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Abstract

This document discusses the redesign and implementation of a new application for
the ”Cloud Computing and Cloud-based Applications” course at the University of
Groningen (RUG). The course, essential to the Computer Science master’s program,
integrates both theoretical and practical components, focusing on cloud deployment
and scalability.

The new application was designed to better align with the curriculum and the tech-
nologies students are familiar with, such as Java, Spring Boot, and Python. This
approach simplifies the learning process by emphasizing cloud computing funda-
mentals and integrating tools that are widely used in the industry. Unlike the C# and
.NET-based application used previously in the course, and which faced challenges
due to technological incompatibility and poor documentation, this new application
offers enhanced accessibility and a more streamlined experience, with intuitive in-
terfaces and improved support resources for students.

A key enhancement in the new system is the introduction of “Virtual Labs” (VLs),
cloud-based environments hosted on the RUG’s OpenStack cluster. These labs fun-
damentally transform the learning experience by eliminating the need for local setup,
providing students with immediate access to consistent, pre-configured environ-
ments. The automated deployment, powered by Terraform, not only ensures a
smooth and standardized experience but also allows students to focus more on
learning and less on technical setup, ultimately enhancing both efficiency and ed-
ucational outcomes.
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1 — Introduction

1.1 Background

This document provides an in-depth analysis of the design, development, and im-
plementation of a new application developed for a critical component of the Cloud
Computing and Cloud-based Applications course offered at the University of Gronin-
gen (RUG). As a master’s level course, it plays a significant role within several aca-
demic tracks, particularly those focusing on cloud computing, distributed systems,
and scalable application design. This course is also strategically positioned as a foun-
dational prerequisite, equipping students with the necessary skills and knowledge
for advanced courses in the curriculum.

The course content is divided into two main components: theoretical and practical.
The theoretical component covers fundamental principles of cloud computing, in-
cluding cloud service models, architecture, and security concerns. It also explores
advanced topics such as cloud-native application development, microservices ar-
chitecture, and continuous integration/continuous deployment (CI/CD) pipelines.
This document specifically focuses on the practical component of the course, provid-
ing a detailed exploration of a target application that serves as the core project for
this segment. This is designed to help students apply and implement the theoretical
concepts they have learned.

The learning objectives associated with the practical component are comprehensive
and aim to equip students with hands-on experience in transitioning an application
from a local development environment to a fully operational cloud-based system.
Specifically, students are tasked with deploying the application on the University’s
OpenStack cluster, a private cloud platform that provides a real-world environment
for cloud computing exercises. A critical aspect of this deployment is ensuring that
the application is capable of scaling to potentially serve millions of users, a require-
ment that underscores the importance of understanding cloud scalability and re-
source management.

The practical component, referred to in this document as ”the application”, is pur-
posefully designed with complexity to challenge students, but its modular structure
ensures that it remains manageable and promotes effective learning. This modular-
ity is crucial, as it allows for the seamless adoption of cloud technologies without
necessitating modifications to the core source code. This design choice ensures that
students can focus on cloud integration and deployment strategies rather than being
encumbered by the need to refactor or re-engineer the application itself, at least for
the first phases of the project.

The practical component is meticulously structured into several milestones, each
representing a key phase in the overall project. The initial milestone involves ”dock-
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erizing” the application—encapsulating the software into Docker containers, which
are then orchestrated using Docker Compose. This milestone introduces students to
containerization, a fundamental skill in modern cloud computing, and emphasizes
the importance of environment consistency and application portability.

Following the Docker Compose deployment, students advance to the next mile-
stone, which involves converting the application’s components into Helm charts.
Helm, a package manager for Kubernetes, simplifies the deployment and manage-
ment of applications within a Kubernetes cluster. This milestone not only familiar-
izes students with Kubernetes, an industry-standard platform for container orches-
tration, but also with Helm’s templating and configuration management capabili-
ties, which are essential for managing complex cloud-native applications.

The final milestone of the practical component requires students to use Terraform,
an Infrastructure as Code (IaC) tool, to deploy the application on the University’s
OpenStack cluster. This milestone is particularly challenging as it involves establish-
ing a highly available Kubernetes cluster across multiple virtual machines, complete
with auto-scaling capabilities. This exercise is designed to simulate real-world cloud
deployment scenarios, where students must manage the complexities of distributed
systems, ensure fault tolerance, and optimize for performance and scalability.

This practical component, and the application at its core, represents an evolution of
the course from its initial version as offered last academic year, where a different ap-
plication was used. The new application is part of the University’s broader initiative
to enhance the Computer Science master’s program at RUG, reflecting the institu-
tion’s commitment to providing students with cutting-edge tools and experiences
that are directly applicable to the rapidly evolving field of cloud computing.

Overall, this document not only outlines the technical aspects of the application and
its role within the course but also situates it within the broader educational objectives
of the Computer Science MSc programme. By providing students with a rigorous,
hands-on project, the course aims to bridge the gap between theoretical knowledge
and practical skills, preparing graduates to excel in both academic research and in-
dustry positions related to cloud computing and large-scale system design.

1.2 Problem Description

Problem 1 (P1) The previous application used by the course was created by a for-
mer teaching assistant (TA) to the course as a product for the ”Web and Cloud Com-
puting” course that served as the predecessor for the current course. However, the
decision to develop the application using C# and the .NET framework introduced
several challenges that ultimately affected the application’s suitability for use in a
course laboratory setting. Feedback from both students and TAs during the previ-
ous iteration of the course highlighted these issues, making it apparent that a com-
plete redesign of the application was necessary to ensure it could function effectively
within the course’s framework. Which is the aim of this research internship.

More specifically, while the .NET framework is a robust and widely used platform,
it is not extensively covered within the RUG’s Computer Science curriculum, and
C# is not currently part of the standard curriculum. This disconnect between the
technologies used in the application and the tools and languages familiar to students
seemingly presented a significant barrier to student engagement and learning. The
project’s reliance on .NET and C# meant that students had to invest considerable
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time in learning these new technologies, detracting from their ability to focus on the
core cloud computing concepts that the course aimed to teach.

Problem 2 (P2) Additionally, the project suffered from a lack of comprehensive
documentation. The only guidance provided was a basic README file at the top
level of the project, which offered little more than a cursory overview of the ap-
plication. There were no design diagrams, no component descriptions, and no de-
tailed explanations of the application’s architecture or functionality. Moreover, criti-
cal aspects of working with .NET—such as locating environment variables, manag-
ing database connections, and handling connection strings—were not documented.
This lack of documentation made it difficult for students to understand the appli-
cation’s inner workings, hindering their ability to extend or build upon the project,
and ultimately limiting their learning experience.

Problem 3 (P3) Another significant shortcoming of the original application was
the absence of a clear rationale for deploying it in a Kubernetes environment. The
application did not present any obvious bottlenecks that would necessitate the use
of Kubernetes, nor were there any tangible benefits of cloud infrastructure that were
readily apparent to students. As a result, the value of deploying the application in a
cloud-based Kubernetes environment was not evident, leading students to perceive
the exercise as unnecessary and disconnected from the course’s objectives. This lack
of clarity around the purpose and benefits of using Kubernetes in the context of the
application further undermined the effectiveness of the practical component.

Problem 4 (P4) Another issue encountered last year was the difficulty students
faced in setting up the necessary technology to perform the practicals. Establish-
ing a local Docker and Kubernetes development environment proved to be partic-
ularly challenging. Students struggled with installing and configuring the required
software, and the diverse range of operating systems and hardware configurations
further complicated the setup process. This difficulty significantly impeded the
progress of the practical component, as many students were unable to get the en-
vironment running, leading to frustration and delays.

1.3 Envisioned solution

To summarize, it is imperative to enhance the students’ experience regarding the
practical component of the course. This improvement plan focuses on the following
key objectives:

1. Redesign and Rewrite the Base Application: The base application will be
rewritten and redesigned in a programming language that is more familiar to
Computing Science students at the University of Groningen. The technology
stack will also be updated to align with those more commonly used among the
student body. Which handles P1.

2. Provide Comprehensive Documentation: Clear and detailed documentation
will be created, outlining the technology used, the processes involved, and the
interactions between different components. This will assist students in under-
standing the project architecture and workflow. Which handles P2.
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3. Provide a bottleneck: The application will have a clear bottleneck that re-
quires scaling in the cloud to lead students to perceive the exercise as necessary.
Which handles P3

4. Ensure Standardized Development Environments: Students will be provided
with ready-to-use development environments and machines (servers) on the
OpenStack Clusters. This will ensure a standardized setup across all students,
eliminating discrepancies in local configurations and promoting a uniform
learning experience. Which handles P4

These objectives will serve as the foundation for the enhancement of the practical
component of the course and will be referenced throughout the improvement plan.

In response to these challenges, and as part of this research internship, the appli-
cation will not only be completely redesigned but will also be accompanied by the
development of new tools aimed at creating isolated environments for each group
of students on the University’s OpenStack cluster. These environments, referred
to as ”Virtual Labs”, will adhere to the principles of cloud computing by providing
a ready-made, cloud-hosted environment for each student group. This approach
eliminates the need for local development environments, thereby resolving the is-
sues related to software installation and configuration on personal machines. These
Virtual Labs will provide a consistent and uniform environment for all students, en-
suring that everyone has access to the necessary resources and tools to complete the
practical component successfully.

Finally, the students encountered substantial difficulties due to the absence of neces-
sary installations on their local machines. Many students lacked the hardware and
software capabilities to run the application concurrently with a Kubernetes cluster,
which is resource-intensive. These constraints prevented students from fully engag-
ing with the practical exercises, as they were unable to simulate real-world cloud
environments on their personal devices. This limitation underscored the need for a
cloud-based solution that would remove these barriers and provide a more accessi-
ble, scalable environment for all students.

In conclusion, the challenges encountered with the original application—ranging
from technological incompatibility to inadequate documentation and unclear objec-
tives—highlighted the need for a comprehensive redesign. The new application and
its accompanying tools, developed as part of this research internship, aim to address
these issues by providing a cloud-native solution that aligns with the course’s learn-
ing objectives and the technological landscape of the RUG.
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2 — Methodology

2.1 Methods

To achieve these objectives, a new application will be developed using Java and the
Spring Boot framework. Java is a more familiar language and is taught at the RUG in
both the Object-Oriented Programming (OOP) and Advanced Object-Oriented Pro-
gramming (AOOP) courses. This familiarity will enable students to understand the
backend more effectively and make modifications to the code if necessary, allowing
them to focus on critical aspects such as scalability and cloud integration rather than
the obstacle of learning a new programming language.

