image com-
pared to the one of MNIST and FashionMNIST, but also because of the increased complexity and
variance in the images. These traits make CIFAR-10 a bit more interesting than the other two, urging
for some additional exploration of the behaviour of the method on this dataset. For this purposed,
we trained a Fully Convolutional Autoencoder on the classes ”Horse” and ”Ship” and then applied
GMLVQ with the goal of solving for the binary classification task between the two.

One of the first things we noticed when we applied the method on the CIFAR-10 dataset was the poor
quality of the prototypes. In the cases of MNIST and FashionMNIST, the labels of each prototype
were obvious by just looking at them and the prototypes themselves could very well be considered
members of the dataset by an uninformed observer. However, this is not true for CIFAR-10, as the
reader can observe in Figure 15a. Maybe if we make some concessions on the definition we can call
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(a) The decoded prototypes for the classes ”Horse” and ”Ship”

(b) Pixel-wise average images for the classes ”Horse” and ”Ship”

Figure 15

the first prototype a horse, but the other prototype is nowhere close to resembling a ship.

5.4.1 Pixel-wise average image

Here we compare the prototypes of ”Horse” and ”Ship” classes with the pixel-wise average of all the
images in the training data that belong to those classes. As we can see in Figure 15b, the two are very
similar visually. As a way to quantify this similarity, we use the SSIM measure; the SSIM between
the ”Horse” prototype and the average is 0.936 while for ”Ship” it is 0.957. For comparison, the SSIM
between the two prototypes is -0.321. This suggests that when we apply GMLVQ with one prototype
per class, the algorithm pushes the prototypes towards the pixel-wise average of the training images,
even through the encoded features. Below we write down the details of the experiment, but these
results can be obtained with many different configurations.

• Dataset: CIFAR-10

• Task: Binary Classification (”Horse” and ”Ship”)

• Architecture: FCAE

• Decoder activation function: Tanh

• Autoencoder training epochs: 20

• Hidden Size: 64

• GMLVQ prototypes per class: 1
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Dataset Class 1 SSIM Class 2 SSIM

CIFAR-10 0.936 0.957
MNIST 0.753 0.912
FashionMNIST 0.954 0.802

Table 5: The SSIM between the prototypes and the pixel-wise average for each of the two classes for
different datasets with various settings.

MNIST 0 1 2 3 4 5 6 7 8 9

SSIM 0.976 0.661 0.928 0.906 0.901 0.695 0.852 0.816 0.854 0.812

Table 6: The SSIM between the prototypes and the pixel-wise average for each of the 10 classes in
the MNIST dataset.

• GMLVQ training steps: 30

We repeat this experiment with different datasets and classes to see if this behaviour is observed
universally. We write down the results in Table 5. We also present the results for the 10-class classifi-
cation problem for the MNIST dataset in Table 6. Generally, we observe high SSIM scores, which is
further evidence that supports the hypothesis that GMLVQ ”pushes”, at least, the prototypes towards
the average in the one-prototype-per-class case.

5.4.2 Multiple prototypes per class

For this experiment, we repeat the one from above but with 10 prototypes per class and more neurons
in the bottleneck layer, with hopes that the additional prototypes can capture certain underlying clus-
ters withing the classes and maybe generate more interpretable prototypes. These are the details for
the experiment:

• Dataset: CIFAR-10

• Task: Binary Classification (”Horse” and ”Ship”)

• Architecture: CAE

• Decoder activation function: sigmoid

• Autoencoder training epochs: 100

• Hidden Size: 256

• GMLVQ prototypes per class: 10

• GMLVQ training steps: 30

Figure 16 shows the 10 decoded prototypes for each class. Even though the results for the ”Ship”
class are not very resembling of ships, the prototypes for the ”Horse” class are a bit more interesting.
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(a) The 10 decoded prototypes for the class ”Horse”

(b) The 10 decoded prototypes for the class ”Ship”

Figure 16

For some of these prototypes its much easier to infer what the images represent compared to the case
with 1 prototype per class. Also, the idea of “clustering” within the class seems to be working. For
example, there is one prototype for horses that are facing left and one for facing right, one for horses
on green grass, one on yellow grass and one on dirt.

