
Fish Location Forecasting in the Norwegian

Ocean using Deep Learning Techniques

Bachelor’s Project Thesis
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Abstract: Successful forecasting can increase fishing efficiency by yielding larger catches, lowering
fuel consumption, and reducing environmental pollution. This study aims to develop a neural
network-based machine learning model capable of predicting the locations where fish will be
present in the following 4 days, given the environmental features and heuristics from the previous
4 days. Datasets in matrix formats consisting of reported catch quantities, sea salinity values,
and sea surface temperature are used to train the models. The U-Net model architecture is the
focus of the study, as it is specialized for mapping matrices to matrices and has shown good
predictive performance for tasks involving geo-spatial data. The results showed that the trained
models performed poorly on test data, failing to predict future fishing locations accurately. The
shortcomings of the models mainly resulted from the sparsity of the catch dataset and the inability
to process temporal data natively. Despite these limitations, the study highlights the potential for
future research to explore other advanced neural network architectures, such as recurrent U-Nets.
Future research should also explore using more comprehensive ocean data collection methods,
such as using echo-sounding data, which could mitigate sparsity, enhance model performance, and
contribute to sustainable fishing practices.

1 Introduction

The fishing industry is one of the largest meat sup-
pliers worldwide, with ocean-based food production
accounting for 17% of all edible meat production.
The main two sectors of food production are wild
fisheries and mariculture, with wild fisheries ac-
counting for 84% of all ocean food production in
2020. Furthermore, as the human population will
increase in size throughout the century, demand for
food will increase, resulting in an increased need
for ocean-based food, with estimates that yields
of sea-food may increase by 36 − 74% (Christo-
pher, Ling, Stefan, Á., Free, Froehlich, Golden,
Ishimura, Maier, Macadam-Somer, Mangin, Mel-
nychuk, Miyahara, De Moor, Naylor, Nøstbakken,
Ojea, O’Reilly, Parma, Plantinga, Thilsted, and
Lubchenco, 2020). Increasing the amount of fish
caught and produced is a challenge that must be
faced. However, we must also ensure we do so in a
sustainable manner.

This challenge ties into the UN sustainability
goals for 2030, of which 4 goals are highly rele-
vant. These are the 2nd, 12th, 13th and 14th goals,
which aim to end world hunger, ensure sustainable
consumption and production patterns, combat cli-

mate change and sustainably use ocean resources
(United Nations and Development, 2015). Catch-
ing more fish would work towards combating world
hunger, but we must also be wary of overfishing,
which has already had significant consequences. No-
tably, overfishing and fish habitat destruction by
harmful fishing equipment have already depleted
a third of worldwide fish stocks (Sumaila and Tai,
2020). As such, there is a delicate balance between
supplying fish to the world’s population while sus-
tainably using ocean resources.

Furthermore, in wild fisheries, fuel consumption
is an added challenge. Fishing generally involves
a significant amount of searching for optimal lo-
cations where catch can be maximized, leading to
more fuel consumption and decreased overall effec-
tiveness. This results in more greenhouse gasses
being released into the atmosphere, further exacer-
bating the effects of climate change (Kabir, Habiba,
Khan, Shah, Rahim, los Rios-Escalante, Farooqi,
Ali, and Shafiq, 2023).

Mitigating this trial-and-error fishing component
would reduce fuel consumption, thereby decreasing
pollution. One way this could be achieved is by
developing methods capable of successfully predict-
ing the fish’s location before catches are carried
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out. Furthermore, if the quantity of fish at each
location is also predicted, vessels could plan their
trips before leaving so that fuel consumption is
minimized. At the same time, the amount of fish
caught could be more easily regulated and in line
with sustainability goals.

This goal is precisely the motivation for the
FishAI: Sustainable Commercial Fishing challenge,
issued in 2022 at the Nordic AI Meet : develop
machine learning (ML) models capable of pre-
dicting fishing locations, such that fishing vessels
may plan fishing routes to increase catch effective-
ness and decrease unnecessary fuel consumption
(Schmidt Nordmo, Kvalsvik, Kvalsund, Hansen,
and Riegler, 2022). The challenge was organized by
the Norwegian Artificial Intelligence Research Con-
sortium (NORA) and Nordic Machine Intelligence
(NMI) and came with three datasets. The primary
dataset consisted of historical catch notes contain-
ing where and when fish has been caught and the
quantity. Additional supplementary datasets also
provided in the competition consisted of sea sur-
face temperature data, sea salinity data, and moon
phase data.

This project aims to tackle this challenge in a
novel way compared to previous approaches sub-
mitted to the competition. To achieve this, these
existing models must first be examined so that we
can identify their strengths and limitations. The
next section will provide an overview of these mod-
els, their methodologies, and results.

