
Information Extraction from Contracts Using
Large Language Models

Cornelis Geerligs



University of Groningen

Information Extraction from Contracts Using
Large Language Models

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Artificial Intelligence

at the University of Groningen under the supervision of
Dr. M.A. Dhali (Artificial Intelligence, University of Groningen)

and
Dr. Laura Astola (Accenture (External))

Cornelis Geerligs (s4978889)

September 6, 2024



3

Contents
Page

Acknowledgements 5

Abstract 7

1 Introduction 8
1.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background Literature 10
2.1 Evolution of Language Models in NLP . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Generative Pre-trained Transformers (GPT) . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Domain-Specific Adaptations of LLMs . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 LLMs in Legal Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology 12
3.1 Introduction to Large Language Models (LLMs) . . . . . . . . . . . . . . . . . . . . 12
3.2 Foundations of Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Transformer Architecture a quick overview . . . . . . . . . . . . . . . . . . 13
3.2.3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Encoder Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.5 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.6 Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.7 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Training and Optimization of LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 State-of-the-art models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Limitations of Large Language Models . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Impact Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.6 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Experimental Setup 27
4.1 Experiment 1: DORA Compliance Template Extraction . . . . . . . . . . . . . . . . 27

4.1.1 Contract Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Parsing the Output String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Experiment 2: Extraction of Deliverables and Obligations . . . . . . . . . . . . . . . 32
4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.4 Parsing the Output String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.5 Matching LLM Predictions with Ground Truth . . . . . . . . . . . . . . . . 37
4.2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



4 CONTENTS

5 Results 42
5.1 Experiment 1: DORA Compliance Template Extraction . . . . . . . . . . . . . . . . 42

5.1.1 Sample size calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Performance of the DORA Template Entry Filler . . . . . . . . . . . . . . . 44

5.2 Experiment 2: Extraction of Deliverables and Obligations . . . . . . . . . . . . . . . 45
5.2.1 Sample Size Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Performance Comparison of LLMs on Contract Obligations Extraction . . . 46

6 Discussion 48
6.1 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Strength of LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Strength of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.1 Limitations of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Limitations of LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 Dataset Enhancement and Tool Improvement . . . . . . . . . . . . . . . . . 50
6.3.2 Model Training and Optimization . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.3 Handling Output Limitations and Model Biases . . . . . . . . . . . . . . . . 51

6.4 Implications for Legal and Compliance Sectors . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 52

Appendices 58



5

Acknowledgments
This thesis stands as a special milestone at the end of my educational journey, a time not without chal-
lenges. However, I would not have been able to do it without the guidance and support of these people:

I owe a special debt of gratitude to Maruf A Dhali for supervising my project, thanks for the amazing
feedback and for helping me navigate through the project. For your patience in understanding what
was going on and not too hastily make decisions.

I also want to thank Laura Astola, despite our differences, her critical insights did push me to refine
my thesis to the best of my ability.

Sandra van Grond, thanks for the continual support and understanding, Accenture is a really big com-
pany with lots of rules and departments and whenever I had a question I could always ask you.

A special thank you to Maria Schaars, who provided access to contractual data and assisted me in
annotating without any expectation of reward. Thank you for the time you spared even though you
were busy, I really appreciate it.

To my fellow interns at Accenture, sharing and discussing our projects over lunch has been both use-
ful and enjoyable.

To my family for always supporting and believing in me. Listening to my AI rants and encouraging
me nonetheless. Supporting me throughout these past 7 years of study. I am very grateful for the
opportunity that they have given me.

Lastly, to my father, Henk Geerligs, for the countless discussions and brainstorming sessions about
the project’s direction and details. You have been an amazing help all throughout my life, thanks for
always being there for me.

To all of you many thanks. It has been a really rewarding experience, and I have learned greatly from
each of you.

I hope you enjoy reading the thesis!



6

Responsible Use of Large Language Models Statement
Ironically, in this thesis on the capabilities and limitations of large language models (LLMs), Ope-
nAI’s ChatGPT-4 has been utilized as a supportive resource throughout the writing and coding pro-
cess. This integration was carefully managed with a strong commitment to ethical standards and best
practices, ensuring the integrity and originality of the academic content.
Large Language Models (LLMs), are adept at generating detailed and coherent content. It is essen-
tial, however, to clearly differentiate between machine-generated outputs and the original intellectual
contributions of the researcher. Any content derived from the LLM in this thesis was substantially
modified and used primarily as preliminary drafts or supplementary information. These were then
critically evaluated, reworded, or restructured to align with the broader, original analysis of the work.
To ensure the thesis remains accurate and credible, information provided by ChatGPT was rigorously
checked against reliable sources.
The deployment of the LLM adhered to ethical guidelines recommended by academic institutions
and research bodies, serving solely to enhance productivity and understanding—not as a replacement
for the student’s intellectual engagement. All uses conform to ethical norms in academic research,
focusing on the avoidance of plagiarism and upholding the authenticity of the scholarly work.
In coding aspects of the project, special attention was given to data privacy and security. All datasets
were handled in accordance with relevant data protection laws, ensuring that no sensitive or personal
data was processed by the LLM.



7

Abstract
Abstract

This thesis explores the usability of Large Language Models (LLMs) to automate intricate
contract reporting tasks, focusing on filling in the Digital Operational Resilience Act (DORA)
compliance template and extracting obligations from contracts. Structured experiments evaluate
the capability of LLMs to identify and extract relevant information from legal texts and format this
information to meet specific compliance and reporting standards. The first experiment achieved
an average accuracy of 97.71% in filling out the DORA compliance template. The second experi-
ment, involving the extraction of contractual obligations, showed a variable performance with the
highest accuracy at 70.56%. The findings demonstrate the potential of advanced language mod-
els to reshape legal document analysis and management, reducing human error and labor costs
in legal processes. The research also identifies the strengths and limitations of LLMs in extract-
ing precise and contextually relevant information, suggesting areas for further development and
optimization to enhance their applicability in the legal domain.



8 Chapter 1 INTRODUCTION

1 Introduction

The field of natural language processing has experienced a proverbial boom with the emergence of
large language models (LLMs), particularly exemplified by the release of OpenAI’s GPT-3 in 2020.
With 175 billion parameters, GPT-3 marked a substantial leap over its predecessor, offering unprece-
dented capabilities across a variety of tasks such as reading comprehension, question answering, and
code generation. This model set the stage for subsequent models that not only grew in size but also
showcased emergent behaviors, enhancing their ability to perform complex tasks with minimal human
oversight [12, 28].
After GPT-3, the field of large language models (LLMs) saw rapid advancements with models like
Gopher, PaLM, and Megatron, each introducing key innovations in architecture and training methods
[53, 16, 60]. Gopher, by DeepMind, uses sparse factorizations and a mixture of expert layers to boost
model efficiency. Google’s PaLM increases model size and enhances task-agnostic capabilities, en-
abling better performance in complex reasoning and code generation. NVIDIA’s Megatron improves
scalability through optimized data and model parallelism, handling larger datasets and pushing pa-
rameter counts into the trillions. These developments have expanded LLMs’ utility, allowing them to
effectively manage complex tasks requiring deep contextual and nuanced understanding.
The rapid adoption of these technologies is evident from the growth metrics of AI applications post-
GPT-3. For example, ChatGPT, launched in November 2022, reached one million users within five
days and achieved a user base of 100 million by February 2023, reflecting its broad acceptance and the
potential for substantial economic impact. The model’s ability to adapt to various user requirements
through few-shot learning and its generalization capabilities have lowered barriers to entry across
numerous applications, making advanced AI more accessible. As a result, models like GPT-4 and
Llama-3 have not only advanced the frontiers of natural language understanding and generation but
have also paved the way for their deployment in sectors requiring stringent compliance with regulatory
standards.
The finance sector has recently undergone a digital transformation, increasing both the efficiency and
complexity of its operations. This transformation has been followed by the European Union’s proac-
tive stance in implementing regulations to ensure the financial sector’s operational resilience in the
face of growing digitalization. A key initiative in this regulatory framework is the Digital Operational
Resilience Act (DORA), which mandates extensive disclosures from Financial Entities (FEs) regard-
ing their third-party Information and Communication Technology (ICT) service providers [23]. These
regulations aim to fortify the financial sector’s defenses against digital threats, underscoring the EU’s
commitment to fostering a secure and resilient financial ecosystem.
This research started with the aim of harnessing the capabilities of Large Language Models (LLMs)
to enhance DORA compliance through the automation of mandatory reporting requirements. The
objective was to streamline the compliance process, minimize errors, and reduce the reporting burden
on FEs. Despite the challenge of data scarcity for testing and evaluation, a proper effort was made to
implement the DORA template filler automation program.
Expanding on the groundwork established by the initial DORA compliance project and seeing the
potential, this research also extended into another avenue: automating the extraction of obligations in
contracts.
This second experiment builds upon the initial DORA compliance project, which, while insightful,
posed a relatively straightforward challenge. By launching a more nuanced study on the extraction
of obligations from contracts, this work aims to more thoroughly evaluate the potential of Large Lan-
guage Models (LLMs) for ambiguous information extraction tasks. This additional project not only
addresses the limitations observed in the DORA compliance initiative but also expands the inves-



Chapter 1 INTRODUCTION 9

tigation into the practical applications of LLMs within the financial sector. By adopting this dual
approach, the research offers an exploration of how LLMs can change the efficiency and accuracy of
information extraction processes in legal and financial contexts.

1.1 Research Question
The onset of Large Language Models (LLMs) has revolutionized numerous applications within Nat-
ural Language Processing, particularly in tasks that involve understanding and generating human-like
text. This research aims to discover the capabilities of LLMs to enhance the process of information
extraction from contracts. Thus, the research question that guides this thesis is:

”How can Large Language Models (LLMs) be effectively applied to automate the extraction of
information from contracts?”

This primary question gives rise to several related sub-questions, each aiming to explore a different
facet of the main inquiry:

1. What are the capabilities of LLMs in identifying and extracting specific contractual infor-
mation?

2. What are the limitations of LLMs in identifying and extracting specific contractual infor-
mation?

Addressing these sub-questions will help us understand how LLMs can change legal document anal-
ysis and what factors contribute to their success or limitations in this field.



10 Chapter 2 BACKGROUND LITERATURE

2 Background Literature

2.1 Evolution of Language Models in NLP
Language modeling is a well-established area within the field of Natural Language Processing (NLP).
The concept of developing a probabilistic model to analyze sequences of words was first proposed by
Shannon in 1949 [58] with his n-gram models. These models were eventually trained on corpora as
large as 2 trillion tokens [11]. The past decade has seen a surge in language model research, driven
by advances in machine learning techniques, greater availability of data, and increased computational
power. Initial efforts in autoregressive language modeling, such as those by Mikolov et al. (2010
)[45] and Sutskever et al. (2011)[62], using recurrent neural networks. However, these models were
relatively modest in size and trained on limited datasets.
As computational capabilities expanded, so did the models. Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM) networks emerged, enabling models to remember long input
sequences, thus improving the handling of context and reducing the impact of the vanishing gradient
problem [32].
These improvements reached a milestone with the introduction of the transformer architecture by
Vaswani et al. (2017)[63]. This model abandoned recurrent layers in favor of self-attention mech-
anisms, which directly compute relationships between all words in a sentence, irrespective of their
positional distance. By doing so, transformers handle long-range dependencies more effectively and
scale more efficiently with larger datasets and more complex models [63]. This architecture paved the
way for developing models that could learn from vast amounts of data, capturing nuanced patterns
and structures of language not previously possible.

2.2 Generative Pre-trained Transformers (GPT)
Introduced by OpenAI, Generative Pre-trained Transformers (GPTs) represent an evolution in the
field of NLP. These models use the transformer architecture for effective learning and generation
of text, demonstrating remarkable proficiency across various language tasks. GPT models are pre-
trained on a diverse range of internet text and then fine-tuned for specific tasks, allowing them to
achieve unparalleled success in fields ranging from conversational agents to complex problem-solving
scenarios [51].
The first iteration, GPT-1, was succeeded by GPT-2, which featured a much larger model with 1.5
billion parameters trained on an even more extensive dataset. GPT-2 demonstrated the power of
scale in language models, performing well across many NLP tasks without task-specific training [52].
However, GPT-3, with its 175 billion parameters, genuinely showcased the capabilities of large-scale
language models. GPT-3 excelled at tasks it was directly trained on and showed an ability to perform
tasks it had never seen before, purely by tapping into its vast pre-trained knowledge base [12].
This advancement underscores a shift in AI research—towards models that can generalize from broad
datasets to specific tasks, reducing the need for large annotated datasets in new applications. The
success of GPT models has spurred ongoing research and development, leading to further refinements
in model architecture, training methods, and application to real-world tasks [24].

2.3 Domain-Specific Adaptations of LLMs
The refinement of large language models (LLMs) to meet the specific needs of various domains has
been a pivotal development in the field of NLP. Bidirectional encoder representations from trans-



Chapter 2 BACKGROUND LITERATURE 11

formers (BERT) models have predominantly been used for these domain-specific applications such
as BioBERT [39], SciBERT Beltagy, Lo, and Cohan [6], FinBERT [1] and BloombergGPT [66] serve
as exemplars of this trend. BioBERT, which is pre-trained on extensive biomedical literature, excels
in biomedical entity recognition tasks, significantly outperforming its predecessors by using domain-
specific vocabulary and context [39]. Similarly, SciBERT, developed by Beltagy et al. (2019)[6],
adapts the BERT architecture to the scientific domain by training on a corpus comprising scientific
papers, making it highly effective for tasks like citation intent classification and relation extraction.
FinBERT, specifically tuned for the financial sector, demonstrates its prowess in analyzing financial
texts for sentiment analysis, which is applicable for market prediction and risk assessment [1].
Moreover, the field has seen innovation through models like ClinicalBERT and BioMedRoBERTa,
which are fine-tuned for even more specialized sub-domains such as clinical reports and biomedical
research, respectively [34, 29]. These models address even more focused tasks that require under-
standing complex interactions within data, such as patient outcomes prediction and treatment effect
analysis.
The adaptation strategies also vary. While some models are pre-trained from scratch on specialized
corpora, others are fine-tuned from general-purpose models, a method that has proven effective in
maintaining the robust features of foundational models while adapting to the intricacies of domain-
specific data [21, 29].
This specialization is not just about enhancing performance but also about integrating these models
into operational pipelines where they can provide actionable insights specific to the needs of the indus-
try, such as predicting market trends or understanding complex medical reports [67, 43]. The success
of these domain-specific models highlights the flexibility and scalability of transformer architectures,
encouraging further adaptations across various fields.