To further enhance the educational value of the project, another part of the applica-
tion will be written in Python, a language with which many students are also famil-
iar. This dual-language approach will showcase the advantages of designing appli-
cations for a microservices architecture, where different components can be written
in various languages or developed by separate teams. This method not only demon-
strates the flexibility and modularity of microservices but also reduces confusion
among students, of both components being deployed together, by clearly delineat-
ing the roles and responsibilities of each component. The process of containerizing
these components using Docker and scaling them within a Kubernetes environment
will be integral to the learning experience, offering students practical insights into
modern cloud-based application development.

The project will be streamlined by removing certain features from the previous it-
eration, such as multitenancy and user authentication, as these do not contribute
significantly to the course’s learning objectives. Instead, the emphasis will be on
core cloud computing concepts and the practical application of these concepts in a
real-world scenario. To support this, a high-level diagram will be provided to give
students and teaching assistants (TAs) a clear overview of the application’s archi-
tecture and component interactions. Additionally, a second diagram will show how
the application scales within a Kubernetes environment, with specific bottlenecks
highlighted to help students understand the advantages of cloud adoption. These
visual aids are intended to simplify complex ideas and enhance understanding.

2.2 Virtual Labs (VL)

To address the challenges associated with setting up local development environ-
ments, the course will implement Virtual Labs (VL)—isolated, cloud-based environ-
ments hosted on the University’s OpenStack cluster. These Virtual Labs will pro-
vide each group of students with a pre-configured development environment that
mirrors the production environment. By utilizing VLs, the need for students to in-
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stall and configure complex software locally will be eliminated, thereby reducing the
risk of technical issues and ensuring that all students can begin their practical work
without delay.

The VLs will include all necessary tools and configurations, such as Docker, Kuber-
netes, and the Java and Python runtimes, pre-installed and ready to use. This ap-
proach will not only standardize the development environment across all students
but will also align with the principles of cloud computing by leveraging cloud infras-
tructure to deliver scalable, on-demand resources. The VLs will also facilitate easier
monitoring and support by TAs, as they will have access to a consistent environment
when assisting students with troubleshooting and debugging.

This allows students to focus more on applying cloud computing concepts and less
on overcoming technical hurdles, leading to a more effective and immersive learn-
ing experience. The use of VLs also prepares students for industry practices by fa-
miliarizing them with cloud-based workflows and infrastructure management, thus
bridging the gap between academic learning and real-world applications.

In summary, the methodology adopted for this project emphasizes the use of famil-
iar technologies, the simplification of the application architecture, and the deploy-
ment of cloud-based Virtual Labs to enhance the learning experience. By focusing
on these areas, the course aims to provide students with a deeper understanding
of cloud computing concepts and practical skills that are directly applicable to real-
world scenarios.

9



3 — Results

3.1 Design

The designed application called ”Sandbox Code Runner” was meticulously engi-
neered to ensure no coupling between the components. The application consists of
three main components and three additional elements serving as data sources and
a message queue. The components are decoupled in accordance with microservices
architecture design guidelines, allowing each component to be scaled horizontally
and independently. The main three components, depicted in Figure 8.1, are:

1. Frontend

2. Backend

3. Orchestrator

Figure 3.1: Sandbox Code Runner Architecture

3.1.1 Frontend

The frontend, developed using React JS, is responsible for handling user interactions
and providing real-time feedback during code execution. It captures and processes
user inputs, specifically Bash language code blocks, which are central to the sys-
tem’s operations. The frontend is structured around several key components such as
CodeBlockForm, LogsBox, and ExecutedBlocksList, which collectively man-
age the user interface, code submission, and the display of execution results.

Before a code block is submitted, the frontend performs client-side validation to en-
sure the input is valid and that the backend service is available, preventing the sub-
mission of incomplete or erroneous requests. Upon successful validation, the code
block is sent to the backend via a RESTful API, specifically the /execute endpoint.
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The frontend then establishes a WebSocket connection using the WebSocketClientContext
component, which receives real-time updates from the backend regarding the status
and output of the code execution. These updates are dynamically rendered in the
user interface to keep the user informed about the progress of their request.

The frontend is designed to be stateless, allowing multiple instances to be deployed
behind a load balancer, which supports horizontal scaling and ensures that the sys-
tem can handle a large number of concurrent users without performance degrada-
tion. This approach aligns with the overall architecture, as depicted in Figure 8.1,
where the frontend communicates with the backend to publish updates and receive
execution results efficiently.

3.1.2 Backend

The backend, implemented using Java and Spring Boot, serves as the core of the
system’s business logic and data handling. It provides several key functionalities
through its RESTful API and WebSocket server. When a code block is received via
the /execute endpoint, the backend validates the request using Data Transfer Ob-
jects (DTOs) such as CodeBlockRequest and CodeBlockResponse. This valida-
tion step ensures that the code block meets the required criteria before proceeding
further.

Once validated, the backend assigns a unique ID to the code block and notifies
the frontend with this ID, along with an initial WebSocket message to update the
user interface. The validated code block is then forwarded to RabbitMQ using the
MessageProducer class, where it enters the message queue system for execution.

The backend is also responsible for managing logs and metadata associated with
each code block. This is handled by the LogsManager and LogsMetadataManager
classes, which interface with both Redis and MongoDB for caching and persistent
storage, respectively. The backend utilizes the Repository Pattern, implemented
through interfaces such as LogsRepository and LogsMetadataRepository, to
abstract data access and maintain clean, maintainable code. This pattern allows the
backend to interact with the database layer in a consistent manner, as illustrated in
Figure 8.1.

The backend’s stateless architecture supports horizontal scaling, allowing it to han-
dle increased load by deploying additional instances. This scalability is a critical
aspect of the system’s design, ensuring that the backend can process a large number
of code execution requests efficiently.

3.1.3 Orchestrator

The orchestrator, implemented in Python, is responsible for managing the execu-
tion of code blocks within isolated Docker containers. It consumes messages from
RabbitMQ, specifically from the MQ - code queue, as shown in Figure 8.1. The
orchestrator retrieves the code block, spawns a new Docker container, and executes
the code within this isolated environment.

The orch.py script is the core of the orchestrator, handling the lifecycle of each
job from spawning the container to monitoring its execution. It interacts with the
messaging system through a series of modules, including message handler.py
and rabbit config.py, which configure the connection to RabbitMQ and man-
age message processing. Upon completion of the code execution, the orchestrator
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updates the backend with the results, which include the exit status and any gener-
ated logs.

The results are then published to the MQ - logs queue, which are subsequently
consumed by the backend and made available to the frontend. This flow ensures
that the user receives real-time updates on the status and output of their submitted
code, maintaining the responsiveness and reliability of the system.

The orchestrator’s design is focused on scalability and fault tolerance. By utilizing
Docker containers, the orchestrator can efficiently manage multiple concurrent jobs,
with each job being isolated to prevent interference between code executions. Addi-
tionally, the use of RabbitMQ as a message broker ensures that messages are reliably
delivered and processed in the correct order, contributing to the robustness of the
system.

3.1.4 Design Decisions

The design of the Sandbox Code Runner was driven by the need to create a robust,
scalable, and maintainable system capable of handling real-time code execution and
logging in a cloud-native environment. Several key decisions were made to achieve
these goals:

Message Handling in RabbitMQ

A significant design choice was the way messages are handled within RabbitMQ.
Each message, representing a code block or log output, is acknowledged only af-
ter the entire execution process has been completed. This approach ensures reliable
message processing and avoids the need for sticky sessions, which can complicate
scalability and failover strategies. By treating each message as an atomic unit of
work, the system maintains integrity even under high load, as each message is pro-
cessed in its entirety before being acknowledged.

Data Caching and Persistence

The system employs both Redis and MongoDB to manage data efficiently. Logs,
which represent the output of the containerized code execution, are stored in Redis
for fast retrieval and in MongoDB for persistent storage. This dual storage strategy
allows the system to leverage Redis’s in-memory data store for quick access to fre-
quently requested data, while MongoDB serves as the long-term data store. This
design also simplifies fault tolerance, as Redis mirrors the data stored in MongoDB,
ensuring that any data in MongoDB is readily available in Redis, thereby reducing
latency in data access.

Fault Tolerance and Retry Mechanisms

The backend includes built-in retry mechanisms to handle transient failures, par-
ticularly in communication with RabbitMQ and the orchestrator. These retries are
crucial for maintaining the system’s robustness, ensuring that temporary network
issues or service disruptions do not result in lost or unprocessed messages. The or-
chestrator, responsible for managing Docker containers that execute the code blocks,
also communicates its status back to the backend. This communication includes up-
dates on job progress and completion, which the backend then uses to update the
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frontend in real-time. This ensures that the user is always informed of the current
status of their code execution.

Separation of Concerns and Scalability

The architecture strictly adheres to the principles of microservices, with each compo-
nent—frontend, backend, orchestrator, and message queue—being decoupled and
independently scalable. This separation of concerns not only simplifies develop-
ment and maintenance but also allows each component to scale independently based
on demand. For instance, the frontend can scale horizontally to handle more users,
while the backend and orchestrator can scale based on the number of code execution
requests. RabbitMQ, as the central message broker, ensures that these components
can communicate asynchronously, further enhancing the system’s scalability and re-
liability.

Real-time Communication via WebSockets

WebSockets are used extensively to facilitate real-time communication between the
backend and frontend. Unlike traditional HTTP, which follows a request-response
model, WebSockets maintain a persistent connection, allowing continuous data flow.
This is particularly beneficial for streaming log data from the backend to the fron-
tend as soon as it is available. This real-time capability is essential for providing
immediate feedback to users, enhancing the overall user experience.

These design decisions collectively ensure that the Sandbox Code Runner is robust,
scalable, and capable of delivering a responsive user experience even under heavy
load. The careful separation of concerns between different components, coupled
with the use of modern technologies like RabbitMQ, Redis, MongoDB, and Docker,
provides a solid foundation for the system’s current functionality and future en-
hancements.

3.2 Technology Stack

The Sandbox Code Runner leverages a diverse and robust technology stack to ensure
high performance, scalability, and ease of development. The key technologies used
include:

• Redis: An in-memory data structure store used for caching log data, signifi-
cantly reducing access times compared to querying the persistent database.

• MongoDB: A NoSQL database chosen for its scalability and flexibility, used to
efficiently store and retrieve unstructured data.

• Java and Spring Boot: Java is a widely taught and robust programming lan-
guage used in conjunction with the Spring Boot framework to develop the
backend. Spring Boot simplifies the development of production-ready applica-
tions and provides a comprehensive suite of tools for building robust backend
services.

