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Abstract

Stimulated Emission Depletion (STED) microscopy is an advanced fluorescence microscopy
technique that manages to break the diffraction limit of light, allowing for super-resolution
imaging of cellular structures. This is achieved by the use of fluorophores, fluorescent molecules
that can be selectively excited and quenched by two high-intensity lasers. However this intense
light can detrimentally affect both the fluorophores’ ability to emit light, and the viability
of the observed cells. The most reliable way to reduce this damage is to limit the exposure
to the STED lasers by reducing the dwell time. This thesis proposes a method to get the
most vital information from low dwell time images using segmentation maps. To accomplish
this a segmentation tool for Astronomy, MTObjects, is used as a starting point and adapted
for the use on live-cell images. These adaptations include improved noise-detection, adaptive
blurring, image reconstruction, and a novel approach to inner-segmentation. Consequently, a
clear picture is created of how much information is retained for each lower dwell time selection,
demonstrating that most vital information is preserved for all but the lowest dwell times.
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Symbols

λ move factor
f(x) intensity of pixel x
P a node in our Max Tree
Panc closest significant ancestor
σ2 variance
σ2
bg background variance

g gain
α significance level
d distance
µ mean
P (x) probability distribution for x
k number of events
ν average number of occurrences
P (k; ν) probability of observing k events given mean rate ν
κ edge sensitivity
γ diffusion rate



Chapter 1

Introduction

Stimulated Emission Depletion (STED) microscopy is a relatively new and exciting technique
that manages to surpass the diffraction limit of conventional light microscopy, enabling vi-
sualization of structures only visible at the nanoscale. First described by Stefan Hell and
Jan Wichmann in 1994 [1], STED microscopy operates by utilizing fluorophores, fluorescent
chemical compounds attached to molecules, to visualize, track, and quantify these molecules
in specific regions of interest. These fluorophores are selectively deactivated in the excitation
area, while only allowing those present in a very reduced center volume to emit light. This
is achieved through a dual-beam setup: a Gaussian excitation beam and a doughnut-shaped
depletion beam, which work together to confine the fluorescence emission to a subdiffraction
region. This method effectively reduces the size of the fluorescent spot, thereby enhancing the
resolution. [2]
To achieve high-resolution images necessitates the use of a high intensity STED beam in order
to actively quench fluorescence via stimulated emission. However, this requirement introduces
a significant trade-off: the high amount of illumination needed for high-resolution imaging can
lead to photobleaching and phototoxicity [3]. Photobleaching occurs when the fluorophores un-
dergo irreversible chemical reactions due to prolonged exposure to high-intensity light, leaving
them non-fluorescent. The high-intensity light also causes phototoxicity, which involves dam-
age to biological samples, which can cause irreparable harm, especially in live-cell imaging [4].
These negative effects can compromise the integrity and longevity of the imaging and therefore
a solution has to be found that ensures the minimization of these effects while retaining as
much information as possible.[5]

In (Vicidomini et al., 2018) [5] several STED-microscopy methods are discussed that would
allow for clear imaging while reducing the effect of photobleaching and phototoxicity. Reducing
unnecessary illumination should reduce these adverse effects and can be achieved by methods
such as time-gated detection [6], where the fluorescence signal is collected after a delay, but
also the development of adaptive optics and beam alignment systems can help in this regard.
They also discuss newly designed fluorosphores that are increasingly stable due to enhanced
photostability and reduced absorption at the STED beam’s wavelength, therefore reducing the
amount of photonbleaching [7]. Moreover, advanced strategies such as RESCue-STEd [8] and
MINFIELD-STED [9] ensure more selective application of the STED beam, reducing overall
exposure to the cell. Finally, using different wavelengths, most notably around infrared light, is

8



CHAPTER 1. INTRODUCTION 9

shown to reduce phototoxicity [10], making them more suitable for live-cell imaging. Although
all these advancements enhance the practicality and effectiveness of STED microscopy, they do
not completely eliminate the problems caused by photobleaching and phototoxicity.

In their research, Ebrahimi et al. (2023) [11] employ deep learning to significantly reduce
the pixel dwell time in STED microscopy, addressing the challenges of photobleaching and
phototoxicity. By integrating a two-step prediction architecture that combines a U-Net and a
Residual Channel Attention Network (RCAN), they developed a method to restore high-quality
images from low Signal-to-Noise (SNR) inputs obtained with shortened dwell times. This ap-
proach allows for efficient and robust restoration of noisy 2D and 3D STED images, even with
significantly reduced exposure times. The reduction in dwell time minimizes the exposure of
fluorophores to high-intensity light, thereby decreasing the likelihood of photobleaching and
phototoxicity. Consequently, this technique enables long-term imaging of dynamic cellular pro-
cesses, with minimal negative effects on the samples. However, the use of deep learning may
introduce artifacts or elements that are not present in the original image, which is a problem
found frequently in uses of deep learning for image reconstruction. These deviations mean that
the restored images might not completely and accurately represent the actual cellular structures.

A great way to filter the most essential information out of an image is the use of segmenta-
tion maps. As shown in figure 1.1, these maps allocate specific pixels of an image to a particular
source, aiding in the identification and separation of distinct objects. Segmentation maps are
commonly used in Astronomy in order to detect structures such as galaxies, star clusters and
nebulae. A paper [12] comparing four of these segmentation tools, SExtractor[13], ProFound
[14], NoiseChisel[15], and MTObjects [16], shows the usefulness of these segmentation maps to
find distinct objects. The paper showed that across all evaluation methods, MTObjects per-
formed the best, citing “MTObjects produced the highest values for both F1-score and Area
score”.
Segmentation maps can be an invaluable tool for extracting critical information from cell im-
agery. By tracking the cell area through identifying regions of increased fluorescence activity, we
can use this map to precisely delineate cell boundaries [17]. Furthermore, in STED microscopy,
regions with varying fluorophore concentrations can be identified, where higher photon count
areas indicate regions with a higher number of fluorophores, which are strongly correlated with
high-density parts of the cell. This enables us to create accurate inner segmentation, revealing
more active, dense and structurally significant regions of a cell. Therefore, segmentation maps
can help us extract the most important information needed, both in terms of cell area as well
as cellular components and inner detail.

