
Advanced Gait Analysis:

Integrating Data Processing for

Superior Clinical Outcomes

Bachelor’s Project Computing Science

July 2024

Author: Amr Abdou
Student Number: S4678753
First supervisor: Dimka Karastoyanova
Second supervisor: Michel Medema
External supervisor: C. Greve

1

Abstract

Although gait is the most essential form of human locomotion, diagnosing abnormalities
within the walking cycle is a cumbersome, long, and obscure process. The diagnosis
process renders many patients unable to receive the prompt care and attention needed
for an improved quality of life. This project seeks to leverage recent developments
in data processing techniques to develop a system that diagnoses gait abnormalities
using the data provided from the 3 Dimensional Clinical Gait Assessment (3D CGA)
workflow at the University Medical Center Groningen (UMCG) in a fast and highly
accurate manner. The system will integrate into a data-processing pipeline that will be
used for clinical assessment and decision-making, ultimately aiming to enhance patient
care and treatment outcomes at the UMCG. The outcome includes increased diagnostic
accuracy, reduced time for patient assessments, and an overall improvement in the
efficiency of clinical workflows, leading to better patient outcomes and an enhanced
quality of care.

2

Contents

1 Introduction 5

2 Related Work 7
2.1 Background Literature . 7

2.1.1 Gait Stances . 7
2.2 Gait Diagnosis Systems: Other Implementations 8

2.2.1 In-Shoe Systems . 8
2.2.2 Remote Systems . 10

2.3 Current State of the Art: 3D Clinical Gait Assessment 10
2.3.1 Current Workflow . 10
2.3.2 Gait Analysis Tool . 11

3 Methodology 13
3.1 Requirements . 13
3.2 Architecture . 14

3.2.1 Frontend . 15
3.2.2 Backend . 16
3.2.3 Data Processing . 16

3.3 Data Flow . 17
3.3.1 Data Reader . 18
3.3.2 Phase Splitter . 18
3.3.3 Data Comparer . 19
3.3.4 Diagnosis Generator . 19

4 Individual Contribution 24

5 Results and Discussion 25
5.1 Evaluation of Requirements . 25
5.2 Comparison to previous work . 27
5.3 Limitations . 28

6 Conclusion 29
6.1 Future work . 29

A Physical Examination Values 32

B Screenshots of the New Gait Diagnosis Generator 33

C Conda Packages 36

3

D Data Processing Decision Trees 49

List of Figures

1 The phases of gait[11] . 7
2 The architecture of the in-shoe system. 9
3 The proposed CNN architecture used by visual-based remote motion-

capture systems . 10
4 The flow diagram of the old gait software system 12
5 The high-level overview of the new Gait Analysis system 15
6 The flow diagram of the new system 17
7 Login Page . 33
8 Gait Analysis Dashboard . 34
9 Files uploaded successfully popup message 34
10 The diagnosis of a patient displayed 35

List of Tables

1 The parameters found in the physical examination (LO.xlsx) file
alongside their English translation. PROM stands for Passive
Range Of Motion. TONUS stands for Muscle Tone. AOC stands
for Angle Of Contracture. CLONUS is Involuntary Muscle Con-
tractions. MRC is Manual Muscle Testing. The values exist for
both the right side (’Rechts’ in Dutch) and the left side (’Links’
in Dutch) . 32

2 Conda packages used for the project’s back end and data process-
ing modules in Python, obtained through running the command
conda list . 48

4

Acknowledgments

I want to express my sincere gratitude to Dimka Karastoyanova and Michel Medema for
their invaluable guidance, expertise, and support throughout this project. I want to thank
Christian Greve for his time in helping us with all our questions, providing us with a visit to
the gait lab at UMCG, and above all, for collaborating with us and facilitating the complex
language of biology. I also would like to thank my teammates, Emmanouil Kalostypis and
Nikola Zivkovic, for their great teamwork and commitment in realizing this project.

5

1 Introduction

Gait, or the cycle of walking, is one of the most fundamental forms of human movement, yet
patients may experience an impaired ability to do so. People of all ages and conditions, such
as cerebral palsy and stroke patients, are more than likely to develop impairments with their
gait[5, 7, 10]. An impaired gait affects everyday mobility, participation in social activities,
and quality of life. If left untreated, the gait abnormalities will lead to worse life outcomes
for those affected.

Impactful gait rehabilitation programs rely on accurately diagnosing the underlying bio-
mechanical root cause. Research has been developed to identify core sets of features and
their potential underlying impairments[13], which contributes towards the development of
the diagnosis process that is in use by hospitals such as the University Medical Center
Groningen (UMCG). The current gold standard workflow in diagnosis is the 3D Clinical
Gait Assessment (3D CGA)[1]. It provides records of external forces, muscle activity, joint
mobility, spasticity, and muscle strength. Clinical professionals must inspect these records
and explain them in a report to provide access to rehabilitation programs that will improve
the quality of life for patients[8]. However, the workflow takes a long time, specifically the
examination of data undertaken by clinical professionals, which takes 2 hours and 35 minutes
on average. This workflow can delay access to much-needed rehabilitation programs.

To address such bottlenecks described above, we propose to provide a gait diagnosis tool to
the UMCG. This tool is designed to rapidly analyze and detect patient gait impairments,
significantly reducing the time required for clinical evaluations. Consequently, this would
not only enhance the efficiency of clinicians by freeing up valuable time but also expedite
the provision of care to patients, ensuring they receive timely and effective treatment.

To develop an efficient gait diagnosis tool, we have reviewed existing state-of-the-art systems,
pointed out their flaws and benefits for each, and merged such insights into a view that best
fits the specific needs of the UMCG. The clinical utility of gait diagnosis is well-documented
for patients with walking impairments, underscoring the importance of the quality of our
work. Our research utilized data provided by the UMCG to develop a more effective system.
Our research utilized data provided by the UMCG to develop a more effective system. Inte-
grating these insights enabled us to succeed in building a new, efficient tool for gait diagnosis
attuned to the specific needs of the UMCG. This system has the potential to be adopted by
other medical clinics and hospitals, thereby improving diagnostic accuracy and efficiency on
a broader scale. This leads to the following research questions:

1. What are the specific limitations of current gait diagnosis systems, and how can these
be addressed in a new system tailored for UMCG?

2. How can the new system be designed to ensure ease of use and integration into existing
clinical workflows at UMCG?

3. How can the integration of state-of-the-art technologies improve the accuracy and speed
of gait diagnosis in clinical settings?

6

These questions, when answered, guide us in building a system that is easy to use and seam-
lessly integrates into the existing workflows of the UMCG. Additionally, they enable the
development of a prototype that serves as a model for future systems in the field of gait
diagnosis. The new system is designed to be accurate and quick, ensuring that the quality
of patient care is maintained and even enhanced.

The motivation for this research proposal is derived from the significant importance of health-
care, specifically gait abnormalities treatment, considering the many risks associated with
receiving untimely healthcare and attention.

From the healthcare provider side, optimizing time allocation can help provide more care
for patients. Traditional methods of manually analyzing data utilize a lot of effort from the
clinical providers and are prone to human errors that can harm the patient’s quality of life.
Automating the decision-making process is desired, as it will allow healthcare professionals
to streamline their workflow, provide better care and transparency, and avoid the risk of
errors.

As technology develops and becomes more advanced, the use cases of innovative systems
increase and adapt to specific domains for a multitude of reasons and purposes. By ex-
ploring different models and techniques of explanation in the gait diagnosis domain, this
project has a significant chance of improving the efficiency of the gait diagnosis workflow.
The increase in efficiency allows clinical professionals to provide more timely care, improv-
ing patients’ quality of life with higher accuracy. The potential impact of this project is
significant, as it will potentially eliminate many bottlenecks in the current system at the
University Medical Center Groningen (UMCG), resulting in an increased capacity to treat
patients. The increased capacity allows many patients to receive care in time to mitigate
the health consequences related to delayed care. This project also has the potential to re-
duce barriers to adopting advanced systems in healthcare and relying on such systems for
future diagnostic procedures in other fields, with the goal of placing patient care at the center.

We will start by discussing the related work that has been accomplished in the field of gait
diagnosis and analysis in Section 2. Then, we will introduce the methodologies and ap-
proaches we followed in Section 3, which includes the architecture and requirements. Section
4 discusses the individual contributions to the project. Section 5 discusses the results of our
work, including an evaluation of the system and its limitations. We conclude our thesis in
Section 6, discussing future work that can be implemented to improve the new system further.

7

2 Related Work

As the importance of developing an automated diagnosis for gait impairments grows, other
implementations have been conceived that are relevant to what is accomplished by the
project. In this section, we start with explaining background literature relevant to this topic.
Then, we examine the current state-of-the-art across different implementations, as well as
their methodologies, technologies, and outcomes. Additionally, we analyze the strengths and
limitations of these methods, highlighting how they have contributed to the current state of
the art. Then, we will discuss the current state-of-the-art at the UMCG. This review pro-
vides a comprehensive overview of the foundational work that has paved the way for further
advancements in the field and sets the context for our contributions to improving diagnostic
accuracy and efficiency in gait impairment detection.

Figure 1: The phases of gait[11]

2.1 Background Literature

2.1.1 Gait Stances

Gait can be divided into multiple stances or phases, as seen in Figure 1. We will discuss the
details of the different gait cycles below [9]:

2.1.1.1 Heel Strike This phase involves the period from the initial contact of the foot
with the ground to the immediate response of the body to the initiation of weight transfer.
The positions of the joints at this point dictate the pattern of the loading response of the
limb. The main objective of this phase is to initiate a stance with a heel rocker and decelerate
the impact.

2.1.1.2 Loading Response This is the second phase in Figure 1. It follows the initial
contact of the foot with the floor and continues until the opposite limb is lifted for the

8

swing phase. The main goals of this phase are absorbing shock, guaranteeing weight-bearing
stability, and maintaining forward progression.

2.1.1.3 Mid Stance This phase starts by lifting the opposite foot off the ground and
continues until body weight is aligned over the forefoot. The main objectives include a
progression of the swinging foot over the stance foot and ensuring stability of the limb and
trunk.

2.1.1.4 Terminal Stance This phase begins with the heel rise and continues until the
next contact with the ground by the opposite foot. During the phase, body weight shifts
forward over the forefoot. The main objectives are the progression of the body forward over
the supporting foot and maintenance of limb and trunk stability.

2.1.1.5 Pre-swing This final phase of the stance, known as the terminal double stance
interval in the gait cycle, starts when the opposite foot touches the ground and ends when
the same-side foot lifts off. Sometimes referred to as weight release or weight transfer, this
phase is crucial for advancing forward. As body weight shifts quickly, the trailing leg helps
propel the body forward and gets ready for the swing phase. The main objectives are to
position the limb for the swing phase and to accelerate forward progression. We estimate
this phase to be the opposite foot’s loading response

2.1.1.6 Toe-off The first third of the swing period is the toe-off phase, also known as
the initial swing phase, and it runs from the beginning of the toe-off until the swinging foot
is opposite the stance foot. The two key objectives are to ensure that the foot is cleared
from the ground and to progress the limb from its trailing position.

2.1.1.7 Mid-Swing The middle third of the swing period initiation starts when the limb
is in line with the stance extremity and continues until the limb advances to the point where
the tibia is perpendicular and has hip and knee about the same degree of flexion. The major
goals of this movement are to move the limb forward and to ensure the foot will clear the
ground. We simplify this phase to be computed as a mid stance in the opposite foot.

2.1.1.8 Terminal Swing The final phase of the swing period, from when the tibia is
vertical until the foot contacts the ground, the limb advancement is completed as the shank
moves ahead of the thigh. The main objectives would be to finalize limb advancement and
set the limb for the stance phase. We also estimate this phase as being in the terminal stance
for the other foot.

2.2 Gait Diagnosis Systems: Other Implementations

2.2.1 In-Shoe Systems

A study published in 2021 made use of 16 dedicated porous graphene–SBR (styrene-butadiene
rubber) pressure sensors (PGSPSs) placed inside shoes to allow continuous, day-to-day moni-

9

toring of gait signals, which include walking, running, and jumping [6]. These sensors proved
to be highly accurate and flexible, which enabled comfort for users. The sensors could wire-
lessly transmit the data to smartphones for real-time gait analysis and monitoring. Figure
2 illustrates that the smart sole system consists of 3 parts: a PGSPS-based sensor system
with a circuit board (FPC), a Raspberry PI (RPI) system, a data acquisition (DAQ) circuit,
and a printed circuit board (FPC), a Raspberry PI (RPI) system, a data acquisition (DAQ)
circuit, data processing, and displaying software.

Figure 2: The architecture of the in-shoe system.

