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Abstract: This thesis addresses wealth compounding in Proof-of-Stake (PoS) systems, while
maintaining incentive compatibility. It examines the effect of smoothing the geometric reward
function proposed by Fanti et al. (2019) on wealth compounding and incentive compatibility.
Three novel reward functions based on the geometric reward function are proposed and the
study quantifies and evaluates wealth compounding and incentive compatibility for each function.
A PoS system is simulated in Python, and results show that smoothing the geometric reward
function can improve wealth compounding and boost incentive compatibility, resulting in a more
equitable and rewarding PoS system.

1 Introduction

The phenomenon of wealth compounding (Lepo-
rati, 2023) in the realm of cryptocurrencies, specif-
ically within Proof-of-Stake (PoS) (Buterin, 2022)
protocols, presents a potential challenge to the
mechanism of decentralization and equitable wealth
distribution (Fanti et al., 2019). Excessive wealth
compounding, the process where wealth dispropor-
tionately accrues more wealth, could lead to an un-
fair distribution of power (Leporati, 2023). This can
be explained by the mechanism that the power of
participants in the base PoS protocol is directly re-
lated to the amount staked by a participant (Bu-
terin, 2022). The probability of validating trans-
actions and earning a reward then benefits those
with significant initial resources. The consequence
of considerable differences in stake is the central-
ization of power (Ge et al., 2022). Consequently,
the core principle of the PoS protocol - decentral-
ization - as introduced by Buterin, 2022 and King
& Nadal, 2012, is directly challenged.
As a consensus mechanism in blockchain, the PoS

protocol relies on the stake of participants to vali-
date transactions and add new blocks to the chain
(Buterin, 2022). Each node in the PoS network uses
a hashing scheme to validate transactions and cre-
ate new blocks. This resembles Bitcoin’s Proof-of-

Work (Nakamoto, 2008) system, although it oper-
ates in a smaller search space (King & Nadal, 2012).
One important component of the PoS protocol is
the reward function, which dictates how rewards
are distributed among participants of the protocol,
and is crucial in influencing the overall wealth dis-
tribution of the system. This will be further elabo-
rated upon in later sections.

The research question (RQ) explored in this the-
sis is, “What is the effect of the geometric re-
ward function and smoothing of future rewards on
wealth compounding in PoS protocols?” This RQ
is rooted in understanding and potentially mitigat-
ing the wealth-compounding effect in PoS proto-
cols through reward function adjustments (Fanti et
al., 2019). The geometric reward function (Fanti et
al., 2019), as can be seen in equation (1.1), is used
as a base. Here, R is the total reward, T is the
number of block proposals and n is the timestep
of the PoS system. The geometric reward function
was developed to reduce the variations in wealth ac-
cumulation that are frequently found in blockchain
networks (Nakamoto, 2008), particularly those that
use a PoS consensus method (Ge et al., 2022).

rg(n) := (1 +R)
n
T − (1 +R)

n−1
T (1.1)

In computing the distribution of rewards to val-
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idators in a decentralized PoS network, the geo-
metric reward function will, at each time slot, al-
ways return a constant fraction of the entire stake.
This contrasts with standard linear or constant re-
ward schemes, which reward the same amount of
tokens for each block (Buterin, 2022). The geo-
metric reward function effectively reduces the ten-
dency of wealthier nodes to collect wealth dispro-
portionately (Fanti et al., 2019). The essence of this
function is its ability to lessen the relative advan-
tage that larger stakes give in the growth of wealth
which is critical in reducing the ’rich-get-richer’
dynamic and fostering a more equitable wealth
distribution across network participants (Leporati,
2023).
Fanti et al., 2019 highlighted the geometric re-

ward function as a potential solution to the un-
equal wealth distribution in Proof-of-Stake (PoS)
systems, ideal for the start of a PoS system with
the prospect of transitioning to a smoother reward
mechanism as the network matures. This thesis ex-
pands on their earlier work by proposing three new
reward functions derived from the geometric model,
to reduce the effect of wealth compounding and im-
prove incentive structures. To be able to measure
the performance of the reward functions, this re-
search makes use of three metrics. The following
section will discuss these metrics in detail.

1.1 Metrics

1. Gini Coefficient: The Gini Coefficient (Dorf-
man, 1979) is used for measuring the level of
inequality in wealth distribution within a sys-
tem, such as Proof-of-Stake (PoS) protocols. It
has a scale of 0 to 1, with 0 representing perfect
equality (everyone has the same wealth) and 1
representing extreme inequality (all wealth is
concentrated with a single entity) (Dorfman,
1979). A lower Gini Coefficient is desired in
the context of PoS systems since it suggests a
more equitable distribution of wealth among
participants.