In this paper we propose a way to get the most essential information out of low dwell time
STED microscopy cell images using segmentation maps. To accomplish this we will use the
MTObjects segmentation tool as a starting point. As MTObjects was originally created for the
segmentation of astronomical objects, we propose several adaptations in order to optimize it for
cell imaging such as noise adaptation, image reconstruction and improved inner-segmentation.
Due to our use of low dwell time images this approach should significantly reduce the problem
of phototoxicity and photobleaching in order to increase the lifetime of both the fluorophores
and cells, allowing for live cell imaging. Meanwhile this would eliminate the risk of artifacts
associated with the use of Deep Learning. We will present a detailed analysis of the MTObjects
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tool, including all adaptations in Section 2. Following this, Section 3 will cover our experimental
setup, metrics and optimization procedure. In Section 4 we will present and discuss our findings
and results in detail. Finally, in Section 5, we will conclude our research and look at potential
future works.

Figure 1.1: An example of a segmentation map, showing how a traffic image can be
segmented into distinct objects. [18]



Chapter 2

Methods

In this section, we will present the methods utilized and developed for this project, beginning
with our starting point, the MTObjects segmentation tool. MTObjects was chosen due to its
great performance in detecting astronomical structures, both in terms of speed and accuracy
[12]. The main dataset will be discussed before detailing our modifications in order to provide
insight and context into our approach and the specific challenges we addressed. Our adaptations
start with the background detection method, where we modified it to account for Poisson noise
as this is much more accurate when dealing with low photon count images. Additionally we
incorporated an additional blurring method, Perona-Malik (anisotropic) smoothing, to investi-
gate if this can increase performance. To address challenges with low photon count images, we
implemented image reconstruction techniques to further enhance segmentation accuracy. We
also reconstructed the inner segmentation of found objects using a combination of height-plots
and isolines to get a more detailed and accurate representation of our cells. Finally, we will
describe a method of object detection for one of our secondary data sets. In the following
section we will discuss each of these components in detail.

2.1 MTObjects

The MTObjects algorithm is a sophisticated tool designed for the detection of faint astronomical
sources in images, utilizing a Max-Tree structure [19]. The Max-Tree structure organizes an
image into connected components at varying intensity levels, where each node represents a
component above a specific threshold. In the construction of the Max-Tree, each node can be
associated by various attributes, such as size and intensity. These attributes are then saved for
each node, resulting in a tree where the root node represents the entire image, while leaf nodes
denote local peaks. An example how this tree structure is organized can be found in 2.1.

In order to find all significant nodes present in an image several steps have to be taken.
After the creation of the Max-Tree structure, containing each connected component, we then
start by estimating the background. A flat square region devoid of objects is found using
a Gaussian significance test to make our estimation. We estimate the background noise to
distinguish between true signals and noise, enabling more accurate detection and analysis of
faint astronomical sources. Afterwards we start the process of finding so called significant
nodes. First, two similar power attributes are defined, power(P)(2.1) and powerAlt(P)(2.2).
In these formulas we calculate the power attribute by summing the squared difference between

11



12 CHAPTER 2. METHODS

Figure 2.1: a) a grey-scale image with intensities ranging from 0 to 90, b) its corresponding
peak components and c) the corresponding Max-Tree structure.[19].

the intensity of each pixel f(x) in a node P and either the intensity of the parent node (2.1) or
the closest significant ancestor (2.2).

power(P ) =
∑
x∈P

(f(x)− f(parent(P )))2 (2.1)

powerAlt(P ) =
∑
x∈P

(f(x)− f(Panc))
2 (2.2)

Here the difference between a parent node and the closest significant ancestor can be summa-
rized as follows: A parent node is always the immediate predecessor of a given node, while the
closest significant ancestor may be several levels higher, representing the closest node deemed
significant. As we process nodes from the bottom to the top of the Max-Tree (from the full
image to the peaks), we can dynamically update and use the closest significant ancestor to de-
termine the significance of higher nodes. These power attributes are then used as the core for
a statistical test to finally determine if a node is significant or not. While the paper mentions
four different proposed significance tests, the final statistical test is used in the MTObjects
code and is defined as follows: first a Gaussian smoothing filter (2.3) is applied to reduce noise.
Afterwards we want to find the local noise variance using Eq. (2.4), where σ2

bg denotes the
background variance and g ·f(Panc) is the combination of the intensity of the closest significant
ancestor, multiplied with some gain variable. Finally, we can determine if a node is significant
using formula (2.5). In this step, we divide the power attribute PowerAlt(P) by the local
noise variance and check whether it exceeds the threshold given by the InversePowerAltCDF

function. This function takes as input a significance level α as well as parameters for area and
distance d, and returns the threshold that must be surpassed to consider a node significant,
based on these parameters.

H =
1

16

1 2 1
2 4 2
1 2 1

 (2.3)

σ2 = σ2
bg + g−1 · f(Panc) (2.4)

powerAlt(P )

σ2
> inversePowerAltCDF(α, area, d) (2.5)



CHAPTER 2. METHODS 13

After the identification of significant nodes within the Max-Tree structure, the next step
involves accurately finding and segmenting objects from each other. The process starts by
an initial object marking: significant nodes without significant ancestors are assumed to be
objects while those that do will be compared to their closest significant ancestor based on some
significance test, smoothing and connectivity. Once our list of objects is complete our final
step involves finding the correct area for each object. Here the variable move factor (λ) plays
a crucial role in finding the true extend of structures, using Eq. (2.6)

h = f(Panc) + λ
√

σ2
bg + g−1 · f(Panc) (2.6)

Here, h represents the threshold value to determine if an object is significant or not. An
increase in this threshold means that the object marker will move further up the tree (to above
the threshold). Move factor therefore influences how far the object marker will be placed along
the tree, which directly influences the overall size of the object found. Increasing λ can reduce
the inclusion of noise in the objects area, but might result in fainter objects being missed by
the algorithm. This variable also has a strong correlation with the SNR, as we can keep move
factor high when the ratio is high to make sure we don’t include noise in our objects, while if it
is low we can keep it low to make sure we find faint structures. After the relevant objects are
found, a segmentation map can be constructed, distinguishing each object from background
noise and nearby other structures.

2.2 Data set

For our initial testing and optimization we use a single data set consisting of artificial STED mi-
croscopy images. These images resemble real world scenarios and are generated using PySTED
[20], where for each High-Resolution (HR) real-life STED image, 5 different low resolution [lr1
- lr5] images are generated. An example of a full set of these images can be found in figure 2.2,
while the corresponding dwell times for these low resolution images can be found in table 2.3.
By creating a varying set of exposure time images we can study how much information we can
retain when using different dwell times, while also creating diverse scenarios, including high
and low photon count images. Besides this main data set, two secondary data sets are defined:
a data set consisting of high resolution STED images and another consisting of pairs of images
taken by both STED and confocal microscopes.