The importance of fine-tuning the hyper-parameters We will use this experiment in combination
with some concepts from the previous section on the bottleneck layer size to demonstrate the impor-
tance of fine-tuning some hyper-parameters, specifically the hidden size and the number of prototypes
per class. The configuration described above achieves an accuracy of 88.30%, while if we decrease
the size of the bottleneck layer to 64 and the number of prototypes per class to 1, the accuracy drops
dramatically to 33.69%. In Figure 17 we compare the quality of the reconstructions of four images
from the test set for the two configurations.
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Figure 17: Four original images from the CIFAR-10 test set and the reconstructions from each au-
toencoder configuration.

5.5 Predictions on the decoded relevance matrix
As explained in Section 3.2.1, we can use the decoder to map the relevance matrix from the encoded
space to the original feature by means of eigendecomposition. This allows us to: (a) better interpret
the relevance matrix, i.e. discover the most important pixel or areas, and, more importantly, (b) carry
out inference without the encoder.

In this experiment, we train a FCAE on the MNIST dataset and GMLVQ on the binary classification
problem between the classes 0 and 1. Then, we produce the relevance matrix in the original feature
space from the latent space with the method described in Section 3.2.1, and we use this matrix to
define the distance metric and classify images. We compare the predictions with both the ground
truth and the predictions that are made in the encoded space. These are the details of the experiment:

• Dataset: MNIST

• Task: Binary Classification (0 and 1)

• Architecture: FCAE

• Decoder activation function: Tanh

• Autoencoder training epochs: 20

• Hidden Size: 10

• GMLVQ prototypes per class: 1
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MNIST Encoded Accuracy Decoded Accuracy Agreement

CAE+sigmoid 0.996 0.832 0.833
CAE+tanh 0.997 0.978 0.980
FCAE+sigmoid 0.997 0.684 0.683
FCAE+tanh 0.997 0.992 0.994

Table 7: The results for the experiments with the decoded relevance matrix and the MNIST dataset.

FashionMNIST Encoded Accuracy Decoded Accuracy Agreement

CAE+sigmoid 0.991 0.905 0.903
CAE+tanh 0.992 0.704 0.706
FCAE+sigmoid 0.991 0.571 0.571
FCAE+tanh 0.992 0.985 0.989

Table 8: The results for the experiments with the decoded relevance matrix and the FashionMNIST
dataset.

• GMLVQ training steps: 20

For this simple task, the predictor based on the decoded relevance matrix achieves an accuracy of
99.29%, whereas the ”teacher” (the predictor based on the encoded relevance matrix) has 99.91%
accuracy. The student agrees with the teacher 99.39% of the time. At this point it is important to note
that the accuracies reported in this section are calculated on the training set.

To test this method further, we apply it to a few more configurations. Namely, we experiment with
the CAE architecture, the sigmoid function and also apply it to the FashionMNIST dataset. Tables 7
and 8 show the results. We see some mixed numbers, so this method seems to be very depended on
both the architecture of the autoencoder as well as the activation function used. Based on the ”agree-
ment” statistic, it becomes apparent from the results for both datasets that the combination of FCAE
and sigmoid is not suitable, whereas the combination of FCAE and the hyperbolic tangent is the most
promising one.

The hyperbolic tangent seems to be more suited for this task in general. We speculate that this su-
periority can be attributed to the ability to produce negative numbers, which thus allows for greater
variety of values in the final relevance matrix. A visual representation of this idea is shown in Fig-
ure 18, where the decoded relevance matrices for both cases are interpreted as images.

5.5.1 Multi-class classification

With the above in mind, we decide to test the FCAE + tanh combination further by subjecting it to
multi-class classification tasks. We train GMLVQ to differentiate between 0,1 and 2, and we use the
two leading eigenvectors to reconstruct the relevance matrix. For comparison, we also check how the
performance changes when we use only the first leading eigenvector to reconstruct the matrix. The
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Figure 18: The decoded relevance matrices interpreted as images for the hyperbolic tangent (left) and
the sigmoid (right) activation functions.