G =

∑N
i=1

∑N
j=1 |si − sj |
2N2s̄

(1.2)

This is formalized as follows: letN be the num-
ber of nodes in the system, and si the stake for
node i. The Gini Coefficient is then given by

equation (1.2). Then,
∑N

i=1

∑N
j=1 |si−sj | is the

sum of the absolute differences between all the
pairs of the stake of every node. Additionally,
s̄ is the average of all stakes.

2. Equitability: Equitability, conceptualized by
Fanti et al., 2019, is another metric in evaluat-
ing the effects of reward functions on wealth
compounding, specifically in blockchain net-
works Fanti et al., 2019. It measures the nor-
malized variance of a node’s stake proportion,
thus reflecting the influence of the reward func-
tion. The equitability for a node Ai at time T ,
denoted as εi, is formulated in equation (1.3).

εi =
Var(γAi,r(T ))

γAi
(0)(1− γAi

(0))
(1.3)

The variance Var(γAi,r(T )), defined as the
variance at time T of the fractional stake of
node Ai for reward function r, is adjusted
by the initial stake proportion γAi

(0), yield-
ing a metric that spans from 0, indicating uni-
form distribution, to 1, the maximum wealth
compounding. Following Fanti et al., a reward
function r1 is seen as more equitable than r2
if it results in less variance in the final stake
distribution, as can be seen in equation (1.4).

Var(γAi,r1(T )) ≤ Var(γAi,r2(T )) (1.4)

Indicating that r1 results in a more equitable
distribution of wealth among the network’s
participants than r2. To assess the equitabil-
ity across stakeholders, and directly across re-
ward functions, we construct the vector ε and
identify the minimum variance ε̃ in equation
(1.5).

ε̃ = min(εi), i ∈ [m] (1.5)

By comparing the minimum variance values
ε̃ of two reward functions, r1 and r2, we
can quantify and compare their equitability
and determine which function better promotes
a balanced distribution of wealth within the
ecosystem.

3. Reward Ratio: To address the aspect of in-
centive compatibility within blockchain sys-
tems, we use the reward ratio to evaluate
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the incentive to participate in the PoS sys-
tem (Wang et al., 2020). This metric, denoted
as ratinvrx , quantifies the motivation of partici-
pants to engage in the consensus mechanism.
The reward ratio makes incentive tangible by
comparing the initial block reward to that of
the ith block within a specific interval. The re-
ward ratio is defined mathematically as:

ratinvrx =
rx(t

inv
1 )

rx(tj)
(1.6)

Here, x is defined as the reward function, invi

represents the ith interval and tj denotes the
jth block within interval i. Additionally, the
initial block is defined as tinv1 , which is the first
in the ith interval. As per (1.6), the reward
ratio ratinvrx quantifies the degree to which a
reward function maintains incentive compati-
bility over time. The incentive to participate
in a PoS system and the reward ratio have a
positive relationship (Wang et al., 2020). To
encourage active involvement and keep the in-
tegrity of the consensus mechanism in the PoS
protocol, this metric is important to optimize.

1.2 Principles

In adjusting the dynamics of wealth distribution
inside Proof-of-Stake (PoS) protocols, this thesis
presents a set of two principles for reward func-
tions to adhere to. These principles seek to ensure
a fair, long-term, and equal distribution of wealth
within the network while maintaining an incentive
to participate.
To reach this goal, reward functions must avoid

extreme relative reward differences, which kick-
start wealth compounding (Fanti et al., 2019). This
concept is illustrated through the use of the Pareto
distribution (Makoto, 2009), to represent the dis-
tribution of wealth among participants.
The probability density function of the Pareto

distribution can be seen in equation (1.7), where
k is a scaling constant, x is the wealth, and a the
shape parameter denoting how heavy the tail of the
distribution is.

P (x) =
k

xa+1
(1.7)

The Pareto distribution is characterized by a
heavy tail, where a small number of participants
can hold a large partition of the total wealth. A re-
duction of the shape parameter a results in greater
variability and significant inequalities in wealth
(Makoto, 2009). The variance can be regulated by
limiting excessive growth and relative differences
between rewards, thus encouraging a more equi-
table distribution of rewards.