2.3 Background Noise

In astronomical imaging, modeling noise accurately is extremely important for the detection
of structures. Originally, MTObjects assumes a Gaussian noise approximation as sufficient to
estimate background noise levels. Gaussian noise is characterized by a normal distribution with
a mean µ and a standard deviation σ and it’s probability density function is given by Eq. (2.7).

P (x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(2.7)

This model assumes that noise is both symmetric and continuous and that the variance is
constant. While this is a fair estimate when the photon count is high and the central limit
theorem applies, it becomes inaccurate when dealing with low photon count scenarios.
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Figure 2.2: Our STED image data set, from top left to bottom right: the original High-
Resolution (HR) STED microscopy image and the generated Low-Resolution images (LR1
- LR5)

Figure 2.3: Dwell times for different sets

Set Dwell Time
hr 200 µs
lr1 1 µs
lr2 5 µs
lr3 10 µs
lr4 20 µs
lr5 50 µs

P (k; ν) =
νke−ν

k!
(2.8)

To contrast this, Poisson noise, which follows a Poisson distribution, is directly linked to
the photon-counting process, given by Eq. (2.8). Here the function P gives the probability of k
occurrences, given the mean rate ν. The Poisson distribution has a probability mass function
(PMF) which uses discrete variables to construct its distribution, opposed to the Gaussian’s
probability density function (PDF), which uses continuous variables. This is much closer to
the real-life low photon-count scenario where we are also dealing with a discrete number of
photons. The distinction between these types of noise and distributions can be further visual-
ized in figure 2.4, where we compare the Poisson PMF with the Gaussian PDF. Not only does
this show the discrete nature of Poisson noise, it also illustrates a distinct skew to the left in
the distribution when dealing with low mean values. Using Poisson noise in these scenarios
will then more closely mimic real world scenarios. Due to these considerations, we adapted the
MTObjects Gaussian noise estimation with one using Poisson noise. This adaptation will result
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in better background noise estimation, especially in low photon count scenarios, and improve
the reliability of source detection.

Figure 2.4: The probability density function (PDF) of a gaussian distribution and the
probability mass function (PMF) of a poisson distribution for a mean of ν = 4. It shows
how for low mean values the distributions can differ significantly.

2.4 Blurring

As mentioned in the previous section, MTObjects uses a Gaussian blurring filter on its input
images in order to reduce noise and smooth out the image. Smoothing the image helps by
reducing the impact of noise while keeping larger structures intact, as illustrated by figure 2.5.
The filter works by convolving the image with a Gaussian matrix (2.3), which spreads out the
intensity of each pixel over a wider area. In our pipeline we adapt this by using a variable blur,
where the amount of blurring depends on the overall pixel intensity found within the image
(see also: Experiments - Optimization). As we are dealing with a large spectrum of image
intensities, by making the amount of blurring adaptable we can make sure we strike the perfect
balance between reducing noise and maintaining structures.

A further adaptation to the blurring structure is the use of an alternative blurring technol-
ogy: Perona-Malik (anisotropic diffusion) blurring [21], defined by formula (2.4).

It+1(x, y) = It(x, y) + γ · ∇ · (c (∥∇It(x, y)∥) · ∇It(x, y))
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In this formula, It(x, y) represents the image intensity at position (x, y) at iteration t. The
parameter γ controls the diffusion rate, influencing the extent of smoothing per iteration. The
term ∥∇It(x, y)∥ is the gradient magnitude, indicating edge strength at each pixel. The function
c(∥∇It(x, y)∥) is the diffusion coefficient, which reduces the amount of smoothing near strong
edges, influenced by the κ parameter. This smoothing technique further enhances the idea
of reducing noise while maintaining interesting structures. By encouraging smoothing within
homogeneous regions while inhibiting it across edges, anisotropic diffusion aims to maintain
sharp region boundaries which are essential for finding cell regions. This contrasts Gaussian
blurring, where the amount of smoothing is uniform across the entirety of the image. By
implementing both blurring methods, while also making both methods dynamic based on pixel
intensity, we make sure that we explore all viable options to find the optimal segmentation
result.

Figure 2.5: An image containing three cells showcasing how blurring the image can result
in lower noise and clearer object areas.

2.5 Image Reconstruction

The method described in [22] introduces a technique for reconstructing images using data from
randomly distributed sensors. Here the method first starts with an initial estimate of the image
based on random sensor data. This estimate is then refined iteratively: during each step, the
current estimate is adjusted by comparing the sensor data and updating it using a specific
formula. This formula combines a band-limited operator, which focuses on the most important
parts of the signal, and a sampling operator, which deals with the randomly scattered sensor
data. Each iteration reduces the error, bringing the estimate closer to the true image and
converging eventually to an estimate close to the true signal. A reconstructed image using this
general idea can be found in figure 2.6.

The method described in the paper can be effectively applied to low dwell time images,
which suffer from high noise levels and limited photon counts. Our implementation adapts the
method described in this paper by focusing on selectively updating only the pixels that fall
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Figure 2.6: An example image that illustrates how the image reconstruction works. From
the original image (left) we draw random samples (0.25 of total) to get the sampled image
(middle). We then reconstruct the image using an iterative reconstruction technique.

below a background mean threshold. This will allow us to only update parts of the image that
did not receive any photons while maintaining already created structures. By applying the
algorithm this way we aim to close any gaps present as a consequence of the low dwell time,
significantly enhancing the process of finding objects along with their true area in these low
photon count situations. After applying our mask to identify below background mean pixels, we
follow the same basic approach: iteratively refining the initial image estimate using a low pass
filter. The filter’s radius starts small and increases gradually following an exponential formula,
allowing for finer reconstruction over time. Key steps include applying the low pass filter,
calculating the correction by comparing the filtered and current estimates, and updating the
image using this correction while ensuring only low-value pixels are modified. The application
of the algorithm on a low dwell time cell image can be found in 2.7. By iterating this process,
the method effectively reconstructs the image, making it particularly suitable for enhancing
low dwell time images where data is sparse and unevenly distributed.