• Python: Python is used for the orchestrator to demonstrate the flexibility and
power of a microservices architecture, where different components can be im-
plemented in various programming languages.
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• React JS: React JS is employed for the frontend development. It is a popu-
lar JavaScript library for building user interfaces, known for its efficiency and
flexibility in creating interactive and dynamic web applications.

• WebSockets: Used to facilitate real-time, bidirectional communication between
the frontend and backend, maintaining a persistent connection for continuous
data flow, which is crucial for real-time updates.

• RabbitMQ: A message broker that manages the communication between the
backend and the orchestrator, allowing for distributed processing and task
management. It is essential for handling the asynchronous nature of the sys-
tem’s tasks.

• Docker: Containerization technology used to package applications and their
dependencies into containers, ensuring consistency across different environ-
ments and enabling scalable deployments.

• Kubernetes: Orchestrates the deployment, scaling, and operation of container-
ized applications, managing the backend, frontend, and orchestrator compo-
nents to ensure the system can scale horizontally based on demand.

• Ansible: An automation tool used for provisioning and configuration man-
agement. Ansible ensures that the infrastructure is consistently deployed and
configured across different environments, streamlining the process of scaling
the system and maintaining its reliability.

• Terraform: An Infrastructure as Code (IaC) tool used to provision and manage
cloud resources efficiently. Terraform enables the automated deployment of in-
frastructure components, ensuring consistency and scalability across different
environments.

• GitLab CI/CD: GitLab’s Continuous Integration/Continuous Deployment (CI/CD)
pipelines are used to automate the building, testing, and deployment of the
application. This integration ensures that new code changes are automatically
tested and deployed, maintaining high code quality and enabling rapid itera-
tion.

This technology stack provides a solid foundation for the system, enabling it to be
scalable, resilient, and responsive to user demands, while also ensuring that the in-
frastructure and deployment processes are automated and efficient.

3.3 Scalability

The scalability of this system is achieved through a combination of architectural de-
sign choices, component decoupling, and the utilization of distributed technologies.
Each component in the system—from the frontend to the backend, RabbitMQ, Redis,
and MongoDB—is selected and configured to support horizontal scaling, ensuring
that the system can handle increased load and expand its capacity as demand grows.
This scalability is managed and facilitated by Kubernetes for orchestration and An-
sible for provisioning and configuration management, which ensures consistent and
automated deployments across different environments.
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Figure 3.2: Scaling Diagram

3.3.1 Frontend Scalability

The frontend is inherently stateless, which allows for easy horizontal scaling. Multi-
ple instances of the frontend can be deployed behind a load balancer, distributing in-
coming user requests across these instances. This design ensures that the system can
support numerous simultaneous users without experiencing performance degrada-
tion. The use of WebSockets, which typically presents scaling challenges due to the
persistent nature of connections, is managed through Kubernetes Horizontal Pod
Autoscaler (HPA) configurations defined in the Helm charts. This configuration al-
lows the frontend deployment to scale based on CPU or memory usage, dynamically
adjusting the number of running instances to match the current load.

3.3.2 Backend Scalability

The backend is designed to be stateless and modular, which is critical for scaling.
The stateless nature of the backend means that it can easily scale horizontally by
adding more instances to handle increased requests. Docker is used to containerize
the backend, and these containers are orchestrated using Kubernetes. The scaling
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process is automatically managed by Kubernetes HPA. Ensuring that the backend
deployment can handle fluctuations in demand without manual intervention.

The backend’s reliance on RabbitMQ for handling code execution and log messages
allows for distributed processing. RabbitMQ supports clustering, which means that
the message queue itself can be scaled horizontally. This clustering is configured, al-
lowing RabbitMQ to distribute messages across multiple nodes, which prevents any
single node from becoming a bottleneck. Worker processes, in the form of backend
instances, can then consume these messages concurrently, enhancing the system’s
ability to process a large volume of execution requests and log processing tasks si-
multaneously.

3.3.3 Message Queue Scalability

RabbitMQ is central to the scalability of this system. It acts as a broker for distribut-
ing tasks and log messages, enabling asynchronous processing and decoupling be-
tween the backend and the orchestrator. RabbitMQ’s clustering capability is a key
feature that supports its scalability, allowing multiple RabbitMQ nodes to work to-
gether, share the load, and provide fault tolerance. This configuration ensures that
if one node fails, another can take over without disrupting the entire system.

Moreover, RabbitMQ supports exchange and queue federation, which enhances its
scalability by allowing federated exchanges and queues to span multiple RabbitMQ
clusters. This setup can be particularly useful in geographically distributed environ-
ments, ensuring low-latency message delivery and high availability even in large-
scale systems.

3.3.4 Data Storage Scalability

Both Redis and MongoDB are chosen for their robust scalability features. Redis,
acting as a cache layer, can be scaled horizontally by adding more nodes to a Redis
cluster. This allows Redis to handle more read and write operations concurrently,
which is crucial as the number of concurrent users and the volume of logs increase.

MongoDB, used for persistent storage, is a NoSQL database known for its scala-
bility. MongoDB supports sharding, a process that distributes data across multiple
servers, enabling the database to handle large datasets and high throughput. The
sharding configuration, managed via Kubernetes, ensures that MongoDB can scale
horizontally by adding more shards as the dataset grows. Additionally, MongoDB’s
replica sets distribute read operations across multiple nodes, reducing the load on
any single node and contributing to overall system performance.

3.3.5 Orchestrator and Job Management Scalability

The orchestrator component, which manages the execution of code blocks in isolated
Docker containers, is designed to scale with the number of incoming jobs. Kuber-
netes is used to dynamically allocate resources for job execution based on current de-
mand, with HPA configurations automatically adjusting the number of orchestrator
instances. This dynamic scaling capability is essential for maintaining performance
and reliability, especially when handling numerous concurrent jobs.
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3.3.6 System Scalability

In conclusion, the system’s scalability is underpinned by its modular, decoupled
architecture and the strategic use of technologies that support horizontal scaling and
high availability. The use of Kubernetes for orchestration, combined with Ansible for
provisioning, ensures that the system can dynamically adjust to changes in load and
maintain performance under varying conditions. By distributing workloads across
multiple instances, clusters, and nodes, the system can accommodate increasing user
demands and data volumes without compromising performance or reliability. This
scalability ensures that the system remains robust and responsive, even as it grows
in size and complexity.

3.4 Infrastructure Automation and Deployment Workflow

The system’s infrastructure and deployment processes are fully automated using a
combination of Terraform, Ansible, and GitLab CI/CD. This integrated approach
ensures that infrastructure is consistently provisioned, configured, and maintained
across different environments, supporting the system’s scalability, reliability, and
operational efficiency.

3.4.1 Infrastructure as Code (IaC) with Terraform

Terraform is employed to define and provision the cloud infrastructure for the sys-
tem using Infrastructure as Code (IaC) principles. This enables the infrastructure
setup to be described in code, ensuring repeatable, consistent, and auditable de-
ployments. Key components such as virtual machines, networking configurations,
and security groups are defined within Terraform configuration files.

The state of the infrastructure, managed by Terraform, is securely stored and ver-
sioned in GitLab, allowing for collaborative infrastructure management and pre-
venting conflicts. This setup is crucial for maintaining an accurate and reliable rep-
resentation of the infrastructure across all environments.

3.4.2 Configuration Management with Ansible

Once the infrastructure is provisioned by Terraform, Ansible automates the config-
uration of servers and services. Ansible playbooks are executed to install necessary
software, configure system settings, and deploy applications across the infrastruc-
ture. This automation ensures consistency across all servers, reducing the potential
for configuration drift and minimizing manual intervention.

The playbooks are triggered as soon as the Master VM is provisioned, pulling the
latest resources from GitLab, installing required packages such as Docker, and ap-
plying Helm charts to set up the environment. Ansible integrates seamlessly with
GitLab CI/CD pipelines, ensuring that any configuration changes are automatically
tested and deployed, maintaining a consistent and stable environment.

3.4.3 Continuous Integration and Deployment with GitLab CI/CD

GitLab CI/CD pipelines automate the deployment process, orchestrating the execu-
tion of Terraform and Ansible scripts whenever changes are made to the infrastruc-
ture or application code. These pipelines ensure that the system remains up to date
with the latest configurations, applying changes in a controlled and reliable manner.
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The CI/CD pipelines handle the entire lifecycle of the deployment, from building
Docker images, pushing them to a container registry, to deploying the updated im-
ages on the OpenStack cluster. This approach ensures continuous integration and
deployment, minimizing downtime and enhancing the reliability of the system.

3.4.4 Deployment Workflow and Environment Setup

The deployment workflow integrates multiple tools and repositories to effectively
manage both the infrastructure and application components. The project is orga-
nized into several GitLab repositories, each corresponding to different system com-
ponents such as the frontend, backend, orchestrator, and infrastructure resources.
Each repository is equipped with its own CI/CD pipeline, automating the build,
test, and deployment processes.

As illustrated in Figure 8.3, when a change is pushed to any of these repositories, the
respective CI/CD pipeline is triggered. The pipeline builds Docker images, pushes
them to a container registry, and deploys the updated images to the OpenStack clus-
ter using Ansible scripts.

3.4.5 OpenStack Cluster Configuration

The application is hosted on an OpenStack cluster comprising a master VM and two
worker VMs. Terraform scripts are used to provision this infrastructure, including
the setup of networks, VM instances, and security groups. Once the VMs are up and
running, Ansible playbooks configure the Kubernetes cluster on these VMs, which
manages the deployment of the application containers.

The master VM orchestrates the Kubernetes cluster, while the worker VMs handle
the application workloads. This configuration ensures that the system is scalable,
resilient, and can be centrally managed through Kubernetes.
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Figure 3.3: Deployed Application Overview

3.5 Virtual Labs

The Virtual Labs (VL) implementation is designed to streamline the deployment of
isolated, cloud-based development environments for student groups, leveraging the
University’s OpenStack cluster. This approach ensures that each group of students
has access to a consistent and fully configured environment, eliminating the need for
local software installation and configuration, and aligning with the cloud computing
principles taught in the course.

Figure 3.4: Virtual Labs
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As depicted in Figure 8.4, the process begins with the provision of a CSV file that
contains details about the students and their respective groups. This file is crucial as
it serves as the basis for the subsequent steps in the Virtual Labs setup. The following
steps outline the detailed process:

1. Project Creation on OpenStack: For each group listed in the CSV file, a ded-
icated project is created on the OpenStack cluster. This project acts as an iso-
lated environment where the group can conduct their development activities.
Each project is uniquely mapped to a group and assigned a corresponding
project ID. This mapping ensures that the resources and environments are
properly segregated and managed for each group, maintaining isolation and
preventing cross-group interference.