Regulating the variance and reducing a in reward
functions is achieved by having reward functions
adhere to the following two principles:

1.1. Smooth Transitioning: The transitions in
reward phases are smooth and devoid of abrupt dis-
ruptions to combat wealth compounding (Fornaro
& Wolf, 2023). The principle relies on the mathe-
matical function known as the sigmoid (1.9), which
is continuously differentiable. The smooth tran-
sitioning is essential for avoiding unpredictability
and instability in the system (Han & Moraga,
1995), thus reducing the shape parameter a in (1.7).

1.2. Use of Damping Functions: The natu-
ral logarithmic function can play an important
role in counteracting runaway growth; the logarith-
mic functions ensure sub-linear growth, where the
rate of increase diminishes as inputs grow (Bryant,
2014). The shape parameter a in (1.7) is reduced by
preventing the disproportionate growth of rewards.

1.3 Reward Functions

The geometric reward function (1.1) was identified
as a potential solution to the unequal wealth distri-
bution in Proof-of-Stake (PoS) systems Fanti et al.,
2019, ideal for the start of a PoS system with the
goal of shifting to a smoother reward mechanism
as the network matured (Fanti et al., 2019). This
thesis builds on their previous work by proposing
three new reward functions based on the geometric
model and the two principles (smooth transitioning
1.1 and use of damping functions 1.2) mentioned in
section 1.2, with the purpose of decreasing the in-
fluence of wealth compounding and strengthening
incentive compatibility. These functions are devel-
oped with two main objectives; correcting wealth
disparities and maintaining incentive compatibility.
The following section will examine these functions
and their construction in more detail.
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1. Logarithmically increasing geometric re-
ward:

Rlog(s,M) = Rgeo(s) + 10 ·M · log(s+ 1)
(1.8)

Where Rlog is the logarithmically increasing
geometric reward, s is the current step in the
simulation, M is the multiplier to influence the
magnitude of the logarithmic bonus, and Rgeo
is the base geometric reward function as seen
in equation (1.1).
In this function (1.8) the reward mechanism in-
corporates a logarithmic factor into the basic
geometric reward. The logarithmic component,
10 ·M · log(s+ 1), scales the reward based on
the natural logarithm of the step count, incen-
tivizing earlier participation in the blockchain
system. By adding 1 to s, forming s+1, we pre-
vent the natural logarithm, log(s+1), from be-
coming undefined. This approach aligns with
scenarios where early contributions or stakes
are deemed more valuable (Fanti et al., 2019),
reflecting a diminishing return for later contri-
butions.

2. Sigmoid modulated geometric reward:

Rsig(s, F ) = Rgeo(s) ·
(
1− 1

1 + e−
s
F

)
(1.9)

Where Rsig is the sigmoid modulated geomet-
ric reward, s is the current step in the simu-
lation, F is the scaling factor for the sigmoid
function, and Rgeo is the base geometric re-
ward function as seen in equation (1.1).
In equation (1.9) a sigmoid function is used
to modulate the reward. The sigmoid function

1

1+e−
s
F
, provides a smooth transition from a

lower to an upper limit as the step count in-
creases. This modulation offers a gradual in-
crease in rewards, which then asymptotically
approaches a maximum. This behavior is espe-
cially useful in preventing wealth compounding
because of less abrupt changes in the reward
distribution over time, explained by principle
1.1.

3. Sinusoidal geometric reward:

Rsin(s, S) = Rgeo(s) · (| sin(s)|+ S) (1.10)

Where Rsin is the sinusoidal modulated geo-
metric reward, s is the current step in the simu-
lation, S is the scaling factor for the sinusoidal
part, and Rgeo is the base geometric reward
function as seen in equation (1.1).
Lastly, the sinusoidal modulation in equation
(1.10), |sin(s)|+S, introduces a periodic com-
ponent to the reward structure. The absolute
value of the sine function ensures that the re-
ward oscillates in a positive range. The oscil-
lation of the reward function ensures the ad-
vantage of joining a PoS early is lessened since
rewards fluctuate to provide more opportunity
for stakeholders throughout the system’s lifes-
pan.

This thesis aims to improve on the geometric re-
ward function as an approach to addressing wealth
compounding in traditional PoS systems, building
further on the research by Fanti et al., 2019 by
smoothing the geometric reward function. The sub-
sequent section is dedicated to a methodical exami-
nation of the three previously introduced functions.
This study aims to provide a thorough understand-
ing of how these reward functions can influence and
potentially reduce wealth distribution imbalances
within the PoS protocol.