While the pressure sensors allow the system to gather detailed plantar pressure data during
various gait activities, it does not integrate data from physical examinations performed by
medical specialists. This means the system may not be able to provide a complete picture
of the entire gait cycle, which could be important for certain diagnostic or rehabilitation
applications. An area for potential improvement would be to explore ways to incorporate
data from clinical gait analysis, such as kinematic and kinetic measurements, to comple-
ment the pressure sensor data. This could help create a more holistic understanding of the
user’s gait patterns and potentially enhance the system’s capabilities for applications like
gait disorder diagnosis and rehabilitation monitoring. Overall, the paper demonstrates an
innovative wearable gait analysis system with many promising features. However, further
development to capture the full gait cycle, potentially by integrating with clinical assessment
methods, could help expand the system’s usefulness and reliability for certain medical and
rehabilitation use cases.

10

2.2.2 Remote Systems

Other systems, such as the system proposed in this paper published in 2021, rely on vision-
based motion capture techniques that can be used remotely in unconstrained environments
such as homes or clinics.[4] The analysis is done through the upload into a server and the
execution of a web service that classifies their gait.

Using a shallow Convolutional Neural Network (CNN) architecture, The novel gait-type
classification system achieves an accuracy of over 90% on a limited dataset. It demonstrates
significant generalization ability, correctly associating available gait types with corresponding
pathologies, even when tested on a relatively noisy dataset captured in a home setting. The
CNN architecture is highlighted in Figure 3. The limitations, however, involve the limited
dataset being used to train the CNN, which may result in overfitting and a lack of robustness
when applied to real-world data. Also, it doesn’t incorporate muscle activity or physical
examinations performed by medical professionals into the data, hence failing to capture fully
the nuances of the gait cycle.

Figure 3: The proposed CNN architecture used by visual-based remote motion-capture
systems

2.3 Current State of the Art: 3D Clinical Gait Assessment

2.3.1 Current Workflow

The current state of the art for gait diagnosis in the UMCG using 3-Dimensional Clinical
Gait Analysis (3D CGA) is defined as the following workflow[1]. The workflow begins with
the first step: a three-dimensional motion capture analysis, performed in a laboratory setting
to record measurements of external forces and muscle activity (electromyography), a physical
assessment, and joint angles and coordinates which takes on average 1 hour and 30 minutes

11

to complete. The physical examination captures data about joint mobility, spasticity, and
muscle strength. The full collection of physical examination parameters, which is written in
Dutch originally and translated to English, can be found in the appendix. These joint angles
and coordinates are measured in all 3 planes of motion which include the frontal, sagittal or
lateral, and transversal planes. Next, we have the second step, which is the expert interpre-
tation of clinicians, where they compare the collected data mentioned above to conventional
data from healthy individuals at every specific stage of the gait cycle. A gait deficiency is
labeled if any of the thresholds of the healthy gait parameters have been exceeded. Then, we
move onto the third step, where the labeled gait deficiency is used, alongside the compiled
physical assessments of joint mobility, spasticity, and muscle strength and muscle activation
analysis, to diagnose the underlying root cause of the gait deficiency. Steps 2 and 3 com-
bined take an hour and 45 minutes to complete. After the interpretation process, the fourth
step involves the creation of a diagnostic report, followed by incorporating the diagnostic
report into the electronic patient dossier (EPD), requiring 50 minutes to complete. Finally,
the concluding treatment plan is discussed at the Medical Doctor’s Office (MDO) during
a 20-minute appointment. The workflow defined above is tedious and extensive, taking 4
hours and 25 minutes. Some steps in the workflow above can be accelerated and digitized,
which are steps 2, 3, and 4. We will refer to these steps as the variable components. Steps
1 and 5 are the invariable components in the workflow since they require human input and
intervention, which cannot be optimized.

2.3.2 Gait Analysis Tool

A proposed solution that entails a software system has been conceptualized to enhance the
speed of the variable components in the workflow[3]. After multiple iterations, the current
software system with its data flow diagram is seen in Figure 4.

The software system receives hard-coded values, representing the threshold values of the
various physical assessment parameters discussed above. Alongside the physical assessment
values obtained, the video, 3D motion capture of joint motion, joint load, and muscle activa-
tion source files (c3d file) of the recorded motion capture done in the first step of the workflow
of the 3D CGA, and the physical examination(LO.xlsx) are included as input, where they
are then processed appropriately. The software system then computes the mid-stance, which
is when the distance between both knees is closest to the distance between both ankles from
the processed information. Next, the peaks of the loaded filtered signals are computed and
validated by human input that verifies the correctness of the peaks and corrects the chosen
peaks if necessary. The verified and corrected peaks are then processed and compared to
the threshold values to evaluate whether the limit has exceeded any parameters. Finally,
a report with the results of the evaluation is generated and displayed to the user through
the graphical user interface (GUI). These results are in the form of images from the in-
put videos of when a certain parameter is abnormal as well as the evaluation results of that
parameter. It is important to note that all the analysis is done in the lateral plane of motion.

The system attempts to speed up the variable components of the workflow of the 3D CGA,
however, its reliance on user input can introduce unnecessary delays to the workflow of the

12

Figure 4: The flow diagram of the old gait software system

3D CGA. Furthermore, the system’s rigidity hampers its scalability and extendibility, dimin-
ishing care quality due to a lack of versatility. Moreover, there are unresolved functionalities
and missing features, impeding the full utilization of the system. On the other hand, the
system utilized important decision trees for detecting gait impairments, developed in col-
laboration with medical professionals at the UMCG, which will be needed to build a new
system with similar capabilities.

This project aims to improve and automate the current techniques used in the current gait
diagnosis system. As mentioned previously, the current system that is being used lacks in
structure, functionality, and ease of use. Therefore, the system can not be used in clinical
settings, and it is difficult to restructure the code-base due to the aforementioned lack of
structure in both architecture and code-base. In the upcoming section, we will discuss the
methodology that enabled us to produce our new system.

13

3 Methodology

For this project, we have been provided with a dataset of .c3d files containing 3D motion
capture data of patients and .xlsx files containing the corresponding physical examination
data from the UMCG. Additionally, we were given the previous version of the Gait Analysis
tool, discussed in Section 2.3.2, to investigate the reusable components for the implemen-
tation and architecture of the new system. Following this investigation, we identified key
reusable components and set out to develop a new system composed of multiple components
to enhance modularity and scalability [2]. This approach ensures that each component can
be developed, tested, and maintained independently, simplifying the overall development
process and facilitating easier updates and improvements in the future. The decision to
adopt a more modular and scalable design was driven by the need for easier maintenance,
enhanced performance, and the flexible integration of new features and technologies. Once
the requisite frameworks were thoroughly researched and validated for the construction of
our system, we uploaded the .c3d and .xlsx files from the UMCG dataset to validate the sys-
tem’s results and effectiveness. The results were validated against the expert interpretation
of our external supervisor, C. Greve, due to his medical expertise. We begin by laying out
the requirements of the new system, followed by a discussion of the system’s architecture.
Subsequently, we provide an in-depth examination of the data processing module, including
its functionality and the specific algorithms employed to ensure efficient and accurate data
handling.

3.1 Requirements

The development of a gait diagnosis system aims to enhance the evaluation and treatment
of patients with gait abnormalities by providing a comprehensive and automated diagnos-
tic tool. This system is designed to integrate various components, including a user-friendly
front-end interface, robust back-end services, and advanced data processing models. The
following requirements outline the essential features and functionalities necessary to achieve
a reliable, efficient, and scalable gait diagnosis system.

Each requirement has a unique ID, denoted as [R][#]-[F/NF] where:

• R: Requirement

• #: the number of the requirement

• F/NF: meaning functional/non-functional

The requirements are:

• [R-1-F]: Secure login portal where clinicians can enter their credentials to access the
system.

• [R-2-F]: Upload file of a 3D motion capture of patient walk for diagnosis.

• [R-1-NF]: The file of a 3D motion capture of patient walk has to be in .c3d format.

14

• [R-3-F]: Upload file of a patient’s physical examination for diagnosis.

• [R-2-NF]: The file of a patient’s physical examination has to be in .xlsx format.

• [R-4-F]: Produce a diagnosis of the patient

• [R-3-NF]: The diagnosis should include gait impairments based on joint kinematics.

• [R-4-NF]: The diagnosis should include relevant values from the physical examination.

• [R-5-NF]: The diagnosis should include gait impairments based on the muscle activity.

• [R-6-NF]: The diagnosis should include gait impairments based on the ground reaction
forces.

• [R-7-NF]: The diagnosis should delivers rapid and accurate diagnoses within 5 sec-
onds.

• [R-5-F]: Provide an executable to initialize and configure the entire system, ensuring
that all components and services are properly set up and ready for operation.

• [R-8-NF]: The executable should run on the Windows operating system.

• [R-6-F]: Display the diagnosis to the clinicians.

• [R-9-NF]: The diagnosis displayed should show what are the gait impairments de-
tected and when have they been detected.

• [R-10-NF]: The diagnosis is displayed in tables.

• [R-7-F]: Export the diagnosis.

• [R-11-NF]: The diagnosis should be exportable to PDF format.

Based on these requirements, we have developed an architecture that will accommodate
for all the requirements, which we will detail in the following section.

3.2 Architecture

The architecture of the new system can be seen in Figure 5. We have 3 main components:
the Front end, the Data Processing, and the Back end. We will discuss each component,
with their subcomponents in this section.

15

Figure 5: The high-level overview of the new Gait Analysis system

3.2.1 Frontend

The front-end is the main user interface (UI) that the medical professionals interact with to
obtain results. It consists of a Login component, where medical professionals can securely
add their login credentials to access the system. Then, they can upload both .c3d files and
LO.xlsx corresponding to the current patient being diagnosed. Then, these files are sent to
the Backend component which will continue the data processing procedure. Finally, after
the diagnosis is complete, the Diagnosis Tables, consisting of the relevant gait impairments
and their relevant LO.xlsx data, are rendered and displayed to the user for further analysis.
The front end of the application is developed using the React framework, which is based
on JavaScript. React’s component-based architecture facilitates the creation of reusable
UI components, promoting consistency and maintainability throughout the application. Its
efficient updating and rendering of components in response to data changes are vital for
developing a responsive and interactive user interface for the gait diagnosis system. React
also integrates effectively with Flask, enabling seamless communication between the front-
end and back-end through RESTful APIs. This compatibility ensures a smooth data flow
and interaction between client-side and server-side components. Additionally, React’s robust

16

developer tools and active ecosystem offer a wide array of libraries, extensions, and plugins,
empowering us to build a highly functional and user-friendly interface.

3.2.2 Backend

The back-end handles all user requests from the front-end as well as houses the Data Process-
ing module which can detect gait impairments by extracting and processing data from the
.c3d and .xlsx files uploaded. It can authenticate users who are willing to use the application
and give the users access to upload the aforementioned files above for the generation of the
diagnosis. The back-end then stores the files in a directory for the diagnosis as part of the
handling process. It then sends the relevant gait impairments and their associated LO.xlsx
data to the front-end to be displayed for the user. For the back-end, we chose Flask, a
Python-based web framework. The rationale for this decision is multifaceted: since our data
processing is managed in Python, using Flask ensures seamless integration and minimizes
the overhead associated with context switching between different programming languages.
Flask is designed to be simple and flexible, providing the essentials without enforcing a
specific project structure, making it an ideal solution for our custom gait diagnosis system.
Flask also supports various extensions that can add necessary functionality, such as database
integration, form validation, and authentication, facilitating the development of a scalable
and maintainable application. Its lightweight nature allows for fine-tuned control over the
application, which is crucial for ensuring that the back-end can efficiently handle real-time
data processing demands.

3.2.3 Data Processing

Finally, the data processing component is integrated into the back-end, but its complexity
and scope warrant it being considered a distinct module. It reads the .c3d and .xlsx files
uploaded through the front-end and stored by the back-end. The data is then processed
and split into the different gait phases, and then gait phases are established. Additionally,
the system processes a pre-stored .c3d file, designated as the ”ideal” data collection, which
serves as a benchmark for comparison against other .c3d data. This comparative analysis is
integral to identifying deviations and detecting gait impairments accurately. From there, the
identified deviations and gait impairments are collected and sent, alongside their relevant
LO.xlsx data which a medical professional would look at to further develop an understanding
of the patient’s case at hand into 2 separate tables. These 2 tables are then sent back to the
back-end, which sends it back to the front-end for display. The data processing module was
developed exclusively in Python, leveraging the extensive range of libraries that facilitate
efficient data processing. Additionally, Python was chosen to ensure seamless integration
with the back-end of the application, which is implemented using the Flask framework.

It is important to know that the package manager used for both modules written in Python
is Conda. Conda is an open-source package management and environment management
system that runs on Windows, macOS, and Linux[12]. It allows users to quickly install,
run, and update packages and their dependencies, as well as manage multiple environments
with different versions of Python and other libraries. This is particularly useful for ensuring

17

compatibility and reproducibility in scientific computing and data science projects. One of
the important libraries available through Conda is ezc3d, which is essential for working with
C3D files in biomechanics and gait analysis. The full list of libraries used can be found in
the appendix.