Figure 2.7: The iterative reconstruction technique applied to one of our low resolution
(lr1) cell images. The original image (left) is reconstructed (right) by subtlety filling in
some of the gaps, allowing our algorithm to more accurately find the objects area.
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2.6 Height Plots, Isolines and Inner Segmentation

When analyzing a cell image, both the object’s area and location are important factors, but
additional information is also essential. Just as critical is how the inner parts of the cell are
concentrated, especially when dealing with clumps of cells merged into one object, or during the
process of cell reproduction. Inner segmentation is crucial as it reveals where the fluorophores
are located within the cell, highlighting regions of high density that are essential for under-
standing cellular structures and functions. To get the most information from microscopy cell
imaging, we need inner segmentation of objects found within the image. While MTObjects is a
great tool for detecting distinct objects within an image, it falls short in accurately identifying
and segmenting internal features. This is due to the inherent nature of the algorithm and its
Max-Tree structure: by using thresholds to denote different objects, it solely focuses on high
intensity differences while ignoring finer details. Furthermore, it will only show segmentation
with intensity increases if it believes it belongs to a completely different object (for example,
when dealing with overlapping galaxies). This is in contrast to our need for segmenting a sin-
gle object into multiple part and find low and high-intensity regions. The ability to segment
and identify these high-density areas is pivotal for mapping the distribution of fluorophores,
which are an indication of various biological processes and molecular concentrations within the
cell. Therefore, we need a separate method for inner segmentation to obtain the information
required for detailed cell segmentation mapping.

To accomplish this, we will use a combination of height plots and isolines. Height plots
are a great tool to show values or intensity at a point by depicting it as height or elevation.
Using height plots in our cell images shows us the denser, more intense regions. By combining
this with isolines we can create distinct regions where intensities are higher or lower than some
threshold, effectively segmenting the inner parts of an object. To accomplish this we first need
to find the intensity range within an image and based on this create bins which will define our
isoline borders. By using bins we can also adjust the level of segmentation; if we want more
segmentation we can increase the number of bins and vice versa. After drawing our isolines
based on the found values we can find the areas enclosed by them to finally denote the higher
intensity centers of these objects. By combining the area object segmentation of MTObjects
and the inner segmentation provided by this method we end up with a very informative and
detailed segmentation map. The general approach is visualized in figure 2.8 and the inner seg-
mentation implementation is defined as pseudo code in Algorithm 1, figure 2.6, finalizing our
general pipeline.

2.7 Object Detection

One of our secondary dataset consists of pairs of images, with one image taken by a STED
microscope and the other by a confocal microscope, both capturing the same scene. To properly
evaluate the segmentation maps created from these images, our goal is to determine how many
objects identified in the higher-resolution STED segmentation maps are also present in the
corresponding confocal images. This is accomplished by leveraging several advanced image
processing techniques, such as object markers, the watershed algorithm [23] and intersection
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over union (IoU). Using these techniques we aim to assess the consistency and accuracy of
object detection across these two microscopy technologies.

Our goal is to enhance object detection in our dataset, by applying the watershed algorithm,
leveraging the high-resolution information from the STED images to guide the segmentation
process in the confocal images. First, markers are placed at the centers of identified objects
in the STED images, serving as starting points for the segmentation process. We then ap-
plied a distance transform to the inverted confocal images and used this map to guide the
watershed process, starting from the STED-derived markers. This method effectively separates
corresponding objects in the lower resolution confocal images by simulating flooding from these
markers, ensuring accurate object boundaries. Consequently, the watershed algorithm enhances
the alignment and matching of objects across our technologies, ensuring comparative analysis
between STED and confocal microscopy data.

After segmentation, we matched objects by calculating the Intersection over Union (IoU)
between objects in the STED and confocal images. This measurement shows how much the
objects overlap, helping us find matching pairs based on some IoU threshold. The algorithm
also identifies merged hits, where several STED objects are within one confocal object, which
highlights the resolution differences between the techniques. Our results include a visualization
of matched objects along with metrics concluding information about (merged-)matched objects.
This approach helps us understand the effectiveness and accuracy of the segmentation maps
created using these two microscopy methods.
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Figure 2.8: An overview of the complete pipeline. It highlights how the cell area and
inner segmentation are split up and accomplished using different methods. Afterwards
they are combined to create the full segmentation map.



Chapter 3

Experiments

3.1 Experimental Setup

In this section, we will present the experiments designed to evaluate the performance of our
adapted MTObjects segmentation tool. Our primary goal in this study was the generation
of accurate segmentation maps from low dwell time images and compare them to our original
high dwell time maps, which serve as a ground truth. To fully compare these images we will
use several different metrics, including Precision, Recall, F1-Score, Area Score and Normalized
Mean Absolute Error (NMAE). To optimize our input parameters we will use a combination
of bayesian optimization, parameter matching and regression methods. This will be done for
varying training set sizes, namely 3, 10, 80 and 100 (full). Here we both want to find out how
many training samples are needed to produce a nice fitting regression line, while also making
sure a suitable test set size is maintained. For the final set we will both train and test on the
full data set, to find the ideal settings for our generalization testing on the secondary datasets.
Lastly we also want to do the same metric evaluation and optimization with and without the
image reconstruction for lr1 images to compare how this feature impacts performance.

To learn more about both our data set and our pipeline we also developed other experiments
including a sensitivity analysis on the move factor variable and a deep dive into pixel mapping
between the high and low dwell time images. The move factor variable was chosen for the
sensitivity analysis because experimental testing revealed it to be by far the most influential
parameter. The sensitivity analysis should show both how much the performance of the pipeline
varies with different move factor values and how well our optimization performance manages to
find the optimal settings. Meanwhile, the mapping should give us more information how well
the dwell times relate to the ground truth, both in terms of intensity and noise variation.

Finally we also devised two further experiments using our other two datasets: a dataset
containing higher resolution STED images and one comparing confocal and STED images of the
same scene. The first data set will allow us to see how well our optimized pipeline generalizes
to different, higher resolution STED images. As this data set does not contain any ground
truth images (and therefore no ground truth segmentation maps) this would mostly be a visual
inspection to evaluate its correctness. Our second data set will give a detailed comparison
between the segmentation maps received from STED and confocal images. To assess how much

21
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information the lower resolution confocal image map maintains, we will determine how many
objects contained in the STED image are also in the confocal image. Here we will make the
distinction between one-to-one hits, where a single object in STED matches a single object in
confocal and merged hits, where multiple STED objects matches a single object. By making
this distinction we can not only tell how well the confocal segmentation map manages to find
objects but also how well the confocal map delineates objects and how many are merged due
to the decrease in resolution.

