
patrick lindner

L AY E R E D T R A N S F E R : M A I N TA I N I N G S E RV I C E
AVA I L A B I L I T Y D U R I N G C O N TA I N E R V O L U M E

M I G R AT I O N S

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

L AY E R E D T R A N S F E R : M A I N TA I N I N G S E RV I C E AVA I L A B I L I T Y
D U R I N G C O N TA I N E R V O L U M E M I G R AT I O N S

patrick lindner

Layered Transfer: Maintaining Service Availability during Container Volume
Migrations

Distributed Computing
Faculty of Science and Engineering

University of Groningen

August 2024

[October 1, 2024 at 12:46]

Patrick Lindner: Layered Transfer: Maintaining Service Availability during
Container Volume Migrations, Layered Transfer: Maintaining Service
Availability during Container Volume Migrations, © August 2024

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

A B S T R A C T

Cloud computing is a great tool for delivering computing power as a
utility. However, choosing for a specific cloud provider, might narrow
down the deployment to the geographical locations and the servers of
the cloud provider company. A migration to a different cloud provider
mostly comes with great cost and downtime [15]. Technologies like
Liqo provide a way of adding existing Kubernetes clusters from poten-
tially different cloud providers to a single multi cluster, where stateless
services can freely be migrated between clusters and therefore cloud
providers [3]. However, the problem of live migrating stateful con-
tainers along with their attached volumes is still challenging. The
aim of this thesis is to explore and improve current stateful-live-
container-migration processes in order to provide the best quality of
service and resource efficiency during a migration. The approaches are
evaluated based on a collection of key performance indicators. This
research focuses on two stateful container migration approaches from
the literature and combines them into a novel method, seeking better
performance. The combined approach is evaluated to be up to 30%
less CPU consuming than the state of the art of live stateful container
migration. In addition to that, for read heavy applications, the service
latency can be reduced by up to 50%. This comes with the cost of more
disk space consumption and for some scenarios a longer migration
time. This extra disk space consumption and the additional migration
time is attributed to the fact that the approach utilizes Copy-on-Write
operations. However, these operations have potential to be replaced in
future research.

vii

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

A C K N O W L E D G M E N T S

Personally, I would like to thank Edwin Harmsma and Coen van
Leeuwen, which supported me throughout the journey of this research
project. They provided valuable feedback and helped me in finding a
relevant topic. In addition to that, I would like to thank my supervisors
from the University of Groningen, Alexander Lazovik, and Vasilios
Andrikopoulos for their feedback on this work. Furthermore, I would
like to thank the TNO for providing office space, technical equipment
and financial support for conducting the research. The opportunity to
contribute with this research to the TNOs ECOFED Cloud Federation
project provided me with extra motivation.

ix

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

C O N T E N T S

1 Introduction 1

2 Related Work 5

2.1 Stateless Container Migration 5

2.2 Stateful Live Migration 7

3 The Layered Transfer Migration 11

3.1 Infrastructure 11

3.2 Migration Stages 11

4 Implementation and Technical Details 15

4.1 Voyager Migration 15

4.2 Cold Migration 15

4.3 Technological Stack 16

4.4 Layered Volume 16

4.5 Checking for open Files 16

4.6 Merging Layers 17

4.7 Lazy File Transfer 17

4.8 Requirements for the Machines 18

4.9 Improvements 18

5 Evaluation Design 19

5.1 File Based Dummy Application 19

5.2 Machine Setup 20

5.3 Request Latency 21

5.4 Machine Statistics 21

5.5 Consistency 22

5.6 Experiments and Parameters 22

5.7 Data Collection 23

6 Evaluation Results 25

6.1 Plot Clarification 25

6.2 Migration time 25

6.3 Request Latency 26

6.3.1 Read Latency 27

6.3.2 Random Write Latency 28

6.3.3 New Write and Sequential Write Latency 29

6.4 CPU Utilization 30

6.5 Memory Usage 33

6.6 Network Traffic 33

6.7 Consumed Disk Space 37

6.8 Downtime 38

6.9 Real World Application Profiles 39

7 Discussion 41

8 Conclusion 45

8.1 Technical Limitations 46

8.2 Limitations of the Evaluation 47

xi

[October 1, 2024 at 12:46]

xii contents

8.3 Outlook 47

a Appendix 49

a.1 Experiment Measurements 49

a.1.1 Only Read 49

a.1.2 Only Sequential 52

a.1.3 Only Random 55

a.1.4 Only New 58

a.1.5 Read Heavy 61

a.1.6 Write Heavy 64

Bibliography 67

[October 1, 2024 at 12:46]

L I S T O F F I G U R E S

Figure 3.1 Component Setup 12

Figure 3.2 Migration Stages 12

Figure 3.3 Checkpointing 12

Figure 6.1 Migration Time Comparison 26

Figure 6.2 Read Latency Comparison 27

Figure 6.3 Random Write Latency Comparison 29

Figure 6.4 Sequential Write Latency Comparison 30

Figure 6.5 CPU Utilization Only Read 31

Figure 6.6 CPU Utilization per Experiment with 1000 files
a 1 MB 32

Figure 6.7 CPU Utilization per Experiment with 500 Files
a 2 MB 32

Figure 6.8 Network Comparison Only Read 33

Figure 6.9 Network Comparison Only Random 34

Figure 6.10 Network Traffic Comparison New Writes 35

Figure 6.11 Network Traffic Comparison Reads 2MB with
500 Initial Files 36

Figure 6.12 Additional Disk Space Consumption 1MB 1000

Files Only Random Write 38

Figure 6.13 Additional Disk Space Consumption 2MB 500

Files Only Random Write 38

Figure 6.14 Additional Disk Space Consumption 500KB
2000 Files Only Random Write 39

L I S T O F TA B L E S

Table 1.1 Considered KPIs in Evaluation 3

Table 5.1 Experiments with Parameters 23

Table 6.1 Migration Time in Seconds for 1000 initial Files
of 1MB Size 25

Table 8.1 Improvements per KPI 45

Table A.1 Only Read 1000 Files 1 MB 49

Table A.2 Only Read 500 Files 2 MB 50

Table A.3 Only Read 2000 Files 0.5 MB 51

Table A.4 Only Sequential 1000 Files 1 MB 52

Table A.5 Only Sequential 500 Files 2 MB 53

Table A.6 Only Sequential 2000 Files 0.5 MB 54

Table A.7 Only Random 1000 Files 1 MB 55

xiii

[October 1, 2024 at 12:46]

Table A.8 Only Random 500 Files 2 MB 56

Table A.9 Only Random 2000 Files 0.5 MB 57

Table A.10 Only New 1000 Files 1 MB 58

Table A.11 Only New 500 Files 2 MB 59

Table A.12 Only New 2000 Files 0.5 MB 60

Table A.13 Read Heavy 1000 Files 1 MB 61

Table A.14 Read Heavy 500 Files 2 MB 62

Table A.15 Read Heavy 2000 Files 0.5 MB 63

Table A.16 Write Heavy 1000 Files 1 MB 64

Table A.17 Write Heavy 500 Files 2 MB 65

Table A.18 Write Heavy 2000 Files 0.5 MB 66

L I S T I N G S

A C R O N Y M S

SSH Secure Shell

SSHFS Secure Shell File System

CoW Copy-on-Write

HTTP Hyper Text Transfer Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

AUFS Advanced Multi-layered Unification File System

UUIDv4 Universal Unique Identifyer Version 4

VM Virtual Machines

NIST National Institute of Standards and Technology

xiv

[October 1, 2024 at 12:46]

1
I N T R O D U C T I O N

Cloud computing is a great tool for delivering computing power
as a utility. In comparison to traditional hosting, cloud computing
providers only bill the time of actual processing. No large upfront
investment for server and networking hardware is required. This
potentially provides small companies and startups, with the equal
amount of computing power as large companies with proprietary
self-hosted hardware have. However, for most companies receiving
cloud computing services from a cloud provider, their initial decision
locks them in the environment of that provider and limits the location
of data processing and storage to the physical servers of that provider.
A migration to a different cloud provider is mostly connected to great
cost and downtime [15].