2.4 LLMs in Legal Applications
The legal domain has seen an increase in the applications of large language models (LLMs), illustrat-
ing the adaptability of these technologies to sector-specific needs. Notable examples include Legal-
BERT[13] and CaseLaw-BERT[69], which have been fine-tuned from general models to address tasks
such as legal judgment prediction, contract review, and other areas requiring a nuanced understanding
of legal language and concepts. Legal-BERT, for instance, is trained on a diverse corpus of legal
documents to tailor its capabilities to legal reasoning and statutory interpretation, showing marked
improvements over its generalist predecessors in tasks such as named entity recognition and legal
topic classification[13].
Similarly, CaseLaw-BERT adapts the BERT architecture to analyze and predict outcomes based on
the historical case law data, proving essential for automating aspects of legal research and precedent
analysis[69]. These models not only demonstrate the potential for LLMs to enhance efficiency in legal
workflows but also highlight the importance of domain-specific training in achieving high accuracy
and relevance in professional settings.
The development of such models addresses specific challenges in the legal field, including the need to
parse and understand complex legal jargon and to maintain the integrity and interpretability of legal
information. The evolution of these models has also sparked discussions around ethical consider-
ations, such as ensuring fairness, preventing bias, and maintaining transparency in automated legal
decision-making processes[9].



12 Chapter 3 METHODOLOGY

3 Methodology

3.1 Introduction to Large Language Models (LLMs)
Natural Language Processing (NLP) has witnessed a lot of progress during the past few decades,
evolving from simple rule-based algorithms to sophisticated machine-learning models capable of un-
derstanding, generating, and interpreting human language with astounding accuracy. The advent of
Large Language Models (LLMs) marks a big milestone in this journey, offering unprecedented capa-
bilities in a wide range of text-based tasks[12].

Figure 1: LLM progression in recent years[49].

Figure 1 illustrates the rapid progression of Large Language Models over recent years, highlighting
key milestones in their development. From early models with relatively limited capabilities to the
latest iterations that boast billions of parameters and unprecedented linguistic comprehension, the
timeline underscores the exponential growth and refinement of these technologies. This evolution
reflects not only advances in computational power and algorithmic sophistication but also a growing
comprehension of language’s complexity and nuances.



Chapter 3 METHODOLOGY 13

3.2 Foundations of Large Language Models
This section will delve into the fundamental components and concepts underlying LLMs, providing a
solid foundation for understanding how these models are constructed and how they operate.

3.2.1 Neural Networks

Neural Networks are foundational to the operation of modern machine learning systems, particularly
in the context of deep learning, which powers most state-of-the-art natural language processing mod-
els today [26]. A neural network consists of interconnected nodes or neurons, which are organized
into layers. The simplest form of a neural network includes three types of layers: the input layer,
hidden layers, and the output layer 2.

Figure 2: Two hidden layers fully connected Neural Network structure.

Each neuron in a layer receives input from the neurons of the previous layer, processes this input
through a non-linear function, and passes the output to the next layer. The strength of the connection
between neurons, known as weights, is adjusted during the training process to minimize the error in
prediction [38]. This training involves the backpropagation algorithm [54], which efficiently com-
putes gradients of the loss function with respect to the weights.
Deep neural networks, which contain multiple hidden layers, can model complex relationships in
the data. The depth of these networks is a key factor in their ability to perform feature extraction
at various levels of abstraction, making them highly effective for tasks such as image recognition,
speech recognition, and natural language processing [56].

3.2.2 Transformer Architecture a quick overview

The transformer model, introduced by Vaswani et al. (2017)[63] in their groundbreaking paper ”At-
tention Is All You Need”, has completely changed the field of natural language processing by provid-
ing a new architecture for building more efficient and powerful LLMs. Unlike traditional sequence-



14 Chapter 3 METHODOLOGY

to-sequence models that rely on recurrent or convolutional layers to process data, the transformer
adopts a fully attention-based mechanism.
The core idea behind the transformer architecture is to use self-attention mechanisms to weigh the
significance of different parts of the input data differently. This approach allows the model to focus
on relevant parts of the input sequence when performing tasks, leading to improvements in processing
speed and model performance, especially on tasks involving long sequences.
As illustrated in Figure 3, all transformers share three fundamental components:

• Tokenizers that transform text into discrete tokens.

• An embedding layer that maps tokens and their positions to vector representations.

• Transformer layers that perform successive transformations on the vectors, progressively ex-
tracting linguistic information. These layers alternate between attention mechanisms and feed-
forward neural networks.

Figure 3 shows the encoder-decoder structure of the transformer. The process begins with tokenizing
the input text into discrete tokens. The tokenizer identifies the boundaries of each token, which
often consist of subword units like ”de” or ”to”. By dissecting the text into its most meaningful
tokens, the tokenizer efficiently compresses the information. Each token is then transformed into
a numerical vector through an embedding process, where it is matched with a pre-trained vector
from an embedding table. To capture the sequence’s order, positional encodings are added to these
embeddings, compensating for the model’s inherent lack of sequential processing capability.
The encoder consists of multiple identical layers, each featuring a multi-head self-attention mecha-
nism and a position-wise fully connected feed-forward network. The self-attention mechanism allows
the model to weigh the importance of different words in the sentence, regardless of their positional
distance, by calculating attention scores based on queries, keys, and values derived from the embed-
dings. This enables the encoder to capture a rich context of the input sequence. The feed-forward
networks further process these representations independently for each position, adding depth and
complexity to the model’s understanding.
The decoder mirrors the encoder structure but includes an additional cross-attention layer in each of
its layers, which attends to the encoder’s output. It also features a masked self-attention mechanism
that prevents positions from attending to subsequent positions in the sequence, preserving the auto-
regressive property necessary for generating coherent text outputs. The cross-attention layers allow
the decoder to focus on relevant parts of the input sequence, which is essential for tasks that require
contextual awareness.
The final output of the decoder is produced by transforming the attended features into output probabil-
ities through a linear layer followed by a softmax function. This predicts the probability distribution
of the next token in the sequence, effectively generating text one token at a time.
This architecture makes use of the parallel processing of sequences, accelerating training compared
to traditional sequential models like RNNs and LSTMs. The Transformer’s ability to process input
data in parallel and its use of attention to dynamically focus on different parts of the input sequence
allows it to manage long-range dependencies in the text more effectively.



Chapter 3 METHODOLOGY 15

Figure 3: Schematic representation of the transformer architecture, illustrating its encoder-
decoder(left and right) structure and the flow of data through various self-attention and feed-forward
layers [63].

3.2.3 Input

The input text undergoes tokenization, typically using a byte pair encoding (BPE) tokenizer, which
divides the text into tokens. Each token is then mapped to a vector by referencing a word embedding
table. Subsequently, positional encodings are integrated with these word embeddings to incorporate
the order of the tokens. The LLM now holds not only the unique information for each token in the
text but also the positional data that indicates its location relative to other tokens. This information
includes the specific details stored in the embedding table for each token. For example, if the token is
’Th’, the embedding table might indicate that the token ’e+space’ frequently follows it.

3.2.4 Encoder Decoder

In the original paper by Vaswani et al. (2017)[63], the transformer model was introduced with both
an encoder and a decoder components. This dual structure was essential for the model’s original pur-
pose—translating text from one language to another. The encoder processes the input text, preparing



16 Chapter 3 METHODOLOGY

it for translation, while the decoder then generates the corresponding text in the target language. In
contrast, contemporary generative models, such as GPT, typically utilize only a decoder, focusing
on generating text based on given prompts. Similarly, domain-specific models like BERT employ
solely an encoder, optimizing them for tasks that involve understanding input text without the need to
generate new text.
The encoder processes the input sequence to create a set of context vectors. Each element of the input
sequence, such as a word in a sentence, is converted into a numerical value, often using embeddings.
These numerical representations are then fed through a series of neural network layers that reduce
their dimensionality while preserving essential information about their relationships within the se-
quence. This process results in an ”encoded” version of the input, typically represented by the final
hidden state of a neural network, which captures the summary of the entire input sequence [15].
Following the encoder, the decoder’s role is to take the encoded data and reconstruct an output se-
quence from it, effectively translating the encoded information back into a variable-length sequence
[15]. The encoder and decoder are typically trained jointly to optimize the conditional probability of
the output sequence given the input sequence, thereby maximizing the relevance and accuracy of the
output with respect to the input.
Each encoder and/or decoder block contains multi-head attention and feedforward neural network
layers, referred to collectively as a multi-head block 3. These blocks can focus on specific aspects
of grammar or logic. Stacking multiple such blocks enhances the model’s representational power,
allowing it to learn complex patterns and relationships within the data.

3.2.5 Attention mechanism

In the architecture of transformers, the attention mechanism is central to modeling the dependencies
between inputs and outputs, independent of their positions in the input sequence. This mechanism is
operationalized through the creation of queries, keys, and values, which are vectors representing the
input tokens in a sequence. Each vector is generated through learned linear transformations applied
to the input embeddings, as described in Vaswani et al. (2017)[63].
Queries, keys, and values are foundational elements in computing attention weights within the trans-
former model. For each token in the input sequence, the model learns three distinct sets of weight
matrices: the query weights WQ, the key weights WK , and the value weights WV . The input token rep-
resentation xi is transformed by each of these weight matrices to produce a query vector qi = xiWQ, a
key vector ki = xiWK , and a value vector vi = xiWV .
The interaction between these components is akin to a retrieval system where the query vector of
a token seeks to retrieve information from all other tokens. This retrieval is quantified by the dot
product between the query vector corresponding to one token and the key vector of another, creating
a score that represents how much focus (or attention) the token should place on other parts of the
input sequence. These scores are scaled by the square root of the dimension of the key vectors (

√
dk)

to stabilize the gradients during training. The scores are then normalized across all tokens using a
softmax function to form the final attention weights for each token, given by the formula:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (1)

where Q, K, and V represent the matrices of queries, keys, and values, respectively.
This attention mechanism is inherently different from prior models due to its self-attention capability.
It allows each token to attend to all other tokens in the sequence, thereby drawing global dependencies
between input and output. The multi-head attention architecture further enhances this by allowing the



Chapter 3 METHODOLOGY 17

model to attend to information from different representation subspaces at different positions, effec-
tively capturing a variety of relationships in a single processing step.
The queries, keys, and values serve distinct but interrelated roles:

• Query: Represents the current token for which the context is being sought; this can be thought
of as asking a question about something to the other tokens.

• Key: Encapsulates all tokens in the sequence as potential candidates to be retrieved; this can
be thought of as the answer that all the tokens will give to the query. If the query and key are a
match, they will have a high dot product, and the query token will receive a lot of information
from this key token.

• Value: Holds the actual content of the tokens, if the query and key are a match this is the value
that the key-token will give to the query-token.

Through these interactions, the transformer can dynamically focus on the most relevant parts of the
input data, facilitating effective translation, text generation, and many other tasks where understanding
the context and relationships within the data is very important. This method of attention, is not only
efficient computationally, allowing parallel processing, but also highly flexible, adapting to the needs
of various sequence modeling tasks.

3.2.6 Multi-Head Attention

In the architecture of transformers, one of the most critical enhancements introduced is the multi-
head attention mechanism. This feature allows the model to process the input data through multiple
distinct attention mechanisms—or ”heads”—in parallel, each with its own set of learned projections
for queries, keys, and values.

Figure 4: Single head attention(left) and Multi-Head Attention (right)[63].

Multi-head attention improves upon the single attention function by allowing the model to jointly
attend to information from different representational subspaces at different positions. This is achieved



18 Chapter 3 METHODOLOGY

by projecting the queries, keys, and values multiple times with different, learned linear projections to
lower dimensions [63]. Each projection corresponds to a different ”head”, and the attention function
is applied in parallel across these projections:

headi = Attention(QW Q
i ,KW K

i ,VWV
i ) (2)

where W Q
i , W K

i , and WV
i are the parameter matrices for the i-th head for queries, keys, and values,

respectively. This parallel processing allows each head to capture different aspects of the information
contained in the input sequence.
After computing the output for each head, the results are concatenated and then projected again to
form the final output of the multi-head attention layer:

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O (3)

where W O is a parameter matrix that linearly transforms the concatenated output back to the original
dimensionality of the model. This final projection helps to combine the different informative signals
captured by each head [63].
The advantage of using multiple heads is that the model can capture a wider range of information
from the input sequence. For instance, different heads might focus on different types of syntactic
structures or semantic nuances, providing a richer representation of the input data. This feature is
particularly beneficial in complex tasks like machine translation or semantic role labeling, where
different linguistic features can be important [63].
In practice, multi-head attention allows the transformer model to perform better on a variety of nat-
ural language processing tasks by enhancing its ability to understand and integrate information from
different parts of the input data simultaneously. The parallel structure also facilitates efficient training
and provides robustness to the representation power of the network[21, 12, 2].

3.2.7 Positional Encoding

Since transformers do not inherently capture the order of tokens in a sequence due to the parallel
processing of tokens, positional encodings are essential to incorporate sequence order information
into the model’s computations. Vaswani et al. (2017)[63] introduced sinusoidal positional encodings
as a method to add this information to the input embeddings . For a given position p and dimension
i, the positional encoding is computed using sine and cosine functions, as shown in the following
equations:

PE(p,2i) = sin
(

p

10000
2i
d

)
(4)

PE(p,2i+1) = cos
(

p

10000
2i
d

)
(5)

where d represents the dimensionality of the embeddings. These sinusoidal functions are designed to
provide a unique encoding for each token position, enabling the model to distinguish the position of
tokens within the sequence. The choice of sinusoidal functions also facilitates the model’s ability to
learn relative positions, as shifts in the position can be represented linearly within these encodings.
In contrast to fixed sinusoidal encodings, developments in transformer architectures include the use
of learned positional encodings. These encodings are model parameters that are learned during the
training process, similar to other neural network weights [21]. Learned positional encodings pro-
vide the flexibility to adapt to the specific characteristics of the training data, potentially enhancing



Chapter 3 METHODOLOGY 19

model performance on specific tasks. However, they also introduce a limitation on the maximum se-
quence length that can be processed by the model due to their fixed dimensionality, unlike sinusoidal
encodings, which can theoretically handle sequences of any length [63, 21].

3.3 Training and Optimization of LLMs
Transformers employ a training paradigm that typically begins with unsupervised pre-training, fol-
lowed by supervised fine-tuning. The pre-training phase uses a larger dataset to develop a broad
understanding of language, while fine-tuning adjusts the model’s parameters for specific tasks using
smaller, task-specific datasets.