1.1 State of the Art

Four teams who entered the FishAI competition
had papers published on their approaches. These
teams generally used traditional ML methods with
varying success. The teams implemented a mix of
classifiers and regression models. The regression
models aim to predict the quantity of fish in each
catch field, which is specified in the catch note
dataset. The field with the highest amount of
predicted fish would then be returned. Conversely,
the classifiers aim to predict the catch field with
the most fish directly. The primary methodologies
of each paper and their performances will briefly
be covered.

The first paper, Clusters and Traveling Fish-
ermen, describes using random forest methods to
develop regression models and classifiers. The mod-
els were tested against a naive model, which ”lists
the catch field with the most fish on the analyzed
day and month for each year and then takes the
mode of that list”. The authors report that neither
the regression models nor the classifiers manage to
outperform the naive model (Linkiö, Lahtinen, and
Kolmonen, 2022).

The second paper, The Lodestar fishing platform,

focused on implementing a regression model using
XGBRegressor, a regression-specific implementa-
tion of XGBoost. Their baseline model is a simple
algorithm that returns the location with the highest
reported amount of fish one year before the queried
date. Again, the authors report that their base-
line outperformed the primary model, achieving
a 67% accuracy in predicting the correct location
compared to the regression model accuracy of 5%
(Dammen, Brekke, Hole, Løddesøl, Roaldsnes, and
Ortheden, 2022).

The third paper, FishMAZE: Fish Monitoring
and AI-Based Zone Evaluation, implemented multi-
ple regression models and reported that a random
forest model performed best. However, they did not
compare their model to any baseline and reported
that their model achieved an average root-mean-
squared error (RMSE) of 8.6830 (Lambon, Sagun,
Saet, Maranon, and Berlin, 2022).

The fourth and final paper, Satellite ocean data
can inform precision fishing, implements a random
forest model but does not report any metrics, nor
is the model compared to any baseline. However,
the author states that the model did not predict
locations of maximum catch (Syms, 2022).

Overall, we see a similar trend for all papers
submitted to the competition, namely that they
all use some tree-based model. The primary catch-
note dataset is tabular, and tree-based methods
perform well in such cases. However, none of the
implemented models performed well, as the com-
petition’s winner was the Lodestar paper, whose
baseline non-ML model performed best (Consor-
tium, 2023).

Another area of interest is which predictive fea-
tures these competing teams used. Dammen et al.
(2022) did not use any of the auxiliary salinity and
temperature datasets, instead relying purely on the
catch notes, but which exact features were used
is not specified. Linkiö et al. (2022) also did not
utilize these datasets, however Lambon et al. (2022)
and Syms (2022) did make use of them. Which
features are relevant to this study will be further
discussed in the theoretical framework section.

1.2 Contributions

The shortcomings of the ML methods used in the
published FishAI challenge papers highlight the
room for improvement. While all these papers have
focused on traditional ML methods, this project
will aim to develop better-performing models using
Deep Learning (DL) methods. Specifically, this
project will cover the application of U-Nets, a fully
convolutional neural network architecture, to the
issue of predicting optimal fishing locations.

Using the U-Net, which was initially developed
for image segmentation (Ronneberger, Fischer, and
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Brox, 2015), for fish location prediction is a novel
approach that is promising due to its ability to cap-
ture spatial relationships present in matrices. The
tabular catch note dataset will be restructured into
matrices to use this ability to detect spatial rela-
tionships, an approach not taken by any published
entries in the FishAI competition. Transforming
the catch notes into matrices allows the catch notes
and auxiliary datasets to be easily combined, as
the latter are already in matrix form.

The project’s research question is: What is the
performance of U-Net models for predicting
the location of caught fish using historical
catch data and environmental data? By lever-
aging DL methods, the project aims to surpass the
performance of traditional ML methods for geo-
graphical prediction problems. If successful, the
implications are that the fishing industry may be-
come more sustainable by using forecasting models
for optimal route planning, minimizing the harmful
environmental impact of needless fuel consumption.
Within the field of AI, the approach could be gen-
eralized to other types of geographical forecasting
problems that deal with multiple data types.

2 Theoretical Framework

The following section examines which features are
relevant to predicting fish migration patterns. Ad-
ditionally, it introduces the U-Net architecture, its
applications, and how they relate to the study.

2.1 Relevance of salinity and sea sur-
face temperature datasets

As mentioned in the introduction, not all FishAI
contestants used the auxiliary salinity and tem-
perature datasets. However, these may prove
to be beneficial. The FishAI competition notes
that sea surface temperature (SST) and sea salin-
ity both influence the development of micro-algae
(Schmidt Nordmo et al., 2022). This has also
been further corroborated by later studies, find-
ing that, while the effects of salinity and temper-
ature vary from species to species, these factors
can significantly influence micro-algae growth rate
(Ivošević DeNardis, Novosel Vlašić, Mǐsić Radić,
Zem la, Lekka, Demir-Yilmaz, Formosa-Dague,
Levak Zorinc, Vrana, Juraić, Horvat, Žutinić,
Gligora Udovič, and Gašparović, 2024) (Kholssi,
Lougraimzi, and Moreno-Garrido, 2023).