The concept of a federated cloud tackles this problem. It introduces
cloud interoperability features, that enable the application operator
to move their service between different clouds for long and short
term purpose [8]. The American National Institute of Standards and
Technology (NIST) published a Cloud Federation Architecture Refer-
ence documentation, that defines the guiding principles for a cloud
federated environment and its components [10]. According to this
documentation, among others, the principle of data portability needs
to be addressed in a federated cloud. This principle is defined as "The
ability of customers to move their data or applications across multi-
ple cloud environments at low cost and with minimal disruption."
[10]. This provides the customer of a cloud provider with a minimal
invasive approach to move their running application, including its
data, to a different cloud provider or a different geographical loca-
tions, without having to interrupt their service. This is desirable for
the customer in various ways. By loosening the coupling between the
customers application and the cloud provider, the customers cost of
a cloud-provider-change decreases, which increases the competition
among cloud providers in favor to their customers. Furthermore, a
follow the moon scenario can be implemented on container level and
independent to the cloud provider. In such a scenario, the container
of the application is moved to a data center at which it is nighttime, in
order to use the decreased temperature for more efficient cooling [21].
Vice versa, this scenario can also be utilized to deploy the container
to a datacenter with most daylight, in order to make use of as much
solar energy as possible and therefore reduce the applications carbon

1

[October 1, 2024 at 12:46]

2 introduction

footprint [9].

The NIST architecture document introduces the adopted tools Docker
and Kubernetes for the purpose of code portability. However, no tech-
nology for the purpose of data portability is listed in the document.
The existing Kubernetes multi cluster technology Liqo [11] provides
an implementation to tackle the code portability problem between
multiple Kubernetes clusters. This technology allows for dynamically
adding and removing clusters during runtime [3]. These clusters could
potentially be managed by different cloud providers. For instance, an
application operator could add an Amazon AWS Kubernetes cluster
to their already existing Microsoft Azure Kubernetes cluster and move
their application containers between them. This makes the manage-
ment of the application more dynamic and approaches a federated
cloud environment. However, this technology only aims to migrate
the container without its attaches volume. Therefore, the requirement
of data portability in a federated cloud is not fulfilled using this tech-
nology.

A potential solution to satisfy the requirement of data portability is
designing a container migration approach, that migrates the attached
volume along the container from a source machine in one cloud, to
a target machine in a different cloud. This can be done using a cold
migration, which interrupts the container on the source machine and
copies its state to the target machine, where the container is resumed
after the copying has finished. However, this impacts the quality of
service of the application by making it unavailable during the time of
the migration, which is not desirable for the application user. In order
to keep the impact on the quality of service as small as possible, the
application should be available with full reading and writing access
during the whole migration process. In this document, this kind of mi-
gration is referred to as live container volume migration. The previous
works, conducted by Nadgowda et al. [14] and Junior et al. [4] have
been focused on creating live container volume migration approaches.
These are based on union mount file systems, in order to manage file
changes during the migration process. The approaches aim to migrate
a container and its attached volume between two machines, with the
least amount of application downtime.

In order to contribute to the research field, the aim of this work is to
design a live container volume migration approach using ideas from
previous works and union mount file systems. Hereby, the main focus
is laid upon maximizing the service availability and performance of
the application during the migration, while ensuring a complete and
consistent transfer of the volume. Therefore, it needs to be made sure
that especially data changes that happen during the migration, are

[October 1, 2024 at 12:46]

introduction 3

Migration Time

Request Latency

CPU Utilization

Memory Usage

Network Traffic

Additional Disk Space Consumption

Downtime

Table 1.1: Considered KPIs in Evaluation

transferred to the target machine. In order to measure the impact of
the migration on the performance of the application, and its impact on
the host machines, the migration approach is evaluated by comparing
it to both a cold migration and the state-of-the-art in live container
volume migration. The impact is expressed using the Key Performance
Indicator (KPI)s listed in Table 1.1. The approach will be referred to
as Layered Transfer migration throughout this document. In order to
conduct this work, the following three research questions are posed:

RQ1: What is the current state of the art in live container volume
migration, and how can it be improved?

RQ2: How does the Layered Transfer approach compare to a cold
container volume migration in the given KPIs in Table 1.1?

RQ3: How does the Layered Transfer approach compare to the state
of the art of live container volume migration in the given KPIs in
Table 1.1?

The chapters of this document are structured as follows: Chap-
ter 2 introduces related work that has been done on the topic of live
container migration, and positions this work in the field. Chapter 3

introduces the design of the Layered Transfer migration approach.
Chapter 4 describes the technical details of the implementation from
this research and Chapter 5 explain the evaluation methods and ex-
periments. Chapter 6 gives insight into the measured results, retrieved
from the experiments. In Chapter 7 these measurements are discussed
while Chapter 8 concludes this work.

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

2
R E L AT E D W O R K

This chapter introduces related work and positions the current re-
search in the field.

Virtual Machines (VM) migration is a well researched topic, where
numerous research paper have been published on in the past. Zanhg
et al. [21] conducted a survey in 2018, that compiles a large amount
of this work, which gives a broad overview on the research field. In
their research, the authors review roughly 185 VM migration related
research papers, to give a broad overview on the topic. Furthermore,
the researched VM migration techniques are categorizes in a taxon-
omy. In addition to that, the authors identify three main challenges of
VM migrations: memory data migration, storage data migration, and
network continuity for both live and non-live (cold) migrations. In
contrast to VM migrations, the current research focuses on migrating
a container only. The VM, the container is potentially running on, is
viewed as a black box.

In 2022, Kaur et al. [6] conducted a survey on container placement
and migration techniques for cloud edge and fog computing. In their
survey, the authors compiled roughly 100 studies in order to provide
a broad overview of the state of the art of container placement and
migration. The paper gives a classification of container placement and
migration algorithms, and proposes a taxonomy on migrations. Here
the concept of a cold migration is defined as: suspending the service
on the source machine, migrating it to the target machine and starting
it up. In addition to that, the concept of a live migration is defined as:
the migration of a running service without service interruption. These
definitions for cold and live migration are used throughout this thesis
document.

2.1 stateless container migration

Some work on the topic of live container migration has been done in
the past. However, most of it focuses on migrating stateless containers
without their attached volumes.

In their study, Tobias Kurze et al. [8] introduces the concept of
data and service migration in a federated cloud environment. This
concept incorporates the movement of a data and services from one

5

[October 1, 2024 at 12:46]

6 related work

cluster to another. They distinguish between two types of migration:
Shadowed/redundant migration and Non-redundant migration. In a
scenario of shadowed/redundant migration, a service is duplicated
into a new cluster. The new service will shadow the old service for
a defined amount of time. After this time has passed, the services
switch places and the old one shadow the new one. In this period,
it can be validated that the new service is fully operational. When
the validation period has been completed successfully, the old service
can be discarded and the migration is completed. The non-redundant
migration simply switches the traffic over to the duplicated service
and discards the old one, without any shadowing or validation phase.
Furthermore, they distinguish full- and partial migration. While a full
migration migrates the whole application stack e.g. web servers and
database, a partial migration, only migrates selected components.

In [7], the authors managed to migrate a state less service from
a Kubernetes cluster on the 5G edge, to a Kubernetes cluster in the
cloud. This migration is performed without shutting down the appli-
cation and is therefore considered a live migration. This migration is
executed with plain Kubernetes tool, without the usage of external
multi cluster management tool like Liqo.