3.3 Data Flow

Figure 6: The flow diagram of the new system

In this section, we will conduct an in-depth examination of the data flow within our
system, with a particular emphasis on the data processing components. An illustration can
be seen in Figure 6. Given that the primary focus of this thesis is on these components, we
will provide a comprehensive analysis of their functionality and significance. The discussion
will encompass the mechanisms of data ingestion, transformation, storage, and retrieval,
highlighting the intricate processes that ensure data integrity and efficiency. This detailed
exploration will not only elucidate the technical intricacies of our system but also demon-
strate the critical role of data processing in achieving our research objectives.

18

The user first attempts to log into our system through the Login subcomponent. These
credentials will be passed on to the Authenticator subcomponent for validation, and if suc-
cessful, will allow access to the next part where the user can upload both the LO.xlsx and
Walk.c3d files for analysis. Otherwise, the login attempt has failed and they will have to
login again and use the correct credentials. Then, the user will upload the necessary files
mentioned above, and if successful, will be passed on to the File Handler subcomponent for
storing in the uploads directory. If the incorrect file types have been uploaded, an error will
appear and the user will have to resubmit the correct file(s). Then, the system will be able
to start the analysis process, which we will detail deeply in the following overview.

3.3.1 Data Reader

The data reader component reads the Walk.c3d files of both the patient as well as the
normative gait stored within the system, using the ezc3d library. Then, it processes the
the Walk.c3d files by extracting the labels and their associated values, the number of frames
and the number of labels, the frame rate, the first frame when the gait has commenced, the
joint angles of both sides in the sagittal plane, the coordinates of every indicator at every
frame, and the frames where a Foot Off or a Foot Strike has occurred. It then combines the
coordinates of every indicator and their associated indicator under one pandas data frame.
From there it moves onto the Phase Splitter subcomponent, which can extract the rest of
the phases.

3.3.2 Phase Splitter

The phase splitter takes the data frame of coordinates and indicators and the frame rate and
computes the missing stances that were not given through the Walk.c3d files of both the pa-
tient and the norm. Those stances are Loading Response, Mid Stance, and Terminal Stance.
We compute the above stance using the following heuristics, based on the observations of
the external supervisor C. Greve. For the midstance, we start by finding out the possible
ranges of when a midstance may occur, for both sides. For the left midstance, we would be
looking between the initial contact of the left foot with the ground and the left foot off the
ground events, which we extract from the list of frames where a Foot Off or a Foot Strike
occurs. We also compute the range for the right midstance, which is between the right foot’s
initial contact and the right foot being off the ground. After we calculate those ranges, we
then compute the minimum difference d1-d2 where d1 is the distance between the left knee
and the left ankle for the right foot and between the right knee and the right ankle for the
second foot. D2 is the distance between the knees. Once we establish the minimum distance,
we can extract the frame where it happens, which is what is returned by this function. The
pseudo-code for the midstance calculation can be found in Algorithm 1. As for the loading
response, we estimate it to occur 10 frames before the opposite foot leaves the ground, which
would mean that a right loading response happens 10 frames before the left foot leaves the
ground, and a left loading response will be 10 frames before the right foot leaves the ground.
Finally, we compute the terminal stance similarly to the loading response, where we also es-
timate it. However, we estimate it as 10 frames before the opposite foot strikes the ground.
A right terminal stance would happen 10 frames before the left foot strikes the ground, and

19

a left terminal stance would happen 10 frames before the right foot strikes the ground. After
calculating all the stances, we add them to a list of global events, which contains the event,
the context, and the frame where it happens. Then, we move on to the data comparer.

3.3.3 Data Comparer

This subcomponent focuses on comparing the joint angles of the patient and norm, which are
the hip, knee, and ankle joints, for both sides, at the frames of when the gait cycles defined
above occur. The joint angles of the patient walk are compared to the norm walk, and if
it exceeds a specified threshold value, whether being above the threshold or more, or being
below the threshold or less, then we mark a gait deficiency as either positive if it is above, or
negative if it is below. Otherwise, we mark there to be no specific gait deficiencies detected,
and we move on to the final part, which is generating the diagnosis. We also append the
joint angle value, as it will be needed in the diagnosis.

3.3.4 Diagnosis Generator

This subcomponent focuses on identifying the gait impairments, based on the joint angle
and the gait phase it occurs in. Based on specific deficiencies that have been detected,
this subcomponent would also append to another table specific values from the LO.xlsx file,
which is the physical examination, that medical professionals would look at to get a full
picture of the gait deficiency. It is important to note that we extract the LO values of the
examined side since the parameters exist for both the left and right sides. The decisions that
the algorithm makes to come up with these diagnoses have been developed in consultation
with the external supervisor C. Greve. We will detail exactly what we look for in each stance
and joint angle difference combinations.

3.3.4.1 Foot Strike In a foot strike, we lookout for the following gait deficiencies:
Plantar flexion, Increased Knee Flexion, Decreased Knee flexion (other foot), Increased Hip
Flexion, and Decreased Hip Flexion. Plantar flexion is identified when the patient fails to
meet the designated threshold in the ankle joint of the examined side. Specifically, plan-
tar flexion of the right foot is only detected during the occurrence of a right foot strike,
and similarly, plantar flexion of the left foot is only identified during a left foot strike.
We extract the following LO values based on the above finding for the specific foot: Dor-
siflexieMRC, DorsiflexiegebogenPROM, DorsiflexiegebogenAOC, DorsiflexiegestrektPROM,
DorsiflexiegestrektAOC. We also append the ankle joint range of motion in degrees.

Increased knee flexion is detected when the patient has exceeded the norm by the threshold
or more in the knee joint, and we extract the following LO values for the specific foot: Pop-
hoekPROM, Pop-hoekAOC, Knie-extensiePROM. We add the knee joint range of motion in
degrees here.

We also detect decreased knee flexion in the other side not being currently examined, which
happens when the patient did not meet the norm by more than the threshold in the other
knee joint. We extract the following LO values: Duncan-ElyPROM, Duncan-ElyAOC. We

20

Algorithm 1 Find MidStance

Require: markersWithLabels: ▷ DataFrame of coordinates and labels
Require: Fs MarkerPositions: ▷ Frame rate
Require: times: ▷ Array of event times
Require: contexts: ▷ Array of event contexts
Require: events: ▷ Array of event types (FootOff or FootStrike)
1: evnt ic right, evnt ic left = ∞;
2: evnt footoff right, evnt footoff left = -1;
3: for each event in events do
4: if (evnt ic right is ∞) and (event is ’Foot Strike) and (context is ’Right’) then
5: evnt ic right = corresponding time ▷ Set initial contact for right foot
6: else if (evnt footoff right is -1) and (event is ’Foot Off’) and (context is ’Right’)

and (time > evnt ic right) then
7: evnt footoff right = corresponding time ▷ Set foot off for right foot after

initial contact
8: else if (evnt ic left is ∞) and (event is ’Foot Strike) and (context is ’Left’) then
9: evnt ic left = corresponding time ▷ Set initial contact for left foot
10: else if (evnt footoff left is -1) and (event is ’Foot Off’) and (context is ’Left’)

and (time > evnt ic left) then
11: evnt footoff left = corresponding time ▷ Set foot off for left foot after initial

contact
12: end if
13: end for
14: evnt ic right, evnt footoff right *= Fs MarkerPositions

15: evnt ic left,evnt footoff left *= Fs MarkerPositions

16: min diff right, min diff left = ∞
17: for frame from event ic right to event footoff right do
18: Calculate d1 right = abs(LKNE[frame, 2]− LANK[frame, 2]) ▷ Distance left

knee to left ankle
19: Calculate d2 right = abs(RKNE[frame, 2]− LKNE[frame, 2]) ▷ Horizontal

distance between knees
20: Calculate diff right = |d1 right− d2 right|
21: if diff right < min diff right then
22: min diff right = diff right; midStance right = frame
23: end if
24: end for
25: for frame from event ic left to event footoff left do
26: Calculate d1 left = abs(RKNE[frame, 2]−RANK[frame, 2]) ▷ Distance right

knee to right ankle
27: Calculate d2 left = abs(RKNE[frame, 2]− LKNE[frame, 2]) ▷ Horizontal

distance between knees
28: Calculate diff left = |d1 left− d2 left|
29: if diff left < min diff left then
30: min diff left = diff left; midStance left = frame
31: end if
32: end for

return midStance right, midStance left

21

also add the knee joint range of motion in degrees here.

Increased and Decreased hip flexion are detected when the patient has exceeded or has not
met the threshold respectively. There are no associated LO values that are looked at when
this occurs, and this is only detected for the examined side.

3.3.4.2 Loading Response In a loading response, we look out for the following in the
examined side: No/decreased plantar flexion, increased knee flexion, decreased knee flexion,
knee hyperextension, and increased/decreased hip flexion. There are no LO values that are
inspected when there are gait deficiencies labeled during this phase.

We detect no/decreased plantar flexion if the following conditions are met: there is no plan-
tar flexion detected in the foot strike, and the patient’s walk has not met the norm by a
margin of the threshold in the ankle joint.

Increased knee flexion is labeled when the patient exceeds the norm by the threshold in the
knee joint. The knee joint range of motion in degrees is also added. Decreased knee flexion
and knee hyperextension are both detected when the patient’s walk lags behind the norm
by the threshold or more. Here, we rely on the actual degrees of the knee joint that we
appended in the Data Comparer section. If the knee joint angle degrees are positive or zero,
then we label the gait deficiency that is labeled is decreased knee flexion, otherwise we detect
knee hyperextension. We also add the knee joint range of motion in degrees.

As for the decreased and increased hip flexion, we follow the same detection done in the foot
strike.

3.3.4.3 Mid Stance In the mid-stance, we look out for the following gait deficiencies in
the examined side: plantar flexion, increased dorsiflexion, increased knee flexion, decreased
knee flexion, knee hyperextension, increased hip flexion, and decreased hip flexion. As for
the other foot, we also detect plantar flexion.

For plantar flexion in the ankle joint of both feet, we check if the patient’s walk has not met
the norm by the threshold. Only when the non-examined foot has a label of plantar flexion do
we add the following LO values: DorsiflexieMRC, DorsiflexiegebogenPROM, Dorsiflexiege-
bogenAOC, DorsiflexiegestrektPROM, and DorsiflexiegestrektAOC.We also add the ankle
range of motion in degrees.

If the examined foot exceeds the given threshold, then we add the increased dorsiflexion
label. Otherwise, if the examined foot has no gait deficiencies, then we display the range of
motion in degrees of the ankle joint. As for the knee joint on the examined side, we follow
a similar detection procedure as the one displayed in the loading response.

We detect increased knee flexion if we exceed the norm by the threshold, and we display the
following LO values: Knie-extensiePROM and HeupextensiePROM. As for both increased

22

knee flexion and knee hyper extension, we detect either of them if the patient has not met
the norm. In contrast to the loading response detection, we use a different threshold, named
knee midstance threshold in the program, which we use specifically for this portion of the
detection. If the patient’s walk is higher than the knee midstance threshold, we detect
decreased knee flexion, otherwise, we detect knee hyper extension. For the decreased knee
flexion, we add the following LO values: DorsiflexiegebogenPROM, DorsiflexiegebogenAOC,
DorsiflexiegestrektPROM, and DorsiflexiegestrektAOC. For all the knee deficiencies, we add
the range of motion of the knee joint to the diagnosis.

Increased and decreased hip flexion in the examined foot are detected in the same manner
as the previous two phases, but in this phase, we add the following LO values for increased
hip flexion: Knie-extensiePROM and HeupextensiePROM.

3.3.4.4 Terminal Stance Finally, in the terminal stance, we detect the following gait
impairments for the examined foot: decreased dorsiflexion, increased dorsiflexion, increased
knee flexion, knee hyperextension, and no hip extension. As for the other foot, we can detect
plantar flexion only.

Decreased dorsiflexion is detected when the patient’s walk falls short of the norm in the ankle
joint, and the following LO values are relevant to the diagnosis: DorsiflexiegebogenPROM,
DorsiflexiegebogenAOC, DorsiflexiegestrektPROM, and DorsiflexiegestrektAOC. We add the
ankle range of motion of the examined foot in degrees to the diagnosis.

As for increased dorsiflexion, the patient’s walk goes beyond the threshold. There are no
associated LO values that are captured here. Similarly to decreased dorsiflexion, we also
add the ankle range of motion in degrees to the diagnosis. Otherwise, the patient’s walk is
within the norm, and we add the ankle joint range of motion in degrees of the examined foot.

As for the other foot, we detect plantar flexion if the patient’s walk falls behind the norm.
We also add the actual ankle joint range of motion in degrees here, and we add the following
LO values: DorsiflexieMRC, DorsiflexiegebogenPROM, DorsiflexiegebogenAOC, Dorsiflex-
iegestrektPROM, and DorsiflexiegestrektAOC.