As micro-algae are a primary source of nutri-
ents for aquatic animals (Sheikhzadeh, Soltani, Hei-
darieh, and Ghorbani, 2024), SST and salinity may
then influence the movements of fish species as they
search for food. A paper from 2022 on forecast-
ing the migration patterns of North Pacific spiny

dogfish found SST correlated with migration pat-
terns (Kanamori, Yano, Okamura, and Yagi, 2024).
Specifically, the authors found that the spatial and
spatio-temporal effects of (SST) influenced the mi-
gratory season of spiny dogfish. Furthermore, a
paper from 2009 found that salinity may affect the
movements of Bonnetheads, noting that the effect
of salinity might be more pronounced during peri-
ods of significant changes in salinity levels (Ubeda,
Simpfendorfer, and Heupel, 2009). This motivates
our use of these auxiliary datasets.

2.2 Introduction to the U-Net Ar-
chitecture

The U-Net architecture is a fully convolutional neu-
ral network (CNN) architecture, initially developed
for biomedical image segmentation (Ronneberger
et al., 2015). While image segmentation is the task
of performing pixel-wise classification, the architec-
ture has also been used for pixel-wise regression
tasks, where it has been found to outperform state-
of-the-art models (Yao, Zeng, Lian, and Tang, 2018)
(Kassim, Glinskii, Glinsky, Huxley, Guidoboni, and
Palaniappan, 2019). The architecture can be seen
in Figure 2.1.

2.2.1 Overview of the U-Net architecture

The name ”U-Net” comes from the U-shape visible
in Figure 2.1. The architecture resembles encoder-
decoder architectures in that inputs are progres-
sively passed through alternating convolutional and
downsampling layers, followed by alternating convo-
lutional and upsampling layers. The encoder part
of the network here is the downward pass relative to
the U-shape, where the input is contracted, i.e. the
spatial dimension is reduced, and the feature depth
is increased. The decoder part of the network is
the upward pass, where the spatial dimensions are
increased again. This allows inputs and outputs
to retain the same shape, facilitating the use of U-
Nets for tasks mapping matrices to matrices. This
report uses the term encoder block for a group of
two convolutional layers and one max-pooling layer,
and decoder block for a group of two convolutional
layers and one transpose convolutional layer.

The differentiating factor between an encoder-
decoder network and the U-Net is its use of ”skip
connections.” These connections pass the output
of each encoder block to its corresponding decoder
block, where it is concatenated with the output
of the previous decoder block. This permits the
network to retain information from earlier points in
the network and reduces the issue of vanishing gra-
dients (Kugelman, Allman, Read, Vincent, Tong,
Kalloniatis, Chen, Collins, and Alonso-Caneiro,
2022).
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Figure 2.1: U-Net architecture overview (Ronneberger et al., 2015)

Figure 2.2: Attention U-Net architecture overview (Oktay et al., 2018)

In addition to the standard U-Net, a variant
is the attention U-Net (Oktay et al., 2018). The
critical difference between the standard U-Net and
the attention U-Net is the use of attention gates.
These attention gates process the inputs to the
skip connections, as shown in Figure 2.2. The
attention mechanism allows the network to focus on
the spatial regions in a matrix most relevant to the
output and ignore unimportant regions Kugelman
et al. (2022).

In this project, both of these variants of U-Nets
will be used to predict optimal fishing locations.

2.2.2 Application of the U-Net architecture
for predictive fishing models

As the U-Net and its derivatives work with matri-
ces and the primary catch note dataset is tabular,
it must be converted to a matrix format. As the
salinity and SST datasets are already in matrix for-
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mats, where each cell corresponds to a coordinate,
the tabular data will also be transformed into this
structure, with each cell containing catch weight
values corresponding to the coordinate it repre-
sents. The strengths of CNNs in detecting spatial
patterns can then be used, and with the attention
mechanisms, the attention U-Net can identify the
spatial regions most important to the output. By
performing this transformation, the catch notes,
SST, and salinity datasets can be combined into a
higher dimensional tensor, allowing the models to
account for the influence of all three variables at
once.

Using the U-Net for forecasting geospatial data
is a recent idea. In 2022, Fernández, Abdellaoui,
and Mehrkanoon (2022) used U-Net architecture
variants to predict future values of various coastal
sea elements. These include sea salinity, ocean
surface height, and water velocity. Additionally,
Trebing, Staǹczyk, and Mehrkanoon (2021) used
an attention U-Net for precipitation nowcasting,
while Yang and Mehrkanoon (2022) used an archi-
tecture combining transformers with U-Nets for
precipitation nowcasting and cloud coverage fore-
casting. All these papers outperformed the baseline
persistence algorithm, which uses the last image in
a series as the predicted output. Lastly, Aurora, a
model developed by researchers at Microsoft, uses
a transformer U-Net at its core. Aurora is capable
of forecasting a wide variety of atmospheric data,
including air pollution levels, wind velocities, and
air pressure levels (Bodnar, Bruinsma, Lucic, Stan-
ley, Brandstetter, Garvan, Riechert, Weyn, Dong,
Vaughan, Gupta, Tambiratnam, Archibald, Heider,
Welling, Turner, and Perdikaris, 2024). These ex-
amples highlight the applicability of the U-Net and
its variants for geospatial modelling.