Encoded Accuracy Decoded Accuracy Agreement

2 eigenvectors 0.963 0.936 0.954
1 eigenvector 0.963 0.880 0.878

Table 9: Accuracies of the decoded relevance matrix when it is reconstructed using 1 and 2 eigenvec-
tors. For reference, the eigenvalues of the eigenvectors are 0.56 and 0.44.

results are shown in Table 9. As expected, both the accuracy and the agreement with the teacher are
lower than the two-class version. The accuracy of the predictor based on the relevance matrix gener-
ated from only the single leading eigenvector has declined, but this was again expected, since the the
second leading eigenvector had a significant eigenvalue corresponding to it (0.44).

The next step is to repeat the experiment with all 10 classes. So we increase the hidden size of the
autoencoder to 32 and train it on the whole dataset for 50 epochs. GMLVQ is trained for 30 steps.
The teacher predictor has an 86.48% accuracy, the student 80.08% and they agree on 85.94% of the
cases. Increasing the number of prototypes from 1 to 5 increases the accuracy of the student predictor
to 84.87% and the agreement to 89.41%.

In Figure 19 we plot the agreement percentage on the classifications between the predictor based on
the encoded relevance matrix and the one based on the decoded one plotted against the number of
eigenvectors used to compose the decoded relevance matrix. The results agree with out intuition; as
we use more eigenvectors we get better results, but the improvements are diminishing.
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Figure 19: The agreement percentages on the classifications between the student and teacher predic-
tors plotted against the number of eigenvectors used to reconstruct the relevance matrix.

5.5.2 Thoughts on the decoded relevance matrix approach

The predictor based on the decoded relevance matrix may not be completely faithful to the teacher and
may perform worse, but it has an interesting advantage: it eliminates the encoder from the inference
process. This has a couple of consequences:

1. Reduced storage needed to save the model: For this method to work, the machine that is do-
ing the inference only needs to store the decoded eigenvectors needed to construct the relevance
matrix and the decoded prototypes, as opposed to storing an entire neural network. Even in our
case, with our relatively limited architecture, there is some storage saving; for the 10-class ex-
ample, we would need 28KB for the 9 eigenvectors and another 31KB for the 10 prototypes.
The encoder itself is currently at 174KB + 2.5KB for the encoded prototypes.

Now, in a hypothetical where we train a very deep and complex autoencoder and fine-tune
the GMLVQ training to the point where we achieve a satisfactory performance, the size of the
encoder network would increase, but the size of the ”model” for the student predictor would
remain constant. Of course, nowadays storage is pretty cheap. Also, to use this method, the
machine would have to calculate the relevance matrix and keep it in its RAM, which takes about
2.5MB for the previous example, which takes away a bit from our argument.

2. Reduced time needed to carry out inference: Eliminating the encoder also means that the
classifier does not have to spend time to extract features from every new image that is presented
to it. All that is needed is two vector-by-matrix multiplications for each class. This is needed in
the original method as well, but in this case the dimensions are higher. Again, in the hypotheti-
cal where we have the perfect autoencoder and GMLVQ trained, the time needed to encode an
image scales with the complexity of the encoder, whereas the time needed to predict with the
decoded relevance matrix remains constant (for a given image size).
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6 Conclusion
In this master’s thesis, we have explored the integration of Generalized Matrix Learning Vector Quan-
tization with autoencoders and convolutional neural networks to create an interpretable classification
model based on our previous work. The core objective was to address the high-dimensionality chal-
lenges inherent in modern datasets while improving the interpretability of the model. We look at the
method through a wider lens, uncovering its properties and how its moving parts interact with each
other.

Our approach involved several key steps:

Dimensionality reduction with autoencoders We employed autoencoders to reduce the dimen-
sionality of the data. This step was crucial to make the GMLVQ algorithm feasible for high-dimensional
datasets, as it reduces computational complexity.