2. User SSH Key Pair Generation: For each student, an SSH key pair is gen-
erated, with the public key being used to configure secure SSH access to the
VM.

3. Application Credentials (App Creds) Generation: After the project creation,
App Creds are generated for each project. These credentials are essential as
they are the only possibility of interacting with the OpenStack API and re-
sources. The generated App Creds allow for programmatic access to the project,
enabling automated deployment and management of the environment via Ter-
raform.

4. Terraform-Based Deployment: With the App Creds in place, the base Ter-
raform project is deployed within each group’s project on the OpenStack clus-
ter. Terraform workspaces are utilized to manage the different group environ-
ments, allowing for scalable and repeatable infrastructure deployment. During
this step, the necessary software is installed on the virtual machines (VMs) pro-
visioned for each group. This software typically includes development tools
such as Docker, Kubernetes, and the Java and Python runtimes, pre-configured
to match the course requirements.

5. User Account and SSH Key Pair Generation: As the VMs are being created,
individual user accounts are set up for each member of the group. This en-
sures that each student can securely access their group’s environment using
their personal credentials. The SSH key pair, along with the student’s unique
username (typically their student number, referred to as snumber), is critical for
maintaining secure and personalized access to the cloud environment.

6. Provisioning Access Details to Students: Once the VM setup is complete,
each student is provided with the necessary access details. This includes the
floating IP address of their group’s VM, their individual username, and their
SSH key pair. These details are crucial for enabling students to connect to their
Virtual Lab environment and begin their work. By providing these credentials
directly, the process ensures that students can immediately start their practical
exercises without the need for additional setup or troubleshooting, fostering a
seamless transition to the cloud-based development environment.

This approach to Virtual Labs not only simplifies the technical setup for students but
also enhances the scalability and manageability of the course’s practical component.
By automating the deployment process through Terraform and integrating secure
access mechanisms, the course ensures that each student group has a robust and con-
sistent environment tailored to their learning needs. The use of OpenStack’s cloud
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infrastructure further aligns the practical experience with real-world cloud comput-
ing practices, providing students with valuable hands-on experience in managing
and deploying cloud-based applications.
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4 — Discussion

4.1 Summary of Key Findings

The redesign and implementation of the new application for the ”Cloud Computing
and Cloud-based Applications” course yield several significant improvements that
enhance both the educational and technical aspects of the course. These enhance-
ments are carefully aligned with the course’s objectives, preparing students more
effectively for real-world cloud computing challenges.

One of the most impactful outcomes is the overall increase in student engagement
and participation. This is achieved through several key innovations, including the
introduction of Virtual Labs (VLs), the adoption of a modern and familiar technology
stack, and the automation of infrastructure management. Together, these elements
reduce the technical barriers that previously hindered students, allowing them to
focus more fully on the core learning objectives.

Additionally, the uniform environment provided by the VLs enhances collaboration
and teamwork among student groups. With all students operating within the same
setup, troubleshooting and knowledge sharing become more straightforward, pro-
moting a cohesive and productive learning environment. This consistency supports
the development of collaborative skills that are essential in both academic and pro-
fessional contexts.

The application leverages a technology stack centered around Java, Spring Boot, and
Python—tools that are both widely taught in the academic setting and extensively
used in the industry. This approach not only makes the application more accessible
but also provides students with relevant, hands-on experience. The modular mi-
croservices architecture introduces them to essential concepts of cloud computing.

Infrastructure automation is another key area of focus. By integrating Infrastruc-
ture as Code (IaC) using Terraform and automating configurations with Ansible,
the course introduces students to advanced DevOps practices critical for managing
modern cloud infrastructures. These tools streamline the deployment process and
provide students with practical experience in efficiently managing and scaling com-
plex systems. The expectation is that students will make the application capable
of potentially handling millions of users, reflecting real-world demands for scalable
systems.

The architectural design of the application, emphasizing decoupled components and
efficient message handling through RabbitMQ, results in a robust and reliable sys-
tem. This design not only supports the educational objective of teaching scalability
but also ensures that students understand how to build systems that are both fault-
tolerant and capable of scaling horizontally, a crucial aspect of cloud-native applica-
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tions.

In summary, the project successfully addresses the limitations of the previous system
by introducing a range of technical and educational enhancements. These improve-
ments not only meet the project’s objectives but also significantly enrich the learning
experience, equipping students with the skills and knowledge necessary to navigate
and succeed in the complexities of cloud computing.

4.2 Challenges

The development of the new application was a significant undertaking, particularly
as it was driven by a single student as part of a research internship. The process
involved not just a change in the technology stack but a complete rethinking of the
application’s concept and structure.

One of the key challenges was the complete overhaul of the existing application.
The previous system, based on .NET and C#, was not well-aligned with the course’s
educational goals or the students’ technical backgrounds. The decision to shift to
a new technology stack—centered around Java, Spring Boot, and Python—required
a re-envisioning of the entire application. This was not just a technical upgrade
but also a conceptual redesign, ensuring that the new application better served the
course’s focus on cloud computing and scalability.

Redesigning the application’s architecture to meet these new goals involved careful
planning. The new system needed to be modular and scalable, supporting the edu-
cational objective of teaching students about cloud scalability. This meant designing
an application skeleton that students could extend to potentially handle millions of
users, thereby giving them practical experience in building scalable solutions.

The introduction of VLs was another pivotal aspect of the redesign. These labs were
intended to provide students with consistent, pre-configured cloud environments,
which would eliminate many of the technical barriers encountered in previous it-
erations of the course. Developing these labs required addressing various technical
issues related to cloud resource management, security, and network configurations.
Ensuring that the VLs were both robust and easy for students to use was a significant
part of the development process.

Managing the entire project as a solo developer required a high level of self-discipline
and problem-solving ability. Balancing the need to redesign the application’s con-
cept, implement a new technology stack, and ensure the system’s scalability and
usability within the constraints of the project timeline was no small task. However,
these challenges were met with a focus on delivering a functional, educationally ef-
fective tool that aligned with the course’s objectives.

In summary, the development of the new application involved navigating several
complex challenges, from conceptual redesign to technical implementation. The
successful outcome of the project demonstrates the ability to effectively manage and
overcome these challenges, resulting in a robust and innovative application that sig-
nificantly enhances the learning experience.
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4.3 Practical Implications

The redesigned application delivers substantial practical benefits, directly enhanc-
ing students’ readiness for industry challenges. By incorporating industry-standard
tools like Java, Spring Boot, Python, Kubernetes, and Terraform, the course now
provides students with hands-on experience that closely mirrors real-world prac-
tices. This exposure not only bridges the gap between theoretical knowledge and
application but also equips students with skills that are highly valued in the job
market.

The introduction of VLs ensures that all students have equal access to a consis-
tent, cloud-based environment, significantly reducing technical barriers and allow-
ing them to focus on mastering cloud computing concepts. This uniformity fosters
a more inclusive learning experience, making the course accessible to a wider range
of students, regardless of their prior technical background.

A key focus on scalability within the course equips students with the ability to de-
sign and implement systems capable of handling large-scale operations, an essential
skill in cloud computing. The requirement for students to extend the application
to handle potentially millions of users instills a deep understanding of scalability,
preparing them to tackle similar challenges in professional settings.

The integration of infrastructure automation tools like Terraform and Ansible intro-
duces students to modern DevOps practices, providing them with practical experi-
ence in managing and automating cloud infrastructures. This knowledge is crucial
for operating in environments where continuous integration and deployment are
standard.

Moreover, the standardized setups facilitated by VLs promote effective teamwork
and collaboration, essential skills in the software development industry. The course
structure encourages students to work together within a consistent environment,
enhancing both their technical and soft skills.

In summary, this project not only enhances the educational value of the course but
also significantly boosts students’ practical capabilities, better preparing them for
careers in cloud computing and related fields.

4.4 Lessons Learned

Throughout the development of the new application, several key lessons emerged
that are valuable for both future projects and educational design.

The decision to structure the application around a microservices architecture under-
lined the value of modularity. This approach not only made the application scalable,
but also provided a clear, tangible way for students to interact with and learn about
complex cloud systems. The modular design facilitated incremental learning, allow-
ing students to build and extend the application in manageable steps, reinforcing
their understanding of key cloud principles.

The introduction of VLs highlighted the critical impact of providing students with
a consistent, ready-to-use environment. By eliminating setup challenges, the VLs
allowed students to focus more on learning and experimentation, which led to bet-
ter engagement and outcomes. This lesson reinforces the importance of simplifying
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technical environments in educational settings to allow for a more focused and pro-
ductive learning experience.

One lesson learned was the critical role of comprehensive and clear documentation
in the success of the project. Detailed documentation not only supported the devel-
opment process but also ensured that students could navigate the application and
its components effectively. This experience highlighted that robust documentation is
essential, especially in educational tools, as it helps bridge the gap between complex
technology and the learner’s understanding.

Finally, the project revealed the delicate balance required between introducing ad-
vanced technical concepts and maintaining accessibility for all students. Ensuring
that the application was challenging enough to be instructive, yet approachable for
those with varying levels of experience, was a key factor in its success. This balance
is essential in educational design, where the goal is to push students’ understanding
without overwhelming them.

4.5 Recommendations for Future Research

While the new application has significantly enhanced the learning experience in the
”Cloud Computing and Cloud-based Applications” course, there are several av-
enues for future research that could further improve its effectiveness and extend
its impact.

Given the need to finalize the application before the course commenced, for ex-
ample, there is significant potential for refining the application based on student
feedback gathered during and after its initial use. Future research could focus on
systematically collecting and analyzing this feedback to identify areas where the ap-
plication can be improved. This might involve tweaking the user interface for bet-
ter usability, adjusting the complexity of certain tasks to better match student skill
levels, or enhancing the clarity of instructional materials. Incorporating real-world
feedback from students who have used the application in a live educational setting
will be crucial in making iterative improvements that enhance its effectiveness and
accessibility.

In conclusion, the new application provides a solid foundation for cloud comput-
ing education, but there is potential for future research to expand its capabilities,
enhance its impact, and adapt its principles to other areas of study.
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5 — Conclusion

This paper detailed the redesign and implementation of a new application for the
”Cloud Computing and Cloud-based Applications” course at the University of Gronin-
gen. The project successfully replaced the previous application with a modern, scal-
able one that aligns with current industry standards and educational goals.

Key innovations included the adoption of a microservices architecture and the in-
troduction of Virtual Labs, which significantly enhanced the learning experience by
providing a consistent, cloud-based environment for students. These improvements
facilitate better engagement, practical learning, and collaboration among students.