Increased knee flexion and knee hyperextension occur when the patient’s walk has exceeded
or fell short of the norm respectively. The associated LO values for increased knee flexion are
Knie-extensiePROM and HeupextensiePROM. We also add the knee joint range of motion
in degrees. The associated LO values for knee hyperextension are DorsiflexiegebogenPROM,
DorsiflexiegebogenAOC, DorsiflexiegestrektPROM, and DorsiflexiegestrektAOC. We also in-
clude the knee joint range of motion in degrees.

Finally, we have no hip extension, which we detect if we have exceeded the threshold. We
add the following LO values to the diagnosis: Knie-extensiePROM, HeupextensiePROM,
and HeupextensieMRC.

23

The code that includes the decision trees can be found in the appendix. After the diagnosis
process is completed, the gait deficiencies have been labeled, and the LO values have been
extracted, we collect the results of the diagnosis and the LO values in 2 separate tables, and
the LO table is then formatted to remove duplicate entries. The program then returns those
two tables to the back-end, which is sent to the front end for display.

24

4 Individual Contribution

For clarity, the new gait system was undertaken by 2 other RUG students, Emmanouil
Kalostypis and Nikola Zivkovic, alongside myself. We decided to go for an even split, where
Nikola was responsible for the front-end completely. Nikola also contibuted to some endpoints
in the back-end. Emmanouil completed the rest of the back end endpoints, as well as
working alongside myself to complete the Data Reader, Phase Splitter, and Data Comparer
subcomponents. The Diagnosis Generator was done completely by myself. We made an
effort to find an even split of the work as much as possible, avoiding much disparity in the
workload.

25

5 Results and Discussion

This section outlines the requirements or objectives that were successfully met during the
project. Each requirement should include a brief description and how it was achieved. We
will also discuss some limitations of the new system. We will rewrite the requirements and
detail them one by one.

5.1 Evaluation of Requirements

[R-1-F]: Secure login portal where clinicians can enter their credentials to access
the system. We were able to achieve this requirement through the Login/Logout and the
Authenticator subcomponents, which allowed the clinicians to input their credentials into
the system, and allow access only if the credentials were correct.

[R-2-F]: Upload file of a 3D motion capture of patient walk for diagnosis. We were
able to achieve this requirement through the File Uploader and File Handler subcomponents,
which handle the files being uploaded and store them for further processing.

[R-1-NF]: The file of a 3D motion capture of patient walk has to be in .c3d
format. Through the File Handler subcomponent, we can check whether the file of the 3D
motion capture of the patient’s walk was in the intended format, which is .c3d. We are then
able to store the file if it is. Otherwise, an error is thrown and the user is prompted to upload
another file for further analysis.

[R-3-F]: Upload file of a patient’s physical examination for diagnosis. Similarly to
requirement R-2-F, we were able to rely on the same subcomponents to receive the uploaded
files and store them in the backend.

[R-2-NF]: The file of a patient’s physical examination has to be in .xlsx format.
In a similar manner to R-1-NF, we are also able to check for the intended file format and
store it if the file is in the correct file format. Otherwise, an error is thrown similarly to
prompt the upload of a file with the correct form.

[R-4-F]: Produce a diagnosis of the patient: The data processing module has success-
fully produced a proof-of-concept demonstrating its capabilities and advocating for further
advancements. This module captures critical data points, specifically joint kinematics, and
shows potential for enhancement through the incorporation of higher-quality data and the
possible integration of artificial intelligence (AI). The module’s comparison to normative data
ensures a high standard of accuracy and precision in diagnosis, as each phase of the gait cycle
is meticulously analyzed. This meticulous approach facilitates rapid and precise diagnosis.
The system’s capability to specify multiple diagnoses for each leg within a single gait cycle
offers a nuanced and comprehensive understanding of the patient’s gait impairments. This
feature is particularly beneficial in clinical settings where patients may exhibit impairments
in only one leg or specific regions of that leg. Consequently, the software precisely identifies

26

gait impairments, focusing on the specific body parts affected.

[R-3-NF]: The diagnosis should include gait impairments based on joint kine-
matics. The diagnosis results were validated through several test cases conducted in col-
laboration with external supervisor C. Greve. These tests confirmed the module’s accuracy
in identifying all gait impairments based on joint kinematics. The successful inclusion of
all relevant impairments underscores the system’s efficacy and reliability in clinical practice.
However, further testing against a larger dataset is necessary to fully ensure the quality and
robustness of the diagnosis.

[R-4-NF]: The diagnosis should include relevant values from the physical exam-
ination. We have managed to successfully extract the necessary and relevant values from
the physical examination through the Diagnosis Generator subcomponent.

[R-5-NF]: The diagnosis should include gait impairments based on the muscle
activity. Due to time constraints and the complexity of the task, there remains a need for
an implementation that successfully integrates muscle activity into the diagnostic process.

[R-6-NF]: The diagnosis should include gait impairments based on the ground
reaction forces. We were unable to fulfill this requirement due to a combination of time
constraints and the inherent complexity of accurately measuring ground reaction forces. Our
research and consultations with external supervisor C. Greve highlighted potential inaccu-
racies in the readings, which could compromise the reliability of the diagnosis. Additionally,
the task is complicated by the occurrence of multiple steps on the same plates, which gen-
erate the ground reaction forces, making it challenging to isolate and analyze individual
gait cycles accurately. Consequently, further development and testing are necessary to ad-
dress these issues and ensure the robustness of the diagnosis based on ground reaction forces.

[R-7-NF]: The diagnosis should deliver rapid and accurate diagnoses within 5
seconds. We have successfully managed to produce a diagnosis within 1 second, which has
exceeded the requirement.

[R-5-F]: Provide an executable to initialize and configure the entire system, en-
suring that all components and services are properly set up and ready for op-
eration. Due to time constraints, we were unable to fulfill this requirement. We explored
the possibility of hosting the system on an online server; however, maintaining such a server
would incur additional costs and necessitate ongoing measures for upkeep. Our goal is to
reduce the barriers to clinical adoption, making a self-hosted solution less feasible. Subse-
quently, we considered packaging the entire system into a single executable. However, the
use of multiple technologies and programming languages complicates this approach, making
it challenging to create a unified executable. The importance of this requirement cannot be
overstated, as the current setup process for the system is complex and may hinder its usabil-
ity in clinical settings. Simplifying the initialization and configuration through an executable
would significantly enhance the ease of adoption and operational efficiency for end-users.

27

[R-8-NF]: The executable should run on the Windows operating system. An ex-
ecutable has not been produced as mentioned above, hence this requirement has not been
fulfilled yet.

[R-6-F]: Display the diagnosis to the clinicians. The data processing module has been
able to produce a diagnosis, that was displayed to the clinicians through the Diagnosis Tables
subcomponent.

[R-9-NF]: The diagnosis displayed should show what the gait impairments de-
tected and when have they been detected. The diagnosis displays the detected gait
impairments, indicating the specific part of the gait cycle, the affected joint, and the side
(left or right) on which the impairment has been identified.

[R-10-NF]: The diagnosis is displayed in tables. The diagnosis is structured in 2
separate tables, the first one is of the actual diagnosis itself. This table contains the gait
impairment, the phase of gait where it occurs, the affected joint, and the side where the
impairment was detected. The second table displays the relevant physical examination pa-
rameters and their associated values.

[R-7-F]: Export the diagnosis. Due to the complexity and prioritization of certain tasks,
we have decided to address this at a later stage, when we can incorporate all relevant gait
parameters comprehensively.

[R-11-NF]: The diagnosis should be exportable to PDF format. Export function-
ality has not been Incorporated and as a result, this is also left uncompleted.

5.2 Comparison to previous work

The old system attempted to accelerate the variable components of the 3D CGA workflow
but was hampered by its reliance on user input, which introduced unnecessary delays. Ad-
ditionally, its rigidity limited scalability and extendibility, thereby diminishing care quality
due to a lack of versatility. Unresolved functionalities and missing features further impeded
the full utilization of the system.

In contrast, the new system has addressed these flaws by implementing a secure login portal,
enabling clinicians to efficiently access the system. It supports the upload and handling of
essential files, verifying formats to ensure accurate data processing. The new system pro-
duces a high-precision diagnosis by meticulously analyzing joint kinematics and displaying
the results comprehensively to clinicians.

The transition from the old to the new system represents a substantial advancement in
architectural design. The previous system was characterized by a rigid and less intuitive
structure, which impeded both its maintainability and extendability. In contrast, the new
system adopts a more modular and cohesive architecture, reducing decoupling and facilitat-

28

ing easier maintenance and integration of new features. While some functionalities remain
unresolved in both systems, the new system is operational and offers tangible improvements,
thereby enhancing the overall effectiveness compared to its predecessor. This architectural
refinement not only addresses the limitations of the old system but also provides a more
adaptable and user-friendly solution for medical professionals.

5.3 Limitations

Despite the advancements achieved with the new system, several limitations persist that
warrant attention. Firstly, certain functionalities remain unresolved, which may impact the
system’s full potential. Notably, the integration of muscle activity into the diagnostic pro-
cess has yet to be implemented due to time constraints and the inherent complexity of the
task. This omission limits the comprehensiveness of the gait analysis, as muscle activity is
a crucial component in understanding gait impairments.

Additionally, the system has not yet addressed the requirement for including gait impair-
ments based on ground reaction forces. The complexity of accurately measuring and ana-
lyzing ground reaction forces, coupled with potential inaccuracies in readings as identified
during consultations, has prevented the fulfillment of this requirement. This limitation re-
duces the system’s ability to provide a complete assessment of gait impairments. One more
thing to note is that currently, all the analysis takes place in the sagittal plane, which ex-
cludes the frontal and transversal planes of the diagnosis.

Another significant limitation is the lack of an executable for initializing and configuring the
entire system. Efforts to host the system on an online server or package it into a unified ex-
ecutable were hindered by time constraints and technological challenges. Consequently, the
current setup process remains complex and may impede ease of adoption in clinical settings.

Finally, the system’s export functionality for generating PDF reports is still under devel-
opment. The absence of this feature restricts the ability to produce easily shareable and
portable diagnostic reports, which could be beneficial for clinical documentation and com-
munication. In summary, while the new system offers substantial improvements over its
predecessor, addressing these limitations will be crucial for enhancing its functionality and
usability in clinical practice.

29

6 Conclusion

This thesis discussed the importance, conception, and implementation of a new gait diagno-
sis system for use by medical professionals at the UMCG. By focusing mainly on modularity,
cohesion, maintainability, extendability, and utility, we were able to showcase significant
improvement over the old gait diagnosis system which lacked in many aspects. With mod-
ern technologies being used, namely the React.js framework for the frontend and the Flask
framework for the backend, we were able to ensure seamless interaction between modules
and subcomponents, as well as efficient data processing that is vital to ensure a smooth
process for clinicians and patients alike.

The key contributions made in this project include the design of the architecture of this
project, with cohesion, modularity, maintainability, and extendability in mind such that any
new features can be seamlessly integrated. Additionally, the system’s ability to accurately
analyze joint kinematics and compare patient data to normative benchmarks has demon-
strated a high standard of diagnostic precision. Establishing secure user authentication and
user-friendly interactions through the intuitive front-end are significant advancements from
the previous system. Together, these contributions enhance the system’s utility, reliability,
and potential for future development, thus providing a solid foundation for ongoing advance-
ments in gait analysis technology.

6.1 Future work

Although this system represents a huge step forward in the diagnosis of gait impairment,
some areas of enhancement for further research have been recognized.

The most critical task is the development of an executable that is capable of initializing and
configuring the entire system. This will make the setup easier to use, increasing accessibility
and therefore reducing the barriers to clinical adoption. Having an executable will ease de-
ployment and maintenance since the users of the system can quickly get it up and running
without detailed technical knowledge.

Future work should also involve the integration of diagnostics from different planes of mo-
tion. The system mainly operates by analyzing joint kinematics in the sagittal plane. If
the inclusion of the frontal and transversal planes were to be done, that would give a more
holistic view of gait impairments. This shall involve the enhancement of the data processing
module to handle and analyze multi-planar motion data for improved accuracy and depth
of diagnoses.

Another area of future development is more extensive testing with a large dataset. Initial
test cases showed the accuracy of the system, but more extensive testing would be required
to obtain robustness and reliability across different patient populations and under varying
conditions. This would weed out edge cases and improve generalizability.

30

Finally, integrating muscle activity and ground reaction forces into the diagnostic process
remains an important goal. Both of these measurements are integral parts of gait analy-
sis, and such incorporation will further strengthen the abilities of the system in diagnosis
concerning more types of impairments. This involves developing methods for the accurate
capturing and analysis of muscle activity and ground reaction forces data alongside joint
kinematics.

In summary, this thesis thus lays the proper foundations for advanced diagnosis of gait
impairment and makes tremendously improved strides compared with any predecessors.
Further development and fine-tuning will ensure this system’s lead in clinical gait analysis
technology, improving patient outcomes and advancing medical diagnostics. The milestones
completed in this thesis contribute to the current body of knowledge and create a robust
foundation for future research and development in the field of gait analysis and diagnosis.