2 Methods

The implemented system simulates a PoS model
where the probability of validating a block and re-
ceiving the associated rewards is proportional to a
participant’s stake in the system. For the purpose of
how reward function adjustments can influence and
potentially improve wealth distribution imbalances
within the PoS protocol, a Python-based simula-
tion is used to mirror this mechanism. The simula-
tion maintains an array representing the stakes of
various nodes. Each node has the potential to add
a new block to the blockchain, with higher stakes
increasing the likelihood of selection. This model
simulates the process of choosing a validator and
rewarding them for block validation and appending
it to the blockchain. A pseudo-code implementation
of the system can be seen in Algorithm 2.1.
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2.1 Components of the System

1. Initializer (main.py): Defines the structure
and initial conditions of the PoS system.

(a) Number of nodes: Determines the total
number of participants in the network.

(b) Initial stake of each node: Sets the initial
stake for each node, laying the foundation
for the stake-based selection process.

(c) Number of epochs: Represents the total
number of cycles the simulation will run,
each potentially affecting the state of the
network.

(d) Number of block intervals: Specifies the
frequency at which blocks are validated
and rewards are distributed.

(e) Number of proposers per choice: Deter-
mines how many nodes are selected for
the possibility of block validation in each
round.

(f) Number of steps: Defines the granularity
of the simulation, and how many steps
each block interval has.

(g) Reward functions: Selects the type of
reward function (the geometric reward
function (1.1), logarithmically increas-
ing geometric reward function (1.8), sig-
moid modulated geometric reward func-
tion (1.9), or sinusoidal geometric reward
function (1.10)) to be used.

(h) Parameters for the reward functions:
Specifies the parameters that fine-tune
the behavior of the chosen reward func-
tion.

2. Simulation Class (simulation.py): Re-
sponsible for initializing nodes and their
stakes, selecting validators, and allocating re-
wards. The class models three components:

(a) Stakeholders and stakes: The simulation
employs a uniform stake distribution, to
simplify the model and focus on the dy-
namics of the reward mechanisms, where
each of the 100 stakeholders possesses an
equal stake of 10. This setup is designed
to parallel the stake distribution in a typ-
ical PoS system. Each node in the sim-
ulation represents a stakeholder in the

blockchain network. The node’s stake is
indicative of its wealth and potential in-
fluence within the network. Stakes are ini-
tialized at the beginning of the simula-
tion, with each node assigned a stake that
influences its likelihood of being selected
as a validator.

(b) Block validation and reward mechanism:
Nodes are randomly selected based on
their stake to validate blocks. Upon suc-
cessful validation, a reward is assigned
to the validator, thereby increasing their
stake and influence in the network. The
simulation offers a nuanced view of this
process, allowing for different reward cal-
culation methods.

(c) Reward functions: Validators are re-
warded for their participation in the
network. The simulation incorporates
the four reward mechanisms mentioned
before; the geometric reward function
(1.1), logarithmically increasing geomet-
ric reward function (1.8), sigmoid mod-
ulated geometric reward function (1.9),
and sinusoidal geometric reward function
(1.10).

3. Stakeholders (node.py): The Node class
models the stakeholders and their stake update
logic in the blockchain network.

4. Metrics (tester.py): The Tester class is re-
sponsible for evaluating wealth compounding
and incentive compatibility of the PoS system
and its reward functions by implementing the
Gini coefficient (1.2), equitability (1.5), and
the reward ratio (1.6).

5. Data Writer (experiment.py): The Data
Writer class handles the output of simulation
data. It ensures that the results of the simu-
lation are accurately captured and stored for
analysis.

6. Plotter (plot.py): The Plotter class visual-
izes the outcomes of the simulation.

The upcoming section covers the parameters that
govern the behavior of the PoS simulation.
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Table 2.1: Parameter setup for each reward function.

Reward Function Parameter Tested Values
Geometric N/A N/A
Logarithmic M 0.1, 0.5, 1.0, 1.5, 2.0
Sigmoid F 50, 100, 150, 200, 250
Sinusoidal S 0.1, 0.5, 1.0, 1.5, 2.0

2.2 Parameters

The simulation model utilizes various parameters
to define the behavior of the system and its reward
functions. The parameters for the system influence
the dynamics of the Proof of Stake (PoS) system,
affecting its behavior.

1. Node Configuration: Defines the initial
setup of nodes in the system before any stak-
ing has happened, including their number and
initial stake.

(a) Number of nodes (nodes) is 100.

(b) Initial stake per node (initial stake) is
10.