In 2019, Ma et al. [12] aimed to speed up live container migration
between edge cluster in order to maintain a good quality of service
for the user. They utilize the layered architecture of Advanced Multi-
layered Unification File System (AUFS), in order to transfer only the
required layer to the target host instead of the complete storage like
similar technologies as P.Haul [17]. In contrast to the current research,
the study of Ma et al. does only migrate the storage of the internal
docker container without its volume.

In 2020, Benjaponpitak et al. introduces the container migration tool
CloudHopper [2]. This tool facilitates the live multi container applica-
tion migration from one cloud provider to another. In their evaluation,
they tested the tool across the three mayor cloud providers by the
companies Amazon, Google and Microsoft. The tool is intended to
facilitate a seamless interoperable cloud with non-perceivable down-
time, without being tied down to one single cloud provider. However,
only the container without potentially attached volumes is migrated.

In 2022, Junior et al. created a full Kubernetes pod migration tool
in [5]. The researcher approach the problem of migrating internal
container state by exploiting distributed multithreaded checkpointing
in order to dump multiple checkpoints of the memory. However, the
study does not include migrating the stateful volumes of attached to

[October 1, 2024 at 12:46]

2.2 stateful live migration 7

the container.

Additional to the problem of migrating the container itself without
downtime, there is the problem of migrating live TCP connections on
running containers. In 2023 Yu et al. [20] introduced a networking
architecture, that can handle such requirements.

2.2 stateful live migration

This section summarizes the researches, conducted on stateful live
container migration. Two interesting previous works have designed
steteful live container migration approaches. Both of those approaches
utilize a union mount file system, in order to manage file changes
during the migration. A union mount file system provides the abil-
ity to present a file system as a result of union mounting different
directories over each other. It usually consists of one or more lower
layers and one single upper layer. The lower layers are considered to
be read-only, while the upper layer is read-write. When reading a file
from an mounted representation, the file will be read from the highest
layer possible, meaning when a file exists in both the upper and a
lower layer, it will be read from the upper layer. All new files that are
written to the mount, will be written to the upper layer. Changing a
file from a lower layer will result in a Copy-on-Write (CoW) operation.
This means that the file will be copied from its lower layer to the upper
layer, before it is changed. All consecutive reads will then read the
changed file from the upper layer [16].

In 2017, Nadgowda et al. [14] conducted a research, where they
created a complete container migration tool which works with zero
downtime. The tool is called Voyager. It supports memory state migra-
tion, local file storage migration and network file system migration.
Voyager migrates a full container including its local file system to a
different host. The relevant part of this research is the local file sys-
tem migration. Hereby, the authors introduce the concept of remotely
mounting the file system of the source machine to the file system of
the target machine in a clever way. Additionally, AUFS [1] is utilized to
keep track of changing files during the migration. The general idea of
that approach is, to make all files from the source available at the target
instantaneously. This is done by creating an AUFS union mount on the
target machine, where the lower layer is redirected to the file system
of the source machine. Using this setup, the container can freely be
moved to a different host machine without losing the connection to
any data persisted in the file system. During this setup, the files on the
target machine can be copied to the source machine, which finishes
the migration. Thanks to the AUFS mount, all new incoming changes

[October 1, 2024 at 12:46]

8 related work

from the service, will be persisted in the upper layer on the target
machine. This process renders the connected containerized service
fully available with access to all initial files during the migration.
According to the research paper, the project has been open sources.
Unfortunately, the link provided in the paper results in a 404 error
and the implementation could not be found using a web search.

A similar study has been conducted by Junior et al. [4]. In that study,
the authors created a migration tool, that exploits the OverlayFS struc-
ture by integrating it into a Kubernetes volume, in order to migrate the
local file system to a remote host. The tool seeks to reduce the down-
time of the application during the migration phase, in comparison to
a cold migration. This is done by copying all not actively modified
files prior to the migration. This way, only a few "hot-files" need to
be transferred during the downtime of the application. The initial
step is to mount an OverlayFS as the container volume. Afterward,
a new layer in the OverlayFS structure is created, which makes all
initial files, read only. The author refers to this process as "creating
a checkpoint" and "checkpointing". Before files from the lower layer
can be changed, they are copied to the upper layer of the OverlayFS
mount by a CoW operation. This process makes it straight forward to
identify files that have been changed after the checkpoint is created,
since all of them are located in the upper layer. Afterward, all files in
the lower layer can be safely copied to the target machine. Files that
change during the copying phase, are written to the upper layer and
have to be copied after copying the lower layer. The process of creating
and transmitting a checkpoint can be performed iteratively in order
to reduce the amount of data in the upper layer as much as possible.
After an arbitrary number of iterations, the container is stopped on
the source machine and the last changes in the upper layer can be
copied to the target machine. After that, the container can be started
on the target machine, with access to all data that has been written
before, and during the migration. However, this type of migration is
not considered to be without downtime, since a minimal downtime
is induced before copying the last upper layer. In their research, the
authors evaluated the tool on a Kubernetes cluster. In this setup, a
reduction of downtime by a factor of 4 could be measured compared
to their baseline migration where the full file system is transferred
during the migration. The experiments, conducted in this study, are
focused on a fog computing environment, with one single Kubernetes
cluster with two nodes. The persistent data used in the experiments
are generated by a RabbitMQ service pod. In contrast to that research,
the current research focuses on live migration of long term, and po-
tentially, large scale persistent data in cloud federated environments.
Moreover, the process defined by Junior et al. in [4] is used in the
current research to improve the voyager migration approach by Nad-

[October 1, 2024 at 12:46]

2.2 stateful live migration 9

gowda et al. [14].

The two researches, enumerated in this section, are the only re-
searches found that are concerned about live container migration, that
include their attached volume. Since the approach of Junior et al. [5]
has at least some downtime, it is considered a semi live migration,
and not a completely live migration. Therefore, the Voyager migration
approach from Nadgowda et al. is considered the state of the art in
container live volume migration.

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

3
T H E L AY E R E D T R A N S F E R M I G R AT I O N

The idea behind the Layered Transfer migration approach is to com-
bine the volume migration approaches introduced by Nadgowda et
al. [14] (Voyager) and Junior et al. [4]. The goal is to shorten the
time, the Voyager migration relies on remote reading files from the
source machine. This is achieved by copying the initial files prior to
switching the user traffic to the target machine. This means that after
switching, only some files, which have been changed during the initial
copy phase, have to be copied during the remote mount phase. This
essentially shortens the remote read phase.

In the following, a high level overview of the migration is given.
Technical details are reduced to a minimum in order to give a gen-
eral overview. The specific implementation details are discussed in
Chapter 4.

3.1 infrastructure

The Layered Transfer migration process moves all files from inside a
volume on a source machine to a volume on a target machine. Fig-
ure 3.1 provides an overview over the required components. A reverse
proxy is used to control the request flow from the service user to either
the source or the target machine. The coordination client is required
in order to coordinate the migration between the target and the host
machine. It starts containers on both machines via SSH, triggers the
different steps of the migration via HTTP, and sets the route of the
reverse proxy to either the source or the target machine. It does not
matter on which machine this client is running as long as it can reach
the source, the target and the reverse proxy machine. Since all com-
munication is done via network protocols, all components can run on
different machines in different datacenters.

3.2 migration stages

The process of the migration is divided in 4 different stages. These
stages are displayed in Figure 3.2.

The first stage, Stage 0, is about preparing the target machine for the
migration. At this stage, the container and the volume are located at
the source machine and the reverse proxy sends all incoming requests
to it. In order to transit the system to the next stage, Stage 1, the
following steps are executed:

11

[October 1, 2024 at 12:46]

12 the layered transfer migration

Reverse
Proxy

Coordination
Client

Service
User

Source VM Target VM

sshfs

Service
Container

Source Volume

Service
Container

Target Volume

http http

ssh/httpssh/http

http

Migration
Controller

Migration
Controller

Figure 3.1: Component Setup

Source

S0

Source

S0

S1

Service

r/w

Target

T0copy

Service

Target

T0

Source

S0

S1

r/w

S1

T1

Service

Target

T1

r/w

remote
read

migration starts migration finished

Stage 0 Stage 1 Stage 2 Stage 3

copy

Service

r/w

TN

Legend:

SN

Layer N on
Target

Layer N on
Source

Layer remotely
mounted

Figure 3.2: Migration Stages

Source

S0

S0.n

Servicer/w

Target

T0

copy

S1

Stage 0.n

...