3.2 Metrics

To fully compare the segmentation maps of the lower and higher dwell time images as well as to
evaluate the optimization, several metrics are defined. As we have split up our pipeline between
cell area and inner-segmentation we can evaluate and optimize these separately. To evaluate the
cell area we will use four different formulas, namely Precision , Recall, F1-Score and Area Score.
Here it is important to note that for cell area evaluation we only have two values: 1 (positive)
for a cell pixel and 0 (negative) for a background pixel. This is needed as these metrics can
only be applied to binary classification problems. Precision (3.1) is defined by dividing the
True Positives (TP) by True Positives plus the False Positives (FP), essentially measuring how
many of our true predictions are in fact true. Meanwhile, recall (3.2) is calculated by dividing
the True Positives by the True Positives plus the False Negatives (FN). Here we find how many
of the true positives we have managed to find. As both of these metrics range from 0 to 1, it
therefore means that if we only have true positives that precision is 1, while if we found all
true positives than recall will be 1 (which means that if both are equal to 1 we have a perfect
match). The F1-score (3.3) combines these metrics to achieve a balanced measure that takes
both into account.

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

F1-Score = 2 · Precision · Recall
Precision + Recall

(3.3)

Our final area metric, Area Score (3.4), is simply a score from 0 to 100 measuring how many
pixels match between the lr segmentation map and the ground truth. It is defined by summing
how many pixels from both images are either both cell or both background pixels and at the
end dividing this by the total number of pixels present in the image.
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Area Score =
1

n

n∑
x=1

δ(f1(x), f2(x))

where

δ(f1(x), f2(x)) =


1 if (f1(x) = 1 and f2(x) = 1)

or (f1(x) = 0 and f2(x) = 0)

0 otherwise

(3.4)

For the inner-segmentation we only have a single metric defined, namely the Normalized
Mean Absolute Error (NMAE). NMAE is calculated by first normalizing the pixel values from
both segmentation maps; this is to make sure that both intensities range from 0 to 1. Further-
more this means, as the intensity bins are created based on the intensity found within the image,
that if both pixels are on the same relative intensity level the NMAE should be 0. Moreover,
the NMAE should increase linearly based on the number of intensity levels separating both
pixels. We therefore get a metric that only increases if the pixels are not on the same intensity
level, which shows how well the inner-segmentation matches between maps. These 5 metrics
should give us insight how well our final segmentation maps match, both in terms of cell area
and inner-segmentation.

NMAE =
1

n

n∑
x=1

|f1(x)− f2(x)|

Here the values f1(x) and f2(x) are normalized.

(3.5)

3.3 Optimization

Parameter optimization is an important step to ensure we get the optimal results for our
pipeline. In our case we need to fine tune parameters for both blurring technique’s: the blur
parameter for Gaussian blurring as well as κ and γ for Perona-Malik anisotropic diffusion. For
Gaussian blurring the blur parameter simply increases the strength of the blurring, while κ and
γ influence the edge sensitivity and diffusion rate respectively. A third parameter for Perona-
Malik, number of time steps t, is remained constant at 5. As mentioned in the previous section
we can optimize these variables for both objectives separately to ensure the best results. Lastly,
we also want to optimize the move factor λ to ensure the right balance between ignoring noise
while retaining faint objects. To get the optimal values for each of these parameters we will
use Bayesian optimization in combination with several regression techniques, using the average
pixel intensity found within the cell image as independent variable.

Bayesian Optimization is a sequential model-based approach used for global optimization.
It uses a probabilistic model in order to predict the performance of input parameters and it-
eratively updates these based on some objective function. In our case this objective function
is two-fold: one for the cell area and one for the inner segmentation. For the cell area we will
use the F1-Score ((3.3) as this is a well balanced metric that ensures we minimize both false
positives and false negatives. For the inner segmentation we will use the NMAE (3.5). As
bayesian optimization tries to maximize the objective score we reverse the absolute error in
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order to turn it into a maximization problem.

By using this approach we can find the optimal settings for each STED image, giving us
numerous data points matching average pixel intensity to their optimal parameter. In order to
match each pixel intensity to the optimal parameters we will use varying regression techniques
where the formula will be used to find the optimal settings. When determining the best fitting
equation several things need to be considered: a predefined or experimental limit and over- and
under-fitting. Taking this both into account we have opted for a linear regression for our blur
parameter, a polynomial function for γ and κ, and an increasing exponential decay function
has been used to fit the move factor variable.



Chapter 4

Discussion & Results

4.1 Image Segmentation for Low Dwell Time Images

Our main experiment focuses on image segmentation for low dwell time images, analyzing the
extent of information retention when reducing the dwell time. We will begin by discussing our
optimization for varying training sizes—specifically 3, 10, 80, and 100 (full). In this phase, our
goal is to determine the minimum number of training samples needed to create a well-fitting
regression line while ensuring a sufficiently large test set is maintained. Following this, we will
evaluate how well our pipeline performs across all train/test sets for each metric outlined in the
experiments section. Additionally, both during optimization and result analysis, we will exam-
ine the performance of each blurring type separately, comparing their effectiveness. Finally, we
will identify the settings, parameters, and blur types that yield optimal results for our pipeline.

Gaussian Results

The optimization results for the Gaussian blurring method can be found in fig 4.1. Here
we can see (in order from top to bottom) for the training sizes 3, 10, 80, and 100 the plots
for both the blurring and move factor variables against the average pixel intensity, including
a best fitting regression line. As we can see, for the blurring parameter this regression line
seems to be very stable across all training sizes, only differing slightly in height or slope. The
move factor varies more across the different plots; for the lowest training size λ’s regression
curve is significantly higher than the rest. However, as the training size increases, this variation
stabilizes, with the curves for 80 and 100 being nearly identical.

A table showing the results for each training size can be found in fig 4.2. Here, it is evident
that a training size of three yields significantly worse results across all metrics. When the
training size is increased to ten or higher, the results become very similar: while the two largest
training sizes slightly outperform the others on some metrics, on average, all three are almost
identical. This closely aligns with the findings from our optimization; with three training sam-
ples, we observed both a significantly different curve and lower results, whereas the curves and
results for the other three sizes are very similar. From this, we can conclude that three image
sets are insufficient to fit the optimal regression curve, whereas ten seems to be adequate for
achieving this.

25
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Figure 4.1: The optimization results for the Gaussian blurring method. For each training
size (3,10,80,100) we see the blur (left) and move factor (right) matched against the
average pixel intensity, with a best fitting regression line. This regression line shows what
input parameters are used based on this average pixel intensity.
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Figure 4.2: Tables showing the final results for Gaussian blurring, optimized with 3, 10,
80, and 100 training image sets. Gaussian 100 is optimized and tested on the full dataset.