3.3.1 Pre-training

Pre-training is the initial stage where the model learns general language representations. This stage
involves training the model on a large corpus of text data, typically sourced from the internet, encom-
passing a wide range of topics and styles. The model learns to predict parts of the text, either through
next-word prediction or by filling in missing words in a sentence.
The primary goal of pre-training is to enable the model to learn the general properties of a language,
including syntax, semantics, grammar and other common patterns within vast amounts of text data.
This foundational knowledge equips the model with the capability to perform well on a variety of
downstream tasks, even before any task-specific fine-tuning [21, 51].
Pre-training typically employs unsupervised learning techniques, with two dominant methods used in
the training of transformer-based models:

1. Autoregressive Language Modeling (ALM): In this method, the model predicts the next word
in a sentence given all the previous words. It is trained to maximize the likelihood of the next
word based on the preceding context. This method helps in learning a language model from
scratch [52].

2. Masked Language Modeling (MLM): Popularized by BERT and adopted in various forms
by other models, MLM involves masking a portion of the input tokens randomly and then
predicting these masked tokens based on their context. This method allows the model to learn
a bidirectional understanding of language context [21].

The data used in pre-training is of great influence for the model’s performance. It generally includes a
wide range of text sources from books, articles, websites, and other forms of written media to ensure
diversity and comprehensiveness in language learning. The scale of the data can range from billions
to trillions of words, depending on the model’s capacity and the computational resources available
[12].

3.3.2 Fine-tuning

Once a large language model (LLM) has been pre-trained, it can initially only autocomplete docu-
ments from a starting token, which isn’t very useful on its own. To harness the full potential of these
foundational LLMs, they must be further trained on specialized tasks. This additional training enables
them to apply their general capabilities to specific applications. This process is essential for LLMs,
where the shift from a generic training regime to task-specific optimizations will be important for
most LLM use-cases



20 Chapter 3 METHODOLOGY

The fine-tuning dataset contains examples that are directly relevant to the tasks the model will per-
form, such as contract analysis, sentiment analysis, or legal document information extraction. The
primary goal of fine-tuning is to adjust the model’s weights such that it maintains its extensive lan-
guage understanding while becoming highly efficient at processing and generating outputs that are
task-specific [33].
For instance, when fine-tuning a model for contract reporting, the model should be trained on a dataset
comprised of contracts, legal negotiations, and compliance documents. This specialized training helps
the model grasp the nuanced language of legal documents and understand the structure and obligations
typically outlined in contracts.
Supervised fine-tuning involves adjusting LLMs to perform well on a task by training them on a
labeled dataset relevant to that task. This method fine-tunes the entire model or specific parts of it,
depending on the nature of the task and the data. Most common techniques for supervised fine-tuning
are:

• Task-Specific Fine-tuning: Focuses on optimizing model performance for a particular task,
using a dataset closely related to the task’s requirements. This method is highly effective but
risks catastrophic forgetting if the model’s parameters diverge too far from their initial settings.

• Multi-Task Fine-tuning: Involves training the model on multiple related tasks simultaneously.
This approach not only improves the model’s performance on these tasks but also helps in
maintaining its generalization capabilities.

• Sequential Fine-tuning: Applies when a model is incrementally trained on related tasks in
a sequence, which is useful for progressively adapting a model to specialized tasks within a
broader domain.

• Few-Shot Fine-tuning: Utilizes a small number of examples to guide the model in adapting
to new tasks. This technique is particularly valuable when only limited task-specific data is
available.

Reinforcement learning from human feedback (RLHF) is a sophisticated fine-tuning approach where
a model is refined using feedback directly from human evaluators. This method involves training a
reward model based on human preferences, which then guides the fine-tuning of the LLM by rein-
forcing outputs that align with human judgments.

• Reward Model Training: Develops a model that assigns numerical scores to outputs based on
their quality as judged by humans, facilitating the targeted adjustment of the LLM’s parameters.

• Proximal Policy Optimization (PPO): Utilizes the reward model’s scores to train the LLM
using reinforcement learning techniques, optimizing the model’s outputs towards those that are
most favored by human evaluators.

Parameter-efficient fine-Tuning (PEFT) addresses the resource-intensive nature of traditional fine-
tuning methods by modifying a smaller subset of the model’s parameters. This technique allows for
computational savings and reduces the risk of catastrophic forgetting.

• Low-Rank Adaptation (LoRA): A specific implementation of PEFT, LoRA modifies the
model by applying low-rank updates to the parameters, which allows for efficient fine-tuning
on standard hardware configurations.



Chapter 3 METHODOLOGY 21

Introduced as an alternative to RLHF, Direct Preference Optimization (DPO) simplifies the fine-tuning
process by directly optimizing the model’s outputs based on human preferences without the need for
a separate reward model. This method enhances efficiency and reduces the complexity involved in
model training.

• Preference-based Training: In DPO, the LLM is adjusted based on direct feedback, where
outputs are labeled as positive or negative based on human preferences, steering the model
towards more desired responses.

3.3.3 State-of-the-art models

Two of the most prominent sources for evaluating large language models based on performance and
user preferences are the GPT Arena[14] and the Huggingface leaderboards[4, 25, 17, 68, 31, 42, 55,
18]. Each of these platforms offers a unique approach to benchmarking the capabilities and effective-
ness of LLM’s.

Rationale for Focusing on Pre-Trained Models
Evaluating language models requires distinguishing between different training and deployment strate-
gies, such as pre-trained, continuously pre-trained, fine-tuned, and merged models. Each category
reflects distinct stages of model development and impacts performance and applicability differently.
The focus on pre-trained models for baseline comparison is driven by the need to assess models in
their most fundamental state. Pre-trained models, not yet fine-tuned or customized for specific tasks,
provide a clear view of a model’s core abilities without the influence of task-specific optimizations.
This approach allows for fair comparisons across different models based on their inherent capabilities.
Focusing on pre-trained models highlights advancements in foundational model capabilities and serves
as a starting point for further customization and fine-tuning. In contrast, fine-tuned and iteratively
trained models, while potentially superior for specific tasks, may not generalize well across diverse
applications and can introduce biases or overfitting. This focus also avoids the pitfalls of evaluating
models that may have artificially inflated performance on benchmark tests that do not necessarily
translate to general effectiveness in real-world scenarios.

Huggingface Leaderboards
The Huggingface leaderboards employ the ”EleutherAI language model evaluation harness” to assess
models across six different benchmarks. These benchmarks include tasks that range from common-
sense reasoning to scientific knowledge and computational skills. The aim is to test models in both
zero-shot and few-shot settings to gauge their general and task-specific knowledge capabilities. No-
table benchmarks include the AI2 Reasoning Challenge, HellaSwag, and GSM8k. The leaderboards
focus exclusively on open-source models to ensure transparency and encourage community engage-
ment. An overview of the current rankings on Huggingface can be found here.
GPT Arena
The GPT Arena, as introduced in the work by Chiang et al (2024)[14], utilizes a crowdsourced ap-
proach to model evaluation. Here, models are evaluated through pairwise comparisons in which users
vote for the model that provides the more satisfactory answer. This arena has proven to be a robust
method for capturing human preferences across diverse queries, reflecting a broad spectrum of real-
world applications. The GPT Arena has become one of the most referenced LLM leaderboards, noted
for its transparency and straightforward evaluation metrics. A summary of the current standings in
the GPT Arena is presented here.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard


22 Chapter 3 METHODOLOGY

Top Open-Source Models
Open-source models are the main contributors to democratizing advanced AI technologies and mak-
ing them accessible to everyone, allowing researchers and developers to innovate without high costs.
Based on the Huggingface leaderboards, here are the top five open-source models, known for their
robust performance across various benchmarks:

• meta-llama/Meta-Llama-3.1-405B The best open source model to date, a very large model
that can be used as an instructor for smaller models like 70b and 8b

• mistralai/Mistral-Large-Instruct-2407, a big 123 billion parameter model trained specifically
for math, code and reasoning. Outperforming Llama 3.1 405 in those areas.

These models are typically hosted on platforms like Huggingface, where they can be accessed and
used at no cost, although deploying them at scale involves infrastructure expenses.

Top Closed-Source Models
Closed-source models often lead in performance but come with usage restrictions and cost implica-
tions. From the GPT Arena, the leading closed-source models include:

• GPT-4o from OpenAI is distinguished by its top-tier performance across various language un-
derstanding and generation benchmarks. This model is primarily deployed in enterprise envi-
ronments that demand high-quality and consistent outputs. It delivers the best overall bench-
mark results among competing models, although it is the most expensive option.

• Claude-3.5-Sonnet excels in graduate-level problem-solving (GPQA), undergraduate-level knowl-
edge (MMLU), and coding proficiency (HumanEval). It is recognized as the foremost model
for advanced reasoning tasks.

• Gemini 1.5 Pro introduces a new context window that extends up to two million tokens—the
most extensive among large-scale foundational models. This feature enables recall in long-
context retrieval challenges, making it ideal for processing extensive documents, lengthy code,
and extended periods of audio and video content.

These models are typically accessed through an API, with associated costs varying according to usage.
For the initial experiment in this study, OpenAI’s GPT-4o was chosen. As a proprietary model, GPT-
4o is available exclusively via API, with charges based on the amount of tokens processed.
At the time of conducting the experiment, LLama 3.1 and Mistral Large had not yet been released,
thus no open-source models were available that could handle a context window larger than 8,000
tokens. Consequently, this limitation prevented the inclusion of larger documents such as contracts in
our testing, restricting our evaluation to available models.
To ensure that our findings were applicable to large language models (LLMs) in general and not
restricted to a specific model, the second experiment incorporated the top three models available at
that time: GPT-4o, Claude-3.5-Sonnet, and Gemini 1.5 Pro. All these models are proprietary and
were accessed via API, allowing us to make requests and incur costs based on the number of tokens
processed.



Chapter 3 METHODOLOGY 23

3.3.4 Limitations of Large Language Models

Inherent Biases in Model Outputs
LLMs are often criticized for their tendency to perpetuate and sometimes amplify existing biases
found in their training data. These biases can manifest in various forms, such as racial, gender, and
socio-economic prejudices, which are embedded in the vast corpora of internet text that LLMs are
typically trained on[7]. This not only affects the fairness of the models but also raises concerns about
their trustworthiness and the ethical implications of their deployment in real-world applications, such
as recruitment, law enforcement, and loan approvals [50]. Strategies to mitigate these biases are still
in development, with current approaches including diversification of training data, debiasing algo-
rithms, and increased transparency in model workings [8].

Environmental Impact
The carbon footprint of training LLMs is substantial. These models require vast amounts of computa-
tional power, which translates to astounding energy usage. Studies have highlighted the environmen-
tal impact of training models like GPT-3, which involves substantial CO2 emissions equivalent to the
lifetime emissions of several cars [61][20]. The sustainability of such practices has been questioned,
with calls for more energy-efficient computing techniques and the adoption of green energy sources
in AI research and operations [57].
In their paper, the developers of Meta’s open-source LLama3 model disclosed details about its power
consumption. While they utilized entirely green electricity, this approach addresses only the symp-
tom rather than the core issue of high energy usage. Moreover, other LLM creators may not adhere
to similar green practices[65]. . The emissions of 6 different models is shown in figure 5

Figure 5: Operational carbon emissions associated with training and inference for six representative
machine learning models in production at Facebook, across various ML models[65].

High Economic Costs of Development
The development of LLMs involves large economic investment, largely due to the costs associated



24 Chapter 3 METHODOLOGY

with computational resources. The training process requires state-of-the-art hardware, such as ad-
vanced GPUs, which are not only expensive to purchase but also costly to operate due to their high
energy consumption. This economic barrier limits the ability of smaller entities or institutions, par-
ticularly those in developing countries, to participate in cutting-edge AI research and development.
Moreover, the ongoing costs of model tuning and updating to maintain state-of-the-art performance
further increase the total cost of ownership[36].

Scalability and Accessibility Challenges
While the capabilities of LLMs scale with size, this scalability brings about several challenges. Larger
models require not only more computational resources but also generate higher latency in applica-
tions, which can be a critical drawback in real-time systems [7]. For instance, in real-time language
translation services or interactive chatbots, a delay of even a few seconds can degrade user experience
significantly. Furthermore, deploying such models in resource-constrained environments like mobile
devices or in regions with limited computing infrastructure can be impractical. This often necessitates
additional investments in specialized hardware or cloud services to handle the increased load. This
scalability issue affects the accessibility of advanced LLM technologies, creating a divide between
organizations that can afford to invest in such technologies and those that cannot. Furthermore, the
complexity of deploying these models in practical applications requires engineering efforts to opti-
mize efficiency and manage resource demands effectively.

Technical Limitations and Societal Concerns
Beyond the immediate limitations related to biases, costs, and environmental impacts, LLMs face
technical challenges in understanding abstract concepts and executing complex reasoning tasks. While
adept at recognizing patterns, these models frequently struggle with capturing the deeper semantic
meanings that come naturally to humans [44]. A survey study further proves this by examining the
behavior of LLMs across core reasoning tasks such as logical, mathematical, and causal reasoning
[48]. The survey reveals that although LLMs perform well in scenarios closely aligned with their
training data, they encounter considerable difficulties in out-of-distribution situations, highlighting a
limitation in their reasoning abilities. These findings underscore the need for moving beyond shallow
accuracy metrics and advocate for more sophisticated reasoning assessments to better evaluate the
capabilities of LLMs [48].
Additionally, the societal implications of deploying LLMs in sensitive contexts—such as surveillance,
military applications, and the spread of misinformation—are profound, raising concerns about pri-
vacy, security, and the potential for misuse [70]. These concerns emphasize the necessity for rigorous
ethical reviews and the implementation of robust safeguards before LLMs are deployed in high-stakes
environments.

3.3.5 Impact Analysis

This section discusses the potential impacts of implementing automated extraction with LLMs, fo-
cusing on operational changes within organizations, potential job role modifications, and how such
technologies could shift workflow dynamics.

Operational Efficiency Gains Integrating LLMs into organizational workflows for automated in-
formation extraction offers substantial improvements in the speed and accuracy of data processing
tasks. Traditionally, legal teams spend considerable amounts of time manually reviewing contracts
to identify and document obligations, which are then entered into scheduling applications to ensure



Chapter 3 METHODOLOGY 25

compliance and timely fulfillment. This manual process often requires dedicated teams of lawyers
who focus exclusively on tracking these obligations. While the precise amount of time saved by
implementing LLMs has not yet been quantified, but the potential for efficiency gains is evident. Au-
tomating these tasks with advanced language models not only reduces the workload on legal staff
but also enhances the reliability of the data captured, leading to better compliance management and
operational performance.
Workforce adaptation The automation of information extraction tasks is likely to lead to a redef-
inition in workforce roles and responsibilities. As noted by [40], automation does not necessarily
eliminate jobs but rather evolves them, requiring new skills and competencies. Organizations must,
therefore, consider strategies for workforce re-skilling and training to manage this transition effec-
tively. Supporting employees through these changes is essential for gaining the benefits of automation
while maintaining job satisfaction and organizational loyalty [59].
Technology Adoption Barriers While the benefits of adopting LLMs for automation are clear, sev-
eral barriers can impede their integration into existing systems. These include technological limi-
tations, cultural resistance to change, and the initial costs associated with deployment and training.
Dasgupta et al. (2019)[19] discuss various strategies to overcome these barriers, such as phased im-
plementation plans, stakeholder engagement, and emphasizing the long-term benefits of adoption.
Understanding these potential obstacles and planning for them can facilitate smoother transitions and
more successful integrations of new technologies [46].