31

References

[1] Gaids (gait diagnostic system): Ai-enabled, automated diagnostics in clinical gait reha-
bilitation. Unpublished Proposal. Health Technology Research and Innovation Cluster
(HTRIC).

[2] Amr Abdou, Emanoulli Kalostypis, and Nikola Zivkovic. Rug diagnosis system. https:
//github.com/akr115/RUG-Gait-Diagnosis-System, 2024.

[3] Adrian Segura Lorente. Gait analysis tool: Improvement and optimization. Internal
Document, 2022. Supervisors: Dr. Dimka Karastoyanova and Dr. Christian Greve.

[4] Pedro Albuquerque, João Pedro Machado, Tanmay Tulsidas Verlekar, Paulo Lobato
Correia, and Lúıs Ducla Soares. Remote gait type classification system using markerless
2d video. Diagnostics, 11(10):1824, October 2021.

[5] Birol Balaban and Fatih Tok. Gait disturbances in patients with stroke. PM&R,
6(7):635–642, 2014.

[6] Tianrui Cui, Le Yang, Xiaolin Han, Jiandong Xu, Yi Yang, and Tianling Ren. A low-
cost, portable, and wireless in-shoe system based on a flexible porous graphene pressure
sensor. Materials, 14(21):6475, October 2021.

[7] Merck Manual. Gait disorders in older adults, 2023. Accessed 2/22/2023.

[8] T F Novacheck. Improving quality of life for individuals with cerebral palsy through
treatment of gait impairment. Mac Keith Press, Cambridge, England, December 2020.

[9] Jacquelin Perry and Judith Burnfield. Gait analysis. SLACK, Thorofare, 2 edition,
March 2010.

[10] S. Pesenti, L. Garcia, V. Pomero, G. Authier, and C. Boulay. Gait abnormalities
in adolescent idiopathic scoliosis patients: Do curvature amplitude matter? Gait &
Posture, 97:399, 2022.

[11] Walter Pirker and Regina Katzenschlager. Gait disorders in adults and the elderly: A
clinical guide. Wiener klinische Wochenschrift, 129(3–4):81–95, October 2016.

[12] Conda Development Team. Conda Documentation, 2024. Accessed: 2024-07-24.

[13] Marjolein M. van der Krogt, Han Houdijk, Koen Wishaupt, Kim van Hutten, Sarah
Dekker, and Annemieke I. Buizer. Development of a core set of gait features and their
potential underlying impairments to assist gait data interpretation in children with
cerebral palsy. Frontiers in Human Neuroscience, 16, October 2022.

https://github.com/akr115/RUG-Gait-Diagnosis-System
https://github.com/akr115/RUG-Gait-Diagnosis-System

32

A Physical Examination Values

Name (Dutch) Name (English)
Dorsiflexie gebogen PROM Dorsiflexion bent PROM
Dorsiflexie gebogen TONUS Dorsiflexion bent TONUS
Dorsiflexie gebogen AOC Dorsiflexion bent AOC

Dorsiflexie gebogen CLONUS Dorsiflexion bent CLONUS
Dorsiflexie gestrekt PROM Dorsiflexion extended PROM
Dorsiflexie gestrekt TONUS Dorsiflexion extended TONUS
Dorsiflexie gestrekt AOC Dorsiflexion extended AOC

Dorsiflexie gestrekt CLONUS Dorsiflexion extended CLONUS
Plantairflexie PROM Plantar flexion PROM
Pop-hoek PROM Popliteal angle PROM
Pop-hoek TONUS Popliteal angle TONUS
Pop-hoek AOC Popliteal angle AOC

Knieflexie PROM Knee flexion PROM
Knie-extensie PROM Knee extension PROM
Heupflexie PROM Hip flexion PROM

Heup-endorotatie PROM Hip internal rotation PROM
Duncan-Ely PROM Duncan-Ely Test PROM
Duncan-Ely TONUS Duncan-Ely Test TONUS
Duncan-Ely AOC Duncan-Ely Test AOC

Femorale-anteversiehoek (statiek) Femoral anteversion angle (static)
Dijbeen-voethoek (statiek) Thigh-Foot Angle (static)
Calcaneus varus PROM Calcaneus varus PROM
Calcaneus Valgus PROM Calcaneus Valgus PROM
Voorvoet pronatie PROM Forefoot Pronation PROM
Voorvoet supinatie PROM Forefoot Supination PROM

Knieflexie MRC Knee flexion MRC
Heupextensie MRC Hip extension MRC
Heupextensie PROM Hip extension PROM
Knie-extensie MRC Knee extension MRC
Heupflexie MRC Hip flexion MRC
Dorsiflexie MRC Dorsiflexion MRC
Inversie MRC Inversion MRC
Eversie MRC Eversie MRC

Table 1: The parameters found in the physical examination (LO.xlsx) file alongside their
English translation. PROM stands for Passive Range Of Motion. TONUS stands for
Muscle Tone. AOC stands for Angle Of Contracture. CLONUS is Involuntary Muscle
Contractions. MRC is Manual Muscle Testing. The values exist for both the right side

(’Rechts’ in Dutch) and the left side (’Links’ in Dutch)

33

B Screenshots of the New Gait Diagnosis Generator

Figure 7: Login Page

34

Figure 8: Gait Analysis Dashboard

Figure 9: Files uploaded successfully popup message

35

Figure 10: The diagnosis of a patient displayed

36

C Conda Packages

Name Version Build Channel
anaconda depends 2024.02 py311 openblas 1

abseil-cpp 20230802.0 h313beb8 2
aiobotocore 2.7.0 py311hca03da5 0
aiohttp 3.9.3 py311h80987f9 0

aioitertools 0.7.1 pyhd3eb1b0 0
aiosignal 1.2.0 pyhd3eb1b0 0
alabaster 0.7.12 pyhd3eb1b0 0
altair 5.0.1 py311hca03da5 0

altgraph 0.17.4 pyhd8ed1ab 0 conda-forge
anaconda-anon-usage 0.4.3 py311hd6b623d 100
anaconda-catalogs 0.2.0 py311hca03da5 0
anaconda-client 1.12.3 py311hca03da5 0

anaconda-cloud-auth 0.1.4 py311hca03da5 0
anaconda-navigator 2.5.2 py311hca03da5 0
anaconda-project 0.11.1 py311hca03da5 0

anyio 4.2.0 py311hca03da5 0
aom 3.6.0 h313beb8 0

appdirs 1.4.4 pyhd3eb1b0 0
applaunchservices 0.3.0 py311hca03da5 0

appnope 0.1.2 py311hca03da5 1001
appscript 1.1.2 py311h80987f9 0
archspec 0.2.3 pyhd3eb1b0 0
argon2-cffi 21.3.0 pyhd3eb1b0 0

argon2-cffi-bindings 21.2.0 py311h80987f9 0
arrow 1.2.3 py311hca03da5 1

arrow-cpp 14.0.2 hc7aafb3 1
astroid 2.14.2 py311hca03da5 0
astropy 5.3.4 py311hb9f6ed7 0
asttokens 2.0.5 pyhd3eb1b0 0
async-lru 2.0.4 py311hca03da5 0

atomicwrites 1.4.0 py 0
attrs 23.1.0 py311hca03da5 0

automat 20.2.0 py 0
autopep8 1.6.0 pyhd3eb1b0 1
aws-c-auth 0.6.19 h80987f9 0
aws-c-cal 0.5.20 h80987f9 0

aws-c-common 0.8.5 h80987f9 0
aws-c-compression 0.2.16 h80987f9 0

37

aws-c-event-stream 0.2.15 h313beb8 0
aws-c-http 0.6.25 h80987f9 0
aws-c-io 0.13.10 h80987f9 0

aws-c-mqtt 0.7.13 h80987f9 0
aws-c-s3 0.1.51 h80987f9 0

aws-c-sdkutils 0.1.6 h80987f9 0
aws-checksums 0.1.13 h80987f9 0
aws-crt-cpp 0.18.16 h313beb8 0
aws-sdk-cpp 1.10.55 h313beb8 0

babel 2.11.0 py311hca03da5 0
backports 1.1 pyhd3eb1b0 0

backports.functools lru cache 1.6.4 pyhd3eb1b0 0
backports.tempfile 1.0 pyhd3eb1b0 1
backports.weakref 1.0.post1 py 1

bcrypt 3.2.0 py311h80987f9 1
beautifulsoup4 4.12.2 py311hca03da5 0
binaryornot 0.4.4 pyhd3eb1b0 1

black 23.11.0 py311hca03da5 0
blas 1.0 openblas

bleach 4.1.0 pyhd3eb1b0 0
blinker 1.6.2 py311hca03da5 0
blosc 1.21.3 h313beb8 0
bokeh 3.3.4 py311hb6e6a13 0
boltons 23.0.0 py311hca03da5 0

boost-cpp 1.82.0 h48ca7d4 2
botocore 1.31.64 py311hca03da5 0
bottleneck 1.3.7 py311hb9f6ed7 0

brotli 1.0.9 h1a28f6b 7
brotli-bin 1.0.9 h1a28f6b 7

brotli-python 1.0.9 py311h313beb8 7
brunsli 0.1 hc377ac9 1
bzip2 1.0.8 h620ffc9 4
c-ares 1.19.1 h80987f9 0
c-blosc2 2.12.0 h7df6c2f 0

ca-certificates 2024.7.4 hf0a4a13 0 conda-forge
cachelib 0.13.0 pypi 0 pypi
cachetools 4.2.2 pyhd3eb1b0 0
cctools 949.0.1 hc179dcd 25

cctools osx-arm64 949.0.1 h332cad3 25
certifi 2024.7.4 pyhd8ed1ab 0 conda-forge
cffi 1.16.0 py311h80987f9 0

cfitsio 3.470 h7f6438f 7
chardet 4.0.0 py311hca03da5 1003
charls 2.2.0 hc377ac9 0

charset-normalizer 2.0.4 pyhd3eb1b0 0

38

click 8.1.7 py311hca03da5 0
cloudpickle 2.2.1 py311hca03da5 0

clyent 1.2.2 py311hca03da5 1
colorama 0.4.6 py311hca03da5 0
colorcet 3.0.1 py311hca03da5 0
comm 0.1.2 py311hca03da5 0
conda 24.5.0 py311hca03da5 0

conda-build 24.1.2 py311hca03da5 0
conda-content-trust 0.2.0 py311hca03da5 0

conda-index 0.4.0 pyhd3eb1b0 0
conda-libmamba-solver 24.1.0 pyhd3eb1b0 0

conda-pack 0.6.0 pyhd3eb1b0 0
conda-package-handling 2.2.0 py311hca03da5 0
conda-package-streaming 0.9.0 py311hca03da5 0

conda-repo-cli 1.0.88 py311hca03da5 0
conda-token 0.4.0 pyhd3eb1b0 0
conda-verify 3.4.2 py 1
constantly 23.10.4 py311hca03da5 0
contourpy 1.2.0 py311h48ca7d4 0
cookiecutter 2.5.0 py311hca03da5 0
cryptography 42.0.2 py311hd4332d6 0

cssselect 1.2.0 py311hca03da5 0
curl 8.5.0 h02f6b3c 0
cycler 0.11.0 pyhd3eb1b0 0

cyrus-sasl 2.1.28 h9131b1a 1
cytoolz 0.12.2 py311h80987f9 0
dash 2.7.0 pypi 0 pypi

dash-bootstrap-components 1.2.1 pypi 0 pypi
dash-core-components 2.0.0 pypi 0 pypi

dash-daq 0.5.0 pypi 0 pypi
dash-extensions 0.1.8 pypi 0 pypi

dash-html-components 2.0.0 pypi 0 pypi
dash-renderer 0.9.0 pypi 0 pypi
dash-table 5.0.0 pypi 0 pypi

dask 2023.11.0 py311hca03da5 0
dask-core 2023.11.0 py311hca03da5 0
datashader 0.16.0 py311hca03da5 0
dateparser 1.1.1 pypi 0 pypi
dav1d 1.2.1 h80987f9 0

debugpy 1.6.7 py311h313beb8 0
decorator 5.1.1 pyhd3eb1b0 0
defusedxml 0.7.1 pyhd3eb1b0 0

diff-match-patch 20200713 pyhd3eb1b0 0
dill 0.3.7 py311hca03da5 0

distributed 2023.11.0 py311hca03da5 0

39

distro 1.8.0 py311hca03da5 0
docstring-to-markdown 0.11 py311hca03da5 0

docutils 0.18.1 py311hca03da5 3
editorconfig 0.12.4 pypi 0 pypi
empath 0.89 pypi 0 pypi

entrypoints 0.4 py311hca03da5 0
et xmlfile 1.1.0 py311hca03da5 0
executing 0.8.3 pyhd3eb1b0 0
ezc3d 1.5.10 py311 python3 h19d7a53 0 conda-forge
filelock 3.13.1 py311hca03da5 0
flake8 6.0.0 py311hca03da5 0
flask 2.2.2 pypi 0 pypi