The development process, managed by the author of this paper, involved overcom-
ing several technical and conceptual challenges, ultimately resulting in a robust and
effective educational tool. Lessons learned from this project emphasize the impor-
tance of aligning technology with educational objectives, ensuring modularity, and
maintaining clear documentation.

Future work should focus on refining the application based on student feedback,
expanding its capabilities, and exploring its potential for broader educational use.

In conclusion, the project has made a substantial contribution to cloud computing
education at the university, providing a solid foundation for future advancements.
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6 — Introduction

6.1 Background

This document provides an in-depth analysis of the design, development, and im-
plementation of a new application developed for a critical component of the Cloud
Computing and Cloud-based Applications course offered at the University of Gronin-
gen (RUG). As a master’s level course, it plays a significant role within several aca-
demic tracks, particularly those focusing on cloud computing, distributed systems,
and scalable application design. This course is also strategically positioned as a foun-
dational prerequisite, equipping students with the necessary skills and knowledge
for advanced courses in the curriculum.

The course content is divided into two main components: theoretical and practical.
The theoretical component covers fundamental principles of cloud computing, in-
cluding cloud service models, architecture, and security concerns. It also explores
advanced topics such as cloud-native application development, microservices ar-
chitecture, and continuous integration/continuous deployment (CI/CD) pipelines.
This document specifically focuses on the practical component of the course, provid-
ing a detailed exploration of a target application that serves as the core project for
this segment. This is designed to help students apply and implement the theoretical
concepts they have learned.

The learning objectives associated with the practical component are comprehensive
and aim to equip students with hands-on experience in transitioning an application
from a local development environment to a fully operational cloud-based system.
Specifically, students are tasked with deploying the application on the University’s
OpenStack cluster, a private cloud platform that provides a real-world environment
for cloud computing exercises. A critical aspect of this deployment is ensuring that
the application is capable of scaling to potentially serve millions of users, a require-
ment that underscores the importance of understanding cloud scalability and re-
source management.

The practical component, referred to in this document as ”the application”, is pur-
posefully designed with complexity to challenge students, but its modular structure
ensures that it remains manageable and promotes effective learning. This modular-
ity is crucial, as it allows for the seamless adoption of cloud technologies without
necessitating modifications to the core source code. This design choice ensures that
students can focus on cloud integration and deployment strategies rather than being
encumbered by the need to refactor or re-engineer the application itself, at least for
the first phases of the project.

The practical component is meticulously structured into several milestones, each
representing a key phase in the overall project. The initial milestone involves ”dock-
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erizing” the application—encapsulating the software into Docker containers, which
are then orchestrated using Docker Compose. This milestone introduces students to
containerization, a fundamental skill in modern cloud computing, and emphasizes
the importance of environment consistency and application portability.

Following the Docker Compose deployment, students advance to the next mile-
stone, which involves converting the application’s components into Helm charts.
Helm, a package manager for Kubernetes, simplifies the deployment and manage-
ment of applications within a Kubernetes cluster. This milestone not only familiar-
izes students with Kubernetes, an industry-standard platform for container orches-
tration, but also with Helm’s templating and configuration management capabili-
ties, which are essential for managing complex cloud-native applications.

The final milestone of the practical component requires students to use Terraform,
an Infrastructure as Code (IaC) tool, to deploy the application on the University’s
OpenStack cluster. This milestone is particularly challenging as it involves establish-
ing a highly available Kubernetes cluster across multiple virtual machines, complete
with auto-scaling capabilities. This exercise is designed to simulate real-world cloud
deployment scenarios, where students must manage the complexities of distributed
systems, ensure fault tolerance, and optimize for performance and scalability.

This practical component, and the application at its core, represents an evolution of
the course from its initial version as offered last academic year, where a different ap-
plication was used. The new application is part of the University’s broader initiative
to enhance the Computer Science master’s program at RUG, reflecting the institu-
tion’s commitment to providing students with cutting-edge tools and experiences
that are directly applicable to the rapidly evolving field of cloud computing.

Overall, this document not only outlines the technical aspects of the application and
its role within the course but also situates it within the broader educational objectives
of the Computer Science MSc programme. By providing students with a rigorous,
hands-on project, the course aims to bridge the gap between theoretical knowledge
and practical skills, preparing graduates to excel in both academic research and in-
dustry positions related to cloud computing and large-scale system design.

6.2 Problem Description

Problem 1 (P1) The previous application used by the course was created by a for-
mer teaching assistant (TA) to the course as a product for the ”Web and Cloud Com-
puting” course that served as the predecessor for the current course. However, the
decision to develop the application using C# and the .NET framework introduced
several challenges that ultimately affected the application’s suitability for use in a
course laboratory setting. Feedback from both students and TAs during the previ-
ous iteration of the course highlighted these issues, making it apparent that a com-
plete redesign of the application was necessary to ensure it could function effectively
within the course’s framework. Which is the aim of this research internship.

More specifically, while the .NET framework is a robust and widely used platform,
it is not extensively covered within the RUG’s Computer Science curriculum, and
C# is not currently part of the standard curriculum. This disconnect between the
technologies used in the application and the tools and languages familiar to students
seemingly presented a significant barrier to student engagement and learning. The
project’s reliance on .NET and C# meant that students had to invest considerable
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time in learning these new technologies, detracting from their ability to focus on the
core cloud computing concepts that the course aimed to teach.

Problem 2 (P2) Additionally, the project suffered from a lack of comprehensive
documentation. The only guidance provided was a basic README file at the top
level of the project, which offered little more than a cursory overview of the ap-
plication. There were no design diagrams, no component descriptions, and no de-
tailed explanations of the application’s architecture or functionality. Moreover, criti-
cal aspects of working with .NET—such as locating environment variables, manag-
ing database connections, and handling connection strings—were not documented.
This lack of documentation made it difficult for students to understand the appli-
cation’s inner workings, hindering their ability to extend or build upon the project,
and ultimately limiting their learning experience.

Problem 3 (P3) Another significant shortcoming of the original application was
the absence of a clear rationale for deploying it in a Kubernetes environment. The
application did not present any obvious bottlenecks that would necessitate the use
of Kubernetes, nor were there any tangible benefits of cloud infrastructure that were
readily apparent to students. As a result, the value of deploying the application in a
cloud-based Kubernetes environment was not evident, leading students to perceive
the exercise as unnecessary and disconnected from the course’s objectives. This lack
of clarity around the purpose and benefits of using Kubernetes in the context of the
application further undermined the effectiveness of the practical component.

Problem 4 (P4) Another issue encountered last year was the difficulty students
faced in setting up the necessary technology to perform the practicals. Establish-
ing a local Docker and Kubernetes development environment proved to be partic-
ularly challenging. Students struggled with installing and configuring the required
software, and the diverse range of operating systems and hardware configurations
further complicated the setup process. This difficulty significantly impeded the
progress of the practical component, as many students were unable to get the en-
vironment running, leading to frustration and delays.

6.3 Envisioned solution

To summarize, it is imperative to enhance the students’ experience regarding the
practical component of the course. This improvement plan focuses on the following
key objectives:

1. Redesign and Rewrite the Base Application: The base application will be
rewritten and redesigned in a programming language that is more familiar to
Computing Science students at the University of Groningen. The technology
stack will also be updated to align with those more commonly used among the
student body. Which handles P1.

2. Provide Comprehensive Documentation: Clear and detailed documentation
will be created, outlining the technology used, the processes involved, and the
interactions between different components. This will assist students in under-
standing the project architecture and workflow. Which handles P2.
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3. Provide a bottleneck: The application will have a clear bottleneck that re-
quires scaling in the cloud to lead students to perceive the exercise as necessary.
Which handles P3

4. Ensure Standardized Development Environments: Students will be provided
with ready-to-use development environments and machines (servers) on the
OpenStack Clusters. This will ensure a standardized setup across all students,
eliminating discrepancies in local configurations and promoting a uniform
learning experience. Which handles P4

These objectives will serve as the foundation for the enhancement of the practical
component of the course and will be referenced throughout the improvement plan.

In response to these challenges, and as part of this research internship, the appli-
cation will not only be completely redesigned but will also be accompanied by the
development of new tools aimed at creating isolated environments for each group
of students on the University’s OpenStack cluster. These environments, referred
to as ”Virtual Labs”, will adhere to the principles of cloud computing by providing
a ready-made, cloud-hosted environment for each student group. This approach
eliminates the need for local development environments, thereby resolving the is-
sues related to software installation and configuration on personal machines. These
Virtual Labs will provide a consistent and uniform environment for all students, en-
suring that everyone has access to the necessary resources and tools to complete the
practical component successfully.

Finally, the students encountered substantial difficulties due to the absence of neces-
sary installations on their local machines. Many students lacked the hardware and
software capabilities to run the application concurrently with a Kubernetes cluster,
which is resource-intensive. These constraints prevented students from fully engag-
ing with the practical exercises, as they were unable to simulate real-world cloud
environments on their personal devices. This limitation underscored the need for a
cloud-based solution that would remove these barriers and provide a more accessi-
ble, scalable environment for all students.

In conclusion, the challenges encountered with the original application—ranging
from technological incompatibility to inadequate documentation and unclear objec-
tives—highlighted the need for a comprehensive redesign. The new application and
its accompanying tools, developed as part of this research internship, aim to address
these issues by providing a cloud-native solution that aligns with the course’s learn-
ing objectives and the technological landscape of the RUG.
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7 — Methodology

7.1 Methods

To achieve these objectives, a new application will be developed using Java and the
Spring Boot framework. Java is a more familiar language and is taught at the RUG in
both the Object-Oriented Programming (OOP) and Advanced Object-Oriented Pro-
gramming (AOOP) courses. This familiarity will enable students to understand the
backend more effectively and make modifications to the code if necessary, allowing
them to focus on critical aspects such as scalability and cloud integration rather than
the obstacle of learning a new programming language.

To further enhance the educational value of the project, another part of the applica-
tion will be written in Python, a language with which many students are also famil-
iar. This dual-language approach will showcase the advantages of designing appli-
cations for a microservices architecture, where different components can be written
in various languages or developed by separate teams. This method not only demon-
strates the flexibility and modularity of microservices but also reduces confusion
among students, of both components being deployed together, by clearly delineat-
ing the roles and responsibilities of each component. The process of containerizing
these components using Docker and scaling them within a Kubernetes environment
will be integral to the learning experience, offering students practical insights into
modern cloud-based application development.