3.3.6 Ethical Considerations

Ethical considerations play a pivotal role in the development and deployment of generative AI and
large language models (LLMs). As these technologies become more integrated into society, their
potential to influence public opinion, decision-making processes, and privacy norms grows, making
ethical considerations paramount. Ethical AI development focuses on principles such as fairness,
accountability, transparency, and the avoidance of bias, which are essential to ensure that AI tech-
nologies contribute positively to society and do not perpetuate existing inequalities or injustices[47,
22].
Fairness in AI is particularly challenging due to the diverse and often biased nature of the data used
to train these models. Bias in training data can lead to outcomes that unfairly discriminate against
certain groups, undermining the social acceptability of AI technologies[3]. For example, research has
shown that LLMs like GPT-3 can exhibit racial and gender biases in language generation, which could
perpetuate stereotypes and unfair discrimination against certain groups[7]. To combat this, developers
must employ strategies such as inclusive data collection, bias mitigation algorithms, and continuous
monitoring of AI systems to ensure that they operate fairly[5].
Accountability in AI involves establishing clear guidelines on who is responsible for the outcomes
produced by AI systems. This is complicated by the autonomous nature of these systems, which
can make tracing decisions back to human operators difficult[37]. Implementing mechanisms such
as audit trails, decision logs, and transparency reports can help increase accountability. Additionally,
developing standards for explainable AI can make these systems more understandable to users and
regulators, thereby enhancing trust[27].
Privacy concerns are also paramount as AI systems often process vast amounts of personal data to
function effectively. Protecting this data and ensuring that AI systems comply with data protection
regulations like the General Data Protection Regulation (GDPR) is foundational for maintaining user
trust and legal compliance[64].
The ethical deployment of AI also involves engagement with diverse stakeholders, including policy-



26 Chapter 3 METHODOLOGY

makers, technologists, and the public, to ensure that AI systems are developed and used in a manner
that reflects broad societal values and norms[30]. This multi-stakeholder approach helps to balance
the benefits of AI with potential ethical risks, promoting an AI ecosystem that is both innovative and
responsible.
The ethical considerations surrounding AI and LLMs are complex and multifaceted. Addressing these
concerns requires a concerted effort from developers, regulators, and society at large to ensure that
AI technologies are used in ways that respect human rights and promote social good. As AI becomes
more prevalent, the importance of robust ethical frameworks and proactive regulatory approaches will
only increase, highlighting the need for ongoing vigilance and adaptation in AI governance[35].



Chapter 4 EXPERIMENTAL SETUP 27

4 Experimental Setup

This section outlines the experimental setup for evaluating the performance of the developed infor-
mation extraction programs. Two separate experiments were conducted: Experiment 1 focused on
the extraction of information for the DORA compliance template, and Experiment 2 targeted the
extraction of obligations from contracts. Both experiments used a LLMs for the extraction tasks.

4.1 Experiment 1: DORA Compliance Template Extraction

The primary objective of Experiment 1 was to assess the effectiveness of Large Language Models
(LLMs) in identifying and filling in the required information for the DORA compliance template.

4.1.1 Contract Generation

Despite extensive efforts, including contacting various individuals at Accenture, obtaining applicable
contracts for filling in the DORA template proved challenging. These contracts are highly confiden-
tial, and with the EU DORA act set to commence in 2025, there is limited active work on it, making
it difficult to find relevant materials. Consequently, creating custom contracts became the next viable
option.

A legal professional was consulted to obtain an arrangement letter template contract. This template,
however, lacked the specific information required for DORA compliance. To address this, a script
was developed to generate contract information and populate the template.
The initial template (Figure 6) was modified to include placeholder fields. These placeholders, for-
matted as [x], represent the descriptions of the required information, for instance, [Name of the fi-
nancial entity]. A total of 35 pieces of information necessary for the DORA template were identified
and corresponding placeholders were incorporated into the contract, resulting in a modified template
(Figure 7). To introduce more variation, five different versions of the contract template were created.
In these variations, the order of texts and clauses was plausibly rearranged. When generating a con-
tract, the starting template is randomly selected from these five variations, ensuring a diverse set of
contracts.

Figure 6: Initial Template Contract Figure 7: Template Contract with Placeholders



28 Chapter 4 EXPERIMENTAL SETUP

A script was then created to look up these placeholders and insert generated information. Inserting raw
data without context would result in an incoherent document, with seemingly random data scattered
throughout. To mitigate this, each piece of information was prefixed with a contextual sentence
derived from a DORA template description. For example, for the placeholder [Name of the financial
entity], the script would insert ”The Name of the financial entity Brett & Brockly,” where ”The Name
of the financial entity” provides context and ”Brett & Brockly” is the generated data. Figure 8 shows
an example of the front page of one such generated contract.

Figure 8: Example of a Generated Contract

Additionally, the inserted generated information was saved in an Excel file as the ground truth data to
facilitate later quantification of the results. An example of this is shown in Figure 9.

Figure 9: Example of Ground Truth Data for DORA Compliance



Chapter 4 EXPERIMENTAL SETUP 29

4.1.2 Input data

The input data for the LLM consisted of the generated contracts and the DORA compliance template
entry descriptions.

Contract The documents are initially in DOCX formats and need to be converted into plain text-
string for further processing. For these DOCX files, the Document class from the docx library is
used, which allows for straightforward extraction of raw text from the documents. Once the text is
extracted, it is concatenated into a single string so that it can be inserted into the prompt.

Template As input we also used the DORA compliance template descriptions. The DORA com-
pliance excel file was loaded into our system using the pandas library and contains these fields:
”Template Code”, ”Description” and ”Type”. We use the ”Description” information in the prompt to
describe the information that the LLM needs to extract for this entry from the stringified contract.

Moreover, the details from the Excel file are stored in a python dictionary, which maps template codes
to their corresponding descriptions. This dictionary serves as a reference for the Large Language
Model (LLM) during the text processing phase, enabling it to accurately identify and correlate the
extracted information with the appropriate fields in the compliance template. Figure 10 illustrates a
piece of the Excel file, showing the organization of the template.

Figure 10: Part of the Excel file containing the DORA compliance template, outlining the template
codes, descriptions, information types, fill-in instructions, and whether the information is mandatory.

4.1.3 Prompt

The extraction task is guided by a prompt, which directs the LLM to process the contract text and
systematically extract information according to the entry descriptions of the DORA template. The
prompt is structured to facilitate the creation of a structured output in the form of a Python dictionary,
where each key corresponds to a template code from the DORA compliance template, and the value
is a list containing the information description and extracted information. The prompt is presented
below:

1 prompt = ChatPromptTemplate.from_messages([
2 ("user", '''
3 Given a dictionary with template codes as keys and template entry descriptions as
4 values: '''+ template_dict_str + '''. Extract the entries from the provided
5 document: ''' + contract + '''.
6

7 Create a dictionary with the following structure:
8 - Key: Template code
9 - Value: A list containing:



30 Chapter 4 EXPERIMENTAL SETUP

10 1. Entry description from the input dictionary
11 2. The entry found in the document
12

13 Exclude any entry descriptions from the output if
14 their corresponding entry cannot be found in the document.
15 Ensure all dictionaries and lists are properly closed with brackets.
16

17 Your task is to structure the output as a python dictionary
18 and include only the relevant details as specified.
19

20 An example of the output is: ''' + example_output)
21 ])

The variable template dict str represents the DORA compliance template, which includes tem-
plate codes and entry descriptions as a dictionary string, while the variable contract contains the
concatenated contract documents. Finally the variable example output contains a string of an ex-
ample output in order to clarify how the output should look.

1. Dictionary as Input: The prompt begins by defining a dictionary structure where each key is
a template code, and the value is a description. This tells the model what to look for in the
contract.

2. Structured Output: The model is instructed to output its findings in a structured Python dic-
tionary format, where each entry corresponds to a template code. For each code, the model
must provide:

• Entry description: The description of the entry.

• Extracted Answer: Information extracted from the contract.

This prompt output structure is necessary to properly parse the output as a data frame in the
next step.

3. Conditional Instructions: The model is further guided to attempt extraction for all template
codes and to structure its responses precisely as outlined. If the model cannot find or deduce
information for a given template code, it is instructed to leave that entry blank, ensuring that
only relevant entries are included.



Chapter 4 EXPERIMENTAL SETUP 31

4.1.4 Parsing the Output String

The prompt is passed to the GPT-4o API, which generates an output string. This output string is
shown in Figure 11.

Figure 11: Example of Generated Output String

To parse the output string, a regular expression (r”{(.*?)}”) is used to extract the content between the
brackets. The extracted string is then interpreted as a dictionary using ast.literal eval(output stripped).
This resulting dictionary is subsequently saved as an Excel file for further analysis.
The extracted information output Excel file appears as shown in Figure 12.

Figure 12: Example of Extracted Information Output in Excel



32 Chapter 4 EXPERIMENTAL SETUP

Evaluation To evaluate the performance of the LLM in extracting the required entries from the con-
tracts, an evaluation script was created. This script compares the LLM-extracted entries with the
ground truth entries inserted into the contracts. The evaluation considers three types of errors:

• False Positives (FP): Entries that the LLM extracted but do not exist in the ground truth.

• No-Match: Entries where the LLM extracted a value, but it does not match the ground truth.

• Missing Entries: Required entries that the LLM failed to extract.

The accuracy of the LLM is calculated as the ratio of correctly extracted entries to the total number of
required entries. Specifically, if out of the 35 ground truth template entries, x entries were correctly
extracted, then:

Accuracy =
x

35
The comparison script performs the following steps for each document:

1. Normalization: Strings are normalized by removing non-alphanumeric characters, extra spaces,
and converting to lowercase to ensure a fair comparison.

2. Shared Keys Identification: Identifies keys (template codes) that are shared between the
ground truth and LLM-extracted entries.

3. String Similarity Check: Compares the normalized strings to determine if they match.

4. Result Compilation: Compiles results for false positives, missing entries, wrong entries, and
calculates the accuracy.

The analysis included several statistical measures. Firstly, the mean accuracy was calculated to rep-
resent the average accuracy across all documents. To assess the consistency of this accuracy, the
standard deviation was measured, providing insight into the variability of the results. Additionally,
a 95% confidence interval was determined, offering a range within which the true mean accuracy is
likely to fall.

4.2 Experiment 2: Extraction of Deliverables and Obligations
While the first project demonstrated promising results, it was relatively straightforward. The infor-
mation that the LLM needed to identify was clearly indicated with a single context sentence, making
it easy to locate. This project confirmed that the LLM could perform this simple task with high
accuracy.
To further test the LLM’s ability to extract information from contracts, a second project was under-
taken. The goal of Experiment 2 is to evaluate the extraction program’s capability to identify and
extract obligations from contractual documents.
What are obligations? ”Obligations in contracts refer to duties or commitments that parties are
legally required to fulfill as per the terms of the contract.”
Examples of obligations include payment deadlines, performance metrics, reports, and termination
dates.
After a contract is signed, both parties are required to adhere to all the agreements stipulated within
it. To ensure compliance, companies list all obligations and due dates in a data frame. At Accenture,
the tool used for this purpose is called Manage My Contract (MMC). Once a contract is signed, a



Chapter 4 EXPERIMENTAL SETUP 33

Figure 13: Manage My Contract (MMC) Interface with a termination obligation filled in.

legal professional from Accenture reviews it and annotates all obligations using the MMC interface,
as shown in Figure 13.
For each obligation, the legal professional must provide the name, description, responsible party, type,
RAG status, and due date. This is a manually intensive task, and overlooking an important obligation
can have severe consequences.

4.2.1 Dataset

After an extensive search spanning several months and even signing a second NDA, getting contract
data wasn’t possible. Consequently, the next best option was to use a publicly available dataset. The
chosen dataset was the Contract Understanding Atticus Dataset (CUAD), a corpus of 510 commercial
legal contracts. These contracts do not come with obligation annotations, therefore they had to be
self-annotated.
The initial plan involved inserting these contracts into the LLM prompt and requesting the LLM
to identify all obligations along with the secondary information required by the MMC UI (name,
description, responsible party, type, RAG status, and due date). This would produce an Excel file
containing all obligations and their secondary information, which could then be compared to a ground
truth excel list of obligations. However, a challenge arose: how to compare obligations in the LLM-
predicted Excel list to those in the ground truth Excel list. The lists are not indexed or ordered, making
direct comparison difficult.
This issue is referred to as the comparison problem. Attempting to link obligations based on due
dates can lead to mismatches due to coincidental date similarities, and using descriptions can be
problematic because the same obligation might be described differently in both lists. The same applies
to names. Figure 14 illustrates this problem and its solution. In the figure, the same obligation is
described differently in the LLM-predicted obligation description and the human-annotated obligation
description.
The solution is to request the verbatim text from the contract along with the currently required infor-
mation. This allows obligations to be identified based on matching verbatim texts.



34 Chapter 4 EXPERIMENTAL SETUP

Figure 14: Illustration of the Comparison Problem and its Solution

4.2.2 Annotation

The next step involved annotating this data. Six contracts were manually selected from the total 510
legal contracts, consisting of four consulting agreements and two license development agreements.
These contracts were chosen based on the advice of a consulted legal professional and the consulting
nature of Accenture. Each contract was carefully reviewed, and the verbatim text for each identified
obligation was copied into an Excel file, as illustrated in Figure 15.

Figure 15: Manual Annotation of Contract Obligations



Chapter 4 EXPERIMENTAL SETUP 35

The final ground truth Excel sheet appeared as shown in Figure 16.