Figure 3.3: Checkpointing

[October 1, 2024 at 12:46]

3.2 migration stages 13

1. start preparation: a new layered volume is created on the target
machine, which is used to store the files from the volume that
is to be migrated. Then, all layers from the source machine are
remotely mounted on the target machine for easy and clear
access of the files. In the implementation, the described actions
are invoked by sending a GET request to the /prepare endpoint.

2. iterative checkpointing: the source machine creates a new layer
on the volume, that is used to write all new incoming changes
to. The lower layer on the source is now read only (as seen in
Figure 3.2 Stage 1) and can be copied to the target machine,
safely. This step can be repeated iteratively. For the nth iteration,
the migration is considered to be in Stage 0.n. This process is
illustrated in Figure 3.3.

After performing these steps, the migration is considered to be
in Stage 1, the initial copying stage. In this stage, still, all incoming
changes are written to the source volume. However, the initial amount
of data from the source volume, has already been transferred to the
target volume. In order to transit the migration to stage 2, the following
steps are executed:

1. The layered volume, created in the start preparation phase, is
mounted as union mount on the target machine. The lower
layer contains the data that has been copied during stage 0. The
middle layer contains the remotely mounted upper layer from
the source, which contains all changes that happened during
stage 0 - stage 1. The upper layer of the mount will be empty,
in order to receive new changes. The layered volume now has
reading and writing access to all files of the volume.

2. The container is started on the target machine, with the layered
volume attached.

3. The migration waits for the container on the target machine to
be booted up completely. When the container is ready to handle
requests, the reverse proxy changes its route from the source
machine to the target machine.

4. The remaining changes, located in the upper layer of the source
machine, are transferred to the lower layer of the target volume.

5. The middle layer, which contains the remotely mounted upper
layer from the source volume, is removed from the mount.

After performing these steps, the migration is considered to be in
stage 2. Now, all new changes will be written to the upper layer of
the target volume, and the container on the target machine is in a
fully operable state. All files that have existed before the migration,

[October 1, 2024 at 12:46]

14 the layered transfer migration

and those that have been written during the migration, are located on
the target machine. The source machine can now be cleaned and shut
down.

Due to the CoW mechanism of a union mount file system, the service
performance of the container on the target machine is now worse than
before the migration on the source machine. In order to prevent this,
all files from the lower layer are merged to a single layer. Now, the
service performance of the target container matches the performance
of the source container, since no CoW operations are necessary. At this
point, the migration has reached Stage 3 in which it is considered to
be completed.

[October 1, 2024 at 12:46]

4
I M P L E M E N TAT I O N A N D T E C H N I C A L D E TA I L S

This section sheds a light on the implementation and the technical
details of the Layered Transfer migration process and of the evaluation
of it.

4.1 voyager migration

In order to compare the Layered Transfer migration process from
this study, to the state of the art of live volume migration, an im-
plementation of the Voyager, introduced in Chapter 2, is required.
Unfortunately, its source code is not published. Therefore, an imple-
mentation of the Voyager process is provided. The implementation of
the voyager in this research only focuses on migrating the volume of
the container from the source to the target machine. This is in contrast
to the original implementation, introduced in [14], which additionally
migrates the internal memory of the container. The main difference
between the Layered Transfer migration process and the Voyager im-
plementation, is the iterative checkpointing before remote mounting
the source volume layers to the target machine. Speaking in terms
of stages: the Voyager implementation skips stage 1 completely and
transits from stage 0 directly to stage 2. Hence, the Voyager process is
implemented, by reusing the already existing code from the Layered
Transfer process.

4.2 cold migration

A cold migration is considered to be the most straight forward form
of migration [6]. Here, the following steps are undertaken:

1. The service on the source machine is stopped, preventing any
new changes to be written to the disk.

2. All files to be migrated are transferred to the target machine.

3. The system is started up on the target machine, having access to
all migrated files.

This migration process is implemented using Python and Secure
Shell File System (SSHFS). Due to its simplicity, the cold migration
is expected to perform best in all KPIs with the cost of downtime.
Therefore, it established the baseline for the investigated KPIs.

15

[October 1, 2024 at 12:46]

16 implementation and technical details

4.3 technological stack

The migration process is coordinated by a python based application.
On both the source and the target machine runs a flask server that
accepts Hyper Text Transfer Protocol (HTTP) requests for controlling
the phases of the migration. The union mount file system, used by
the migration approach, is implemented by the OverlayFS kernel
module, which is preinstalled on most Linux distributions. In order to
communicate with the kernel module, the python application executes
the mount[23] by creating a command line interface string. Mounting
the layers from the source machine to the target machine is done using
the SSHFS command also by creating a command line interface string.
In order to remotely communicate between the coordination client and
the source and target machine, the Secure Shell (SSH) client python
library Paramiko [18] is used.

4.4 layered volume

In order to create a layered volume, and checkpointable volume Over-
layFS [16] is used. Unfortunately, OverlayFS does not provide an
off-the-shelf checkpoint function. OverlayFS merely provides a way
to statically union mount multiple layers as a merged representation.
Therefore, checkpointing has to be manually implemented.
In order to create a checkpoint, first a new directory is created which
represents the new layer. Afterward, all layers which have already
been mounted to the overlay mount will be mounted as lower layers,
with the newly created layer as upper layer. In order to have full
availability of all files during checkpointing, the new mount can be
mounted "over" the existing OverlayFS mount. This means that the
existing mount does not have to be unmounted first. A caveat of this
approach is, that files that have been opened for writing in the former
upper layer will still be written to the former upper layer while the
layer is considered to be read only. By waiting for all open files in the
former upper layer to be closed, it can be made sure that the former
upper layer is read-only. All new writes to the mount will result in
opened files in the new upper layer. Then, the former upper layer can
be copied without the danger of data loss.

4.5 checking for open files

Before a layer can be copied, it has to be made sure that no changes
will happen during or after the copying process. As described in
Section 4.4, it is possible that files in lower layers of an overlay mount
are changing. Therefore, checking for open files in a layer is essential
before copying, in order to prevent data loss. In the migration process,
checking for open files is done by the management client. Therefore,

[October 1, 2024 at 12:46]

4.6 merging layers 17

it executes the lsof [22] command in the running docker container
in order to check the files, that are currently open for writing. Since
the container itself does not know that the volume it is attached to is
layered, the device number from the upper layer needs to be used on
the upper layer of the volume. It can be read using the stat command
on the upper layer directory from outside the container. Using this
number, the management client can find all open files on the volume
from inside the container that match the mount point of the volume
and do not match the device number of the upper layer. Necessarily,
these files are open in a lower layer. By periodically repeating this
process, the migration can wait until all files in lower layers are closed
before copying them to the target machine.

4.6 merging layers

As described in the transition process from stage 2 to stage 3, all
files from the lower layer need to be merged to the upper layer in
order to prevent CoW operations and therefore increase the service
performance. In order to do so, all files in the lower layer that are
not present in the upper are hard linked to the upper layer. Hard
linking is preferred over copying since it is much faster and does not
produce duplicate data. Unfortunately, due to the dentry cache of the
file system, OverlayFS will still expect these files in the lower layer
and will try to perform CoW operations on them. This results in a
FileExistsException, since the file is already present in the upper layer.
In order to prevent this, the dentry cache is reset after moving the files.
Now, overlay will have to update the dentry cache on new read and
write operations.