Gaussian 3

LR Score (%) MAE F1 Score
lr1 90.49 0.041 0.646
lr2 94.50 0.026 0.824
lr3 95.68 0.021 0.866
lr4 97.34 0.015 0.920
lr5 97.28 0.014 0.920

Gaussian 10

LR Score (%) MAE F1 Score
lr1 90.72 0.041 0.668
lr2 94.58 0.026 0.829
lr3 95.70 0.020 0.870
lr4 97.41 0.014 0.923
lr5 97.63 0.013 0.930

Gaussian 80

LR Score (%) MAE F1 Score
lr1 91.40 0.040 0.684
lr2 94.79 0.025 0.838
lr3 95.44 0.021 0.863
lr4 97.51 0.013 0.925
lr5 97.84 0.011 0.935

Gaussian 100

LR Score (%) MAE F1 Score
lr1 91.22 0.040 0.690
lr2 94.78 0.025 0.837
lr3 95.73 0.020 0.871
lr4 97.37 0.014 0.921
lr5 97.65 0.013 0.930

Perona-Malik Results

We performed the same optimization for the Perona-Malik blurring, this time for three
parameters, γ, κ and λ. The results of these optimizations can be found in fig 4.3. Here
we see a similar pattern to the Gaussian blurring: For the lowest training samples a curve
that deviates across all parameters, while the curves become extremely similar from ten train-
ing samples onward. However, the curves for both γ and κ seem to differ more than was the
case for the Gaussian blurring, while λ is consistently slightly higher for both blurring methods.

Table 4.4 illustrates the effect of these divergent curves found for our lowest training size.
Here we see a significantly worse results, especially for lr1, when only using this small sample
size to fit our regression line. A difference of 2% and a decrease of 0.1 in F1-score are sizeable
reductions in performance for the lowest dwell times, while the other dwell times also show a
(reduced) performance degradation compared to the higher training sample curves. For the
other training sizes we again see the same pattern as the Gaussian curve, where slight perfor-
mance differences can be seen between these training sizes but not significant enough to deem
them relevant. For both blurring methods we see that ten image sets should be sufficient to
properly optimize the input parameters, while for Perona-Malik blurring we see a steeper drop
in performance when using three image sets, most notably for the lr1 segmentation maps.
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Figure 4.3: The optimization results for the Perona-Malik blurring method. For each
training size (3,10,80,100) we see the γ (left), κ (middle) and move factor λ (right) matched
against the average pixel intensity, with a best fitting regression line. This regression line
shows what input parameters are used based on this average pixel intensity.
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Figure 4.4: Tables showing the final results for Perona-Malik blurring, optimized with 3,
10, 80, and 100 training image sets. Perona-Malik 100 is optimized and tested on the full
dataset.

Perona-Malik 3

LR Score (%) MAE F1 Score
lr1 90.68 0.039 0.647
lr2 95.02 0.025 0.842
lr3 95.91 0.021 0.874
lr4 97.39 0.015 0.923
lr5 97.61 0.015 0.929

Perona-Malik 10

LR Score (%) MAE F1 Score
lr1 92.48 0.036 0.746
lr2 95.25 0.024 0.855
lr3 96.07 0.020 0.884
lr4 97.40 0.016 0.924
lr5 97.54 0.015 0.927

Perona-Malik 80

LR Score (%) MAE F1 Score
lr1 92.53 0.036 0.738
lr2 95.51 0.022 0.865
lr3 95.80 0.020 0.875
lr4 97.47 0.015 0.926
lr5 97.82 0.013 0.934

Perona-Malik 100

LR Score (%) MAE F1 Score
lr1 92.34 0.036 0.738
lr2 95.29 0.024 0.857
lr3 96.05 0.020 0.883
lr4 97.33 0.015 0.921
lr5 97.68 0.014 0.930

Optimal results
To find our final optimal pipeline we want to fully compare both blurring methods. In table

4.5 we see a comparison between both blurring methods, for all specified metrics, using the full
data set for both training and testing. The results provide a clear overview of the strengths
and weaknesses of each method: Gaussian blurring shows slightly higher precision and a lower
MAE for the higher dwell times, while Perona-Malik significantly outperforms Gaussian in Area
Score, Recall, and F1-Score. The differences in Precision and Recall between these blurring
methods highlight their distinct effects on image processing: Gaussian blurring leads to higher
Precision by smoothing the image uniformly, reducing false positives and focusing on clearer,
more prominent objects. In contrast, Perona-Malik filtering preserves edges and fine details,
resulting in higher Recall by detecting more true positives, including smaller or less distinct
objects, even if it increases false positives slightly. Since the increase in Precision for Gaussian
blurring is much smaller than the increase in Recall for Perona-Malik, this results in higher
Area and F1-Scores for the latter, making it the preferred method for our area pipeline.

However, the results for mean absolute error are much closer, with Perona-Malik outperform-
ing Gaussian at lower dwell times, while Gaussian has the advantage at the three highest dwell
times. This makes sense when considering the inherent application of anisotropic diffusion: it
increases blurring in homogeneous areas, thereby smoothing out subtle intensity variations and
reducing the visibility of inner-segmentation details. This characteristic is illustrated in Fig.
4.6 , where we compare the ground truth (left), Gaussian (middle), and Perona-Malik (right)
side by side. It is evident that Perona-Malik struggles more with identifying peaks, missing
one entirely and showing a much smaller area for the other. These inherent characteristics of
anisotropic diffusion make it less suited for optimal inner-segmentation.

Therefore, to get the best possisble results, we will combine both blurring methods to finalize
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our optimal pipeline. Here we use Perona-Malik’s adaptive blurring to find precise cell areas,
while Gaussian uniform blurring is used to find the best possible inner-segmentation. Our final
results can be found in table 4.7, showcasing an identical Area and F1-score to the previous
Perona-Malik scores, however now with equal or lower MAE for four of the five dwell times.
An example of how these segmentation maps compare to each other and to the ground truth
can be found in fig 4.8, while three more examples can be found in Appendix A.

Figure 4.5: Final results, showing all metrics for Gaussian (top) and Perona-Malik (bot-
tom). Both of these are optimized and tested on the entire data set.

LR Score (%) MAE Precision Recall F1 Score
lr1 91.22 0.040 0.879 0.584 0.690
lr2 94.78 0.025 0.914 0.789 0.837
lr3 95.73 0.020 0.894 0.863 0.871
lr4 97.37 0.014 0.914 0.932 0.921
lr5 97.65 0.013 0.949 0.917 0.930

LR Score (%) MAE Precision Recall F1 Score
lr1 92.34 0.036 0.870 0.663 0.738
lr2 95.29 0.024 0.904 0.837 0.857
lr3 96.05 0.020 0.883 0.898 0.883
lr4 97.33 0.015 0.906 0.940 0.921
lr5 97.68 0.014 0.942 0.924 0.930

Figure 4.6: A cell image (top) with their corresponding ground truth (left), Gaussian (mid-
dle) and Perona-Malik (right) segmentation maps. This image showcases how Perona-
Malik blurring has difficulties in showcasing intensity increases and therefore is not ideal
for inner-segmentation.
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Figure 4.7: Final results, combining Perona-Malik blurring for cell area and Gaussian
blurring for inner-segmentation. These results are based on the optimization and testing
on the entire data set.