Figure 16: Example of Annotated Data Point in Ground Truth Excel Sheet

4.2.3 Prompt

The extraction is guided by a prompt, which directs the LLM to process the contract text and extract
information according to the description of important obligations. The prompt is designed to make
the LLM output a structured Python dictionary, where each key corresponds to an index number, and
the value is a list containing the verbatim text of an obligation.
Due to the limited output token space of an LLM the output can cutoff prematurely. To prevent the
LLM from cutting off its response before listing all found obligations, the task was divided into two
parts: one for extracting the verbatim text and another for acquiring the secondary information (name,
description, responsible party, type, RAG status, and due date).
The prompt is divided into three parts: the general task description, the formatting instructions, and
the obligation description.
General Task Description:

1 prompt = ChatPromptTemplate.from_messages([
2 ("user", '''
3 Extract verbatim text of each important deliverable, obligation, milestone,
4 or governance agreement from the provided contract: "{contract}".
5 Focus only on items critical for compliance and tracking within the agreement.
6 Only include deliverables, obligations, milestones, or governance agreements
7 that are pivotal.
8 Typically, these will have specified due dates and may carry consequences if not met.
9 Ensure that the text extracted is verbatim. If an item does not specify a due date,

10 consider its importance before deciding to include it.
11 Essentially, these are the most important elements within the contract,
12 the items both parties must not overlook.
13 ''')
14 ])

Here, the contract variable represents the contract text as a string. The general task description is
outlined to ensure that the LLM focuses on extracting only the most important obligations from the
contract.



36 Chapter 4 EXPERIMENTAL SETUP

Formatting Instructions:

1 '''
2 Create a dictionary with the following structure:
3 - Key: Index number for the deliverable, obligation,
4 milestone, or governance agreement
5 - Value: A list containing:
6 1. A verbatim quotation of the deliverable, obligation,
7 milestone, or governance agreement as stated in the contract.
8

9 Ensure all dictionaries and lists are properly closed with brackets.
10 Avoid multiple entries for very similar obligations or milestones.
11 For example, different clauses leading to contract termination
12 can be consolidated into a single entry.
13 Anticipate finding approximately 10 to 30 critical items in
14 the contract.
15 If there are double quotations (") in the verbatim text,
16 replace them with <<< to prevent parsing issues.
17 '''

In this part of the prompt, the LLM is instructed to output the string in a dictionary format so that it
can later be parsed and saved as an Excel file. The instruction to replace double quotations with ¡¡¡
ensures that the parsing step is not disrupted.
Obligation Descriptions:

1 '''
2 Important deliverables, obligations, milestones, and governance
3 agreements include but are not limited to:
4 1. Contract end or extension dates.
5 2. Details of promotional activities or lists.
6 3. Volume discounts related to annual expenditures.
7 4. Hiring decisions from contract-to-hire channels.
8 5. Baseline performance metrics of parties involved.
9 6. Requirements for continuous improvement or cost reduction.

10 7. Audit reports.
11 8. Schedules for mandatory meetings (monthly, quarterly, etc.).
12 9. Reporting deadlines.
13 10. Price indexation clauses.
14

15 Some correct examples of verbatim texts would be:
16 "X shall pay Y a non-refundable, non-creditable license
17 issue fee of $500,000 within three (3) Business Days
18 following the date the Parties enter into this
19 Agreement and the Supply Agreement.",
20

21 "X shall keep the Y informed regarding the progress
22 and results of such Commercialization.
23 Such progress reports shall be provided at least quarterly
24 and in a form reasonably acceptable to Y.",
25

26 "The Y shall hold meetings as mutually agreed by the Parties,
27 but in no event less than quarterly unless X and Y
28 mutually agree in writing (which may include email),
29 no later than thirty (30) days in advance of any



Chapter 4 EXPERIMENTAL SETUP 37

30 meeting following the initial meeting of the Y."
31 '''

A legal professional provided a contract with its corresponding obligations. Although this contract
could not be included in the dataset due to confidentiality, it offered valuable insight into what obli-
gations are. From this obligations list, ten types of obligations were extracted and listed in the prompt
to clarify what the LLM should extract from the contract. Additionally, three literal examples of
verbatim obligation texts were provided to guide the LLM.

4.2.4 Parsing the Output String

The prompt is passed to either the GPT-4o, Claude 3.5 Sonnet, or Gemini 1.5 Pro API, which gener-
ates an output string.
To parse the output string, the following steps are used:

1. Clean the text: Remove all newline characters (\n) to prevent interference during parsing.

2. Fix incomplete output: If the LLM cuts off its response and the dictionary string is not prop-
erly finished, search for the last completed entry in the dictionary string output. Remove every-
thing after it and append the correct closing brackets "]}.

3. Extract content with regular expression: Use a regular expression (r”{(.*?)}”) to extract the
content between the brackets.

4. Interpret as a dictionary: Convert the extracted string into a dictionary using
ast.literal eval(output stripped).

5. Replace placeholders: Convert all instances of <<<back to double quotes (”).

6. Save as an Excel file: The resulting dictionary is subsequently saved as an Excel file for further
analysis.

4.2.5 Matching LLM Predictions with Ground Truth

The extracted information output Excel file and the ground truth Excel file are shown in Figures 17
and 18, respectively.

Figure 17: LLM-predicted obligations Figure 18: Manually annotated ground-truth
obligations



38 Chapter 4 EXPERIMENTAL SETUP

A fuzzy matching technique was introduced to align the verbatim texts. Each obligation in the ground
truth list was compared to the obligations extracted by the LLM.
Initially, the verbatim texts were matched within the contract using the fuzzysearch method, pro-
viding the index location of each ground truth obligation and each predicted obligation. This method
prioritizes the text’s location within the contract over the exact start or end position of the verbatim
text.
Once matches were identified in the contract, the start and end indices of the matched texts were
analyzed to determine if there was an overlap between the predicted obligations and the ground truth
obligations. Any overlap in these indices was considered a match.
To evaluate the fuzzy matching method’s accuracy, the Levenshtein ratio between the matched text
in the contract and the LLM-predicted text was calculated. Figure 19 shows a histogram of the
Levenshtein scores for all matches.

Figure 19: Histogram of Levenshtein scores for matched texts

Additionally, the top 10 worst-performing text matches were identified and are displayed in Figure 1.
The differences between the matched texts and the predicted/ground truth texts are mainly due to the
normalization process of the contract.

Score Searched Text Matched Text
0.9565 The executive acknowledges that the

position of President and CEO will involve
significant travel for business development
and for investor relations.

the executive acknowledges that the
position of president and ceo will involve
significant travel for business development
and for investor relations

0.9585 Vyera shall make the Equity Investment
within seven (7) days of the Effective Date,
as required by Section 8.13.

vyera fails to make the equity investment
within seven 7 days of the effective date as
required by section 813

0.9600 Time to achieve: Month 30 time to achieve: month 30
0.9610 This Agreement is made effective as of

December 17, 2019 (the ”Effective Date”)
this “agreement” is made effective as of
december 17 2019 the “effective date”



Chapter 4 EXPERIMENTAL SETUP 39

0.9620 Emerald will pay to the Contractor an
annual fee (the ”Fee”) of $240,000. per
year plus plus GST and applicable taxes, if
any.

company will pay to the contractor an
annual fee the ”fee” of 240000 per year
plus plus gst and applicable taxes if any

0.9652 Vyera shall pay to CytoDyn [***] (the
”[***] Milestone Payment”) in the event
that [***] (a ”[***]”) results in a [***].

vyera shall pay to cytodyn [***] the “[***]
milestone payment” in the event that [***]
a “[***]” results in a [***]

0.9680 Vyera shall enter into a Supply
Agreement(s) for the commercial supply of
Licensed Product on the Effective Date.

ties shall enter into a supply agreements
for the commercial supply of licensed
product on the effective date

0.9690 This Commercialization and License
Agreement (this ”Agreement”) is made
effective as of December 17, 2019 (the
”Effective Date”) by and between Vyera
Pharmaceuticals, LLC, a Delaware limited
liability company (”Vyera”), and CytoDyn
Inc., a Delaware corporation (”CytoDyn”).

this commercialization and license
agreement this “agreement” is made
effective as of december 17 2019 the
“effective date” by and between vyera
pharmaceuticals llc a delaware limited
liability company “vyera” and cytodyn inc
a delaware corporation “cytodyn”

0.9718 The Consultant’s engagement shall
terminate upon the Consultant’s death.

the consultant’s engagement shall
terminate upon the consultant’s death

Table 1: Comparison of Search and Match Texts with the corresponding Levenshtein score

As illustrated, these matches are generally accurate, with only minor differences often caused by
parsing adjustments.
Out of the total 5266 LLM-predicted obligations, 92 could not be found in the contract using the
fuzzysearch method. The breakdown is as follows: GPT-4: 52, Gemini: 40, Claude: 0. Most of
these discrepancies occurred because they involve lists that are truncated. For example, the contract
states:

The Chief Executive Officer of Emerald Health Naturals will:

•
Lead all aspects of the business in terms of strategic planning, product develop-
ment, and operational execution on its annual and long-term objectives.

•
Actively manage the company’s P&L performance to ensure that its financial per-
formance is in line with its budget projections and will enact any necessary changes
to ensure that the business meets or exceeds such projections.

However, the LLM may output the obligations as:

”The Chief Executive Officer of Emerald Health Naturals will:
Actively manage the company’s P&L performance to ensure that its financial perfor-
mance is in line with its budget projections and will enact any necessary changes to
ensure that the business meets or exceeds such projections.”

This discrepancy highlights the need for improved prompt engineering to address such mismatches.



40 Chapter 4 EXPERIMENTAL SETUP

4.2.6 Evaluation

To evaluate the performance of the LLM in extracting the verbatim obligation texts from the contracts,
an evaluation script was created. This script compares the LLM-extracted verbatim text obligations
with the ground truth verbatim text obligations. The evaluation considers two types of errors:

• False Positives (FP): Verbatim obligation texts that the LLM extracted but do not exist in the
ground truth.

• Missing: Verbatim obligation texts in the ground truth that the LLM failed to extract.

The accuracy of the LLM is calculated as the ratio of correctly extracted verbatim obligation texts to
the total number of ground truth verbatim obligation texts in a specific contract. Specifically, if out
of the y ground truth verbatim obligation texts, x verbatim obligation texts were correctly extracted,
then:

Accuracy =
x
y

The comparison script performs the following steps for each document:

1. Cleaned the text data.

2. Identified and matched verbatim texts between predictions and ground truth.

3. Calculated accuracy and false positives for each iteration.

4. Summarized results and computed overall statistics, including mean accuracy, standard devia-
tion, and confidence intervals.

The following statistics were calculated for each contract:

• Average Accuracy: The mean accuracy over multiple iterations.

• Standard Deviation of Accuracy: The variability of the accuracy across iterations.

• 95% Confidence Interval (CI) for Accuracy: The range within which the true accuracy lies
with 95% confidence.

• Average False Positives per Iteration: The mean number of false positives identified across
iterations.

Each model was evaluated using x iterations per contract. For each iteration, the accuracy and false
positives were computed. Then the average accuracy and false positives were calculated for each
contract for each model. The final overall contract statistics for each model were determined by
summarizing the individual contract iteration averages and calculating the overall standard deviation
and confidence intervals.
Calculating the standard deviation of the overall contracts is different from merely averaging the con-
tract average standard deviations. In order to accurately determine the combined standard deviation,
we need to consider the variances and the number of observations. Here is the process:
First, for each dataset, calculate the variance by squaring the standard deviation:

Variance = (Std Dev)2 (6)



Chapter 4 EXPERIMENTAL SETUP 41

Next, sum these variances across all datasets. Because each dataset has the same number of obser-
vations, we can directly average these variances. The combined variance, as shown in Equation 7, is
calculated by dividing the sum of variances by the number of datasets:

Combined Variance =
∑

n
i=1 Variancei

n
(7)

Finally, take the square root of the combined variance to obtain the combined standard deviation:

Combined Std Dev =
√

Combined Variance (8)

This method, known as pooling variances (Equation 8), ensures that the overall standard deviation
accurately reflects the variability in the data across all contracts. This approach is recommended for
cases where data sets are assumed to be from the same distribution [10].
The results were saved in an Excel file, containing detailed information on the performance of the
LLM for each contract and overall performance across all contracts.



42 Chapter 5 RESULTS

5 Results

5.1 Experiment 1: DORA Compliance Template Extraction
The objective of Experiment 1 was to evaluate the effectiveness of the Large Language Models
(LLMs) in accurately filling out the DORA compliance template based on information extracted from
contractual documents. This section presents the results of this experiment.
The extraction program was tasked with identifying and extracting information for a set of predefined
fields within the DORA compliance template. The input consisted of contract documents alongside
a structured prompt designed to guide the LLM. The expected output was a series of key-value pairs
corresponding to the template fields and their extracted information. The extracted information was
then compared to the ground truth to determine the accuracy in completing this task.

5.1.1 Sample size calculations

We can generate any number of contracts, but the essential question is: How many do we actually
need? This depends on the desired precision for predicting average performance. After 15 contracts
processed we got the following table 2

Table 2: Performance metrics of the contracts. In this table, the false positives are the entries that
the LLM created. Wrong entries indicate entries that matched the template codes but not the values.
Missing entries are those present in the ground truth but not provided by the LLM prediction. Ac-
curacy is the percentage of correctly predicted entries by the LLM divided by the total number of
entries.

Document False Positives Wrong Entries Missing Entries Accuracy (%)

Document 0 0 0 3 91.43
Document 1 0 0 0 100.00
Document 2 0 0 1 97.14
Document 3 1 0 1 97.14
Document 4 0 0 0 100.00
Document 5 0 0 1 97.14
Document 6 1 0 1 97.14
Document 7 0 0 0 100.00
Document 8 0 0 0 100.00
Document 9 0 0 0 100.00
Document 10 1 0 1 97.14
Document 11 0 1 3 88.57
Document 12 0 0 0 100.00
Document 13 0 0 0 100.00
Document 14 0 0 0 100.00

Average 0.2 0.067 0.73 97.71
Standard Deviation 0.41 0.26 1.03 3.45
95% Confidence Interval 0.00 - 0.43 0.00 - 0.21 0.16 - 1.31 95.80 - 99.62



Chapter 5 RESULTS 43

A maximum permissible error of 1% at a 95% confidence level was chosen. After evaluating 15 con-
tracts, the observed average accuracy was 97.71% with a standard deviation of 3.45%. The resulting
error margin was calculated as follows:
To achieve a reduced error margin of 1%, we need to adjust the sample size. The sample size n
required can be calculated using the formula:

n =

(
Z ×σ

E

)2

(9)

where Z is the z-score corresponding to the 95% confidence level (1.96), σ is the standard deviation
of the measurements, and E is the desired error margin. This calculation is based on the formula for
estimating the minimum sample size necessary to achieve a specific margin of error in a proportion,
given a confidence interval, which is derived from the central limit theorem [41]. Plugging in the
values, we get:

n =

(
1.96×3.45

1

)2

Solving for n, we find:

n =

(
6.76

1

)2

= 45.72 (10)

Thus, approximately 46 contracts are required to achieve an error of 1% with 95% confidence, as
shown in Equation 10. To ensure thoroughness, we generated 50 contracts.