2. Epochs: Represents the number of cycles the
simulation runs.

(a) Number of epochs (epochs) is 10.

3. Block Interval: The interval between blocks,
impacting reward distribution frequency and
validator selection.

(a) Block interval (block interval) is 21.

4. Number of Proposers per Choice: The
number of nodes selected as proposers in each
simulation step.

(a) Number of proposers per choice
(number of proposers per choice)
is 1.

5. Total Simulation Steps: The total number
of steps the simulation will run.

(a) Steps (steps) is set dynamically to
block interval · epochs, so here 210.

The reward functions were each evaluated with
five distinct parameter values - as can be seen in

Table 2.1 - to measure the impact of these varia-
tions on the system’s metrics. The chosen parame-
ters span a range that is sufficiently broad to show
observable differences in system behavior, but nar-
row enough to facilitate meaningful comparisons
between different parameter settings.

3 Results

To answer what the effect of the geometric reward
function and smoothing future rewards is on wealth
compounding of PoS protocols, three different re-
ward functions (logarithmically increasing geomet-
ric reward, sigmoid modulated geometric reward,
and sinusoidal geometric reward) based on the ge-
ometric reward function were evaluated on their
equitability, gini coefficient, and reward ratio with
varying parameter settings. The total dispensed re-
ward per reward function can be seen in Figure
A.1, showing differences in the way each function
adjusted the reward distribution. To evaluate the
performance of the reward functions, the median is
used as a comparison metric, since the data from
the simulation is not normally distributed and in-
cludes outliers. A Shapiro-Wilk test (Shapiro &
Wilk, 1965) was performed to test for normality,
as can be seen in Table 3.1. From the normality
test results it can be observed that the data is not
normally distributed, thus the results of the sim-
ulation are analyzed by utilizing the median. The
following two sections will explore the results and
the interpretations of these results in detail.

3.1 Logarithmically Increasing Geo-
metric Reward

3.1.1 Equitabilities

The logarithmically modulated reward function re-
sults in a gradual increase towards higher equitabil-
ity levels compared to the geometric reward, as can
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Algorithm 2.1 Core of the PoS Simulation

1: function run(steps):
2: set run at time to current time
3: set initial reward to reward function(0)
4: increment total reward pool by initial reward
5: set block interval counter to 0
6: for each step from 1 to steps:
7: set proposers to select proposers()
8: set reward to reward function(step)
9: increment total reward pool by reward

10: if block interval counter ≥ block interval then:
11: set initial reward to reward
12: reset block interval counter to 0
13: end if
14: for each proposer in proposers:
15: increment proposer.stake by reward divided by number of proposers per choice
16: end for
17: update total stake
18: update fractional stake for each node
19: increment block interval counter
20: end function

Table 3.1: Normality test results for different reward functions.

Metric Reward Function p-value

Gini Coefficients

Geometric Reward 9.231× 10−25

Logarithmically Increasing Geometric Reward 3.219× 10−38

Sigmoid Modulated Geometric Reward 2.852× 10−49

Sinusoidal Geometric Reward 2.356× 10−41

Reward Ratios

Geometric Reward 5.409× 10−13

Logarithmically Increasing Geometric Reward 4.615× 10−41

Sigmoid Modulated Geometric Reward 1.571× 10−31

Sinusoidal Geometric Reward 5.408× 10−40

Equitabilities

Geometric Reward 1.308× 10−25

Logarithmically Increasing Geometric Reward 2.549× 10−35

Sigmoid Modulated Geometric Reward 9.871× 10−44

Sinusoidal Geometric Reward 6.115× 10−42

be seen in Figure A.2. Higher parameters lead to
higher equitability, which may be less desirable un-
der the criteria of reducing wealth compounding.
Figure A.5 shows that the distribution of the equi-
tabilities is worse for the logarithmically increasing
geometric reward function, where the median of the
logarithmically increasing geometric reward func-
tion (0.079) lays above the median of the geomet-
ric reward function (0.074). The median is closer to
the top of the IQR and the violin is wider at the

top, indicating that the equitabilities are skewed
towards the higher end of values.

3.1.2 Gini coefficient

There’s a clear positive relationship between a
higher parameter value and an increase in the Gini
coefficient as can be seen in Figure A.3. So a
stronger logarithmic modulation term results in a
higher Gini coefficient, thus more inequality and
higher wealth compounding. From Figure A.6 it
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can be seen that the median Gini coefficient over all
parameters for the logarithmically increasing geo-
metric reward (0.716) is higher than that of the
other functions, indicating more wealth compound-
ing than the geometric reward function.