LR Score (%) MAE Precision Recall F1 Score
lr1 92.34 0.040 0.870 0.663 0.738
lr2 95.29 0.024 0.904 0.837 0.857
lr3 96.05 0.020 0.883 0.898 0.883
lr4 97.33 0.014 0.906 0.940 0.921
lr5 97.68 0.013 0.942 0.924 0.930

Figure 4.8: Cell images (top) ranging from the original image and lr1-lr5, with their cor-
responding segmentation maps below them. This image illustrates how the segmentation
maps improve with dwell time, more closely mimicking the ground truth.

4.2 LR1 Image Reconstruction

Our second experiment focuses on the application of image reconstruction for the lowest dwell
time images. The goal here is to fill in gaps to more easily and accurately determine object sizes.
The results for running our pipeline with and without this image reconstruction can be found
in table 4.9. For the precision and recall we see some expected results, where the precision is
higher when using no image reconstruction, while the recall is significantly higher when we do
use it. As we are effectively filling in gaps within the image, we might also increase some noise
patches, resulting in a slightly lower precision. However, we do see that we find much more cell
area pixels, as our Recall is increased by over 50% percent. This slight decrease in Precision and
this steep increase in Recall results in a significantly increased Area and F1-Score, showcasing
the efficacy of our image reconstruction implementation. These results can be verified when
examining the produced segmentation maps for both methods, showing objects that are either
drastically decreased in size or absent altogether when not using image reconstruction. An
example for this can be found in fig 4.10, while several more can be found in appendix B.

Figure 4.9: Comparison of metrics for lr1-NORC and lr1-RC

LR Score (%) MAE Precision Recall F1 Score
lr1-NORC 89.72 0.041 0.949 0.431 0.578
lr1-RC 92.34 0.040 0.870 0.663 0.738
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Figure 4.10: Three segmentation maps for the ground truth (left), lr1 with image re-
construction (mid) and lr1 without image reconstruction (right). Here an object that is
found when using image reconstruction is completely missed when not using it.

4.3 Sensitivity Analysis

For our sensitivity analysis we have looked at how variations in the move factor variable in-
fluences the precision, recall, and more importantly the F1-score. As fig 4.11a and fig 4.11b
demonstrate, both the precision and recall show expected behaviour: precision increases when
λ increases, while recall decreases. This is because when increasing move factor we essentially
decrease object area, reducing the number of false positives but increasing the number of false
negatives. For the F1-Score, to get the most complete picture, we have tested this for three
different image sets, including a best 4.11c, worst 4.11d and average 4.11e scenario. Each line
corresponds to an F1-Score for varying move factors, while the dashed vertical line corresponds
to the move factor found by our optimization process. We can see that for the best and average
case scenario, our dashed line is extremely close to the peak of each line. Meanwhile, our worst
case scenario only has the lr1 peak far away from our chosen parameter value. This shows that
for all scenarios, our optimization manages to find the parameters that are fairly close to the
most optimal ones. Upon further inspection we can defer several interesting conclusions from
these plots. For one, each dwell time shows a clear peak that is either extremely flat (lr5 in
best case scenario) or extremely narrow (lr1 in worst case scenario). It also shows that each
peak is in order from lowest to highest dwell time, which is in line with our expectation of
move factor and dwell time being positively related to each other. Finally we see that the λ
has an enormous influence on the final performance of our segmentation map: a move factor
of 3 results in a score of zero for all lr1 images, while a move factor of 0 gives results ranging
from 0.4-0.8 for the higher dwell times.
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a b

c d

e

Figure 4.11: Sensitivity analysis for various metrics highlighting the behaviour of the
move factor variable. (a) Precision metric, (b) Recall metric, (c) F1-Score metric in the
best case scenario, (d) F1-Score metric in the worst case scenario, and (e) F1-Score metric
in the average scenario.
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4.4 Mapping

In this section, we attempt to ascertain the relationship between the pixel intensities of the
high and low dwell time images, as well as explore any potential correlation in the amount of
noise within the pairs. To achieve this, we have mapped each low dwell time image against its
corresponding high dwell time image, as shown in Fig. 4.12. We observe that for lr1, there are
only a few possible pixel values, resulting in a relationship between their intensities that is only
somewhat linear. However, as the dwell time increases, we see a clear increase in linearity. This
trend is supported by Table 4.13, which displays the R-values for all pairs. Here, we note that
while lr1 exhibits only a weak linear relationship, this steadily increases until we observe a very
strong relationship between lr5 and hr. This indicates that there is indeed some linear mapping
between the lower dwell time and high-resolution images, providing us with more information
about our ground truth.

Figure 4.12: Pixel intensity mapping, matching all lower dwell time images lr-lr5 to their
corresponding high dwell time image. It shows how there is a linear relationship between
pixel intensity for the pairs, increasing as dwell time increases.

Figure 4.13: r values for all high and low dwell time image pairs. This shows that as the
dwell time increases, the linear relationship also increases rapidly.

LR (r)
lr1 0.399
lr2 0.683
lr3 0.789
lr4 0.876
lr5 0.939
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When we look at noise patterns found in our pairs we have found several interesting ob-
servations. Firstly, when viewing fig 4.14 which shows the residuals of our linear mapping for
lr5, we can see that they seem to be increasing as the pixel intensity increases. This indicates
that with an increase in intensity, the noise also increases. To further explore this, we have
created multiple intensity bins in order to plot variance against pixel intensity, found in fig
4.15. We can see that this line (besides above 200 intensity which has a lack of data points) is
extremely linear. This means that noise increases linearly with variance and has a square root
relationship with intensity, giving us even more insight in the relationship and characteristics
of these images.

Figure 4.14: Residual mapping between the lr5 images and the hr images. As intensity
increases, the spread of the residuals also increases.

Figure 4.15: A plot of the variance from bins for the lr5 images and the hr images. It
show how a linear relationship between variance and pixel intensity, showing that noise
increases linearly with variance.
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4.5 Secondary Experiments

Finally, we will also discuss the results for our final two secondary experiments. Our first exper-
iment, pertaining the generalization to higher resolution STED images, showed mixed results.
In fig 4.16 we see several segmentation maps that show pristine segmentation maps, clearly
showing the right cell area and properly denoting higher intensity areas. However, in fig 4.17
we also found several segmentation maps that found a large number of small objects around
our main cell. These errors are likely a result of faulty background estimation, partly due to a
highly fluctuating background which contains both background noise but also noise distributed
by the cell itself.