44 Chapter 5 RESULTS

5.1.2 Performance of the DORA Template Entry Filler

The performance of the extraction process was evaluated based on its ability to accurately identify
and extract the required information for each field within the template. The results of processing 50
contracts with the model are presented in 3.

Table 3: Performance metrics of the contracts. False positives are entries incorrectly created by the
LLM. Wrong entries are those that matched the template codes but not the values. Missing entries
are those present in the ground truth but not predicted by the LLM. Accuracy is the percentage of
correctly predicted entries by the LLM divided by the total number of entries.

Document False Positives Wrong Entries Missing Entries Accuracy (%)

Document 0 0 0 3 91.43
Document 1 0 0 0 100.00
Document 2 0 0 1 97.14
Document 3 1 0 1 97.14
Document 4 0 0 0 100.00
Document 5 0 0 1 97.14
Document 6 1 0 1 97.14
Document 7 0 0 0 100.00
Document 8 0 0 0 100.00
Document 9 0 0 0 100.00
Document 10 1 0 1 97.14
Document x x x x x
Document 40 0 0 1 97.14
Document 41 0 0 0 100.00
Document 42 0 0 0 100.00
Document 43 0 0 0 100.00
Document 44 0 0 1 97.14
Document 45 0 0 0 100.00
Document 46 0 0 1 97.14
Document 47 0 0 0 100.00
Document 48 0 0 0 100.00
Document 49 0 0 0 100.00

Average 0.1 0.04 0.76 97.71
Standard Deviation 0.36 0.20 1.10 3.32
95% Confidence Interval 0.00 - 0.20 0.00 - 0.10 0.45 - 1.07 96.77 - 98.66

The results indicate a high overall accuracy of 97.71%, with a standard deviation of 3.32%. The
95% confidence interval for accuracy ranges from 96.77% to 98.66%, demonstrating the reliable
performance of the LLM in this extraction task. These findings showcase the potential of an LLM
when the information is straightforward and easily identifiable.



Chapter 5 RESULTS 45

5.2 Experiment 2: Extraction of Deliverables and Obligations

This experiment aimed to evaluate the performance of various Large Language Models (LLMs) in
extracting contractual obligations. The models were assessed based on their accuracy and amount of
false positives (FP)

5.2.1 Sample Size Calculations

Initially, all models were run for 15 iterations on each contract, yielding an average accuracy. A ques-
tion arises: How many iterations are actually needed? The required number depends on the desired
precision for predicting average performance. While an ideally large sample size would be preferable,
practical constraints such as cost, environmental impact, and time limit feasibility. Our objective is to
distinguish whether model X performs better than model Y. For meaningful comparison, it is essential
that the confidence intervals (CIs) for the overall accuracies of the models do not overlap.
After conducting 15 iterations, the observed average accuracies are presented in Table 4.

Table 4: Performance Comparison of LLMs on Contract Obligations Extraction

Contract Obligations Iterations Model Avg FP Avg Accuracy (%) Std Dev (%) 95% CI (%)

BIOAMBERINC 12 15 GPT4o 16.10 77.22 3.81 [75.29, 79.15]
15 Gemini 10.49 71.11 8.83 [66.64, 75.58]
15 Claude 7.54 59.44 2.93 [57.96, 60.93]

CORALGOLD- 7 15 GPT4o 12.25 66.67 6.97 [63.14, 70.19]
RESOURCES,LTD 15 Gemini 5.17 60.00 12.31 [53.77, 66.23]

15 Claude 4.94 71.43 0.00 [71.43, 71.43]

CytodynInc 27 15 GPT4o 16.71 44.94 7.39 [41.20, 48.68]
15 Gemini 18.28 47.65 7.90 [43.66, 51.65]
15 Claude 4.67 29.38 0.96 [28.90, 29.87]

EMERALDHEALTH 9 15 GPT4o 12.90 75.56 9.58 [70.71, 80.40]
THERAPEUTICSINC 15 Gemini 8.72 85.19 22.87 [73.61, 96.76]

15 Claude 0 88.15 2.87 [86.70, 89.60]

SLINGERBAGINC 10 15 GPT4o 13.95 80.00 9.26 [75.31, 84.69]
15 Gemini 9.27 66.00 9.10 [61.39, 70.61]
15 Claude 6.00 57.33 4.58 [55.02, 59.65]

TRUENORTHENERGYCORP 13 15 GPT4o 14.22 78.97 6.80 [75.53, 82.41]
15 Gemini 6.88 35.90 20.28 [25.63, 46.16]
15 Claude 5.30 38.46 0.00 [38.46, 38.46]

Overall - - GPT4o 14.37 70.56 8.26 [68.85, 72.27]
- Gemini 11.93 60.97 16.18 [57.63, 64.32]
- Claude 5.73 57.37 2.78 [56.79, 57.94]

The highest CI was from Gemini, causing it to overlap with Claude’s CI. Currently, the standard error
for Claude is 0.58%, and for Gemini, it is 5.08%. The difference in average accuracy is 60.97−
57.37 = 3.6. This implies that for the CIs to not overlap, the cumulative standard error must be at
most 3.6. Considering Claude’s already small standard error, attention shifts to Gemini.
The standard error needed from Gemini for the CIs to not overlap is calculated as:

Required SE = 3.6−0.58 = 3.02 (11)



46 Chapter 5 RESULTS

To determine the required sample size for Gemini, we use the formula:

n =

(
Z ×σ

E

)2

(12)

where Z is the z-score corresponding to the 95% confidence level (1.96), σ is the standard deviation of
the measurements (16.18), and E is the desired error margin (3.02). The formula used here also uses
the central limit theorem to determine the smallest sample size needed to ensure a specified margin of
error at a certain confidence level, as discussed in Lehmann (1999) [41]. Calculating the sample size,
we find:

n =

(
1.96×16.18

3.02

)2

≈ 110.26

When this value is divided by the number of contracts (6), the result is approximately 18.37. Round-
ing this up, we determine that 19 iterations are needed. To ensure thoroughness, we conducted 30
iterations of Gemini on all contracts.

5.2.2 Performance Comparison of LLMs on Contract Obligations Extraction

The table 5 provides a comparison of the performance of language models in extracting obligations
from various contracts. The metrics include the number of obligations extracted, the number of
iterations, average false positives (Avg FP), average accuracy (Avg Accuracy %), standard deviation
(Std Dev %), and the 95% confidence interval (95% CI).

Table 5: Performance Comparison of LLMs on Contract Obligations Extraction

Contract Obligations Iterations Model Avg FP Avg Accuracy (%) Std Dev (%) 95% CI (%)

BIOAMBERINC 12 15 GPT4o 16.10 77.22 3.81 [75.29, 79.15]
30 Gemini 10.11 64.44 20.17 [57.23, 71.66]
15 Claude 7.54 59.44 2.93 [57.96, 60.93]

CORALGOLDRESOURCES,LTD 7 15 GPT4o 12.25 66.67 6.97 [63.14, 70.19]
30 Gemini 5.23 60.95 13.49 [56.12, 65.78]
15 Claude 4.94 71.43 0.00 [71.43, 71.43]

CytodynInc 27 15 GPT4o 16.71 44.94 7.39 [41.20, 48.68]
30 Gemini 19.72 48.40 7.21 [45.82, 50.97]
15 Claude 4.67 29.38 0.96 [28.90, 29.87]

EMERALDHEALTH 9 15 GPT4o 12.90 75.56 9.58 [70.71, 80.40]
THERAPEUTICSINC 30 Gemini 8.42 92.22 17.54 [85.94, 98.50]

15 Claude 0 88.15 2.87 [86.70, 89.60]

SLINGERBAGINC 10 15 GPT4o 13.95 80.00 9.26 [75.31, 84.69]
30 Gemini 9.72 69.67 9.99 [66.09, 73.24]
15 Claude 6.00 57.33 4.58 [55.02, 59.65]

TRUENORTHENERGYCORP 13 15 GPT4o 14.22 78.97 6.80 [75.53, 82.41]
30 Gemini 5.66 31.28 15.64 [25.69, 36.88]
15 Claude 5.30 38.46 0.00 [38.46, 38.46]

Overall - - GPT4o 14.37 70.56 8.26 [68.85, 72.27]
- Gemini 12.81 61.16 16.08 [58.81, 63.51]
- Claude 5.73 57.37 2.78 [56.79, 57.94]



Chapter 5 RESULTS 47

The table reveals several insights:
Claude consistently showed the lowest average false positives, suggesting it is the most conservative
model with fewer incorrect extractions. However, its accuracy varied, achieving the highest accuracy
of 88.15% for Emerald Health Therapeutics Inc but only 29.38% for Cytodyn Inc.
Gemini exhibited moderate performance, with a higher number of false positives than Claude but
fewer than GPT4o. Its accuracy was inconsistent, performing best with 92.22% accuracy for Emerald
Health Therapeutics Inc but showing high variability as indicated by the standard deviation.
GPT4o demonstrated the highest average accuracy overall at 70.56%. Despite having the highest
number of false positives, it maintained superior accuracy across most contracts, notably achieving
80.00% for Slingerbag Inc.
GPT4o achieves the highest accuracy but at the cost of more false positives, suggesting a trade-off
between precision and recall. Claude’s conservative approach results in fewer false positives but lower
accuracy in some cases, while Gemini strikes a balance between the two but with greater variability
in performance.
The sensitivity-specificity trade-off presents a central challenge in optimizing these models. Enhanc-
ing the model’s sensitivity increases its ability to capture as many relevant obligations as possible but
also raises the likelihood of false positives. On the other hand, increasing specificity minimizes false
positives but at the risk of missing some obligations. This balance between sensitivity and specificity
often comes down to subjective preference among legal professionals. Some may prioritize accu-
racy and are willing to manage more false positives, while others may prefer fewer interruptions by
inaccuracies, even if it means potentially overlooking some obligations.



48 Chapter 6 DISCUSSION

6 Discussion

This thesis explored the application of Large Language Models (LLMs) for automating the extrac-
tion of information from contracts. Two primary experiments were conducted: one focused on filling
in the Digital Operational Resilience Act (DORA) compliance template, and the other on extracting
obligations from contracts. The results from these experiments demonstrated varying levels of accu-
racy and highlighted the strengths and limitations of different LLMs in this context.

Experiment 1: DORA Compliance Template Extraction
The first experiment evaluated the ability of LLMs to extract information necessary for the DORA
compliance template from contracts. The results indicated a high overall accuracy of 97.71%, with a
95% confidence interval ranging from 96.77% to 98.66%. This demonstrates the LLM’s capability to
perform well when the information is clearly identifiable and contextually straightforward. The low
number of false positives and wrong entries further supports the reliability of the model in extracting
precise information when guided by well-defined templates.

Experiment 2: Extraction of Obligations
The second experiment assessed the performance of LLMs in identifying and extracting obligations
from contracts. This task proved more challenging due to the diverse and complex nature of contrac-
tual language. Among the models tested, GPT-4o achieved the highest average accuracy of 70.56%,
though it also produced the most false positives. Claude 3.5 Sonnet showed the lowest number of
false positives but had a lower overall accuracy. Gemini displayed moderate performance with higher
variability.
The results revealed that while LLMs can effectively identify obligations, there remains a substantial
variability in performance across different contracts and contract types.

6.1 Strengths

6.1.1 Strength of LLMs

The obligation extraction method has shown that Large Language Models (LLMs) possess a foun-
dational ability to extract obligations from contractual documents, achieving a baseline accuracy of
70.56%. However, it is noteworthy that these results were achieved without any specific optimization
of the models or the prompts used for extraction. This wasn’t possible due to the limited dataset
available—only six contracts were used, which constrained the scope for fine-tuning and prompt en-
gineering. Optimizing a model or its prompts based on such a small dataset could lead to overfitting,
where the model is tailored too closely to the dataset characteristics rather than learning to generalize
from broader patterns.
Despite these constraints, the LLMs were able to achieve a commendable level of accuracy. This
highlights the inherent potential of these models to perform even better with proper optimization.
With access to a more extensive and varied dataset, it would be possible to fine-tune the models
specifically for the task of obligation extraction and to refine the prompts to enhance their sensitivity
and specificity. This tailored approach could significantly improve the accuracy and reliability of the
models, making them more effective tools in legal document analysis.



Chapter 6 DISCUSSION 49

6.1.2 Strength of the method

In our exploration of LLMs for extracting obligations from contracts and filling out DORA templates,
the system demonstrated promising levels of accuracy. However, it is of consequence that there will
still be a human in the loop. The role of the LLMs, in this case, is not to replace legal professionals but
to augment their efficiency by pre-filling and highlighting identified obligations. This hybrid approach
ensures that while the LLM handles the bulk of the initial data extraction, legal professionals maintain
oversight to verify the accuracy and relevance of the information, providing a safety net that enhances
reliability.
One of the advantages of using this LLM tool is the ability to meticulously parse every word of a
contract, minimizing the risk of overlooking important but obscure obligations—a task that might
challenge even experienced professionals due to human error or oversight fatigue. This dual-check
system, where both human and machine collaborate, reduces the risk of consequential oversights.
The strengths of our approach to extracting and analyzing contract obligations with Large Language
Models (LLMs) lie in several innovative techniques that enhance the accuracy and reliability of the
system, particularly in legal applications. Firstly, the use of verbatim text as a linking identifier
between predicted and ground truth obligations facilitates clear and objective comparisons. This
method ensures that the evaluations of the LLM’s output are based on exact text segments from the
contracts, enhancing the reliability of automated systems in legal contexts, as you can now robustly
quantify performance and train an algorithm on specific and accurate data.
Additionally, the approach of prompting the model to generate outputs in dictionary formatted strings
enables the consistent parsing of stochastic string data into a structured, deterministic data frame.
This technique ensures that the output remains organized and easy to analyze, despite the inherent
variability in model predictions.
Moreover, the process of matching the predicted verbatim text and ground truth verbatim text to their
corresponding locations in the contract, rather than directly to each other, introduces a robust layer of
validation. This method effectively addresses scenarios where the starts of the annotated and predicted
texts slightly differ but still refer to the same contractual obligation. By anchoring the text to specific
locations within the contract, the likelihood of mismatching similar phrases that belong to different
sections is reduced, thus enhancing the overall accuracy of the extraction process.

6.2 Limitations
6.2.1 Limitations of data

A notable limitation is the quality of datasets. For the DORA project, the information in the contracts
was neither ambiguous nor well hidden, making the extraction task relatively straightforward. This
raises questions about the LLM’s efficacy in real-world scenarios where contract complexities and
nuances play a larger role. Similarly, for the obligations extraction, annotating the data without being
an authority on the subject compromises the reliability of the ground truth dataset. Furthermore, the
small sample size of only six contracts, annotated by a non-expert, limits the generalizability of our
claims.