3.1.3 Reward Ratio

As the time steps progress, the reward ratio bal-
ances out and approaches a constant value, due to
the reduction in rewards dispensed over time, as
can be seen in Figure A.1. The drop in the reward
ratio per epoch is less than that of the geomet-
ric reward function. The effect of this can be seen
in Figure A.7, where the logarithmically increasing
geometric reward median (0.959) outperforms the
geometric reward function median (0.618), thus en-
suring a PoS system that’s more incentive compat-
ible. A higher parameter value leads to an increase
in the reward ratio, indicating that the system be-
comes more incentive compatible as the logarithmic
modulation increases in magnitude, as can be seen
in Figure A.4.

3.2 Sigmoid Modulated Geometric
Reward

3.2.1 Equitabilities

From Figure A.2 the sigmoid function’s parame-
ters appear to influence the equitabilities in a more
chaotic manner, where there appears to be no clear
relationship between equitabilities and the change
in parameter value. Figure A.5 shows that the sig-
moid modulated geometric reward has a symmet-
ric violin shape with the median (0.062) centrally
located, indicating a balanced distribution of equi-
tabilities. The compressed interquartile range sug-
gests similar variability compared to the geomet-
ric reward function. The equitabilities are lower
than that of the geometric reward function median
(0.074), indicating a more equitable system.

3.2.2 Gini coefficient

The increase of the parameter value affects the in-
crease of the Gini coefficient minimally, which can
be observed in Figure A.3. The Gini coefficient does
increase incrementally when increasing the param-
eter value, indicating that a more prominent sig-
moid modulation term increases wealth compound-

ing. Figure A.6 shows that the interquartile range
is relatively small compared to the other functions,
indicating that the parameter values make less of
an impact on wealth compounding. The median for
the sigmoid modulated geometric reward (0.541)
is lower than the other functions, indicating re-
duced wealth compounding and an improvement
compared to the geometric reward function.

3.2.3 Reward Ratio

The distribution of the reward ratio is similar to
that of the geometric reward function, though the
spread is larger at peak values, as can be seen in
Figure A.7, where the median of the reward ratio
for the sigmoid modulated geometric is 0.298. Fig-
ure A.4 also shows that the rewards are dispensed
in a similar manner, though lower parameter values
lead to a higher reward ratio.

3.3 Sinusoidal Geometric Reward

3.3.1 Equitabilities

The sinusoidal geometric reward in Figure A.2
function displays a pattern of equitability increase
similar to the geometric reward, though with vari-
ations across different parameters. Higher parame-
ter values result in higher equitabilities. Figure A.5
displays a median (0.071) similar to the geometric
reward, but with a wider interquartile range, imply-
ing more variability. The overall shape is more uni-
form than the geometric reward, suggesting a more
consistent distribution of reward values. Though,
a clustering of values in the high end can be ob-
served, due to the rapid increase in equitabilities,
as the parameter values grow.

3.3.2 Gini coefficient

Similar to the logarithmically increasing geomet-
ric reward function, the parameter values have a
clear positive relationship with the Gini coefficient,
as can be seen in Figure A.3. A higher parameter
value results in a higher Gini coefficient and higher
wealth compounding. From Figure A.6 it can be
observed that the Gini coefficient values are simi-
lar to the geometric reward function, with a median
of 0.618, except that the top quadrant is larger, in-
dicating a higher wealth compounding compared to
the geometric reward function.
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3.3.3 Reward Ratio

The reward ratio fluctuates heavily over time,
showing many peaks as can be seen in Figure A.4
where the performance of the reward ratio for the
sinusoidal geometric reward can be seen varying
wildly. Figure A.7 shows that while the distribution
of the reward ratio is similar to that of the geomet-
ric reward function, with a median of 0.261, the
spread is much greater, showing an outlier of above
six for the reward ratio. The lower the parameter
value is, the higher the fluctuations in reward.

4 Discussion

This study presents an analysis of the wealth dis-
tribution in PoS systems using three new reward
functions derived from the geometric model to re-
duce the effect of wealth compounding and improve
incentive compatibility, and answer the RQ ”What
is the effect of the geometric reward function and
smoothing of future rewards on wealth compound-
ing in PoS protocols?”. The proposed reward func-
tions aim to address the wealth compounding by
building on the geometric reward function as intro-
duced by (Fanti et al., 2019), while also maintain-
ing an incentive for actors to participate in the PoS
system. The results of the three metrics introduced
(Gini coefficient, equitability, and the reward ra-
tio) demonstrate that smoothing the geometric re-
ward function can maintain a reduction in wealth
compounding, while also improving incentive com-
patibility, ensuring a productive system with active
participation.