2.3 Summary

The aim is to implement models that can learn to
use the spatial patterns present in the transformed
catch notes, salinity, and SST data to predict opti-
mal fishing locations using the U-Net and attention
U-Net models. This is a novel approach to the
FishAI challenge and a potential improvement over
existing, more traditional ML methods. The fol-
lowing section will cover the methodologies used to
implement and evaluate the models, including data
pre-processing steps, model design, and evaluation
metrics.

3 Methods

The following section will cover the methodologies
used to implement and evaluate the models, includ-
ing data pre-processing steps, model design, and
evaluation metrics.

3.1 Data

The primary data used are catch notes, containing
a plethora of information relating to fish sold in
Norway from 2000 to 2022 (Schmidt Nordmo et al.,
2022), which is made available by the Norwegian
Directorate of Fisheries. Auxiliary datasets used
are sea surface temperature data, published by the
National Oceanic and Atmospheric Administration
(Reynolds, Smith, Liu, Chelton, Casey, and Schlax,
2007), and sea salinity data, published by NASA
(Remote Sensing Systems, 2019).

Catch notes refer to the sales slips filled out when
caught fish is landed at a landing station. These
slips contain information relevant to the catch, in-
cluding information about the fishing vessel, the
location of the landing station, and information
about the catch itself. Sea surface temperature
(SST) and salinity data consist of temperature mea-
surements obtained via satellite. The SST data
consists of daily measurements from 1982 to the
present day, whereas the salinity data consists of
monthly averages from April 2015 to the present
day. The SST and salinity datasets consist of ma-
trices, whereas the catch note dataset is tabular
and has an extensive list of approximately 130 data
fields (Schmidt Nordmo et al., 2022). Therefore,
the data must be inspected for the most important
variables relevant to the project.

3.2 Data inspection

The most critical data variables in the catch notes
dataset are shown in Table 3.1. The names of
the variables are listed in their original Norwegian
names, as they appear in the dataset.

Table 3.1: Relevant data in the catch note
dataset.

Data type Variable name

Location Lat (lokasjon)
Lon (lokasjon)
Lat (hovedomr̊ade)
Lon (hovedomr̊ade)
Hovedomr̊ade

Catch weight Produktvekt
Fish species Art - gruppe
Catch date Siste fangstdato

The location data contains five variables of inter-
est, as named in Table 3.1. Four of these variables
contain coordinate data; however, the contents of
these variables differ in completeness and specificity.
The ”Lat/Lon (hovedomr̊ade)” and ”Hovedomr̊ade”
variables specify the ’main area’ in which the landed
fish was caught, whereas the ”Lat/Lon (lokasjon)”
variables are meant to specify more specific coordi-
nates inside this main area at which the fish was
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Figure 3.1: All reported catch coordinates from
the training set of the catch note dataset.

caught. An inspection of the data reveals that
while the ”Hovedomr̊ade” variables are completely
filled out, values are missing from the more specific
”Lat/Lon (lokasjon)” variable. All other variables
in the table do not contain any missing values. The
”produktvekt” variable contains the net weight of
the landed fish in kilograms. ”Art - gruppe” de-
notes the species of the landed fish, grouped into
general species categories, such as ”cod.” The last
variable, ”Siste fangstdato,” denotes the last date
of catch for the trip in which the landed fish was
caught. Notably, this means that the date does
not refer to the exact day the fish was caught but
when the fishing vessel was last actively fishing.

While the temporal resolution of the SST and
salinity data differ, both datasets have the same
spatial resolution. Namely, the data consists of ma-
trices, where the dimensions correspond to latitude
and longitude. The dimensionality of the matrices
is 720x1440 for latitude and longitude, respectively,
resulting in a spatial resolution of 0.25 deg per
value. Data inspection revealed noticeable miss-
ing values. Firstly, the month of July 2019 is not
present in the salinity data dataset. Secondly, both
datasets contain missing values on specific ocean
coordinates, possibly due to the spatial resolution
needing to be finer. The salinity dataset has miss-
ing values, especially near country coastlines and
Arctic regions. These missing values must be filled
in, as most reported catch coordinates are near
land. Figure 3.1 shows the span of the coordinates
in the training data split of the catch note dataset.

3.3 Data pre-processing

To avoid using extrapolated salinity values for most
of our training data, only data within the interval
specified by the salinity data is used, i.e. from
April 2015 to January 2022. The catch note dataset
within this period was split into training, validation,
and test sets, using a 70/15/15 split.