flask-caching 2.0.1 pypi 0 pypi
flask-cors 4.0.0 pyhd8ed1ab 0 conda-forge
flask-wtf 1.2.1 pyhd8ed1ab 0 conda-forge

fmt 9.1.0 h48ca7d4 0
fonttools 4.25.0 pyhd3eb1b0 0

fpdf 1.7.2 pypi 0 pypi
freetype 2.12.1 h1192e45 0
frozendict 2.4.2 py311hca03da5 0
frozenlist 1.4.0 py311h80987f9 0
fsspec 2023.10.0 py311hca03da5 0
future 0.18.3 py311hca03da5 0
gensim 4.3.0 py311h6956b77 0
gettext 0.21.0 h13f89a0 1
gflags 2.2.2 h313beb8 1
giflib 5.2.1 h80987f9 3
gitdb 4.0.7 pyhd3eb1b0 0

gitpython 3.1.37 py311hca03da5 0
glib 2.78.4 h313beb8 0

glib-tools 2.78.4 h313beb8 0
glog 0.5.0 h313beb8 1
gmp 6.2.1 hc377ac9 3
gmpy2 2.1.2 py311h40f64dc 0
greenlet 3.0.1 py311h313beb8 0
grpc-cpp 1.48.2 hc60591f 4

gst-plugins-base 1.14.1 h313beb8 1
gstreamer 1.14.1 h80987f9 1

gtest 1.14.0 h48ca7d4 0
h11 0.9.0 pypi 0 pypi
h2 3.2.0 pypi 0 pypi

h5py 3.8.0 pypi 0 pypi
hdf5 1.12.1 h05c076b 3

heapdict 1.0.1 pyhd3eb1b0 0
holoviews 1.18.3 py311hca03da5 0

40

hpack 3.0.0 pypi 0 pypi
hvplot 0.9.2 py311hca03da5 0

hyperframe 5.2.0 pypi 0 pypi
hyperlink 21.0.0 pyhd3eb1b0 0

icu 73.1 h313beb8 0
idna 3.4 py311hca03da5 0

imagecodecs 2023.1.23 py311h5e7c512 0
imageio 2.33.1 py311hca03da5 0
imagesize 1.4.1 py311hca03da5 0

imbalanced-learn 0.11.0 py311hca03da5 1
importlib-metadata 7.0.1 py311hca03da5 0
importlib metadata 7.0.1 hd3eb1b0 0

incremental 22.10.0 pyhd3eb1b0 0
inflection 0.5.1 py311hca03da5 0
iniconfig 1.1.1 pyhd3eb1b0 0
intake 0.6.8 py311hca03da5 0

intervaltree 3.1.0 pyhd3eb1b0 0
ipykernel 6.28.0 py311hca03da5 0
ipython 8.20.0 py311hca03da5 0

ipython genutils 0.2.0 pyhd3eb1b0 1
ipywidgets 7.6.5 pyhd3eb1b0 2

isort 5.9.3 pyhd3eb1b0 0
itemadapter 0.3.0 pyhd3eb1b0 0
itemloaders 1.1.0 py311hca03da5 0
itsdangerous 2.2.0 pyhd8ed1ab 0 conda-forge
jaraco.classes 3.2.1 pyhd3eb1b0 0

jedi 0.18.1 py311hca03da5 1
jellyfish 1.0.1 py311h15d1925 0
jinja2 3.1.2 pypi 0 pypi

jmespath 1.0.1 py311hca03da5 0
joblib 1.2.0 py311hca03da5 0
jpeg 9e h80987f9 1
jq 1.6 h1a28f6b 1

jsbeautifier 1.15.1 pypi 0 pypi
json5 0.9.6 pyhd3eb1b0 0

jsonpatch 1.32 pyhd3eb1b0 0
jsonpointer 2.1 pyhd3eb1b0 0
jsonschema 4.19.2 py311hca03da5 0

jsonschema-specifications 2023.7.1 py311hca03da5 0
jupyter 1.0.0 py311hca03da5 9

jupyter-lsp 2.2.0 py311hca03da5 0
jupyter client 8.6.0 py311hca03da5 0
jupyter console 6.6.3 py311hca03da5 0
jupyter core 5.5.0 py311hca03da5 0
jupyter events 0.8.0 py311hca03da5 0

41

jupyter server 2.10.0 py311hca03da5 0
jupyter server terminals 0.4.4 py311hca03da5 1

jupyterlab 4.0.11 py311hca03da5 0
jupyterlab-variableinspector 3.1.0 py311hca03da5 0

jupyterlab pygments 0.1.2 py 0
jupyterlab server 2.25.1 py311hca03da5 0
jupyterlab widgets 3.0.9 py311hca03da5 0

jxrlib 1.1 h1a28f6b 2
keyring 23.13.1 py311hca03da5 0

kiwisolver 1.4.4 py311h313beb8 0
krb5 1.20.1 hf3e1bf2 1

langdetect 1.0.9 pypi 0 pypi
lazy-object-proxy 1.6.0 py311h80987f9 0

lazy loader 0.3 py311hca03da5 0
lcms2 2.12 hba8e193 0
ld64 530 hb29bf3f 25

ld64 osx-arm64 530 h001ce53 25
ldid 2.1.5 h20b2a84 3
lerc 3.0 hc377ac9 0
libaec 1.0.4 hc377ac9 1

libarchive 3.6.2 h62fee54 2
libavif 0.11.1 h80987f9 0
libboost 1.82.0 h0bc93f9 2

libbrotlicommon 1.0.9 h1a28f6b 7
libbrotlidec 1.0.9 h1a28f6b 7
libbrotlienc 1.0.9 h1a28f6b 7
libclang 14.0.6 default h1b80db6 1
libclang13 14.0.6 default h24352ff 1
libcurl 8.5.0 h3e2b118 0
libcxx 17.0.6 h5f092b4 0 conda-forge

libdeflate 1.17 h80987f9 1
libedit 3.1.20230828 h80987f9 0
libev 4.33 h1a28f6b 1

libevent 2.1.12 h02f6b3c 1
libexpat 2.6.2 hebf3989 0 conda-forge
libffi 3.4.4 hca03da5 0

libgfortran 5.0.0 11 3 0 hca03da5 28
libgfortran5 11.3.0 h009349e 28

libglib 2.78.4 h0a96307 0
libiconv 1.16 h1a28f6b 2
liblief 0.12.3 h313beb8 0

libllvm14 14.0.6 h7ec7a93 3
libmamba 1.5.6 h15e39b3 0

libmambapy 1.5.6 py311h1c5506f 0
libnghttp2 1.57.0 h62f6fdd 0

42

libopenblas 0.3.21 h269037a 0
libpng 1.6.39 h80987f9 0
libpq 12.17 h02f6b3c 0

libprotobuf 3.20.3 h514c7bf 0
libsodium 1.0.18 h1a28f6b 0
libsolv 0.7.24 h514c7bf 0

libspatialindex 1.9.3 hc377ac9 0
libsqlite 3.45.3 h091b4b1 0 conda-forge
libssh2 1.10.0 h02f6b3c 2
libthrift 0.15.0 h73c2103 2
libtiff 4.5.1 h313beb8 0

libwebp-base 1.3.2 h80987f9 0
libxml2 2.10.4 h0dcf63f 1
libxslt 1.1.37 h80987f9 1
libzlib 1.2.13 hfb2fe0b 6 conda-forge
libzopfli 1.0.3 hc377ac9 0

linkify-it-py 2.0.0 py311hca03da5 0
llvm-openmp 14.0.6 hc6e5704 0

llvmlite 0.42.0 py311h313beb8 0
locket 1.0.0 py311hca03da5 0
lxml 4.9.3 py311h50ffb84 0
lz4 4.3.2 py311h80987f9 0
lz4-c 1.9.4 h313beb8 0
lzo 2.10 h1a28f6b 2

macholib 1.16.3 pyhd8ed1ab 0 conda-forge
markdown 3.4.1 py311hca03da5 0

markdown-it-py 2.2.0 py311hca03da5 1
markupsafe 2.1.3 py311h80987f9 0
matplotlib 3.6.2 pypi 0 pypi

matplotlib-inline 0.1.6 py311hca03da5 0
mccabe 0.7.0 pyhd3eb1b0 0

mdit-py-plugins 0.3.0 py311hca03da5 0
mdurl 0.1.0 py311hca03da5 0

menuinst 2.0.2 py311hca03da5 0
mistune 2.0.4 py311hca03da5 0

more-itertools 8.14.0 pypi 0 pypi
mpc 1.1.0 h8c48613 1
mpfr 4.0.2 h695f6f0 1

mpmath 1.3.0 py311hca03da5 0
msgpack-python 1.0.3 py311h48ca7d4 0

multidict 6.0.4 py311h80987f9 0
multipledispatch 0.6.0 py311hca03da5 0

munkres 1.1.4 py 0
mypy 1.8.0 py311h80987f9 0

mypy extensions 1.0.0 py311hca03da5 0

43

mysql 5.7.24 ha71a6ea 2
navigator-updater 0.4.0 py311hca03da5 1

nbclient 0.8.0 py311hca03da5 0
nbconvert 7.10.0 py311hca03da5 0
nbformat 5.9.2 py311hca03da5 0
ncurses 6.4 h313beb8 0

nest-asyncio 1.6.0 py311hca03da5 0
networkx 3.1 py311hca03da5 0

nltk 3.7 pypi 0 pypi
notebook 7.0.8 py311hca03da5 0

notebook-shim 0.2.3 py311hca03da5 0
ntlm-auth 1.5.0 pypi 0 pypi
numba 0.59.0 py311h7aedaa7 0
numexpr 2.8.7 py311h6dc990b 0
numpy 1.24.3 pypi 0 pypi

numpydoc 1.5.0 py311hca03da5 0
oauthlib 3.2.2 pypi 0 pypi

oniguruma 6.9.7.1 h1a28f6b 0
openjpeg 2.3.0 h7a6adac 2
openpyxl 3.1.2 py311h80987f9 0
openssl 3.3.1 hfb2fe0b 1 conda-forge
orc 1.7.4 hdca1487 1

overrides 7.4.0 py311hca03da5 0
packaging 23.1 py311hca03da5 0
pandas 1.4.2 pypi 0 pypi

pandocfilters 1.5.0 pyhd3eb1b0 0
panel 1.3.8 py311hca03da5 0
param 2.0.2 py311hca03da5 0
parsel 1.8.1 py311hca03da5 0
parso 0.8.3 pyhd3eb1b0 0
partd 1.4.1 py311hca03da5 0
patch 2.7.6 h1a28f6b 1001

pathspec 0.10.3 py311hca03da5 0
patsy 0.5.3 py311hca03da5 0
pcre2 10.42 hb066dcc 0

pexpect 4.8.0 pyhd3eb1b0 3
pickleshare 0.7.5 pyhd3eb1b0 1003

pillow 10.2.0 py311h80987f9 0
pip 23.3.1 py311hca03da5 0
pkce 1.0.3 py311hca03da5 0

pkginfo 1.9.6 py311hca03da5 0
platformdirs 3.10.0 py311hca03da5 0

plotly 5.11.0 pypi 0 pypi
pluggy 0.12.0 pypi 0 pypi
ply 3.11 py311hca03da5 0

44

prometheus client 0.14.1 py311hca03da5 0
prompt-toolkit 3.0.43 py311hca03da5 0
prompt toolkit 3.0.43 hd3eb1b0 0

protego 0.1.16 py 0
protobuf 3.20.3 py311h313beb8 0
psutil 5.9.0 py311h80987f9 0

ptyprocess 0.7.0 pyhd3eb1b0 2
pure eval 0.2.2 pyhd3eb1b0 0
py-cpuinfo 9.0.0 py311hca03da5 0
py-lief 0.12.3 py311h313beb8 0
pyarrow 14.0.2 py311ha07b5f9 0
pyasn1 0.4.8 pyhd3eb1b0 0

pyasn1-modules 0.2.8 py 0
pybind11-abi 4 hd3eb1b0 1
pycodestyle 2.10.0 py311hca03da5 0
pycosat 0.6.6 py311h80987f9 0
pycparser 2.21 pyhd3eb1b0 0

pyct 0.5.0 py311hca03da5 0
pycurl 7.45.2 py311h02f6b3c 1

pydantic 1.10.12 py311h80987f9 1
pydeck 0.8.0 py311hca03da5 2

pydispatcher 2.0.5 py311hca03da5 2
pydocstyle 6.3.0 py311hca03da5 0
pyerfa 2.0.0 py311h80987f9 0
pyflakes 3.0.1 py311hca03da5 0
pygments 2.15.1 py311hca03da5 1
pyinstaller 6.7.0 py311ha566751 0 conda-forge

pyinstaller-hooks-contrib 2024.7 pyhd8ed1ab 0 conda-forge
pyjwt 2.4.0 py311hca03da5 0
pylint 2.16.2 py311hca03da5 0

pylint-venv 2.3.0 py311hca03da5 0
pyls-spyder 0.4.0 pyhd3eb1b0 0
pyobjc-core 9.0 py311h3eb5a62 1

pyobjc-framework-cocoa 9.0 py311hb094c41 0
pyobjc-framework-coreservices 9.0 py311hdd8dd1f 0
pyobjc-framework-fsevents 9.0 py311hca03da5 0

pyodbc 5.0.1 py311h313beb8 0
pyopenssl 24.0.0 py311hca03da5 0
pyoxidizer 0.24.0 pypi 0 pypi
pyparsing 3.0.9 py311hca03da5 0

pyqt 5.15.10 py311h313beb8 0
pyqt5-sip 12.13.0 py311h80987f9 0

pyqtwebengine 5.15.10 py311h313beb8 0
pysocks 1.7.1 py311hca03da5 0
pytables 3.9.2 py311h0326f10 0