6.2.2 Limitations of LLMs

Another challenge arises from the inherent variability in outputs caused by the stochastic nature of
Large Language Models (LLMs) and the clarity of the prompts provided. Each time a prompt is
issued, the LLM must discern the obligation importance cutoff, leading to inconsistencies in the



50 Chapter 6 DISCUSSION

outputs. This variability is evident in the results, where the standard deviation significantly fluctuates
by model, ranging from 2.78% to 16.08%.
The limited output token space causes truncation of responses. This typically occurs in cases involv-
ing longer documents with numerous obligations, where the model might not have enough space to
include all relevant information. Such truncation can result in incomplete data capture, affecting the
overall reliability of the information extracted by the LLM. These observations underscore the impor-
tance of tuning the model and managing its output space effectively to handle documents of various
lengths and complexities without compromising the quality of the output.
Finally, the issue of generated false positives presents a challenge. The LLMs sometimes extracted
text that was either not sufficiently important or not actually an obligation. The average number of
false positives produced by each model ranged from 5.73 to 14.37 per contract. In some instances,
particularly in contracts with a low count of actual obligations—such as those containing only 7 or
9—false positives outnumbered the correctly identified obligations.

6.3 Future Work

The exploration of Large Language Models (LLMs) for extracting contractual obligations and filling
out compliance templates has demonstrated promising potential. However, several avenues for im-
provement and development remain open. This section outlines the steps that could be undertaken to
refine and enhance the obligations extraction tool and its application.

6.3.1 Dataset Enhancement and Tool Improvement

A critical step forward would be addressing the dataset limitations encountered in the current study.
To generate large volumes of accurate data, the Manage My Contract (MMC) tool used by Accenture
should be modified. Instead of requiring legal professionals to fill in detailed forms, the tool could be
repurposed into a highlighting utility. Legal professionals would simply read through a contract and
highlight sections they identify as obligations. This approach would automatically capture verbatim
texts of obligations directly from the contract, streamlining the data collection process.
Building on the improved data collection process, a secondary tool could be developed to extract
and pre-fill secondary information for each highlighted obligation. This tool would use an LLM to
predict secondary details (such as due dates, responsible parties, etc.) based on the context of the
highlighted text. The predicted information would then be presented to legal professionals through
a user interface, allowing them to quickly verify and adjust the pre-filled data. This system would
reduce the manual workload while ensuring high data accuracy.

6.3.2 Model Training and Optimization

With a robust dataset in place, the next step would be to fine-tune an LLM specifically for the task of
obligation extraction. This process would involve training the model on a set of prompts paired with
the correct outputs, typically formatted in a JSONL file. Fine-tuning would help the model learn the
nuances of contractual language and improve its ability to identify and extract relevant information
accurately.
In parallel, an examination of common errors made by the LLM could reveal insights into its oper-
ational biases or weaknesses. Addressing these through targeted prompt engineering could further
enhance the model’s performance. By refining how the model is prompted, it is possible to guide its
focus and improve its output accuracy.



Chapter 6 DISCUSSION 51

6.3.3 Handling Output Limitations and Model Biases

One of the issues encountered was the cutoff of LLM outputs when dealing with long contracts.
To mitigate this, the output token size could be dynamically adjusted based on the length of the
contract, under the assumption that longer contracts contain more obligations. For exceptionally
lengthy contracts, developing a method to segment the text without losing contextual integrity would
be desirable. This approach also addresses the potential bias of LLMs towards generating outputs of
a certain length, which can skew the balance between true positives and false positives.
Another innovative approach would involve instructing the LLM to not only output all detected obli-
gations but also rank them based on perceived importance. By assigning a significance score to each
obligation (e.g., on a scale from 1 to 100), the model provides an additional layer of analytical depth.
Legal professionals could then set a threshold score, above which obligations are considered crit-
ical. This method increases the sensitivity of the extraction process, capturing a broader array of
obligations at the risk of higher false positives, which can be controlled by adjusting the importance
threshold.

6.4 Implications for Legal and Compliance Sectors
The findings of this thesis hold implications for automating tasks within the legal and compliance
sectors. First, automating information extraction from contracts can substantially reduce the time
and effort involved in contract management, resulting in notable efficiency gains. Second, employing
automation as a supplementary verification method enhances the reliability of compliance processes,
minimizing human error and ensuring strict adherence to regulatory standards. Finally, the deploy-
ment of large language models (LLMs) facilitates scalability across extensive volumes of contracts,
delivering consistent analysis that would be impractical through manual efforts alone.
The future development of LLM-based tools for legal document analysis promises not only to en-
hance the accuracy and efficiency of obligation extraction but also to redefine how legal professionals
interact with contractual data. By continuously refining the models, improving the data collection
tools, and implementing innovative solutions to handle the complexities of legal texts, these tools
can become indispensable assets in the legal industry. This iterative improvement process, fueled by
advancements in machine learning and natural language processing, will drive the evolution of legal
tech towards more intelligent, responsive, and reliable systems.



52 Chapter 7 CONCLUSION

7 Conclusion
This thesis investigated the automation of information extraction from contracts using Large Lan-
guage Models (LLMs), specifically focusing on how these models can be applied for legal document
analysis. The research explored the effectiveness of state-of-the-art LLMs, such as GPT-4o, Claude
3.5 Sonnet, and Gemini 1.5 Pro, in parsing and extracting data from legal documents. The extraction
tasks were designed to reflect practical applications used in legal workflows, including compliance
with regulatory templates and identification of contractual obligations.
The capabilities of LLMs were demonstrated through accuracy levels in structured extraction tasks.
The first experiment, which involved filling out the DORA compliance template, saw the models
achieving an average accuracy of 97.71%, indicating that LLMs are highly capable of managing tasks
where the required information is explicitly defined and accessible. In tasks involving the extraction
of contractual obligations—a more complex challenge—the models displayed promising results, with
GPT-4o achieving the highest accuracy at 70.56%. This variability in performance across different
models and contract complexities underscores the potential and adaptability of LLMs in handling
complex extraction tasks typical in legal settings.
However, the research also uncovered several limitations inherent to the current generation of LLMs.
The output inconsistency, a byproduct of the stochastic nature of these models, poses a challenge as
it can lead to variable results for identical inputs. This inconsistency can complicate the reliability of
data extraction in legal processes where precision is paramount. Another limitation is the generation
of false positives—instances where models incorrectly identify and extract irrelevant or inaccurately
interpreted information. Such errors necessitate further checks and can complicate the use of extracted
data in sensitive legal contexts. Finally, the constraints imposed by maximum token space limit the
models’ ability to return all information from longer documents, potentially leading to truncated or
incomplete data.
Despite these challenges, this research paves the way for further refinement of LLM applications in
legal contexts. With ongoing advancements in technology and methodologies, there is significant
potential to enhance the reliability, accuracy, and utility of LLMs, making them indispensable tools
in the automation of legal information extraction.



REFERENCES 53

References
[1] Dogu Araci. “Finbert: Financial sentiment analysis with pre-trained language models”. In:

arXiv preprint arXiv:1908.10063 (2019). DOI: https://doi.org/10.48550/arXiv.1908.
10063.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: arXiv preprint arXiv:1409.0473 (2015). DOI:
https://doi.org/10.48550/arXiv.1409.0473.

[3] Solon Barocas and Andrew D Selbst. “Big data’s disparate impact”. In: Calif. L. Rev. 104
(2016), page 671.

[4] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open LLM Leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard. 2023.

[5] Rachel KE Bellamy et al. “AI Fairness 360: An extensible toolkit for detecting and mitigating
algorithmic bias”. In: IBM Journal of Research and Development 63.4/5 (2019), pages 4–1.
DOI: 10.1147/JRD.2019.2942287.

[6] Iz Beltagy, Kyle Lo, and Arman Cohan. “SciBERT: A pretrained language model for scientific
text”. In: arXiv preprint arXiv:1903.10676 (2019).

[7] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. “On
the dangers of stochastic parrots: Can language models be too big?” In: Proceedings of the
2021 ACM conference on fairness, accountability, and transparency. 2021, pages 610–623.
DOI: https://doi.org/10.1145/3442188.3445922.

[8] Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. “Language (technology)
is power: A critical survey of” bias” in nlp”. In: arXiv preprint arXiv:2005.14050 (2020). DOI:
https://doi.org/10.48550/arXiv.2005.14050.

[9] Michael J Bommarito II, Daniel Martin Katz, and Eric M Detterman. “LexNLP: Natural lan-
guage processing and information extraction for legal and regulatory texts”. In: Research hand-
book on big data law. Edward Elgar Publishing, 2021, pages 216–227. DOI: https://doi.
org/10.4337/9781788972826.00017.

[10] Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, and Hannah R. Rothstein. Introduc-
tion to Meta-Analysis. John Wiley & Sons, 2009.

[11] Thorsten Brants, Ashok Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean. “Large language
models in machine translation”. In: Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL). 2007, pages 858–867.

[12] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pages 1877–1901. DOI: 10.48550/arXiv.2005.14165.

[13] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion An-
droutsopoulos. “LEGAL-BERT: The muppets straight out of law school”. In: arXiv preprint
arXiv:2010.02559 (2020). DOI: https://doi.org/10.48550/arXiv.2010.02559.

[14] Wei-Lin Chiang et al. “Chatbot Arena: An Open Platform for Evaluating LLMs by Human
Preference”. In: arXiv preprint arXiv:2403.04132 (2024). DOI: https : / / doi . org / 10 .
48550/arXiv.2403.04132.

https://doi.org/https://doi.org/10.48550/arXiv.1908.10063
https://doi.org/https://doi.org/10.48550/arXiv.1908.10063
https://doi.org/https://doi.org/10.48550/arXiv.1409.0473
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://doi.org/10.1147/JRD.2019.2942287
https://doi.org/https://doi.org/10.1145/3442188.3445922
https://doi.org/https://doi.org/10.48550/arXiv.2005.14050
https://doi.org/https://doi.org/10.4337/9781788972826.00017
https://doi.org/https://doi.org/10.4337/9781788972826.00017
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/https://doi.org/10.48550/arXiv.2010.02559
https://doi.org/https://doi.org/10.48550/arXiv.2403.04132
https://doi.org/https://doi.org/10.48550/arXiv.2403.04132


54 REFERENCES

[15] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. “Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Edited by Alessandro Moschitti,
Bo Pang, and Walter Daelemans. Doha, Qatar: Association for Computational Linguistics, Oct.
2014, pages 1724–1734. DOI: 10.3115/v1/D14-1179. URL: https://aclanthology.org/
D14-1179.

[16] Aakanksha Chowdhery et al. “Palm: Scaling language modeling with pathways”. In: Journal
of Machine Learning Research 24.240 (2023), pages 1–113.

[17] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. 2018. arXiv: 1803.05457 [cs.AI].

[18] Karl Cobbe et al. Training Verifiers to Solve Math Word Problems. 2021. arXiv: 2110.14168
[cs.CL].

[19] Abhishek Dasgupta and Steven Wendler. “AI adoption strategies”. In: Retrieved September 18
(2019), page 2022.

[20] Alex de Vries. “The growing energy footprint of artificial intelligence”. In: Joule 7.10 (2023),
pages 2191–2194. ISSN: 2542-4351. DOI: https://doi.org/10.1016/j.joule.2023.09.
004. URL: https://www.sciencedirect.com/science/article/pii/S2542435123003653.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-training of
deep bidirectional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018). DOI: https://doi.org/10.48550/arXiv.1810.04805.

[22] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. “Fairness
through awareness”. In: Proceedings of the 3rd innovations in theoretical computer science
conference. 2012, pages 214–226. DOI: https://doi.org/10.1145/2090236.2090255.

[23] European Commission. Digital Operational Resilience Act. https://www.eiopa.europa.
eu/digital-operational-resilience-act-dora_en.

[24] Luciano Floridi and Massimo Chiriatti. “GPT-3: Its nature, scope, limits, and consequences”.
In: Minds and Machines 30.4 (2020), pages 681–694. DOI: 10.1007/s11023-020-09548-1.

[25] Leo Gao et al. A framework for few-shot language model evaluation. Version v0.0.1. Sept.
2021. DOI: 10.5281/zenodo.5371628. URL: https://doi.org/10.5281/zenodo.
5371628.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[27] Bryce Goodman and Seth Flaxman. “European Union regulations on algorithmic decision-
making and a “right to explanation””. In: AI magazine 38.3 (2017), pages 50–57. DOI: https:
//doi.org/10.1609/aimag.v38i3.2741.

[28] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large Language Model based Multi-Agents: A Survey of Progress
and Challenges. 2024. arXiv: 2402.01680 [cs.CL]. URL: https://arxiv.org/abs/2402.
01680.

https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/https://doi.org/10.1016/j.joule.2023.09.004
https://doi.org/https://doi.org/10.1016/j.joule.2023.09.004
https://www.sciencedirect.com/science/article/pii/S2542435123003653
https://doi.org/https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/https://doi.org/10.1145/2090236.2090255
https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://www.eiopa.europa.eu/digital-operational-resilience-act-dora_en
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/https://doi.org/10.1609/aimag.v38i3.2741
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680


REFERENCES 55

[29] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. “Don’t stop pretraining: Adapt language models to domains and tasks”. In:
arXiv preprint arXiv:2004.10964 (2020). DOI: https://doi.org/10.48550/arXiv.2004.
10964.

[30] Thilo Hagendorff. “The ethics of AI ethics: An evaluation of guidelines”. In: Minds and ma-
chines 30.1 (2020), pages 99–120. DOI: https://doi.org/10.1007/s11023-020-09517-8.

[31] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring Massive Multitask Language Understanding. 2021. arXiv: 2009.
03300 [cs.CY].

[32] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pages 1735–1780.

[33] Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text Classi-
fication. cite arxiv:1801.06146Comment: ACL 2018, fixed denominator in Equation 3, line 3.
2018. URL: http://arxiv.org/abs/1801.06146.

[34] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. “Clinicalbert: Modeling clinical notes and
predicting hospital readmission”. In: arXiv preprint arXiv:1904.05342 (2019). DOI: https:
//doi.org/10.48550/arXiv.1908.10063.

[35] Anna Jobin, Marcello Ienca, and Effy Vayena. “The global landscape of AI ethics guidelines”.
In: Nature machine intelligence 1.9 (2019), pages 389–399. DOI: https://doi.org/10.
1038/s42256-019-0088-2.

[36] Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361
(2020). DOI: https://doi.org/10.48550/arXiv.2001.08361.

[37] Joshua A Kroll. Accountability in computer systems. Oxford University Press New York, 2020.