As the methods used in this project have been
developed for processing matrix data, where the
spatial structure is relevant, the catch note dataset
will be transformed from tabular data into matri-
ces. As the salinity and sea surface temperature
datasets are already in matrix form, where each cell
corresponds to a geographical location, the same
spatial resolution of 0.25 deg per cell will be used
for the catch matrices.

An examination of the coordinates in the catch
notes revealed that some were on land. These were
removed from the dataset. Additionally, the catch
locations reported in the dataset varied from the
southern tip of Greenland to Northern Russia. Us-
ing all locations would result in very sparse matrices
spanning a huge area, leading to low-frequency co-
ordinates with less than 100 reports being removed
from the dataset. The remaining coordinates fit
within the intervals [50.25, 82] for latitudes and
[1.75, 33.5] for longitudes, as shown on Figure 3.2.

The resulting catch note dataset thus consisted of
128×128 matrices for each day in the dataset, where
the cells contain values representing the amount
of fish caught on the coordinate corresponding to
the cell. The values in the salinity and sea surface
temperature data corresponding to this region were
then retrieved, and the three maps were collected
into one three-dimensional tensor, where one such
tensor corresponds to one day. As the salinity
dataset contained monthly averages, these matrices
were repeated for every day in the month they were
measured in, i.e. so every 3-dimensional tensor
representing a day in a certain month had the same
salinity values. Only two days in the used time
span were not present in the catch note dataset. In
these cases, zero values were filled in every cell for
the catch matrices.

As the model does not have any recurrent con-
nections, the temporal nature of the data had to be
represented spatially. This is because if we were to
take, e.g., two 3-dimensional tensors and combine
them into a larger 4 dimensional tensor, then pass
it to the network, each day would be processed
independently of each other. If we input two days
and output two days, then the (n− 2)th day maps
to the nth day and the (n−1)th day to the (n+1)th
day, without considering the surrounding days in
its predictions. That is, the model could not use
the temporal order in the data for its predictions.

A window function was passed over the dataset,
extracting 4 consecutive days as the input and
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Figure 3.2: The 128x128 bounding box contain-
ing the used coordinates. Note that the figure
is not a square due to the Mercator projection
being used.

the subsequent 4 consecutive days as the target.
Then, each group of 4 days were spatially arranged
in either a block diagonal layout or a ”quadrant”
layout. These layouts are visible in the matrices
below, with the block diagonal layout on the left

and the quadrant on the right. Here, Di refers to
the temporal order of the days. Again, this reshap-
ing was performed for the catch, salinity and SST
matrices, and then these matrices were combined
into a three-dimensional tensor. This will allow the
network to learn the temporal information spatially,
eliminating the need for recurrent connections.


D−3 0 0 0

0 D−2 0 0
0 0 D−1 0
0 0 0 D0

[
D−3 D−2

D−1 D0

]

Before training, the dataset was normalized to
the range [0, 1]. For the salinity and sea surface
temperature data, missing values were filled using
mean values within the selected regions, except
for the cells corresponding to land coordinates,
which were left at 0. In this project, two tasks
will be evaluated. The former is the task thus far
discussed, namely predicting the amount of fish at
each location, i.e. a regression task. The latter
task is merely predicting the presence of fish in the
future, i.e. a classification task. This was done
to examine whether the performance of the U-Net
is more robust for tasks that resemble its original
purpose, segmentation tasks. Figure 3.3 shows
how the targets for these two tasks differ. For the
classification task, the only added processing step
is converting all non-zero values in the targets to
the value 1.

3.4 Model Design

All models in this study were implemented using
PyTorch (Paszke, Gross, Massa, Lerer, Bradbury,
Chanan, Killeen, Lin, Gimelshein, Antiga, Des-
maison, Kopf, Yang, DeVito, Raison, Tejani, Chil-
amkurthy, Steiner, Fang, Bai, and Chintala, 2019).
All U-Net models in this study contained 4 en-
coder and decoder, each in addition to the final
convolutional layer. The U-Net models all took
four consecutive days as input and predicted the
immediate next four days.

Each encoder block consists of two consecutive
2D-convolutional layers followed by a max-pooling
layer, while the decoder blocks consist of two con-
secutive 2D-convolutional layers followed by a trans-
pose convolutional layer. The activation function
of all convolutional layers was the rectified linear
unit function (ReLU). Each encoder block doubled
the number of feature maps of the input, with
the first encoder block outputting 64 feature maps,
following the design of the original U-Net.

Two versions of the U-Net models were imple-
mented, one with and one without dropout layers.
For the version with dropout, the dropout layers
were placed before each pair of convolutional layers,
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Figure 3.3: Example matrices derived from the catch note datasets. The left image shows a matrix
containing the reported catch weight, whereas the right image shows the reported catch locations
as a binary variable.

except the very first two such layers. Additionally,
a version of the U-Net with attention gates was
implemented. As the attention gates proposed by
(Oktay et al., 2018) are not a part of the PyTorch
package, these were implemented manually. Figure
3.4 shows the structure of these attention gates.
Note that their application used 3D-convolutions
since they were working with 3D-data, whereas this
project used 2D-convolutions wherever convolution
operations are in the diagram.