45

pytest 7.4.0 py311hca03da5 0
python 3.11.8 hdf0ec26 0 cpython conda-forge

python-dateutil 2.8.2 pyhd3eb1b0 0
python-dotenv 0.21.0 py311hca03da5 0

python-fastjsonschema 2.16.2 py311hca03da5 0
python-json-logger 2.0.7 py311hca03da5 0
python-libarchive-c 2.9 pyhd3eb1b0 1

python-lmdb 1.4.1 py311h313beb8 0
python-lsp-black 1.2.1 py311hca03da5 0
python-lsp-jsonrpc 1.0.0 pyhd3eb1b0 0
python-lsp-server 1.7.2 py311hca03da5 0
python-slugify 5.0.2 pyhd3eb1b0 0
python-snappy 0.6.1 py311h313beb8 0
python-tzdata 2023.3 pyhd3eb1b0 0
python.app 3 py311h80987f9 0
python abi 3.11 4 cp311 conda-forge
pytoolconfig 1.2.6 py311hca03da5 0

pytz 2023.3.post1 py311hca03da5 0
pyviz comms 3.0.0 py311hca03da5 0
pywavelets 1.5.0 py311hb9f6ed7 0
pyyaml 6.0.1 py311h80987f9 0
pyzmq 25.1.2 py311h313beb8 0

qdarkstyle 3.0.2 pyhd3eb1b0 0
qstylizer 0.2.2 py311hca03da5 0
qt-main 5.15.2 h0917680 10

qt-webengine 5.15.9 h2903aaf 7
qtawesome 1.2.2 py311hca03da5 0
qtconsole 5.4.2 py311hca03da5 0

qtpy 2.4.1 py311hca03da5 0
queuelib 1.6.2 py311hca03da5 0

re2 2022.04.01 hc377ac9 0
readline 8.2 h1a28f6b 0

referencing 0.30.2 py311hca03da5 0
regex 2022.3.2 pypi 0 pypi
reproc 14.2.4 hc377ac9 1

reproc-cpp 14.2.4 hc377ac9 1
requests 2.31.0 py311hca03da5 1

requests-file 1.5.1 pyhd3eb1b0 0
requests-toolbelt 1.0.0 py311hca03da5 0

retrying 1.3.4 pypi 0 pypi
rfc3339-validator 0.1.4 py311hca03da5 0
rfc3986-validator 0.1.1 py311hca03da5 0

rich 13.3.5 py311hca03da5 0
rope 1.7.0 py311hca03da5 0

rpds-py 0.10.6 py311hf0e4da2 0

46

rtree 1.0.1 py311hca03da5 0
ruamel.yaml 0.17.21 py311h80987f9 0
ruamel yaml 0.17.21 py311h80987f9 0

s3fs 2023.10.0 py311hca03da5 0
scikit-image 0.22.0 py311h7aedaa7 0
scikit-learn 1.4.2 pypi 0 pypi

scipy 1.12.0 pypi 0 pypi
scrapy 2.8.0 py311hca03da5 0
seaborn 0.12.2 py311hca03da5 0
semver 2.13.0 pyhd3eb1b0 0

send2trash 1.8.2 py311hca03da5 0
service identity 18.1.0 pyhd3eb1b0 1

setuptools 68.2.2 py311hca03da5 0
sip 6.7.12 py311h313beb8 0
six 1.16.0 pyhd3eb1b0 1

smart open 5.2.1 py311hca03da5 0
smmap 4.0.0 pyhd3eb1b0 0
snappy 1.1.10 h313beb8 1
sniffio 1.3.0 py311hca03da5 0

snowballstemmer 2.2.0 pyhd3eb1b0 0
sortedcontainers 2.4.0 pyhd3eb1b0 0

soupsieve 2.5 py311hca03da5 0
sphinx 5.0.2 py311hca03da5 0

sphinxcontrib-applehelp 1.0.2 pyhd3eb1b0 0
sphinxcontrib-devhelp 1.0.2 pyhd3eb1b0 0
sphinxcontrib-htmlhelp 2.0.0 pyhd3eb1b0 0
sphinxcontrib-jsmath 1.0.1 pyhd3eb1b0 0
sphinxcontrib-qthelp 1.0.3 pyhd3eb1b0 0

sphinxcontrib-serializinghtml 1.1.5 pyhd3eb1b0 0
spyder 5.4.3 py311hca03da5 1

spyder-kernels 2.4.4 py311hca03da5 0
sqlalchemy 2.0.25 py311h80987f9 0

sqlite 3.41.2 h80987f9 0
stack data 0.2.0 pyhd3eb1b0 0
statsmodels 0.14.0 py311hb9f6ed7 0
streamlit 1.30.0 py311hca03da5 0
sympy 1.12 py311hca03da5 0
tabulate 0.9.0 py311hca03da5 0
tapi 1100.0.11 h8754e6a 1
tbb 2021.8.0 h48ca7d4 0
tblib 1.7.0 pyhd3eb1b0 0

tenacity 8.2.2 py311hca03da5 0
terminado 0.17.1 py311hca03da5 0

text-unidecode 1.3 pyhd3eb1b0 0
textdistance 4.2.1 pyhd3eb1b0 0

47

threadpoolctl 2.2.0 pyh0d69192 0
three-merge 0.1.1 pyhd3eb1b0 0

tifffile 2023.4.12 py311hca03da5 0
tinycss2 1.2.1 py311hca03da5 0

tk 8.6.13 h5083fa2 1 conda-forge
tldextract 3.2.0 pyhd3eb1b0 0

toml 0.10.2 pyhd3eb1b0 0
tomlkit 0.11.1 py311hca03da5 0
toolz 0.12.0 py311hca03da5 0

tornado 6.3.3 py311h80987f9 0
tqdm 4.65.0 py311hb6e6a13 0

traitlets 5.7.1 py311hca03da5 0
truststore 0.8.0 py311hca03da5 0
twisted 23.10.0 py311hca03da5 0

typing-extensions 4.9.0 py311hca03da5 1
typing extensions 4.9.0 py311hca03da5 1

tzdata 2023d h04d1e81 0
tzlocal 2.1 py311hca03da5 1

uc-micro-py 1.0.1 py311hca03da5 0
ujson 5.4.0 py311h313beb8 0

unidecode 1.2.0 pyhd3eb1b0 0
unixodbc 2.3.11 h1a28f6b 0
urllib3 2.0.7 py311hca03da5 0
utf8proc 2.6.1 h80987f9 1
validators 0.18.2 pyhd3eb1b0 0
w3lib 2.1.2 py311hca03da5 0

watchdog 4.0.1 py311hd3f4193 0 conda-forge
wcwidth 0.2.5 pyhd3eb1b0 0

webencodings 0.5.1 py311hca03da5 1
websocket-client 0.58.0 py311hca03da5 4

werkzeug 2.2.2 pypi 0 pypi
whatthepatch 1.0.2 py311hca03da5 0

wheel 0.41.2 py311hca03da5 0
widgetsnbextension 3.5.2 py311hca03da5 1

wrapt 1.14.1 py311h80987f9 0
wtforms 3.1.2 pyhd8ed1ab 0 conda-forge
wurlitzer 3.0.2 py311hca03da5 0
xarray 2023.6.0 py311hca03da5 0
xlwings 0.29.1 py311hca03da5 0

xyzservices 2022.9.0 py311hca03da5 1
xz 5.4.5 h80987f9 0

yaml 0.2.5 h1a28f6b 0
yaml-cpp 0.8.0 h313beb8 0

yapf 0.31.0 pyhd3eb1b0 0
yarl 1.9.3 py311h80987f9 0

48

zeromq 4.3.5 h313beb8 0
zfp 1.0.0 h313beb8 0
zict 3.0.0 py311hca03da5 0
zipp 3.17.0 py311hca03da5 0
zlib 1.2.13 hfb2fe0b 6 conda-forge

zlib-ng 2.0.7 h80987f9 0
zope 1.0 py311hca03da5 1

zope.interface 5.4.0 py311h80987f9 0
zstandard 0.19.0 py311h80987f9 0

zstd 1.5.5 hd90d995 0

Table 2: Conda packages used for the project’s back end and data processing modules in
Python, obtained through running the command conda list

49

D Data Processing Decision Trees

Ankle Joint Diagnosis Decision Trees

1 def diagnose_ankle(data , side):

2 df_stance = data[data[’Foot’] == side]

3 df_swing = data[data[’Foot’] != side]

4 plantar_flag = 0

5 lo_variables = []

6 joint = "Ankle"

7 results = []

8

9 # Diagnosis for the stance phase

10 for index , row in df_stance.iterrows ():

11 # Access the associated joint angle with the side

12 ankle = row[’LAnkle ’] if side == ’Left’ else row[’RAnkle ’]

13 ankle_degrees = row[’LAnkle Degrees ’] if side == ’Left’ else row[’

RAnkle Degrees ’]

14 if row.Event == ’Foot Strike ’:

15 if ankle == -1:

16 # Plantarflexion

17 if side == ’Left’:

18 # Extract relevant variables for the LO

19 lo_variables.extend (["DorsiflexieMRCLinks", "

DorsiflexiegebogenPROMLinks", "

DorsiflexiegebogenAOCLinks",

20 "DorsiflexiegestrektPROMLinks", "

DorsiflexiegestrektAOCLinks"])

21 else:

22 # Extract relevant variables for the LO

23 lo_variables.extend (["DorsiflexieMRCRechts", "

DorsiflexiegebogenPROMRechts",

24 "DorsiflexiegebogenAOCRechts", "

DorsiflexiegestrektPROMRechts",

25 "DorsiflexiegestrektAOCRechts"])

26 results.append ([f"Plantairflexie ({str(np.round(

ankle_degrees))} graden)", side ,

27 joint , row.Foot , row.Event])

28 else:

29 # No relevant finding in this case

30 results.append (["Geen relevante bevindingen", side , joint ,

row.Foot , row.Event])

31 plantar_flag = 1

32 elif row.Event == ’Loading Response ’:

33 if plantar_flag == 1 and ankle == -1:

34 # No/decreased plantarflexion

35 results.append ([f"Geen/afgenomen plantairflexiebeweging",

side , joint , row.Foot , row.Event])

36 else:

37 # No relevant finding in this case

38 results.append (["Geen relevante bevindingen", side ,

39 joint , row.Foot , row.Event])

40 elif row.Event == ’Mid Stance ’:

50

41 if ankle == -1:

42 # Plantarflexion

43 results.append ([f"Plantarflexie ({str(np.round(

ankle_degrees))} graden)",

44 side , joint , row.Foot , row.Event])

45 elif ankle == 1:

46 # Increased dorsiflexion

47 results.append (["Toegenomen dorsaalflexie", side ,

48 joint , row.Foot , row.Event])

49 else:

50 # Ankle range of motion within normal range

51 results.append ([f"Enkel range of motion ({str(np.round(

ankle_degrees))} graden) binnen "

52 f"range van normaal",

53 side , joint , row.Foot , row.Event])

54 elif row.Event == ’Terminal Stance ’:

55 if ankle == -1:

56 # Decreased dorsiflexion

57 if side == ’Left’:

58 # Extract relevant variables for the LO

59 lo_variables.extend (["DorsiflexiegebogenPROMLinks", "

DorsiflexiegebogenAOCLinks",

60 "DorsiflexiegestrektPROMLinks", "

DorsiflexiegestrektAOCLinks"])

61 else:

62 # Extract relevant variables for the LO

63 lo_variables.extend (["DorsiflexiegebogenPROMRechts", "

DorsiflexiegebogenAOCRechts",

64 "DorsiflexiegestrektPROMRechts", "

DorsiflexiegestrektAOCRechts"])

65 results.append ([f"Afgenomen dorsaalflexie ({str(np.round(

ankle_degrees))} graden)",

66 side , joint , row.Foot , row.Event])

67 elif ankle == 1:

68 # Increased dorsiflexion

69 results.append ([f"Toegenomen dorsaalflexie ({str(np.round(

ankle_degrees))} graden)",

70 side , joint , row.Foot , row.Event])