A small caveat of this approach is that it is not atomic, and OverlayFS
updates the dentry cache on every read and write action. This means
that writes to lower layer files during the linking will result in the
FileExistsException since the cache still expects the file to be in the lower
layer. This caveat can be mitigated, by cleaning the cache before, and
after linking the files. However, a tiny chance for FileExistsException
to occur persist, for files that are written after the linking phase, but
before cleaning the cache. This chance can be completely reduced to
zero by prohibiting OverlayFS from writing into the dentry cache on
reads at the time of merging. However, this alteration of OverlayFS is
considered out of scope for this research.

4.7 lazy file transfer

As an enhancement to the migration time, Nadgowda et al. [14] pro-
poses to implement a lazy file transfer. This means, that in stage 2, not
all files from the upper source layer have to be copied to the lower

[October 1, 2024 at 12:46]

18 implementation and technical details

layer of the target. Since all writing access to files in lower layers
trigger a CoW operation, they are necessarily copied to the upper layer
of the target machine. Therefore, they can be skipped when the upper
source layer is copied from the source to the target machine during
Stage 2.

4.8 requirements for the machines

In order to create a remote mount and transfer data between the
source and the target machine, the target machine requires the SSHFS

software to be installed. Consequentially, on the source machine, a
running SSH client is required. Additionally, the target machine needs
the credentials of a user that can access the layers of volumes on the
source machine. Before a layer is copied from the source to the target,
it needs to be verified, that there are no open files in that layer, in
order to prevent data loss. Otherwise, a change could be written to
the layer after it has been copied. In order to check for open files, the
management client needs access to the docker daemon on both the
source and the target machine. Naturally, OverlayFS is required on
both the source and the target machine, however it is part of the Linux
kernel and will therefore be preinstalled on Linux distributions. In
contrast to the migration approach by Junior et al. [4], no additional
migration tool has to be installed in the container itself.

4.9 improvements

Keeping track of chaining files in the volume is implemented using
OverlayFS. However, since it employs CoW operations, changing a
small amount of data in a large file, results in that large file being
duplicated to the upper layer. With the proposed process, it is copied
twice to the target. Therefore, the process can be improved by mov-
ing away from checkpointing the file system using CoW operation, to
keeping track of the changes them self. This way, a small change in a
large file remains a small change to be persisted and transmitted via
the network. An additional improvement is to compress layers before
copying them to the target machine, in order to save data.

[October 1, 2024 at 12:46]

5
E VA L UAT I O N D E S I G N

In order to evaluate the Layered Transfer migration process, it is
compared to a cold migration and to the Voyager implementation.
The measurements retrieved by executing the cold migration estab-
lish a theoretical baseline, since the cold migration is supposed to
be the most naive migration approach. The measurements retrieved
by experiments using the Voyager migration are compared to the
measurements of the Layered Transfer migration in order to explore
the amount of improvements.

5.1 file based dummy application

In order to validate the implementation of the migration process, a file
based dummy application is created. Its purpose is to simulate a real
world application as close as possible. In order to do so, it exposes files
on the volume via an HTTP interface. The application is containerized
and shipped to both the target and the source machine. There it is
connected to a layered volume. For the evaluation, the following three
HTTP methods are used:

1. POST/init?chars =< x > & f iles =< y >: In order to populate
the volume to be migrated with initial files, the init method is
used. In this method, the number of files (y) and the number of
characters per file (x) can be specified. The service will create one
file with x − 1 "I" characters and one "E" character and duplicate
it y times. In ASCII encoding, one character is represented by one,
byte. Therefore, we can control the file size of the newly created
file. Every file will receive a new Universal Unique Identifyer
Version 4 (UUIDv4) as name in order to store them in the same
directory.

2. POST/write − new − f ile?chars =< x >: This method writes a
new file to the volume into the target directory. For the name of
the files, an UUIDv4 is used. As content of the file, the number of
x − 1 "I" characters with a trailing new line character are used.
The filename will be returned after the operation is completed.

3. POST/change − current − f ile: This method changes the last
file that has been written to the disk using the write-new-file
method. A single "E" character is appended to that file. During
the migration, this method does mostly not trigger a Copy on
Write operation.

19

[October 1, 2024 at 12:46]

20 evaluation design

4. POST/change − random − f ile: This method, changes a random
file that has been written using the write-new-file method. There-
fore, a random file will be chosen from the target directory and
an "E" character is appended. The filename of the changed file is
returned after the operation is completed. During the migration,
this method mostly triggers a Copy on Write operation.

5. GET/ f ile: This method reads a random file from the target
directory. As a result, the filename and the complete content
of the file will be returned in JavaScript Object Notation (JSON)
format.

The application is implemented to be a lightweight, easy to evaluate
application, that can simulate a broad range of real world file based
application types. Its methods are created to make the evaluation
adaptable to different application types.

After a migration of the filedummy application, it can easily be
tested for consistency. Therefore, every /write-new-file, write-current-
file and /write-random-file call are stored, together with the expected
number of "E" characters that should be in the file when the operation
is completed. After a migration of the filedummy application, all files
are read and the number of expected "E" characters per file can be
compared to the number of actual new lines per file. This way, it can
be checked whether all files that have been added or alternated during
the migration are stored on the target volume.

5.2 machine setup

For the target and the source machine, a virtual machine with identical
specifications from the TNO datacenter is used. Additional to the two
VMs, a third VM is used in order to run the coordination client, the
reverse proxy and the service user. The following table summarizes
the specifications and relevant installed software packages.

Memory 4 GB

CPU 4 Core

Network UP/DOWN 10 Gigabit

Operating System Debian Linux 12

Linux Kernel 6.1.0-21-amd64

Python Version 3.11.2

SSHFS 3.14.0

nginx 1.22.1

[October 1, 2024 at 12:46]

5.3 request latency 21

5.3 request latency

Concerning the measurement of the read- and write latency during the
migration, an HTTP client is constructed. This client records the used
endpoint, the start time, the end time and the response status of a
request. Since the volume is a union mount, some types of writing
requests trigger a copy on write operation. Therefore, writing requests
are split in three different categories:

New Write: Requests of this type trigger the creation of a new file on the
server. In terms of a layered volume, the new file is written to the
upper layer without any added actions. This request is simulated
by the HTTP method POST /write-new-file from the filedummy
service.

Sequential Write: Requests of this type trigger a change of the file that is currently
processed by the service. When the volume is layered, most of
the time, the current file is located in the upper layer of the
union mount file system. Therefore, it is altered and persisted to
the disk. This type of request is simulated by the HTTP method
POST /change-current-file.

Random Write: Requests of this type trigger a change of a randomly chosen file.
During a migration, such file will mostly be located in a lower
layer of the union mount. This strongly depends on the number
of initial files, that have to be migrated. More files, means a
higher chance of writing a file, that has not been written before,
and is therefore located in the lower layer. Therefore, before
changing the file, a CoW operation has to be performed. This
leads to a worse response time. This type of request is simulated
by the POST /change-random-file

As a configuration parameter, before starting the client, for every of
the four request types read, sequential-write, random-write and new-write
a probability can be defined. When the migration starts, the client
starts to send non-blocking requests to the file dummy application.
The number of concurrent requests is neither limited by the client, nor
by the service. Before sending a request, the type is determined by
its probability. This way, different application types with different use
cases can be simulated during the migration.

5.4 machine statistics

In order to measure the KPIs CPU Utilization, Memory Usage and
Network Traffic, the HTTP interface of the VM manager in the TNO
datacenter is used. Therefore, the statistics endpoint of the API is
called once every second during the migration for both the source and
the target machine. The timestamp, at which the request is sent, can

[October 1, 2024 at 12:46]

22 evaluation design

be used to map the response data to the collected request latencies of
the migration. The additional disk space consumption is measured
by checking the folder size of the layers of a volume and dividing
this value by the folder size of the volume size itself. Therefore, the
additional space consumption due to copy on writing in proportional
to the physically required space is retrieved.