The project will be streamlined by removing certain features from the previous it-
eration, such as multitenancy and user authentication, as these do not contribute
significantly to the course’s learning objectives. Instead, the emphasis will be on
core cloud computing concepts and the practical application of these concepts in a
real-world scenario. To support this, a high-level diagram will be provided to give
students and teaching assistants (TAs) a clear overview of the application’s archi-
tecture and component interactions. Additionally, a second diagram will show how
the application scales within a Kubernetes environment, with specific bottlenecks
highlighted to help students understand the advantages of cloud adoption. These
visual aids are intended to simplify complex ideas and enhance understanding.

7.2 Virtual Labs (VL)

To address the challenges associated with setting up local development environ-
ments, the course will implement Virtual Labs (VL)—isolated, cloud-based environ-
ments hosted on the University’s OpenStack cluster. These Virtual Labs will pro-
vide each group of students with a pre-configured development environment that
mirrors the production environment. By utilizing VLs, the need for students to in-
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stall and configure complex software locally will be eliminated, thereby reducing the
risk of technical issues and ensuring that all students can begin their practical work
without delay.

The VLs will include all necessary tools and configurations, such as Docker, Kuber-
netes, and the Java and Python runtimes, pre-installed and ready to use. This ap-
proach will not only standardize the development environment across all students
but will also align with the principles of cloud computing by leveraging cloud infras-
tructure to deliver scalable, on-demand resources. The VLs will also facilitate easier
monitoring and support by TAs, as they will have access to a consistent environment
when assisting students with troubleshooting and debugging.

This allows students to focus more on applying cloud computing concepts and less
on overcoming technical hurdles, leading to a more effective and immersive learn-
ing experience. The use of VLs also prepares students for industry practices by fa-
miliarizing them with cloud-based workflows and infrastructure management, thus
bridging the gap between academic learning and real-world applications.

In summary, the methodology adopted for this project emphasizes the use of famil-
iar technologies, the simplification of the application architecture, and the deploy-
ment of cloud-based Virtual Labs to enhance the learning experience. By focusing
on these areas, the course aims to provide students with a deeper understanding
of cloud computing concepts and practical skills that are directly applicable to real-
world scenarios.
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8 — Results

8.1 Design

The designed application called ”Sandbox Code Runner” was meticulously engi-
neered to ensure no coupling between the components. The application consists of
three main components and three additional elements serving as data sources and
a message queue. The components are decoupled in accordance with microservices
architecture design guidelines, allowing each component to be scaled horizontally
and independently. The main three components, depicted in Figure 8.1, are:

1. Frontend

2. Backend

3. Orchestrator

Figure 8.1: Sandbox Code Runner Architecture

8.1.1 Frontend

The frontend, developed using React JS, is responsible for handling user interactions
and providing real-time feedback during code execution. It captures and processes
user inputs, specifically Bash language code blocks, which are central to the sys-
tem’s operations. The frontend is structured around several key components such as
CodeBlockForm, LogsBox, and ExecutedBlocksList, which collectively man-
age the user interface, code submission, and the display of execution results.

Before a code block is submitted, the frontend performs client-side validation to en-
sure the input is valid and that the backend service is available, preventing the sub-
mission of incomplete or erroneous requests. Upon successful validation, the code
block is sent to the backend via a RESTful API, specifically the /execute endpoint.
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The frontend then establishes a WebSocket connection using the WebSocketClientContext
component, which receives real-time updates from the backend regarding the status
and output of the code execution. These updates are dynamically rendered in the
user interface to keep the user informed about the progress of their request.

The frontend is designed to be stateless, allowing multiple instances to be deployed
behind a load balancer, which supports horizontal scaling and ensures that the sys-
tem can handle a large number of concurrent users without performance degrada-
tion. This approach aligns with the overall architecture, as depicted in Figure 8.1,
where the frontend communicates with the backend to publish updates and receive
execution results efficiently.

8.1.2 Backend

The backend, implemented using Java and Spring Boot, serves as the core of the
system’s business logic and data handling. It provides several key functionalities
through its RESTful API and WebSocket server. When a code block is received via
the /execute endpoint, the backend validates the request using Data Transfer Ob-
jects (DTOs) such as CodeBlockRequest and CodeBlockResponse. This valida-
tion step ensures that the code block meets the required criteria before proceeding
further.

Once validated, the backend assigns a unique ID to the code block and notifies
the frontend with this ID, along with an initial WebSocket message to update the
user interface. The validated code block is then forwarded to RabbitMQ using the
MessageProducer class, where it enters the message queue system for execution.

The backend is also responsible for managing logs and metadata associated with
each code block. This is handled by the LogsManager and LogsMetadataManager
classes, which interface with both Redis and MongoDB for caching and persistent
storage, respectively. The backend utilizes the Repository Pattern, implemented
through interfaces such as LogsRepository and LogsMetadataRepository, to
abstract data access and maintain clean, maintainable code. This pattern allows the
backend to interact with the database layer in a consistent manner, as illustrated in
Figure 8.1.

The backend’s stateless architecture supports horizontal scaling, allowing it to han-
dle increased load by deploying additional instances. This scalability is a critical
aspect of the system’s design, ensuring that the backend can process a large number
of code execution requests efficiently.

8.1.3 Orchestrator

The orchestrator, implemented in Python, is responsible for managing the execu-
tion of code blocks within isolated Docker containers. It consumes messages from
RabbitMQ, specifically from the MQ - code queue, as shown in Figure 8.1. The
orchestrator retrieves the code block, spawns a new Docker container, and executes
the code within this isolated environment.

The orch.py script is the core of the orchestrator, handling the lifecycle of each
job from spawning the container to monitoring its execution. It interacts with the
messaging system through a series of modules, including message handler.py
and rabbit config.py, which configure the connection to RabbitMQ and man-
age message processing. Upon completion of the code execution, the orchestrator
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updates the backend with the results, which include the exit status and any gener-
ated logs.

The results are then published to the MQ - logs queue, which are subsequently
consumed by the backend and made available to the frontend. This flow ensures
that the user receives real-time updates on the status and output of their submitted
code, maintaining the responsiveness and reliability of the system.

The orchestrator’s design is focused on scalability and fault tolerance. By utilizing
Docker containers, the orchestrator can efficiently manage multiple concurrent jobs,
with each job being isolated to prevent interference between code executions. Addi-
tionally, the use of RabbitMQ as a message broker ensures that messages are reliably
delivered and processed in the correct order, contributing to the robustness of the
system.

8.1.4 Design Decisions

The design of the Sandbox Code Runner was driven by the need to create a robust,
scalable, and maintainable system capable of handling real-time code execution and
logging in a cloud-native environment. Several key decisions were made to achieve
these goals:

Message Handling in RabbitMQ

A significant design choice was the way messages are handled within RabbitMQ.
Each message, representing a code block or log output, is acknowledged only af-
ter the entire execution process has been completed. This approach ensures reliable
message processing and avoids the need for sticky sessions, which can complicate
scalability and failover strategies. By treating each message as an atomic unit of
work, the system maintains integrity even under high load, as each message is pro-
cessed in its entirety before being acknowledged.

Data Caching and Persistence

The system employs both Redis and MongoDB to manage data efficiently. Logs,
which represent the output of the containerized code execution, are stored in Redis
for fast retrieval and in MongoDB for persistent storage. This dual storage strategy
allows the system to leverage Redis’s in-memory data store for quick access to fre-
quently requested data, while MongoDB serves as the long-term data store. This
design also simplifies fault tolerance, as Redis mirrors the data stored in MongoDB,
ensuring that any data in MongoDB is readily available in Redis, thereby reducing
latency in data access.

Fault Tolerance and Retry Mechanisms

The backend includes built-in retry mechanisms to handle transient failures, par-
ticularly in communication with RabbitMQ and the orchestrator. These retries are
crucial for maintaining the system’s robustness, ensuring that temporary network
issues or service disruptions do not result in lost or unprocessed messages. The or-
chestrator, responsible for managing Docker containers that execute the code blocks,
also communicates its status back to the backend. This communication includes up-
dates on job progress and completion, which the backend then uses to update the
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frontend in real-time. This ensures that the user is always informed of the current
status of their code execution.

Separation of Concerns and Scalability

The architecture strictly adheres to the principles of microservices, with each compo-
nent—frontend, backend, orchestrator, and message queue—being decoupled and
independently scalable. This separation of concerns not only simplifies develop-
ment and maintenance but also allows each component to scale independently based
on demand. For instance, the frontend can scale horizontally to handle more users,
while the backend and orchestrator can scale based on the number of code execution
requests. RabbitMQ, as the central message broker, ensures that these components
can communicate asynchronously, further enhancing the system’s scalability and re-
liability.

Real-time Communication via WebSockets

WebSockets are used extensively to facilitate real-time communication between the
backend and frontend. Unlike traditional HTTP, which follows a request-response
model, WebSockets maintain a persistent connection, allowing continuous data flow.
This is particularly beneficial for streaming log data from the backend to the fron-
tend as soon as it is available. This real-time capability is essential for providing
immediate feedback to users, enhancing the overall user experience.

These design decisions collectively ensure that the Sandbox Code Runner is robust,
scalable, and capable of delivering a responsive user experience even under heavy
load. The careful separation of concerns between different components, coupled
with the use of modern technologies like RabbitMQ, Redis, MongoDB, and Docker,
provides a solid foundation for the system’s current functionality and future en-
hancements.

8.2 Technology Stack

The Sandbox Code Runner leverages a diverse and robust technology stack to ensure
high performance, scalability, and ease of development. The key technologies used
include:

• Redis: An in-memory data structure store used for caching log data, signifi-
cantly reducing access times compared to querying the persistent database.

• MongoDB: A NoSQL database chosen for its scalability and flexibility, used to
efficiently store and retrieve unstructured data.

• Java and Spring Boot: Java is a widely taught and robust programming lan-
guage used in conjunction with the Spring Boot framework to develop the
backend. Spring Boot simplifies the development of production-ready applica-
tions and provides a comprehensive suite of tools for building robust backend
services.

• Python: Python is used for the orchestrator to demonstrate the flexibility and
power of a microservices architecture, where different components can be im-
plemented in various programming languages.
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• React JS: React JS is employed for the frontend development. It is a popu-
lar JavaScript library for building user interfaces, known for its efficiency and
flexibility in creating interactive and dynamic web applications.

• WebSockets: Used to facilitate real-time, bidirectional communication between
the frontend and backend, maintaining a persistent connection for continuous
data flow, which is crucial for real-time updates.

• RabbitMQ: A message broker that manages the communication between the
backend and the orchestrator, allowing for distributed processing and task
management. It is essential for handling the asynchronous nature of the sys-
tem’s tasks.