71 else:

72 # Ankle range of motion within normal range

73 results.append ([f"Enkel range of motion ({str(np.round(

ankle_degrees))} graden) binnen "

74 f"range van normaal",

75 side , joint , row.Foot , row.Event])

76 # Diagnosis for the swing phase

77 for index , row in df_swing.iterrows ():

78 # Access the associated joint angle with the side

79 ankle = row[’LAnkle ’] if side != ’Left’ else row[’RAnkle ’]

80 ankle_degrees = row[’LAnkle Degrees ’] if side != ’Left’ else row[’

RAnkle Degrees ’]

81 if row.Event == ’Mid Stance ’:

82 if ankle == -1:

83 # Plantarflexion other foot

84 if side == ’Left’:

51

85 # Extract relevant variables for the LO

86 lo_variables.extend (["DorsiflexieMRCLinks", "

DorsiflexiegebogenPROMLinks",

87 "DorsiflexiegebogenAOCLinks", "

DorsiflexiegestrektPROMLinks",

88 "DorsiflexiegestrektAOCLinks"])

89 else:

90 # Extract relevant variables for the LO

91 lo_variables.extend (["DorsiflexieMRCRechts", "

DorsiflexiegebogenPROMRechts",

92 "DorsiflexiegebogenAOCRechts", "

DorsiflexiegestrektPROMRechts"

,

93 "DorsiflexiegestrektAOCRechts"])

94 results.append ([f"Plantarflexie andere voet ({str(np.round

(ankle_degrees))} graden)",

95 side , joint , row.Foot , row.Event])

96 else:

97 # No relevant finding in this case

98 results.append (["Geen relevante bevindingen", side ,

99 joint , row.Foot , row.Event])

100 elif row.Event == ’Terminal Stance ’:

101 if ankle == -1:

102 # Plantarflexion other foot

103 if side == ’Left’:

104 lo_variables.extend (["DorsiflexieMRCLinks", "

DorsiflexiegebogenPROMLinks", "

DorsiflexiegebogenAOCLinks",

105 "DorsiflexiegestrektPROMLinks", "

DorsiflexiegestrektAOCLinks"])

106 else:

107 lo_variables.extend(["DorsiflexieMRCRechts", "

DorsiflexiegebogenPROMRechts", "

DorsiflexiegebogenAOCRechts",

108 "DorsiflexiegestrektPROMRechts", "

DorsiflexiegestrektAOCRechts"])

109 results.append ([f"Plantarflexie andere voet ({str(np.round

(ankle_degrees))} graden)",

110 side , joint , row.Foot , row.Event])

111 else:

112 # No relevant finding in this case

113 results.append (["Geen relevante bevindingen", side ,

114 joint , row.Foot , row.Event])

115 # Return the results and the list of relevant variables

116 return pd.DataFrame(results , columns=result_labels), lo_variables

Listing 1: Python function to diagnose the ankle joint based on gait data

52

Knee Joint Diagnosis Decision Trees

1 def diagnose_knee(data , side):

2 df_stance = data[data[’Foot’] == side]

3 df_swing = data[data[’Foot’] != side]

4 joint = "Knee"

5 results = []

6 lo_variables = []

7 knee_midstance_threshold = -4

8

9 # Diagnosis for the stance phase

10 for index , row in df_stance.iterrows ():

11 knee = row[’LKnee’] if side == ’Left’ else row[’RKnee’]

12 knee_degrees = row[’LKnee Degrees ’] if side == ’Left’ else row[’

RKnee Degrees ’]

13 if row.Event == ’Foot Strike ’:

14 if knee == 1:

15 if side == ’Left’:

16 # Extract relevant variables for the LO

17 lo_variables.extend (["Pop -hoekPROMLinks", "Pop -

hoekAOCLinks", "Knie -extensiePROMLinks"])

18 else:

19 # Extract relevant variables for the LO

20 lo_variables.extend (["Pop -hoekPROMRechts", "Pop -

hoekAOCRechts", "Knie -extensiePROMRechts"])

21 # Increased knee flexion

22 results.append ([f"Toegenomen knieflexie ({str(np.round(

knee_degrees))} graden)", side ,

23 joint , row.Foot , row.Event])

24 else:

25 # No relevant finding in this case

26 results.append (["Geen relevante bevindingen", side ,

27 joint , row.Foot , row.Event])

28 elif row.Event == ’Loading Response ’:

29 if knee == 1:

30 # Increased knee flexion

31 results.append ([f"Toegenomen knieflexie ({str(np.round(

knee_degrees))} graden) tijdens", side ,

32 joint , row.Foot , row.Event])

33 elif knee == -1:

34 if knee_degrees >= 0:

35 # TODO: Knee Moment Saggital

36 # Decreased knee flexion

37 results.append ([f"Afgenomen knieflexie ({str(np.round(

knee_degrees))} graden) tijdens", side ,

38 joint , row.Foot , row.Event])

39 else:

40 # Knee Hyperextension

41 results.append ([f"Knie -extensiemomenten tijdens",

side ,

42 joint , row.Foot , row.Event])

43 else:

44 results.append (["Geen relevante bevindingen tijdens",

side ,

53

45 joint , row.Foot , row.Event])

46 elif row.Event == ’Mid Stance ’:

47 if knee == 1:

48 # Increased knee flexion

49 if side == ’Left’:

50 # Extract relevant variables for the LO

51 lo_variables.extend (["Knie -extensiePROMLinks", "

HeupextensiePROMLinks"])

52 else:

53 # Extract relevant variables for the LO

54 lo_variables.extend (["Knie -extensiePROMRechts", "

HeupextensiePROMRechts"])

55 results.append ([f"Toegenomen knieflexie ({str(np.round(

knee_degrees))} graden)", side ,

56 joint , row.Foot , row.Event])

57 elif knee == -1:

58 if side == ’Left’:

59 # Extract relevant variables for the LO

60 lo_variables.extend (["DorsiflexiegebogenPROMLinks", "

DorsiflexiegebogenAOCLinks",

61 "DorsiflexiegestrektPROMLinks", "

DorsiflexiegestrektAOCLinks"])

62 else:

63 # Extract relevant variables for the LO

64 lo_variables.extend (["DorsiflexiegebogenPROMRechts", "

DorsiflexiegebogenAOCRechts",

65 "DorsiflexiegestrektPROMRechts", "

DorsiflexiegestrektAOCRechts"])

66 if knee_degrees > knee_midstance_threshold:

67 # Decreased knee flexion

68 #TODO: Knee Saggital Moment

69 results.append ([f"Afgenomen knieflexie ({str(np.

round(knee_degrees))} graden)", side ,

70 joint , row.Foot , row.Event])

71 else:

72 # Knee Hyperextension

73 # TODO: Knee moment Saggital

74 results.append ([f"Kniehyperextensie ({str(np.round(

knee_degrees))} graden)", side ,

75 joint , row.Foot , row.Event])

76 else:

77 # No relevant finding in this case

78 results.append (["Geen relevante bevindingen", side ,

79 joint , row.Foot , row.Event])

80 elif row.Event == ’Terminal Stance ’:

81 if knee == 1:

82 # Increased knee flexion

83 #TODO: Knee Saggital Moment

84 if side == ’Left’:

85 # Extract relevant variables for the LO

86 lo_variables.extend (["Knie -extensiePROMLinks", "

HeupextensiePROMLinks"])

87 else:

88 # Extract relevant variables for the LO

54

89 lo_variables.extend (["Knie -extensiePROMRechts", "

HeupextensiePROMRechts"])

90 results.append ([f"Toegenomen knieflexie ({str(np.round(

knee_degrees))} graden)", side ,

91 joint , row.Foot , row.Event])

92 elif knee == -1:

93 # Knee hyperextension

94 if side == ’Left’:

95 # Extract relevant variables for the LO

96 lo_variables.extend (["DorsiflexiegebogenPROMLinks", "

DorsiflexiegebogenAOCLinks",

97 "DorsiflexiegestrektPROMLinks", "

DorsiflexiegestrektAOCLinks"])

98 else:

99 # Extract relevant variables for the LO

100 lo_variables.extend (["DorsiflexiegebogenPROMRechts", "

DorsiflexiegebogenAOCRechts",

101 "DorsiflexiegestrektPROMRechts", "

DorsiflexiegestrektAOCRechts"])

102 results.append ([f"Kniehyperextensie ({str(np.round(

knee_degrees))} graden)", side ,

103 joint , row.Foot , row.Event])

104 else:

105 # No relevant finding in this case

106 results.append (["Geen relevante bevindingen", side ,

107 joint , row.Foot , row.Event])

108 # Diagnosis for the swing phase

109 for index , row in df_swing.iterrows ():

110 knee = row[’LKnee’] if side == ’Left’ else row[’RKnee’]

111 knee_degrees = row[’LKnee Degrees ’] if side == ’Left’ else row[’

RKnee Degrees ’]

112 if row.Event == ’Foot Strike ’:

113 if knee == -1:

114 # Decreased knee flexion other foot

115 if side == "Left":

116 # Extract relevant variables for the LO

117 lo_variables.extend (["Duncan -ElyPROMLinks", "Duncan -

ElyAOCLinks"])

118 else:

119 # Extract relevant variables for the LO

120 lo_variables.extend (["Duncan -ElyPROMRechts", "Duncan -

ElyAOCRechts"])

121 results.append ([f"Afgenomen knieflexie ({str(np.round(

knee_degrees))} graden) bij "

122 f"andere voet", side , joint , row.Foot ,

row.Event])

123 else:

124 # No relevant finding in this case

125 results.append (["Geen relevante bevindingen", side , joint

, row.Foot , row.Event])

126 # Return the results and the list of relevant variables

127 return pd.DataFrame(results , columns=result_labels), lo_variables

Listing 2: Python function to diagnose the knee joint based on gait data

55

Hip Joint Diagnosis Decision Trees

1 def diagnose_hip(data , side):

2 df_stance = data[data[’Foot’] == side]

3 joint = "Hip"

4 results = []

5 lo_variables = []

6

7 # Diagnosis for the stance phase

8 for index , row in df_stance.iterrows ():

9 if row.Event in [’Foot Strike ’, ’Loading Response ’, ’Mid Stance ’]:

10 # Access the associated joint angle with the side

11 hip = row[’LHip’] if side == ’Left’ else row[’RHip’]

12 if hip == 1:

13 if row.Event == ’Mid Stance ’:

14 # Increased hip flexion

15 if side == ’Left’:

16 # Extract relevant variables for the LO

17 lo_variables.extend (["Knie -extensiePROMLinks", "

HeupextensiePROMLinks"])

18 else:

19 # Extract relevant variables for the LO

20 lo_variables.extend (["Knie -extensiePROMRechts", "

HeupextensiePROMRechts"])

21 results.append ([f"Toegenomen heupflexie", side , joint , row

.Foot , row.Event])

22 elif hip == -1:

23 # Decreased hip flexion

24 results.append ([f"Afgenomen heupflexie", side , joint , row.

Foot , row.Event])

25 else:

26 # No relevant finding in this case

27 results.append ([f"Geen relevante bevindingen tijdens",

side , joint , row.Foot , row.Event])

28 if row.Event == ’Terminal Stance ’:

29 hip = row[’LHip’] if side == ’Left’ else row[’RHip’]

30 if hip == 1:

31 # No hip extension

32 if side == ’Left’:

33 # Extract relevant variables for the LO

34 lo_variables.extend (["Knie -extensiePROMLinks", "

HeupextensiePROMLinks", "HeupextensieMRCLinks"])

35 else:

36 # Extract relevant variables for the LO

37 lo_variables.extend (["Knie -extensiePROMRechts", "

HeupextensiePROMRechts", "HeupextensieMRCRechts"])

38 results.append ([f"Geen Heupextensie", side , joint , row.

Foot , row.Event])

39 else:

40 # No relevant finding in this case

41 results.append ([f"Geen relevante bevindingen tijdens",

side , joint , row.Foot , row.Event])

42 # Return the results and the list of relevant variables

43 return pd.DataFrame(results , columns=result_labels), lo_variables

56

Listing 3: Python function to diagnose the hip joint based on gait data

	Introduction
	Related Work
	Background Literature
	Gait Stances

	Gait Diagnosis Systems: Other Implementations
	In-Shoe Systems
	Remote Systems

	Current State of the Art: 3D Clinical Gait Assessment
	Current Workflow
	Gait Analysis Tool

	Methodology
	Requirements
	Architecture
	Frontend
	Backend
	Data Processing

	Data Flow
	Data Reader
	Phase Splitter
	Data Comparer
	Diagnosis Generator

	Individual Contribution
	Results and Discussion
	Evaluation of Requirements
	Comparison to previous work
	Limitations

	Conclusion
	Future work

	Physical Examination Values
	Screenshots of the New Gait Diagnosis Generator
	Conda Packages
	Data Processing Decision Trees