5.5 consistency

In order to check, whether the implemented process is consistent,
every conducted experiment checks the consistency of the files in
the following way: Since the filedummy application, returns the ID
of an altered file as response, it is straight forward to memorize
which files have changed. Additionally, since every writing request
appends exactly one single "E" character to the altered file, it can also
be memorized how often a file has been changed. After running an
evaluation experiment, the number of received writing requests (POST
/write-new-file, POST /change-current-file and POST /change-random-file)
are counted per file. If the number of correctly processed write requests
matches the number of "E" characters in the corresponding file after
the migration, the file is considered to be migrated consistently.

5.6 experiments and parameters

In order to answer the research questions RQ2 and RQ3, the experi-
ments listed Table 5.1 in are conducted. For every listed experiment,
a cold migration, a voyager based migration and a Layered Transfer
migration are executed. The first four experiment configurations (Only
Read, Only Write, Only Sequential-Write and Only New-Write) have been
chosen in order to explore the dependency of that specific request type
on the KPIs of interest. Naturally, no real world application would only
perform one single type of operation, nevertheless in the experiment
the other request types are eliminated as confounding factors. There-
fore, the result can be used to make recommendations for the choice
of a migration method for different application types. The experiment
configurations Read Heavy and Write Heavy are conduced in order
to produce a more realistic result, since real world services mostly
execute read and write operations. All experiments are conducted
with an initial amount of data of 1 GB in total. This 1 GB of data is
split in 3 different ways in the number of initial files and the initial
file size, as displayed in Table 5.1. The combination of 1000 initial files
with a size of 1 MB each is used to establish a baseline. In order to
discover the dependence of the file size on the KPIs one combination
with smaller files (2000 x 0.5 MB) and one combination with larger
files (500 x 2 MB) are constructed. All migrations using the Layered

[October 1, 2024 at 12:46]

5.7 data collection 23

Experiment Number of
Initial Files

Initial File
Size (MB)

R/SW/RW/NW 1

Only Read 2000 0.5 100 / 0 / 0 / 0

1000 1

500 2

Only Sequential-Write 2000 0.5 0 / 100 / 0 / 0

1000 1

500 2

Only Random-Write 2000 0.5 0 / 0 / 100 / 0

1000 1

500 2

Only New-Write 2000 0.5 0 / 0 / 0 / 100

1000 1

500 2

Read Heavy 2000 0.5 80 / 10 / 5 / 5

1000 1

500 2

Write Heavy 2000 0.5 10 / 70 / 10 / 10

1000 1

500 2

Table 5.1: Experiments with Parameters

Transfer approach, create one single checkpoint during the migration
in order to keep the resulting data clear.

5.7 data collection

This section describes on which way the result data is retrieved. The
logging of the request latency (Section 5.3) and the logging of the host
statistics (Section 5.4) are both written to a separate file, named after
the volume name that is migrated in that experiment. The metadata
of an experiment (migration time, additional disk space consumption
target, additional disk space consumption source) is collected in a
single file. Using the name of the volume that is migrated in an
experiment, the metadata can be mapped to the measured latency
and the host statistics. Every experiment is executed 5 times with the

1 The Ratio of Reads (R), Sequential-Writes (SW), Random-Writes (RW) and New-Writes
NW

[October 1, 2024 at 12:46]

24 evaluation design

exact same parameters. Afterward, the mean of all 5 experiment runs
is calculated in order to create a more truthful result, where outliers
are mitigated. For every experiment, the KPIs are measured from 5

seconds before the migration starts, until 5 seconds after the migration
is finished. This way, the impact of the migration on the KPI of interest
can be detected and visualized.

The data is analyzed in python using the pandas[24] library and
plotted using the matplotlib[13] library. Both frameworks are combined
in a jupyter notebook[19] in order to explore the data.

[October 1, 2024 at 12:46]

6
E VA L UAT I O N R E S U LT S

This chapter summarizes the results of the conducted experiments,
listed in Table 5.1 based on the KPIs from RQ1 and RQ2. During the
execution of the listed experiments, the following KPIs, starting at Sec-
tion 6.2 are measured and compared. Every experiment configuration,
listed in Table 5.1 is conducted five times and a mean value is build
for each measured KPI. A complete overview of all collected data can
be found in the appendix in Section A.1.

6.1 plot clarification

In the following sections, various KPI values are plotted in graphs.
Most of the plots include vertical red dotted lines. These lines specify
the point in time where the migration has completed a stage, as de-
scribed in Section 3.2. Naturally, the number of stages differ between
the used migration methods. The cold migration will be divided in
three stages. These stages correspond to the steps explained in the
listing from Section 4.2. The Layered Transfer plots, will have four dif-
ferent stages, which correspond to the stages explained in Section 3.2.
The Voyager migration will have three stages that correspond to the
stages explained in Section 4.1.

6.2 migration time

In order to measure and compare the duration of a migration the
four experiments Only Read, Only Sequential, Only Random and
Only New are taken into account. Table 6.1 provides the migration
durations for the different experiments. Each experiment is conducted
5 times and the mean result is displayed.

Cold Layered Transfer Voyager

only-new 26.8 29.7 27.2

only-random 24.3 33.8 29.3

only-read 25.8 29.9 29.1

only-sequential 28.5 29.9 26.1

Table 6.1: Migration Time in Seconds for 1000 initial Files of 1MB Size

25

[October 1, 2024 at 12:46]

26 evaluation results

new random read sequential
0

10

20

30

40

(1) 2000 * 0.5 MB

new random read sequential

(2) 1000 * 1 MB

Cold
Layered Transfer
Voyager

new random read sequential

(3) 500 * 2 MB

Figure 6.1: Migration Time Comparison

When comparing the Layered Transfer to the Cold Migration, it can
be observed that in all experiments the Layered Transfer approach,
takes slightly more time to be completed. The highest difference is
observed in the only-random experiment. Here, the Layered Transfer
approach takes 9 longer than the cold migration. This amounts to 37%
additional time consumed.

In comparison to the Voyager implementation, a similar result can
be observed. The Layered Transfer method finishes later than the voy-
ager migration in every experiment.

Figure 6.1 compares the three different migration methods with
different combinations of initial file sizes and number of initial files.
When adjusting the initial file size to 0.5 MB (Figure 6.1 (1)), some
small differences can be observed. For the experiment only-read, the
Layered Transfer migration is slightly faster than the voyager migra-
tion. For the only sequential experiment, the same difference can be
observed. In this experiment, the Layered Transfer migration is even
faster than the cold migration.

In subfigure (3) of Figure 6.1, it can be observed, that the migration
time raises for the experiments only random and only read. Here
it is approximately 42% slower than the cold migration for the only
random experiment and even 68% slower for the only read experiment.
In contrary to that, the migration time of the voyager approach, does
not change significantly in comparison to the experiment with a filesize
of 1 MB (2).

6.3 request latency

Since the request latency depends on the type of operation the service
has to execute, the requests are split in the following 4 categories:

• Reading

[October 1, 2024 at 12:46]

6.3 request latency 27

0 10 20 30
0

50

100

150

La
te

nc
y

(m
s)

(1) Cold Migration
mean 19ms

0 10 20 30

(2) Layered Transfer
mean 22ms

0 10 20 30 40

(3) Voyager
mean 43ms

Time (s)

Figure 6.2: Read Latency Comparison

• Sequential Writing

• Random Writing

• New File Writing

6.3.1 Read Latency

In order to investigate the read latency during the migration, the
experiments Only Read and Read heavy have been conducted.

Figure 6.2 visualizes one of the experiment runs with the input pa-
rameters of the Only Read experiment from Table 5.1. The red dotted
lines signals the end of a stage. Therefore, the first line marks the point
in time where the migration signal is given by the coordination client
(Stage 0).