• Docker: Containerization technology used to package applications and their
dependencies into containers, ensuring consistency across different environ-
ments and enabling scalable deployments.

• Kubernetes: Orchestrates the deployment, scaling, and operation of container-
ized applications, managing the backend, frontend, and orchestrator compo-
nents to ensure the system can scale horizontally based on demand.

• Ansible: An automation tool used for provisioning and configuration man-
agement. Ansible ensures that the infrastructure is consistently deployed and
configured across different environments, streamlining the process of scaling
the system and maintaining its reliability.

• Terraform: An Infrastructure as Code (IaC) tool used to provision and manage
cloud resources efficiently. Terraform enables the automated deployment of in-
frastructure components, ensuring consistency and scalability across different
environments.

• GitLab CI/CD: GitLab’s Continuous Integration/Continuous Deployment (CI/CD)
pipelines are used to automate the building, testing, and deployment of the
application. This integration ensures that new code changes are automatically
tested and deployed, maintaining high code quality and enabling rapid itera-
tion.

This technology stack provides a solid foundation for the system, enabling it to be
scalable, resilient, and responsive to user demands, while also ensuring that the in-
frastructure and deployment processes are automated and efficient.

8.3 Scalability

The scalability of this system is achieved through a combination of architectural de-
sign choices, component decoupling, and the utilization of distributed technologies.
Each component in the system—from the frontend to the backend, RabbitMQ, Redis,
and MongoDB—is selected and configured to support horizontal scaling, ensuring
that the system can handle increased load and expand its capacity as demand grows.
This scalability is managed and facilitated by Kubernetes for orchestration and An-
sible for provisioning and configuration management, which ensures consistent and
automated deployments across different environments.

37



Figure 8.2: Scaling Diagram

8.3.1 Frontend Scalability

The frontend is inherently stateless, which allows for easy horizontal scaling. Multi-
ple instances of the frontend can be deployed behind a load balancer, distributing in-
coming user requests across these instances. This design ensures that the system can
support numerous simultaneous users without experiencing performance degrada-
tion. The use of WebSockets, which typically presents scaling challenges due to the
persistent nature of connections, is managed through Kubernetes Horizontal Pod
Autoscaler (HPA) configurations defined in the Helm charts. This configuration al-
lows the frontend deployment to scale based on CPU or memory usage, dynamically
adjusting the number of running instances to match the current load.

8.3.2 Backend Scalability

The backend is designed to be stateless and modular, which is critical for scaling.
The stateless nature of the backend means that it can easily scale horizontally by
adding more instances to handle increased requests. Docker is used to containerize
the backend, and these containers are orchestrated using Kubernetes. The scaling
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process is automatically managed by Kubernetes HPA. Ensuring that the backend
deployment can handle fluctuations in demand without manual intervention.

The backend’s reliance on RabbitMQ for handling code execution and log messages
allows for distributed processing. RabbitMQ supports clustering, which means that
the message queue itself can be scaled horizontally. This clustering is configured, al-
lowing RabbitMQ to distribute messages across multiple nodes, which prevents any
single node from becoming a bottleneck. Worker processes, in the form of backend
instances, can then consume these messages concurrently, enhancing the system’s
ability to process a large volume of execution requests and log processing tasks si-
multaneously.

8.3.3 Message Queue Scalability

RabbitMQ is central to the scalability of this system. It acts as a broker for distribut-
ing tasks and log messages, enabling asynchronous processing and decoupling be-
tween the backend and the orchestrator. RabbitMQ’s clustering capability is a key
feature that supports its scalability, allowing multiple RabbitMQ nodes to work to-
gether, share the load, and provide fault tolerance. This configuration ensures that
if one node fails, another can take over without disrupting the entire system.

Moreover, RabbitMQ supports exchange and queue federation, which enhances its
scalability by allowing federated exchanges and queues to span multiple RabbitMQ
clusters. This setup can be particularly useful in geographically distributed environ-
ments, ensuring low-latency message delivery and high availability even in large-
scale systems.

8.3.4 Data Storage Scalability

Both Redis and MongoDB are chosen for their robust scalability features. Redis,
acting as a cache layer, can be scaled horizontally by adding more nodes to a Redis
cluster. This allows Redis to handle more read and write operations concurrently,
which is crucial as the number of concurrent users and the volume of logs increase.

MongoDB, used for persistent storage, is a NoSQL database known for its scala-
bility. MongoDB supports sharding, a process that distributes data across multiple
servers, enabling the database to handle large datasets and high throughput. The
sharding configuration, managed via Kubernetes, ensures that MongoDB can scale
horizontally by adding more shards as the dataset grows. Additionally, MongoDB’s
replica sets distribute read operations across multiple nodes, reducing the load on
any single node and contributing to overall system performance.

8.3.5 Orchestrator and Job Management Scalability

The orchestrator component, which manages the execution of code blocks in isolated
Docker containers, is designed to scale with the number of incoming jobs. Kuber-
netes is used to dynamically allocate resources for job execution based on current de-
mand, with HPA configurations automatically adjusting the number of orchestrator
instances. This dynamic scaling capability is essential for maintaining performance
and reliability, especially when handling numerous concurrent jobs.
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8.3.6 System Scalability

In conclusion, the system’s scalability is underpinned by its modular, decoupled
architecture and the strategic use of technologies that support horizontal scaling and
high availability. The use of Kubernetes for orchestration, combined with Ansible for
provisioning, ensures that the system can dynamically adjust to changes in load and
maintain performance under varying conditions. By distributing workloads across
multiple instances, clusters, and nodes, the system can accommodate increasing user
demands and data volumes without compromising performance or reliability. This
scalability ensures that the system remains robust and responsive, even as it grows
in size and complexity.

8.4 Infrastructure Automation and Deployment Workflow

The system’s infrastructure and deployment processes are fully automated using a
combination of Terraform, Ansible, and GitLab CI/CD. This integrated approach
ensures that infrastructure is consistently provisioned, configured, and maintained
across different environments, supporting the system’s scalability, reliability, and
operational efficiency.

8.4.1 Infrastructure as Code (IaC) with Terraform

Terraform is employed to define and provision the cloud infrastructure for the sys-
tem using Infrastructure as Code (IaC) principles. This enables the infrastructure
setup to be described in code, ensuring repeatable, consistent, and auditable de-
ployments. Key components such as virtual machines, networking configurations,
and security groups are defined within Terraform configuration files.

The state of the infrastructure, managed by Terraform, is securely stored and ver-
sioned in GitLab, allowing for collaborative infrastructure management and pre-
venting conflicts. This setup is crucial for maintaining an accurate and reliable rep-
resentation of the infrastructure across all environments.

8.4.2 Configuration Management with Ansible

Once the infrastructure is provisioned by Terraform, Ansible automates the config-
uration of servers and services. Ansible playbooks are executed to install necessary
software, configure system settings, and deploy applications across the infrastruc-
ture. This automation ensures consistency across all servers, reducing the potential
for configuration drift and minimizing manual intervention.

The playbooks are triggered as soon as the Master VM is provisioned, pulling the
latest resources from GitLab, installing required packages such as Docker, and ap-
plying Helm charts to set up the environment. Ansible integrates seamlessly with
GitLab CI/CD pipelines, ensuring that any configuration changes are automatically
tested and deployed, maintaining a consistent and stable environment.

8.4.3 Continuous Integration and Deployment with GitLab CI/CD

GitLab CI/CD pipelines automate the deployment process, orchestrating the execu-
tion of Terraform and Ansible scripts whenever changes are made to the infrastruc-
ture or application code. These pipelines ensure that the system remains up to date
with the latest configurations, applying changes in a controlled and reliable manner.
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The CI/CD pipelines handle the entire lifecycle of the deployment, from building
Docker images, pushing them to a container registry, to deploying the updated im-
ages on the OpenStack cluster. This approach ensures continuous integration and
deployment, minimizing downtime and enhancing the reliability of the system.

8.4.4 Deployment Workflow and Environment Setup

The deployment workflow integrates multiple tools and repositories to effectively
manage both the infrastructure and application components. The project is orga-
nized into several GitLab repositories, each corresponding to different system com-
ponents such as the frontend, backend, orchestrator, and infrastructure resources.
Each repository is equipped with its own CI/CD pipeline, automating the build,
test, and deployment processes.

As illustrated in Figure 8.3, when a change is pushed to any of these repositories, the
respective CI/CD pipeline is triggered. The pipeline builds Docker images, pushes
them to a container registry, and deploys the updated images to the OpenStack clus-
ter using Ansible scripts.

8.4.5 OpenStack Cluster Configuration

The application is hosted on an OpenStack cluster comprising a master VM and two
worker VMs. Terraform scripts are used to provision this infrastructure, including
the setup of networks, VM instances, and security groups. Once the VMs are up and
running, Ansible playbooks configure the Kubernetes cluster on these VMs, which
manages the deployment of the application containers.

The master VM orchestrates the Kubernetes cluster, while the worker VMs handle
the application workloads. This configuration ensures that the system is scalable,
resilient, and can be centrally managed through Kubernetes.
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Figure 8.3: Deployed Application Overview

8.5 Virtual Labs

The Virtual Labs (VL) implementation is designed to streamline the deployment of
isolated, cloud-based development environments for student groups, leveraging the
University’s OpenStack cluster. This approach ensures that each group of students
has access to a consistent and fully configured environment, eliminating the need for
local software installation and configuration, and aligning with the cloud computing
principles taught in the course.

Figure 8.4: Virtual Labs
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As depicted in Figure 8.4, the process begins with the provision of a CSV file that
contains details about the students and their respective groups. This file is crucial as
it serves as the basis for the subsequent steps in the Virtual Labs setup. The following
steps outline the detailed process:

1. Project Creation on OpenStack: For each group listed in the CSV file, a ded-
icated project is created on the OpenStack cluster. This project acts as an iso-
lated environment where the group can conduct their development activities.
Each project is uniquely mapped to a group and assigned a corresponding
project ID. This mapping ensures that the resources and environments are
properly segregated and managed for each group, maintaining isolation and
preventing cross-group interference.

2. User SSH Key Pair Generation: For each student, an SSH key pair is gen-
erated, with the public key being used to configure secure SSH access to the
VM.

3. Application Credentials (App Creds) Generation: After the project creation,
App Creds are generated for each project. These credentials are essential as
they are the only possibility of interacting with the OpenStack API and re-
sources. The generated App Creds allow for programmatic access to the project,
enabling automated deployment and management of the environment via Ter-
raform.