The logarithmically increasing geometric reward
function yielded the highest median reward ratio
(0.959) and the highest Gini coefficient (0.716),
showing that while it substantially increases the re-
ward to highly staking participants in the system,
it also leads to greater inequality and wealth com-
pounding. The function results in a high reward
ratio, suggesting that this function could promote
more active participation, but the increased Gini
coefficient points to a significant wealth concen-
tration among fewer participants, indicating more
wealth compounding.

In contrast, the sigmoid modulated geometric re-
ward function resulted in the most balanced out-
comes among the reward functions tested. It had

the lowest median Gini coefficient (0.541) and a me-
dian equitability (0.062) lower than the geometric
reward function as a baseline (0.074). These values
hint towards a more equitable distribution of re-
wards, and less wealth compounding, making it a
preferable option for PoS protocols aimed at min-
imizing wealth compounding, while ensuring the
system maintains incentive for participation. Its re-
ward ratio (0.298) is higher than the geometric re-
ward function, guaranteeing that the system main-
tains a larger incentive to participate than that of
the geometric reward function.

The sinusoidal geometric reward function, sim-
ilar to the logarithmically increasing reward func-
tion, showed higher variability in the distribution of
equitabilities and a Gini coefficient (0.618) identical
to the geometric baseline. Its reward ratio (0.261)
is slightly lower than the geometric baseline. This
suggests that it does not fundamentally alter the
incentive or equality structure of the reward sys-
tem compared to the standard geometric function.

4.1 Future Research

While this research addresses the unequal wealth
distribution issue, it is essential to acknowledge po-
tential limitations. Specifically:

1. The total reward dispensed remains a variable
unaccounted for in this study. The total reward
dispensed by each reward function is not equal,
while the absolute reward earned by a partici-
pant does influence wealth compounding. This
might pose a problem in terms of comparison
between reward functions, since the unequal
total rewards dispensed could lead to mislead-
ing interpretations of which reward function is
more effective in reducing wealth compound-
ing and maintaining incentive compatibility.

2. Due to performance constraints, this PoS sys-
tem is currently static and simplified; incorpo-
rating more dynamic elements to more accu-
rately model the system could lead to a more
realistic representation of the PoS network,
wealth compounding, and incentive compat-
ibility. Participation in a PoS system is not
static in the real world, and variable network
participation in the PoS model could lead to a
more robust simulation.
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Table 3.2: Medians of each reward functions for all metrics. The optimal values are highlighted.

Function Median Equitabilities Median Reward Ratio Median Gini
Geometric 0.074 0.267 0.618
Log. Increasing Geom. 0.079 0.959 0.716
Sigmoid Mod. Geom. 0.062 0.298 0.541
Sinusoidal Geom. 0.071 0.261 0.618

3. Alternative metrics to assess wealth distribu-
tion and incentive compatibility could give rise
to a new perspective on wealth compounding
and incentive compatibility, since the combina-
tion of the equitabilities, Gini coefficient, and
reward ratio might not be sufficient to fully
quantify the economics of a PoS system. Mod-
eling the PoS system with variable network
participation adds the possibility of measur-
ing the participation rate, providing a deeper
understanding of incentive compatibility.

5 Conclusions

The findings indicate that smoothing the geomet-
ric reward function with each reward function had
a measurable effect on the performance of the PoS
system, in terms of wealth compounding and incen-
tive compatibility. The logarithmically increasing
geometric reward function improves on incentive
compatibility, while also increasing wealth com-
pounding. The sinusoidal geometric reward func-
tion alters the dynamics of the geometric reward
function in terms of variability, while not improv-
ing the performance of the PoS system. The sig-
moid modulated geometric reward function im-
proves both wealth compounding and incentive
compatibility compared to the geometric reward
function. In conclusion, smoothing the geometric
reward function, as suggested by (Fanti et al.,
2019), could improve on both wealth compound-
ing and incentive compatibility, if implemented in
a PoS system.
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A Appendix

A.1 Explanation of Figures

A.1.1 Figure A.1

Four line graphs are illustrated representing each of the four reward functions (in top-to-bottom order of
logarithmically increasing, sigmoid modulated, sinusoidal, and geometric reward), where the total reward
dispensed over time per reward parameter setting is plotted in different colors. Each reward function
has four different parameter settings, except for the geometric reward function. The x-axis represents
the time steps of the PoS system, while the y-axis represents the amount of reward that is dispensed at
the corresponding timestep.