Prototype-based classification By using GMLVQ, we leveraged the interpretability of prototypes,
which serve as representative examples of each class. This aspect of our method helps in understand-
ing the decision boundaries and the factors influencing the classification.

Experiments and Analysis We conducted extensive experiments to evaluate the performance of
different autoencoder architectures and their impact on the classification accuracy. We also examined
how varying the size of the bottleneck layer and the number of prototypes per class affected the re-
sults. Additionally, we demonstrated the utility of the decoder in mapping relevance matrices back to
the original feature space for better interpretability.

In general, the performance of the predictors we end up with in most experiments is underwhelming,
but the experiments with larger values for the size of the bottleneck layer and the number of prototypes
indicate that there is potential for achieving satisfactory performance with a sophisticated enough
architecture and careful fine-tuning. Of course, we do not attempt to compete with state-of-the-art
models in the space of classification; rather the aim should be to sacrifice as little performance as
possible in exchange for the interpretability the method is offering.

6.1 Future Work
Several avenues for future research emerge from this study:

Application to Other Domains Applying this methodology to a broader range of datasets and
domains could validate its versatility and effectiveness. Besides using larger images, this includes
exploring other types of data, such as time-series or text data.

Enhanced Interpretability Techniques Developing additional techniques to enhance the inter-
pretability of the relevance matrices and prototypes could further improve the usability of the model
in practical applications. One possibility would be to append at the end of the proposed pipeline an
image similarity identification technique based on landmarks or keypoints in order to be able to pin-
point with precision the points of interest that match the image to the closest prototype. For example,
one could employ the scale-invariant feature transform (SIFT) [24] algorithm on top of this method
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after both the autoencoder and GMLVQ were trained on some medical imagery, where decision ex-
plainability is crucial, to highlight some keypoints on the image under examination that are similar to
one of the prototypes and ultimately guided its decision.

Deeper examination of the decoded relevance matrix The decoded relevance matrix and its prop-
erties is one of the most interesting parts of this study. If fine-tuned with focus on the predictor based
on it and a satisfactory performance is achieved, we believe it could potentially find applications in
machines with limited memory and computational resources.
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Appendices

A Relevance matrix from binary classification problem
Here we include the relevance matrix from the example in Section 3.2.1.

0 0.002 −0.0013 0.0007 0.0006 −0.0013 −0.0005 −0.0002 0.0008 0.0015
0.002 0.3343 −0.2264 0.127 0.111 −0.2191 −0.091 −0.0423 0.1321 0.2593

−0.0013 −0.2264 0.1534 −0.086 −0.0752 0.1484 0.0616 0.0287 −0.0895 −0.1757
0.0007 0.127 −0.086 0.0483 0.0422 −0.0833 −0.0346 −0.0161 0.0502 0.0985
0.0006 0.111 −0.0752 0.0422 0.0369 −0.0728 −0.0302 −0.0141 0.0439 0.0861
−0.0013 −0.2191 0.1484 −0.0833 −0.0728 0.1436 0.0597 0.0277 −0.0866 −0.17
−0.0005 −0.091 0.0616 −0.0346 −0.0302 0.0597 0.0248 0.0115 −0.036 −0.0706
−0.0002 −0.0423 0.0287 −0.0161 −0.0141 0.0277 0.0115 0.0054 −0.0167 −0.0328
0.0008 0.1321 −0.0895 0.0502 0.0439 −0.0866 −0.036 −0.0167 0.0522 0.1025
0.0015 0.2593 −0.1757 0.0985 0.0861 −0.17 −0.0706 −0.0328 0.1025 0.2012


B Decoded prototypes for FashionMNIST
In this appendix we compare the decoded prototypes between the hyperbolic tangent and sigmoid versions of
the experiment described in Section 5.2. It concerns the FashionMNIST dataset and the end goal is a 10-class
classification task. As we can see in Figure 20, the prototypes are almost identical.

Figure 20: The decoded prototypes, with the sigmoid version in the first row and the hyperbolic
tangent version in the second.