In the first plot (cold migration) the latency baseline is established
at around 24 ms per request. In the first stage of the cold migration, all
requests are routed to the container on the source machine. In the sec-
ond stage of the cold migration, the container on the source machine
is turned off, in order to freeze the state of the volume. Afterward, the
files are transferred to the source machine. Naturally, the container is
not available in this stage and therefore no requests can be processed.
When all files are copied to the target machine, the container on the
target machine can be booted up. After a small initialization time of
the container, all requests are routed to the target machine, where the
latency is back at around 20 ms in the third stage.

The second plot (2), visualizes the read latency for the Layered Trans-
fer migration approach. A slight increase of latency can be observed
between the first and the second segment. In the second segment, the
migration is in Stage 1. This means that all requests are routed to
the source machine, where all changes are written to the top layer.
During this segment, the lower layer is copied to the target machine.
The slight change in latency is attributed to the fact that the volume
is now layered, and the machine has to copy files in the background.

[October 1, 2024 at 12:46]

28 evaluation results

In the third segment, the lower layer of the volume has been copied
completely to the target machine. This layer together with the remote
upper layer on the source machine are union mounted into one vol-
ume. Since there have been no writing request in this experiment, the
remote upper layer of the source is empty, which means that not a
single read request needs to be read from the source machine, which
could affect the latency. All files are present at the target machine.
After a small cleanup time, the migration is completed. When execut-
ing this experiment 5 times in a row and calculating the mean, the
mean read latency for the cold migration is 20 ms. For the Layered
Transfer a latency of 22 ms is calculated. This means in comparison to
the baseline, there is a slight increase in the read latency, however it
only differs 2 ms.

In the third plot (3), the result of the Voyager is displayed. Here, an
interesting pattern can be observed. While the latency in the first and
last Stage reads around 20 ms, the latency approximately doubles in
the second Stage. In this segment the voyager migration is in Stage 2

(as described in Figure 3.2) which means, that all requests are routed
to the target machine, while the initial data from the source is remotely
mounted. this means that every read request gains one extra hop, since
the data has to travel from the source through the target to the client.
Executing this experiment five time and calculating the mean results
in a latency of 48 ms. This is more than twice as long as the latency
of the layered transfer approach at 22 ms. According to the data, the
layered transfer approach improves the read latency in comparison to
the Voyager approach significantly, by more than 50%.

Adjusting the size of the initial files to 0.5 MB and to 2 MB, does not
change the observed patterns in the results of the only-read latency. It
merely increases and decreases the latency for larger and smaller files,
respectively.

6.3.2 Random Write Latency

This section analyzes the random-write latency during the three types
of migrations. Therefore, the experiment only-random is conducted.

Figure 6.3 displays the latencies for the migrations. In the first
subplot (1) the cold migration is visualized. The mean latency for this
migration is 6 ms per request. In the second subplot (2) the Layered
Transfer approach is displayed. In this plot can be observed that right
after the migration signal is given at the first vertical dotted line, that
the latency raises quickly. At this point, the first checkpoint is created,
and nearly every random write request triggers a CoW operation. This
raises the latency of the requests to approximately 284 ms on average.
In the third subplot (3) a similar behavior can be observed for the

[October 1, 2024 at 12:46]

6.3 request latency 29

0 10 20 30
0

50

100

150

La
te

nc
y

(m
s)

(1) Cold Migration
mean 6ms

0 10 20 30 40

(2) Layered Transfer
mean 284ms

0 10 20 30 40

(3) Voyager
mean 288ms

Time (s)

Figure 6.3: Random Write Latency Comparison

Voyager migration. The mean latency here is, similar to the latency
during the Layered Transfer migration, at 288 ms. Even though in the
read-only experiment in Figure 6.2 a difference in latency due to the
longer period of remote reading could be observed, this effect can not
be observed in this experiment.

When changing the initial file size to 0.5 MB, it can be observed,
that the mean random write latency of the voyager migration drops
to 169 ms on average for 5 experiment runs. The average latency for
the Layered Transfer migration only drops to 200 ms, which results
in a 31 ms difference between the two approaches. Therefore, in this
experiment, the latency of the Layered Transfer migration is 18% worse
than the latency of the voyager migration.

For initial files with a size of 2 MB, the average random write latency
raises to 400 ms for the Layered Transfer migration. The voyager
migration reaches on average 335 ms. Therefore, in this experiment,
the latency of the Layered Transfer migration, is 19% worse than the
latency during the voyager migration.

6.3.3 New Write and Sequential Write Latency

In order to evaluate the write latency for sequential writes and new
writes, the experiments Only Sequential and Only New have been
conducted. The results for all three different types of migration can
be found in Figure 6.4 for only sequential write- and only new write
requests respectively.

In both figures can be observed, that the different stages of the
migration do not have any significant effect on the latency of both
new writes and sequential writes. Therefore, both request types are
analyzed together in this section. As baseline, a mean latency of 7 ms
and 6 ms is established. Neither the Layered Transfer nor the Voyager
method deviate significantly from that baseline. This is due to the
working principle of the layered volume. Naturally, files that are newly
written to the disk, are stored in the upper layer of the union mount
file system. Since the file did not exist before, no CoW action has to be

[October 1, 2024 at 12:46]

30 evaluation results

0 10 20 30 40
0

50

100

150

La
te

nc
y

(m
s)

(1) Cold Migration
mean 5ms

0 10 20 30

(2) Layered Transfer
mean 5ms

0 10 20 30

(3) Voyager
mean 9ms

Time (s)

0 10 20 30
0

50

100

150

La
te

nc
y

(m
s)

(1) Cold Migration
mean 6ms

0 10 20 30

(2) Layered Transfer
mean 7ms

0 10 20 30

(3) Voyager
mean 8ms

Time (s)

Figure 6.4: Sequential Write Latency Comparison

performed and the latency does not depend on the layered volume.
This is very similar for the sequential write requests. Since sequential
requests write to the same file, in the worst case there is one single
CoW operation for the first request. All consecutive requests will not
trigger CoW operations since the file is already located in the upper
layer.

As results for the mean calculation of 5 experiment repetitions for
sequential writes, the cold migration results in 6 ms, the layered trans-
fer results in 6 ms and the voyager approach results in 8 ms. The
mean values for 5 experiment repetitions of the new-writes result in
approximately the same values: 9 ms for the cold migration, 6 ms for
the layered transfer and 6 ms for the voyager approach. The small
differences of the latencies between approaches and between request
types is very small (< 2 ms) and can therefore be neglected.

Adjusting the initial file size to 0.5 MB and to 2 MB does not
change anything to the latency of the only-new and the only-sequential
experiments.

6.4 cpu utilization

This section compares the CPU utilization of the Cold migration, the
Layered Transfer migration and the Voyager migration approaches.

Figure 6.5 visualize the CPU utilization of the source and the target
machine during the migration per used migration method. The figure

[October 1, 2024 at 12:46]

6.4 cpu utilization 31

0 10 20 30
0

10

20

30
CP

U
Ut

iliz
at

io
n

(%
)

(1) Cold Migration

Source 7.83
Target 10.88

0 10 20 30 40

(2) Layered Transfer

Source 11.42
Target 12.41

0 10 20 30 40

(3) Voyager

Source 11.69
Target 17.09

Time (s)

Figure 6.5: CPU Utilization Only Read

depicts the single run of the only-read experiment configuration. This
experiment is chosen to be presented since it shows the differences in
CPU load between the migration methods best.