Figure 4.16: Some promising results when applying our optimized pipeline to a new higher
resolution STED image data set. It shows a near perfect segmentation map for both area
and inner-segmentation.

Our second experiment, the object detection between STED and confocal objects, showed
some interesting insights. For this experiment we have artificially lowered the move factor for
the confocal images, as the SNR is much lower for this technology, to make sure we find as
much objects as possible. Some images showcased fairly good overlap, managing the find a
majority of objects. Fig 4.18 is a great example for this, where the STED segmentation map
(left), the confocal map (middle) and their matches (right) are shown. Here we can see that a
large number of STED objects are also found in the confocal map, with the caveat that a sizable
amount are found in merged fashion. However, due to the confocals low resolution, when a large
number of objects are close together it merges these all into one. While we still retain some
information compared to the STED map, for most cases this map will find much more distinct
object, along with their accurate cell areas. To summarize our results, we have documented the
average number of STED objects and confocal matches (both single and merged) per image,
shown in table 4.19. Here it shows out of all objects found within the STED image, only about
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60% can also be found in the confocal image. Furthermore, out of the found objects, about
58% are part of some merged object, where multiple STED objects can be found within a single
confocal object. It shows that a slight majority of objects can be found, while also a slight
majority of those found are merged together.

Figure 4.17: Suboptimal results when applying our optimized pipeline to a new higher
resolution STED image data set. It shows how the program has trouble differentiating
what is noise and what are objects.
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Figure 4.18: The segmentation map for the STED image (left), the confocal image (mid-
dle) and their matched objects (right). A majority of objects found in the STED map are
also found in the confocal map, even though a large number of objects have been merged.

Figure 4.19: Summary of average STED metrics per pair. Merged hits are a subset of
matched objects.

Metric Value

Average STED objects per pair 31.60
Average Matched STED objects per pair 19.05
Average Merged hits per pair 11.09
Average Detection Rate 0.60
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Conclusion & Future work

5.1 Conclusion

In this study, we developed and optimized a segmentation pipeline for low dwell time STED mi-
croscopy images, aiming to preserve as much essential information as possible, while minimizing
the negative effect caused by photobleaching and phototoxicity. By adapting the MTObjects
segmentation tool, we successfully developed a pipeline tailored to live-cell imaging. By imple-
menting Gaussian and Perona-Malik blurring techniques, along with reconstruction and new
segmentation tools, our approach demonstrated robust performance in preserving cell area and
enhancing inner-segmentation in low dwell time images.

Our findings have shown that using both Perona-Malik, for its ability to maintain edges,
with Gaussian blurring for inner-segmentation has shown the best results. Great performance
was shown for all discussed metrics, most notably showing F1-Scores ranging between 0.86 and
0.93 for lr2-lr5. While lr1’s performance remained somewhat lacking, it still showed promise
in giving only the most essential information about the cell. We have also provided a clear
overview of how much information is retained at each dwell time, enabling informed decisions
when selecting the appropriate dwell time. Furthermore, by using our adaptive bin based inner-
segmentation method, this part of the segmentation map is highly adaptable. This adaptability
is further illustrated by the fact that the ground truth can be chosen at will, with the pipeline
designed to find the closest matching map for the lower dwell time images. Finally, we have also
showcased that our image reconstruction technique drastically boost performance, allowing us
to find much more faint objects accurately in the lowest dwell time images.

Our auxiliary experiments have led to several interesting conclusions. Firstly, our sensitivity
analysis demonstrated that our optimization method consistently identifies parameters that are
either optimal or very close to the optimal values, while also highlighting the critical role of the
move factor variable in segmentation performance. Secondly, our mapping revealed a distinct
linear correlation between pixel intensities for low and high dwell time images, as well as a
linear increase in noise with variance. These insights provide us with a deeper understanding of
both the images and their interrelationships. Finally, we have shown that our pipeline can be
effectively applied to both secondary datasets. Although the results were mixed, the potential
is evident, and this paper can serve as a foundation for further research into both areas.

39
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In conclusion, this study presents an effective approach to optimizing low dwell time STED
microscopy images, focusing on information retention and accurate segmentation mapping. The
optimized pipeline, combining Perona-Malik and Gaussian blurring techniques, successfully
balances image quality with the need to minimize dwell time. The methodologies developed in
this work demonstrate a reliable strategy for enhancing the analysis of low dwell time images
and provide a strong foundation for future advancements in cellular imaging.

5.2 Future Work

For our future work we have summarized a few novel approaches that might add or improve
this work:

1. Segmentation map analysis: In this paper we have assumed that our ground-truth
segmentation map represents an optimal segmentation map. While considerable thought
has gone into determining what we believe to be the best possible map, this may not yield
the best results for all purposes. A detailed segmentation map analysis could provide a
better ground-truth, which would also result in lower dwell time maps that would be more
ideal.

2. (improved) Further generalization: Our research has presented two data sets that
tested in one way or another how well our optimized pipeline performed on new data.
We saw that for our higher resolution images we got mixed results, with segmentation
maps that closely match our expectations and others that resulted in some sub optimal
images. Future work will focus on two main areas: addressing the issues encountered
with current generalization and identifying additional datasets to further test and refine
our generalization capabilities.

3. Parameter matching: During our optimization process we have matched each of
our input paramaters to the average pixel intensity found within the image. While this
metric gives direct information about an important feature of this image and is heavily
correlated to dwell time, this might not be the ideal variable to use in all cases. An
example for this could be large images with only a few cells, which would result in low
average pixel intensity while this might not say much about the intensity of these cells.
Possible adaptations could be using the average background noise as this should almost
have a perfect linear relationship with dwell time or non-zero average pixel intensity
which gives great information about the intensity of the cells found within the image.
Exploring additional parameter matching could lead to better performance and enhanced
generalization.

4. Adaptive image reconstruction: Finally, a final future implementation could be
the addition of adaptive image reconstruction. While our implementation has shown
great promise in the lower dwell time images, it was implemented fairly static, with the
input values for all images. By making this process adaptable, the level of reconstruction
could be adjusted based on specific image traits, thereby broadening the applicability and
effectiveness of the technique.
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B Additional Image Reconstruction Comparisons

Additional segmentation maps showing the ground truth (left), with image reconstruction (mid-
dle) and no image reconstruction (right).
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