Figure 3.4: Attention gate proposed by (Oktay
et al., 2018).

Thus, four different versions of the regression
U-Net models were trained for each combination of
dropout layers and attention gates. These models
were trained using L1-loss, as the catch-note feature
matrices are very sparse.

Additionally, four segmentation U-Net models
were trained to predict only the presence of fish and
cover each combination of dropout and attention
gates. For these classification models, the inputs
were the same, but all non-zero values in the target
catch weight maps were set to 1. The models were
trained using binary cross-entropy loss, as we had
two classes to predict (0 and 1).

Finally, two final regression models were trained
consisting only of the encoder portion of the U-
Net; essentially, this is a standard CNN. These

models contained two encoder blocks each. The
CNNs differed only in the use of dropout layers.
The inputs to these CNNs were the same as the
others, four days, but the targets of these networks
were only the next day following the input four
days. The reason for this is that the output of
the CNNs did not preserve the size of the input,
but it was possible to achieve the size of the catch
note matrices as the output shape. Training these
CNNs and the U-Net models allows us to compare
their performances.

3.5 Metrics

The primary evaluation metric for the regression
models is mean absolute error (MAE), which is also
the loss function used to train the network. For the
classification models, the evaluation metric will be
F1-scores and accuracy. F1-scores will probably be
a better performance indicator, as the catch data
predominantly contains negatives, which will likely
skew the accuracy.

The Adam optimizer was used for all models’
training. The regression models were trained at
an upper limit of 30 epochs, and the classification
models for 10 epochs. The difference in epochs was
due to time constraints. Early stopping was used
to combat overfitting. Additionally, the model with
the lowest validation loss throughout the training
was saved and used for evaluation. The batch size
used for training was 8, and the learning rate was
fixed at 0.001.

No hyperparameter tuning was performed, due to
the large amount of models that were trained. The
training time varied depending on how the data was
organized, i.e. block diagonals or quadrants, and
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the time also differed between the regression and
classification models. Two models were trained for
each model parameter combination, one for each
matrix organization. Table 3.2 shows how long
each pair of two such models took to train.

Table 3.2: Training times for each model setup.
The training is the total time it took to train
two models, one for each matrix organization.
The middle line separates the regression models
above and the classification models below.

Model type Training time (HH:ss)

U-Net 1 : 16
U-Net w/ attention 1 : 29
U-Net w/ dropout 1 : 18
U-Net w/ both 1 : 31
CNN 0 : 18
CNN w/ dropout 0 : 19

U-Net 0 : 26
U-Net w/ attention 0 : 30
U-Net w/ dropout 0 : 26
U-Net w/ both 0 : 30

4 Results

This section will present the performance of the
regression and classification models and some ex-
amples of their predictions.

All models were trained for the number of speci-
fied epochs, i.e., no early stopping occurred. Fig-
ures 4.3, 4.4, and 4.5 show the training and valida-
tion losses of the models. These plots reveal the
reason the early stopping did not occur: the vali-
dation losses of most models started oscillating as
training went on, preventing the early stopping call-
back from executing. Another interesting feature is
that the validation and training losses appear more
stable in the diagonal matrix setup compared to
the quadrant setup. However, the reason for this
difference is unclear. Tables 4.1 and 4.2 show the
evaluation metrics of the regression and classifica-
tion models, respectively.∗

As can be seen in Table 4.1, the un-normalized
MAE is relatively high for all models. This results
from the extensive range of values in the catch
notes, such that even very small predicted values
become large once un-normalized. This range is
[0, 2246997]. For the classification models, we see
that most of them achieve extremely high accuracy
values but, conversely, very low F1 scores. This
is due to the sparsity of the data, i.e., the models
correctly predict a large amount of true negative 0

∗The code for the models, data preparation, training, and
prediction are available at the following Github repository:
https://github.com/JRoason/bachelors-project-RUG

values but fail to predict the positive values accu-
rately. We note that some models achieve F1-scores
of 0, meaning they fail to predict any positive values
correctly.

These values are not very informative, especially
as we have no reference point. However, based on
the metrics alone, the U-Net trained with dropout
using the quadrant matrix setup has the lowest
MAE score of the regression models. The U-Net
using an attention mechanism and the diagonal
matrix setup has the highest F1-scores of the clas-
sification models. Figures 4.1 and 4.2 show two
examples of the predicted outputs of these two mod-
els, along with the ground truth values. Note that
the positive targets predicted by the classification
model resemble the truth values. The regression
output, however, appears to be a single constant
value output covering nearly the entire map. The
shape of Norway is visible in the regression out-
put, as all land values have a value of 0, but this
is by design, as all land values have been masked
from the predictions. The following section will
discuss the performances of these models and their
apparent shortcomings.