4. Terraform-Based Deployment: With the App Creds in place, the base Ter-
raform project is deployed within each group’s project on the OpenStack clus-
ter. Terraform workspaces are utilized to manage the different group environ-
ments, allowing for scalable and repeatable infrastructure deployment. During
this step, the necessary software is installed on the virtual machines (VMs) pro-
visioned for each group. This software typically includes development tools
such as Docker, Kubernetes, and the Java and Python runtimes, pre-configured
to match the course requirements.

5. User Account and SSH Key Pair Generation: As the VMs are being created,
individual user accounts are set up for each member of the group. This en-
sures that each student can securely access their group’s environment using
their personal credentials. The SSH key pair, along with the student’s unique
username (typically their student number, referred to as snumber), is critical for
maintaining secure and personalized access to the cloud environment.

6. Provisioning Access Details to Students: Once the VM setup is complete,
each student is provided with the necessary access details. This includes the
floating IP address of their group’s VM, their individual username, and their
SSH key pair. These details are crucial for enabling students to connect to their
Virtual Lab environment and begin their work. By providing these credentials
directly, the process ensures that students can immediately start their practical
exercises without the need for additional setup or troubleshooting, fostering a
seamless transition to the cloud-based development environment.

This approach to Virtual Labs not only simplifies the technical setup for students but
also enhances the scalability and manageability of the course’s practical component.
By automating the deployment process through Terraform and integrating secure
access mechanisms, the course ensures that each student group has a robust and con-
sistent environment tailored to their learning needs. The use of OpenStack’s cloud
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infrastructure further aligns the practical experience with real-world cloud comput-
ing practices, providing students with valuable hands-on experience in managing
and deploying cloud-based applications.
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9 — Discussion

9.1 Summary of Key Findings

The redesign and implementation of the new application for the ”Cloud Computing
and Cloud-based Applications” course yield several significant improvements that
enhance both the educational and technical aspects of the course. These enhance-
ments are carefully aligned with the course’s objectives, preparing students more
effectively for real-world cloud computing challenges.

One of the most impactful outcomes is the overall increase in student engagement
and participation. This is achieved through several key innovations, including the
introduction of Virtual Labs (VLs), the adoption of a modern and familiar technology
stack, and the automation of infrastructure management. Together, these elements
reduce the technical barriers that previously hindered students, allowing them to
focus more fully on the core learning objectives.

Additionally, the uniform environment provided by the VLs enhances collaboration
and teamwork among student groups. With all students operating within the same
setup, troubleshooting and knowledge sharing become more straightforward, pro-
moting a cohesive and productive learning environment. This consistency supports
the development of collaborative skills that are essential in both academic and pro-
fessional contexts.

The application leverages a technology stack centered around Java, Spring Boot, and
Python—tools that are both widely taught in the academic setting and extensively
used in the industry. This approach not only makes the application more accessible
but also provides students with relevant, hands-on experience. The modular mi-
croservices architecture introduces them to essential concepts of cloud computing.

Infrastructure automation is another key area of focus. By integrating Infrastruc-
ture as Code (IaC) using Terraform and automating configurations with Ansible,
the course introduces students to advanced DevOps practices critical for managing
modern cloud infrastructures. These tools streamline the deployment process and
provide students with practical experience in efficiently managing and scaling com-
plex systems. The expectation is that students will make the application capable
of potentially handling millions of users, reflecting real-world demands for scalable
systems.

The architectural design of the application, emphasizing decoupled components and
efficient message handling through RabbitMQ, results in a robust and reliable sys-
tem. This design not only supports the educational objective of teaching scalability
but also ensures that students understand how to build systems that are both fault-
tolerant and capable of scaling horizontally, a crucial aspect of cloud-native applica-
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tions.

In summary, the project successfully addresses the limitations of the previous system
by introducing a range of technical and educational enhancements. These improve-
ments not only meet the project’s objectives but also significantly enrich the learning
experience, equipping students with the skills and knowledge necessary to navigate
and succeed in the complexities of cloud computing.

9.2 Challenges

The development of the new application was a significant undertaking, particularly
as it was driven by a single student as part of a research internship. The process
involved not just a change in the technology stack but a complete rethinking of the
application’s concept and structure.

One of the key challenges was the complete overhaul of the existing application.
The previous system, based on .NET and C#, was not well-aligned with the course’s
educational goals or the students’ technical backgrounds. The decision to shift to
a new technology stack—centered around Java, Spring Boot, and Python—required
a re-envisioning of the entire application. This was not just a technical upgrade
but also a conceptual redesign, ensuring that the new application better served the
course’s focus on cloud computing and scalability.

Redesigning the application’s architecture to meet these new goals involved careful
planning. The new system needed to be modular and scalable, supporting the edu-
cational objective of teaching students about cloud scalability. This meant designing
an application skeleton that students could extend to potentially handle millions of
users, thereby giving them practical experience in building scalable solutions.

The introduction of VLs was another pivotal aspect of the redesign. These labs were
intended to provide students with consistent, pre-configured cloud environments,
which would eliminate many of the technical barriers encountered in previous it-
erations of the course. Developing these labs required addressing various technical
issues related to cloud resource management, security, and network configurations.
Ensuring that the VLs were both robust and easy for students to use was a significant
part of the development process.

Managing the entire project as a solo developer required a high level of self-discipline
and problem-solving ability. Balancing the need to redesign the application’s con-
cept, implement a new technology stack, and ensure the system’s scalability and
usability within the constraints of the project timeline was no small task. However,
these challenges were met with a focus on delivering a functional, educationally ef-
fective tool that aligned with the course’s objectives.

In summary, the development of the new application involved navigating several
complex challenges, from conceptual redesign to technical implementation. The
successful outcome of the project demonstrates the ability to effectively manage and
overcome these challenges, resulting in a robust and innovative application that sig-
nificantly enhances the learning experience.
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9.3 Practical Implications

The redesigned application delivers substantial practical benefits, directly enhanc-
ing students’ readiness for industry challenges. By incorporating industry-standard
tools like Java, Spring Boot, Python, Kubernetes, and Terraform, the course now
provides students with hands-on experience that closely mirrors real-world prac-
tices. This exposure not only bridges the gap between theoretical knowledge and
application but also equips students with skills that are highly valued in the job
market.

The introduction of VLs ensures that all students have equal access to a consis-
tent, cloud-based environment, significantly reducing technical barriers and allow-
ing them to focus on mastering cloud computing concepts. This uniformity fosters
a more inclusive learning experience, making the course accessible to a wider range
of students, regardless of their prior technical background.

A key focus on scalability within the course equips students with the ability to de-
sign and implement systems capable of handling large-scale operations, an essential
skill in cloud computing. The requirement for students to extend the application
to handle potentially millions of users instills a deep understanding of scalability,
preparing them to tackle similar challenges in professional settings.

The integration of infrastructure automation tools like Terraform and Ansible intro-
duces students to modern DevOps practices, providing them with practical experi-
ence in managing and automating cloud infrastructures. This knowledge is crucial
for operating in environments where continuous integration and deployment are
standard.

Moreover, the standardized setups facilitated by VLs promote effective teamwork
and collaboration, essential skills in the software development industry. The course
structure encourages students to work together within a consistent environment,
enhancing both their technical and soft skills.

In summary, this project not only enhances the educational value of the course but
also significantly boosts students’ practical capabilities, better preparing them for
careers in cloud computing and related fields.

9.4 Lessons Learned

Throughout the development of the new application, several key lessons emerged
that are valuable for both future projects and educational design.

The decision to structure the application around a microservices architecture under-
lined the value of modularity. This approach not only made the application scalable,
but also provided a clear, tangible way for students to interact with and learn about
complex cloud systems. The modular design facilitated incremental learning, allow-
ing students to build and extend the application in manageable steps, reinforcing
their understanding of key cloud principles.

The introduction of VLs highlighted the critical impact of providing students with
a consistent, ready-to-use environment. By eliminating setup challenges, the VLs
allowed students to focus more on learning and experimentation, which led to bet-
ter engagement and outcomes. This lesson reinforces the importance of simplifying
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technical environments in educational settings to allow for a more focused and pro-
ductive learning experience.

One lesson learned was the critical role of comprehensive and clear documentation
in the success of the project. Detailed documentation not only supported the devel-
opment process but also ensured that students could navigate the application and
its components effectively. This experience highlighted that robust documentation is
essential, especially in educational tools, as it helps bridge the gap between complex
technology and the learner’s understanding.

Finally, the project revealed the delicate balance required between introducing ad-
vanced technical concepts and maintaining accessibility for all students. Ensuring
that the application was challenging enough to be instructive, yet approachable for
those with varying levels of experience, was a key factor in its success. This balance
is essential in educational design, where the goal is to push students’ understanding
without overwhelming them.

9.5 Recommendations for Future Research

While the new application has significantly enhanced the learning experience in the
”Cloud Computing and Cloud-based Applications” course, there are several av-
enues for future research that could further improve its effectiveness and extend
its impact.

Given the need to finalize the application before the course commenced, for ex-
ample, there is significant potential for refining the application based on student
feedback gathered during and after its initial use. Future research could focus on
systematically collecting and analyzing this feedback to identify areas where the ap-
plication can be improved. This might involve tweaking the user interface for bet-
ter usability, adjusting the complexity of certain tasks to better match student skill
levels, or enhancing the clarity of instructional materials. Incorporating real-world
feedback from students who have used the application in a live educational setting
will be crucial in making iterative improvements that enhance its effectiveness and
accessibility.

In conclusion, the new application provides a solid foundation for cloud comput-
ing education, but there is potential for future research to expand its capabilities,
enhance its impact, and adapt its principles to other areas of study.
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10 — Conclusion

This paper detailed the redesign and implementation of a new application for the
”Cloud Computing and Cloud-based Applications” course at the University of Gronin-
gen. The project successfully replaced the previous application with a modern, scal-
able one that aligns with current industry standards and educational goals.

Key innovations included the adoption of a microservices architecture and the in-
troduction of Virtual Labs, which significantly enhanced the learning experience by
providing a consistent, cloud-based environment for students. These improvements
facilitate better engagement, practical learning, and collaboration among students.

The development process, managed by the author of this paper, involved overcom-
ing several technical and conceptual challenges, ultimately resulting in a robust and
effective educational tool. Lessons learned from this project emphasize the impor-
tance of aligning technology with educational objectives, ensuring modularity, and
maintaining clear documentation.

Future work should focus on refining the application based on student feedback,
expanding its capabilities, and exploring its potential for broader educational use.

In conclusion, the project has made a substantial contribution to cloud computing
education at the university, providing a solid foundation for future advancements.
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