A.1.2 Figure A.2

Four line graphs are illustrated representing each of the four reward functions (in top-to-bottom order of
geometric reward, logarithmically increasing, sigmoid modulated, and sinusoidal), where the equitabilities
over time per reward parameter setting is plotted in different colors. Each reward function has four
different parameter settings, except for the geometric reward function. The x-axis represents the time
steps of the PoS system, while the y-axis represents the equitabilities - as described in equation 1.5 - at
the corresponding timestep.

A.1.3 Figure A.3

Four line graphs are illustrated representing each of the four reward functions (in top-to-bottom order
of sigmoid modulated, logarithmically increasing, geometric reward, and sinusoidal), where the Gini
coefficient over time per reward parameter setting is plotted in different colors. Each reward function
has four different parameter settings, except for the geometric reward function. The x-axis represents the
time steps of the PoS system, while the y-axis represents the Gini coefficient - as described in equation
1.2 - at the corresponding timestep.

A.1.4 Figure A.4

Four line graphs are illustrated representing each of the four reward functions (in top-to-bottom order
of logarithmically increasing, sigmoid modulated, sinusoidal, and geometric reward), where the reward
ratio over time per reward parameter setting is plotted in different colors. Each reward function has four
different parameter settings, except for the geometric reward function. The x-axis represents the time
steps of the PoS system, while the y-axis represents the reward ratio - as described in equation 1.6 - at
the corresponding timestep.

A.1.5 Figure A.5

Four violin plots are illustrated representing each of the four reward functions (in left-to-right order of
geometric reward, logarithmically increasing, sigmoid modulated, and sinusoidal), displaying the distri-
bution of equitabilities over one run of the PoS simulation as described in the Methods section. The
x-axis represents the different reward functions, labeled accordingly. The y-axis represents the equitabil-
ity values. Each violin in the plot represents the distribution of the equitability values for a particular
reward function. The width of the violin represents the number of equitability values that fall within a
particular range, so a wider violin indicates a higher density of data points in that range. The dashed
line with longest segments within each violin indicates the median value, while the other dashed lines
indicate the interquartile range.
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A.1.6 Figure A.6

Four violin plots are illustrated representing each of the four reward functions (in left-to-right order of
geometric reward, logarithmically increasing, sigmoid modulated, and sinusoidal), displaying the distri-
bution of the Gini coefficient over one run of the PoS simulation as described in the Methods section.
The x-axis represents the different reward functions, labeled accordingly. The y-axis represents the Gini
coefficient values. Each violin in the plot represents the distribution of the Gini coefficient values for a
particular reward function. The width of the violin represents the number of Gini coefficient values that
fall within a particular range, so a wider violin indicates a higher density of data points in that range.
The dashed line with longest segments within each violin indicates the median value, while the other
dashed lines indicate the interquartile range.

A.1.7 Figure A.7

Four violin plots are illustrated representing each of the four reward functions (in left-to-right order of
geometric reward, logarithmically increasing, sigmoid modulated, and sinusoidal), displaying the distri-
bution of the reward ratio over one run of the PoS simulation as described in the Methods section. The
x-axis represents the different reward functions, labeled accordingly. The y-axis represents the reward
ratio values. Each violin in the plot represents the distribution of the reward ratio values for a particular
reward function. The width of the violin represents the number of reward ratio values that fall within
a particular range, so a wider violin indicates a higher density of data points in that range. The dashed
line with longest segments within each violin indicates the median value, while the other dashed lines
indicate the interquartile range.
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Figure A.1: Graph of the total reward dispensed for each reward function. Explained in detail in
section A.1.1.
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Figure A.2: Graph of the the equitabilities for each reward function. Explained in detail in section
A.1.2.
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Figure A.3: Graph of the the Gini coefficient for each reward function. Explained in detail in
section A.1.3.
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Figure A.4: Graph of the the reward ratios for each reward function. Explained in detail in section
A.1.4.
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Figure A.5: Violin plot of the the aggregated equitabilities for each reward function. Explained in
detail in section A.1.5.

Figure A.6: Violin plot of the the aggregated Gini coefficients for each reward function. Explained
in detail in section A.1.6.
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Figure A.7: Violin plot of the the aggregated reward ratios for each reward function. Explained
in detail in section A.1.7.
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