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553
(2015), pages 436–444. DOI: 10.1038/nature14539.

[39] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. “BioBERT: a pre-trained biomedical language representation model for biomed-
ical text mining”. In: Bioinformatics 36.4 (2020), pages 1234–1240.

[40] Natalie Leesakul, Anne-Marie Oostveen, Iveta Eimontaite, Max L. Wilson, and Richard Hyde.
“Workplace 4.0: Exploring the Implications of Technology Adoption in Digital Manufacturing
on a Sustainable Workforce”. In: Sustainability 14.6 (2022). ISSN: 2071-1050. DOI: 10.3390/
su14063311. URL: https://www.mdpi.com/2071-1050/14/6/3311.

[41] E. L. Lehmann. Elements of Large-Sample Theory. Springer New York, 1999.

[42] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic
Human Falsehoods. 2022. arXiv: 2109.07958 [cs.CL].

[43] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv preprint
arXiv:1907.11692 (2019). DOI: https://doi.org/10.48550/arXiv.1907.11692.

[44] Gary Marcus and Ernest Davis. Rebooting AI: Building artificial intelligence we can trust.
Vintage, 2019. DOI: https://doi.org/10.48550/arXiv.2005.14050.

[45] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. “Re-
current neural network based language model.” In: Interspeech. Volume 2. 3. Makuhari. 2010,
pages 1045–1048.

https://doi.org/https://doi.org/10.48550/arXiv.2004.10964
https://doi.org/https://doi.org/10.48550/arXiv.2004.10964
https://doi.org/https://doi.org/10.1007/s11023-020-09517-8
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1801.06146
https://doi.org/https://doi.org/10.48550/arXiv.1908.10063
https://doi.org/https://doi.org/10.48550/arXiv.1908.10063
https://doi.org/https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/su14063311
https://doi.org/10.3390/su14063311
https://www.mdpi.com/2071-1050/14/6/3311
https://arxiv.org/abs/2109.07958
https://doi.org/https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/https://doi.org/10.48550/arXiv.2005.14050


56 REFERENCES

[46] Seoungkwon Min and Boyoung Kim. “Adopting Artificial Intelligence Technology for Net-
work Operations in Digital Transformation”. In: Administrative Sciences 14.4 (2024). ISSN:
2076-3387. DOI: 10.3390/admsci14040070. URL: https://www.mdpi.com/2076-3387/
14/4/70.

[47] Brent Daniel Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter, and Luciano
Floridi. “The ethics of algorithms: Mapping the debate”. In: Big Data & Society 3.2 (2016),
page 2053951716679679. DOI: https://doi.org/10.1177/205395171667967.

[48] Philipp Mondorf and Barbara Plank. Beyond Accuracy: Evaluating the Reasoning Behavior
of Large Language Models – A Survey. 2024. arXiv: 2404.01869 [cs.CL]. URL: https:
//arxiv.org/abs/2404.01869.

[49] Minh-Tien Nguyen, Duy-Hung Nguyen, Shahab Sabahi, Hung Le, Jeff Yang, and Hajime
Hotta. “When Giant Language Brains Just Aren’t Enough! Domain Pizzazz with Knowledge
Sparkle Dust”. In: (May 2023). DOI: https://doi.org/10.48550/arXiv.2305.07230.

[50] Safiya Umoja Noble. “Algorithms of oppression: How search engines reinforce racism”. In:
Algorithms of oppression. New York university press, 2018. DOI: https://doi.org/10.
18574/nyu/9781479833641.001.0001.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. “Improving language
understanding by generative pre-training”. In: (2018).

[52] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
“Language models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019), page 9.

[53] Jack W Rae et al. “Scaling language models: Methods, analysis & insights from training go-
pher”. In: arXiv preprint arXiv:2112.11446 (2021). DOI: https://doi.org/10.48550/
arXiv.2112.11446.

[54] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by
back-propagating errors”. In: Nature 323.6088 (1986), pages 533–536. DOI: https://doi.
org/10.1038/323533a0.

[55] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WINOGRANDE:
An Adversarial Winograd Schema Challenge at Scale. 2019. arXiv: 1907.10641 [cs.CL].

[56] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural Networks
61 (2015), pages 85–117. DOI: https://doi.org/10.1016/j.neunet.2014.09.003.

[57] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. “Green ai”. In: Communications
of the ACM 63.12 (2020), pages 54–63. DOI: https://doi.org/10.1145/3381831.

[58] Claude Elwood Shannon and Warren Weaver. The mathematical theory of communication, by
Claude E. Shannon and Warren Weaver. University of illinois Press, 1949.

[59] Julia Siderska. “The Adoption of Robotic Process Automation Technology to Ensure Business
Processes during the COVID-19 Pandemic”. In: Sustainability 13.14 (2021). ISSN: 2071-1050.
DOI: 10.3390/su13148020. URL: https://www.mdpi.com/2071-1050/13/14/8020.

[60] Shaden Smith et al. “Using deepspeed and megatron to train megatron-turing nlg 530b, a large-
scale generative language model”. In: arXiv preprint arXiv:2201.11990 (2022).

[61] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and policy considerations
for deep learning in NLP”. In: arXiv preprint arXiv:1906.02243 (2019). DOI: https://doi.
org/10.48550/arXiv.1906.02243.

https://doi.org/10.3390/admsci14040070
https://www.mdpi.com/2076-3387/14/4/70
https://www.mdpi.com/2076-3387/14/4/70
https://doi.org/https://doi.org/10.1177/205395171667967
https://arxiv.org/abs/2404.01869
https://arxiv.org/abs/2404.01869
https://arxiv.org/abs/2404.01869
https://doi.org/https://doi.org/10.48550/arXiv.2305.07230
https://doi.org/https://doi.org/10.18574/nyu/9781479833641.001.0001
https://doi.org/https://doi.org/10.18574/nyu/9781479833641.001.0001
https://doi.org/https://doi.org/10.48550/arXiv.2112.11446
https://doi.org/https://doi.org/10.48550/arXiv.2112.11446
https://doi.org/https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1907.10641
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1145/3381831
https://doi.org/10.3390/su13148020
https://www.mdpi.com/2071-1050/13/14/8020
https://doi.org/https://doi.org/10.48550/arXiv.1906.02243
https://doi.org/https://doi.org/10.48550/arXiv.1906.02243


REFERENCES 57

[62] Ilya Sutskever, James Martens, and Geoffrey E Hinton. “Generating text with recurrent neural
networks”. In: Proceedings of the 28th international conference on machine learning (ICML-
11). 2011, pages 1017–1024.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural infor-
mation processing systems 30 (2017). DOI: https://doi.org/10.48550/arXiv.1706.
03762.

[64] Paul Voigt and Axel Von dem Bussche. “The eu general data protection regulation (gdpr)”.
In: A Practical Guide, 1st Ed., Cham: Springer International Publishing 10.3152676 (2017),
pages 10–5555.

[65] Carole-Jean Wu et al. Sustainable AI: Environmental Implications, Challenges and Opportu-
nities. 2022. arXiv: 2111.00364 [cs.LG]. URL: https://arxiv.org/abs/2111.00364.

[66] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. “Bloomberggpt: A large language
model for finance”. In: arXiv preprint arXiv:2303.17564 (2023). DOI: https://doi.org/10.
48550/arXiv.2303.17564.

[67] Wonjin Yoon, Jinhyuk Lee, Donghyeon Kim, Minbyul Jeong, and Jaewoo Kang. “Pre-trained
language model for biomedical question answering”. In: Joint European conference on ma-
chine learning and knowledge discovery in databases. Springer. 2019, pages 727–740.

[68] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
Machine Really Finish Your Sentence? 2019. arXiv: 1905.07830 [cs.CL].

[69] Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. When
Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset.
2021. DOI: https://doi.org/10.48550/arXiv.2104.08671. arXiv: 2104.08671 [cs.CL].

[70] Shoshana Zuboff. “The age of surveillance capitalism”. In: Social theory re-wired. Routledge,
2023, pages 203–213. DOI: https://doi.org/10.48550/arXiv.2005.14050.

https://doi.org/https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/2111.00364
https://arxiv.org/abs/2111.00364
https://doi.org/https://doi.org/10.48550/arXiv.2303.17564
https://doi.org/https://doi.org/10.48550/arXiv.2303.17564
https://arxiv.org/abs/1905.07830
https://doi.org/https://doi.org/10.48550/arXiv.2104.08671
https://arxiv.org/abs/2104.08671
https://doi.org/https://doi.org/10.48550/arXiv.2005.14050


58 APPENDICES

Appendices



APPENDICES 59

Table 6: Performance metrics of the contracts (Part 1). False positives are entries incorrectly created
by the LLM. Wrong entries are those that matched the template codes but not the values. Missing
entries are those present in the ground truth but not predicted by the LLM. Accuracy is the percentage
of correctly predicted entries by the LLM divided by the total number of entries.

Document False Positives Wrong Entries Missing Entries Accuracy (%)

Document 0 0 0 3 91.43
Document 1 0 0 0 100.00
Document 2 0 0 1 97.14
Document 3 1 0 1 97.14
Document 4 0 0 0 100.00
Document 5 0 0 1 97.14
Document 6 1 0 1 97.14
Document 7 0 0 0 100.00
Document 8 0 0 0 100.00
Document 9 0 0 0 100.00
Document 10 1 0 1 97.14
Document 11 0 1 3 88.57
Document 12 0 0 0 100.00
Document 13 0 0 0 100.00
Document 14 0 0 0 100.00
Document 15 0 0 1 97.14
Document 16 0 0 0 100.00
Document 17 0 0 0 100.00
Document 18 0 0 1 97.14
Document 19 0 0 2 94.29
Document 20 0 0 2 94.29
Document 21 0 0 0 100.00
Document 22 0 0 1 97.14
Document 23 0 0 0 100.00
Document 24 0 0 0 100.00
Document 25 0 0 1 97.14
Document 26 0 0 0 100.00
Document 27 0 0 1 97.14
Document 28 0 0 0 100.00
Document 29 2 0 2 94.29



60 APPENDICES

Table 7: Performance metrics of the contracts (Part 2). False positives are entries incorrectly created
by the LLM. Wrong entries are those that matched the template codes but not the values. Missing
entries are those present in the ground truth but not predicted by the LLM. Accuracy is the percentage
of correctly predicted entries by the LLM divided by the total number of entries.

Document False Positives Wrong Entries Missing Entries Accuracy (%)

Document 30 0 0 1 97.14
Document 31 0 1 1 94.29
Document 32 0 0 0 100.00
Document 33 0 0 1 97.14
Document 34 0 0 4 88.57
Document 35 0 0 0 100.00
Document 36 0 0 0 100.00
Document 37 0 0 5 85.71
Document 38 0 0 0 100.00
Document 39 0 0 1 97.14
Document 40 0 0 1 97.14
Document 41 0 0 0 100.00
Document 42 0 0 0 100.00
Document 43 0 0 0 100.00
Document 44 0 0 1 97.14
Document 45 0 0 0 100.00
Document 46 0 0 1 97.14
Document 47 0 0 0 100.00
Document 48 0 0 0 100.00
Document 49 0 0 0 100.00

Average 0.1 0.04 0.76 97.71
Standard Deviation 0.36 0.20 1.10 3.32
95% Confidence Interval 0.00 - 0.20 0.00 - 0.10 0.45 - 1.07 96.77 - 98.66



APPENDICES 61

Table 8: Detailed Performance Metrics of Documents

Document False Positives No-Match Missing

Document 0 Truth: No — Out-
put: Commercial
Bank

Type of the entity maintaining the register of infor-
mation

Document 1 Truth: 75 days —
Output: 150 days,
Truth: 150 days —
Output: 75 days

Document 2 Currency, Nature of the financial entity
Document 3 Notice period for the financial entity, Type of the

entity maintaining the register of information, No-
tice period for the ICT third-party service provider

Document 8 Notice period for the financial entity, Notice period
for the ICT third-party service provider

Document 10 Notice period for the financial entity, Type of the
entity maintaining the register of information, No-
tice period for the ICT third-party service provider

Document 14 Type of the entity maintaining the register of infor-
mation

Document 15 Type of the entity maintaining the register of infor-
mation

Document 16 Currency, Type of the entity maintaining the regis-
ter of information

Document 17 Currency, Type of the entity maintaining the regis-
ter of information, Contractual arrangement refer-
ence number

Document 19 Currency
Document 20 Type of the entity maintaining the register of infor-

mation
Document 22 Country of issuance of the other code to iden-

tify the ICT third-party service provider, Recovery
time objective of the function, Other code to iden-
tify the ICT third-party service provider, Type of
the entity maintaining the register of information

Document 23 Notice period for the financial entity, Notice period
for the ICT third-party service provider

Document 25 Type of the entity maintaining the register of infor-
mation

Document 26 Country of issuance of
the other code to identify
the ICT third-party ser-
vice provider, Other code
to identify the ICT third-
party service provider

Currency, Country of issuance of the other code
to identify the ICT third-party service provider,
Other code to identify the ICT third-party service
provider, Contractual arrangement reference num-
ber


	Acknowledgements
	Abstract
	Introduction
	Research Question

	Background Literature
	Evolution of Language Models in NLP
	Generative Pre-trained Transformers (GPT)
	Domain-Specific Adaptations of LLMs
	LLMs in Legal Applications

	Methodology
	Introduction to Large Language Models (LLMs)
	Foundations of Large Language Models
	Neural Networks
	Transformer Architecture a quick overview
	Input
	Encoder Decoder
	Attention mechanism
	Multi-Head Attention
	Positional Encoding

	Training and Optimization of LLMs
	Pre-training
	Fine-tuning
	State-of-the-art models
	Limitations of Large Language Models
	Impact Analysis
	Ethical Considerations


	Experimental Setup
	Experiment 1: DORA Compliance Template Extraction
	Contract Generation
	Input data
	Prompt
	Parsing the Output String

	Experiment 2: Extraction of Deliverables and Obligations
	Dataset
	Annotation
	Prompt
	Parsing the Output String
	Matching LLM Predictions with Ground Truth
	Evaluation


	Results
	Experiment 1: DORA Compliance Template Extraction
	Sample size calculations
	Performance of the DORA Template Entry Filler

	Experiment 2: Extraction of Deliverables and Obligations
	Sample Size Calculations
	Performance Comparison of LLMs on Contract Obligations Extraction


	Discussion
	Strengths
	Strength of LLMs
	Strength of the method

	Limitations
	Limitations of data
	Limitations of LLMs

	Future Work
	Dataset Enhancement and Tool Improvement
	Model Training and Optimization
	Handling Output Limitations and Model Biases

	Implications for Legal and Compliance Sectors

	Conclusion
	Appendices