5 Conclusions

This project examined the performance of deep
learning models for fish location forecasting. This
section will discuss the project’s key findings, the
limitations of the implemented models, and ideas
for future research.

5.1 Key findings

The performance of the U-Net models, as well as
the CNNs, was relatively poor. The output of the
regression models predominantly had constant val-
ues repeated over the entire output matrices. This
pattern can be seen in the output of the dropout
U-Net in Figure 4.1, as the exact value is present
in every cell, except for some noise in the top right
corner of the image. Therefore, these regression U-
Net models without advanced modifications, as dis-
cussed in the theoretical framework section, appear
infeasible for forecasting optimal fishing locations,
at least with this dataset.

The classification models also showed the same
pattern, as evident by some of these achieving F1-
scores of 0.0, meaning that 0 values were predicted
in every cell - the models showed no leaning. The
best-performing model, the attention U-Net trained
on diagonal input matrices, does demonstrate some
learning; it has managed to predict the presence
of fish along the coastline of Norway. This is not
unexpected, as data inspection revealed the vast
majority of reported catch locations to be within
this region. However, further inspection of the
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Table 4.1: MAE for regression models. Models above the middle line used the diagonal matrix
format, and below the line used the quadrant matrix format.

Model type MAE Un-normalized MAE

U-Net 1.07 × 10−4 180.1
U-Net w/ attention 2.7 × 10−5 76.89
U-Net w/ dropout 2.84 × 10−5 78.82
U-Net w/ both 5.35 × 10−5 110.8
CNN 4.49 × 10−5 78.98
CNN w/ dropout 3.49 × 10−5 66.18

U-Net 3.21 × 10−5 62.46
U-Net w/ attention 2.65 × 10−5 55.19
U-Net w/ dropout 2.27 × 10−5 50.23
U-Net w/ both 2.47 × 10−5 52.9
CNN 1.6 × 10−4 227.25
CNN w/ dropout 4.1 × 10−5 74.03

Table 4.2: Mean test loss, F1-scores and accuracies for classification models. Models above the
middle line used the diagonal matrix format, and below the line used the quadrant matrix format.

Model type BCE Loss F1-Score Accuracy

U-Net 0.69 0.02 0.99
U-Net w/ attention 0.69 0.34 0.99
U-Net w/ dropout 0.69 0.00 0.99
U-Net w/ both 0.69 0.00 0.99

U-Net 0.69 0.00 0.99
U-Net w/ attention 0.69 0.00 0.99
U-Net w/ dropout 0.69 0.00 0.99
U-Net w/ both 0.69 1.7 × 10−3 0.97

Figure 4.1: Prediction and the truth value of the regression dropout U-Net, trained on quadrant
matrix setups.

predictions made by the model showed that it had
overfit these locations. The model consistently

predicts these same locations, regardless of the
input. Some outputs differ, but only for a handful
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Figure 4.2: Prediction and the truth value of the classification attention U-Net, trained on diagonal
matrix setups.

Figure 4.3: Training and validation losses of the regression U-Net models.
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Figure 4.4: Training and validation losses of the regression CNN models.

Figure 4.5: Training and validation losses of the classification U-Net models.

of cells - the shape of Norway’s coastline is present
in all outputs, as seen in 4.2. Further examples of
this can be seen in Appendix A.

Interestingly, the attention U-Nets with dropout

performed worse than this model, but not by a
large amount. This could indicating that some
other form of regularization might be needed, as
the attention U-Net still performed better than the
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standard model U-Nets. This indicates that know-
ing which parts of the features to pay attention
to when upsampling is beneficial, even though the
final performances were lacklustre.

Hyperparameter tuning was not performed in
this study due to time constraints. However, it may
have been beneficial to perform hyperparameter
tuning on the best-performing models to improve
their performances. Figures 4.3, 4.4, and 4.5 show
oscillations in the validation loss for all models as
training went on. Stopping the training earlier
or using an adaptive learning rate schedule might
mitigate this issue, as it is most likely due to the
learning rate being too high at later epochs.

The choice of quadrant or diagonal matrix setups
to represent the temporal dimension of the data
spatially affected the performance. The quadrant-
trained models generally showed lower MAEs than
the diagonally trained models; however, this did not
result in better predictions. Instead, the quadrant-
trained models were more prone to predicting the
same value in all output cells. The predictions
of the models trained with diagonal matrices did
not make any more sense. Some of these models
also output constant values, while others, such as
the attention regression U-Net, learned to output
constant ”rotations” of values. This can be seen in
Appendix A, along with other sample outputs of
the models.

5.2 Limitations

A limitation of the implemented models is the need
for recurrent connections. As a result, the trans-
formation of quadrant and diagonal matrices had
to be performed. The models’ feedforward nature
may prevent them from adequately learning the
correct temporal structure in the dataset.

Another limitation is the sparsity of the trans-
formed catch note matrices. While the original
tabular version of the catch note dataset contained
many entries, the matrices were sparse, mainly be-
cause we only used data from one fish species. This
means that some matrices will have one or two
non-zero values out of 16384 cells, where the values
are usually minimal, as the maximum value in the
training set was quite large. In retrospect, these
extreme values ought to have been removed, which
might have resulted in better performances and a
more diverse range of values in the training data.

The content of the catch note dataset is in itself
a limitation of the project. While the data shows
the amounts of fish and where they were caught, it
is essential to note that the dataset contains only
true positives. The project’s ultimate goal was to
develop methods capable of predicting locations
that would contain fish in the future; however, the
target variable in this dataset is the locations where

fishing vessels that have landed their catches in Nor-
way have decided to fish. We are essentially trying
to predict which locations humans have guessed to
contain the most fish. Ship captains presumably
have a lot of experience and knowledge regard-
ing the best locations to fish. However, the point
remains that the dataset treats all non-reported
locations as having no fish, which cannot be accu-
rate.

Lastly, the salinity dataset spans shorter than
the SST and catch note dataset, leading us to limit
the dataset to the period in which the salinity data
exists. Effectively, we used roughly 30% of the
total SST and catch note dataset, which may have
made training more difficult for the models.

5.3 Future research

The U-Nets limitation of not incorporating tem-
poral information natively encourages using ar-
chitectures designed to account for ordered data
for this problem. Variants of the U-Net have
been developed that use long short-term memory
(LSTM) layers to process temporal information
(Yin, Wang, Li, Lu, Tian, Yin, Li, and Zheng,
2023), which might be more suitable than the
standard U-Net. Given that attention mecha-
nisms showed marginal improvement over the mod-
els not using attention mechanisms, this might
suggest that architectures incorporating attention
are promising alternatives to the models imple-
mented in this project. Models such as the Aurora
model by Microsoft, which merges transformer ar-
chitecture with U-Nets might also be applicable to
this problem, as they incorporate attention mecha-
nisms and account for positional ordering in data.
Another model that matches this description is
the vision transformer (ViT) (Dosovitskiy, Beyer,
Kolesnikov, Weissenborn, Zhai, Unterthiner, De-
hghani, Minderer, Heigold, Gelly, Uszkoreit, and
Houlsby, 2021). In recent years, ViTs have been
used for video generation, i.e., next-frame predic-
tion, a task involving mapping matrices to matrices.
ViTs have performed comparably to state-of-the-
art models (Ye and Bilodeau, 2022). The applica-
tion of such network architectures to the problem
of fish location forecasting warrants studying, as
they might outperform the standard feedforward
U-Net architecture due to incorporating temporal
information directly.

Studies aiming to develop methods for fish loca-
tion forecasting might achieve much greater success
from datasets containing measurements of fish pres-
ence directly from the ocean. Echo-sounders are a
technology used by fishing vessels to assist in choos-
ing the best fishing locations. Access to this data
might be beneficial. If such measurements were
taken at many locations, and matrices were created
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with them, as in this project, then this would also
solve the matrix sparsity problem. There is already
interest in using echo-sounding data for the purpose
of fish stock assessment using machine learning,
leading Ordoñez, Utseth, Brautaset, Korneliussen,
and Handegard (2022) to develop a standardized
pre-processing pipeline for preparing echo-sounding
data for machine learning models. This raises the
question of how the U-Net and its derived, more
advanced models might perform given more direct
measurements of fish presence.

In conclusion, this study examined the perfor-
mance of U-Net and convolutional neural network
architectures for the problem of fishing location
forecasting. The models implemented generally
struggled with overfitting and poor generalization
to unseen data, highlighting the complexities of
modelling sparse spatiotemporal data. Future work
could aim to improve the data representations and
implement more advanced network architectures,
such as vision transformers or recurrent U-Nets,
with integrated mechanisms for processing tempo-
ral data. The main limitation, the sparsity of the
datasets, could be mitigated through more accu-
rate measurements of fish populations in the ocean
without relying on catch data. Better, more infor-
mative data could lead to better results with deep
learning methods developed for image processing,
resulting in more accurate and sustainable fishing
practices and, hence, the preservation of marine
ecosystems.
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A Appendix

Figure A.1: Four predictions made by the standard convolutional networks.
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Figure A.2: Four predictions made by the convolutional networks with dropout.
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Figure A.3: Four predictions made by the standard regression U-Net model.
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Figure A.4: Four predictions made by the regression U-Net model with attention gates.
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Figure A.5: Four predictions made by the regression U-Net model with dropout.
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Figure A.6: Four predictions made by the regression U-Net model with attention gates and dropout.
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Figure A.7: Four predictions made by the standard classification U-Net model.
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Figure A.8: Four predictions made by the classification U-Net model with attention gates.
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Figure A.9: Four predictions made by the classification U-Net model with dropout.
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Figure A.10: Four predictions made by the classification U-Net model with attention gates and
dropout.
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