In the first sub-figure (1) of Figure 6.5, the CPU utilization spikes for
cold Migration spikes after the migration has started and drops after
it is finished. Naturally, before the migration of the source machine
is higher than on the target machine since the service is running
there. After the migration, the service runs on the target machine, and
the observed effect is reversed. In comparison to sub-figure (2), the
Layered Transfer migration, has an overall higher CPU utilization on
both the source and the target machine. At around second 27 on the
x-axis, the CPU utilization is observed to drop. This is attributed to the
fact that the largest amount of files has been transferred to the target
machine. Only the remaining changes that have occurred during the
migration have to be transferred here. When comparing this to the
Voyager migration, in sub-figure (3), it can be observed that the mean
CPU utilization is even higher. The observed drop from sub figure (2)
is can not be found here, since the Voyager migration skips stage 1

where initial files are copied before the remote mount stage. Therefore,
the voyager migration does two tasks in parallel. Copying the initial
data from the source to the target machine and using remote reads in
order to provide a working service. In the Layered Transfer approach,
these tasks are divided in two stages, which leads to a lower CPU
utilization during the migration.

Figure 6.6 visualizes the mean CPU utilization of running 5 exper-
iments with the same profile on the y-axis, per profile on the x-axis.
Sub-figure (1) and (2) display the source- and target machine CPU
utilization, while sub-figure (3) displays the mean from both machines.
In this figure, it can be observed that the Cold Migration approach
has the lowest CPU utilization across all experiment profiles. This
is attributed to the fact, that the CPU is not used for running the
service during the migration. The CPU utilization for the Layered
Transfer approach is slightly higher than the one of the cold migration,

[October 1, 2024 at 12:46]

32 evaluation results

new random read sequential
0

5

10

15

CP
U

Us
ag

e
(%

)

(1) Source CPU

new random read sequential

(2) Target CPU

Cold
Layered Transfer
Voyager

new random read sequential

(3) Total CPU

Figure 6.6: CPU Utilization per Experiment with 1000 files a 1 MB

new random read sequential
0

5

10

15

CP
U

Us
ag

e
(%

)

(1) Source CPU

new random read sequential

(2) Target CPU

Cold
Layered Transfer
Voyager

new random read sequential

(3) Total CPU

Figure 6.7: CPU Utilization per Experiment with 500 Files a 2 MB

since during the transfer, the CPU also has to be used for running the
service. The Voyager migration approach on average has the highest
CPU utilization across all experiments. Only for the only-read and
the only-sequential approaches, it has a slightly lower utilization than
the Layered Transfer method. However, the difference might be at-
tributed to unknown processes running in the background on the
source machine during the migration, since it is so minimal.

When comparing the different profiles, the only-read experiments
have the highest CPU utilization, while the only-new and the only-
sequential experiments have the lowest. This pattern corresponds to
the results found when measuring the latencies during the migration
in Section 5.3.

Furthermore, it can be observed that the target machine has in all
cases a higher mean CPU load than the source machine. This can be
attributed to the fact that the target machine copies the files from the
source machine using a pull approach.

When changing the initial file size to 0.5 MB per file, no significant
change in the measured data can be observed. When the initial file
size, on the other hand, is changed to 2 MB per file, a difference on
the target machine can be observed. In Figure 6.7 it can clearly be
observed, that the CPU utilization of the only-read experiment using
the Layered Transfer migration approach is approximately as half
as high as the voyager CPU utilization. The voyager approach uses
18.8%, while the Layered Transfer approach only uses 9.1% of the CPU
capacity.

[October 1, 2024 at 12:46]

6.5 memory usage 33

0 10 20 30
100

50

0

50

100

Ne
tw

or
k

Us
ag

e
(M

B/
s)

(1) Cold Migration

Source 1.06 GB
Target 1.01 GB

0 10 20 30 40

(2) Layered Transfer

Source 1.36 GB
Target 1.01 GB

0 10 20 30 40

(3) Voyager

Source 1.39 GB
Target 1.32 GB

Time (s)

Figure 6.8: Network Comparison Only Read

6.5 memory usage

In all conducted experiments, the memory usage is around 2.9 GB for
both the source and the target machine. No significant changes in the
memory usage is visible. This is the memory usage of all processes
running on the machine accumulated.

6.6 network traffic

This section introduces the results of the network traffic measurements
during the three different migration approaches.

Figure 6.8 visualizes the network usage per second for each of the
three migration approaches with the only-read profile. In order to
create the most insightful plot, where no lines are covered by other
lines, incoming network traffic is visualized as positive, while outgo-
ing traffic is visualized as negative. The network traffic between the
source and the target machine is in the main focus here. Therefore,
the plot displays the outgoing traffic of the source machine and the
incoming traffic of the target machine. This traffic is visualized as a full
line, while the outgoing traffic of the target is drawn as a dotted line.
In the legend, the total number of transferred gigabytes can be found
for the outgoing traffic of the source machine and the incoming traffic
of the target machine. The visualized values include both the traffic
used for the migration and the traffic used by the running service. The
different migration stages are marked by the vertical red dotted lines.

In the first subplot (1), the traffic of the cold migration is depicted.
The total amount of bytes transferred is approximately 10 GB. Clearly,
the incoming target traffic is approximately the same as the outgoing
source traffic. The small amount of extra data that is transmitted is
attributed to the service, that answers to read requests. In comparison
to the second subplot (2), where the Layered Transfer migration is
plotted, a change in the outgoing traffic on the source machine can

[October 1, 2024 at 12:46]

34 evaluation results

0 10 20 30
100

50

0

50

100

Ne
tw

or
k

Us
ag

e
(M

B/
s)

(1) Cold Migration

Source 1.01 GB
Target 1.01 GB

0 10 20 30 40

(2) Layered Transfer

Source 1.25 GB
Target 1.25 GB

0 10 20 30 40

(3) Voyager

Source 1.28 GB
Target 1.28 GB

Time (s)

Figure 6.9: Network Comparison Only Random

be observed. While the cold migration stops the service during the
migration, the Layered Transfer approach continues the service for
the whole migration time. Since, only read requests are coming in,
and the Layered Transfer approach runs the service on the source
machine for most of the time, this results in an overall higher outgo-
ing network traffic on the source machine. In the third subplot (3),
where the Voyager approach is displayed, a clear difference can be
observed. Like the Layered Transfer method, the Voyager method runs
the service during the whole time of the migration, which leads to a
higher outgoing network traffic than the cold migration has. However,
since the Voyager migration switches the service to the target machine,
before copying the initial files and remote reading them during the
migration from the source machine, there is a higher network traffic
on both the source and the target machine. All data requested by
the service user at the target machine, has to be remotely red from
the source machine. The average outgoing source traffic and incom-
ing target traffic across 5 experiment runs are 13.2 GB and 10 GB
for the Layered Transfer approach and 14 GB and 13.4 GB for the
Voyager method respectively. This shows, that the extra amount of
data transferred by the Voyager method is more than twice as high as
the extra amount of data transferred by the Layered Transfer approach.

In Figure 6.9, the differences between the three migration methods
in terms of network traffic for the only-random profile are shown. In
the first subplot (1) the cold migration is displayed. Like in Figure 6.8
nearly no extra data on top of the initial data is transmitted. This is
different to the Layered Transfer migration, in the second subplot (2).
Since the client sends only random write requests during the migra-
tion, many files are being changed and for almost every change, a CoW

has to be performed. Therefore, the amount of data to be transferred
grows during the migration. This can be observed in the second peak
in migration stage 2. Naturally, the total amount of data transmit-
ted is higher than the amount of data transmitted during the cold

[October 1, 2024 at 12:46]

6.6 network traffic 35

0 10 20 30
100

50

0

50

100

Ne
tw

or
k

Us
ag

e
(M

B/
s)

(1) Cold Migration

Source 1.01 GB
Target 1.01 GB

0 10 20 30 40

(2) Layered Transfer

Source 1.01 GB
Target 1.01 GB

0 10 20 30

(3) Voyager

Source 1.01 GB
Target 1.01 GB

Time (s)

Figure 6.10: Network Traffic Comparison New Writes

migration, since data is changed during the migration. In the third
subplot (3) the Voyager migration is shown. Like the Layered Transfer
migration, it allows the service to change files during the migration,
which also here results in a higher amount of data transmitted. This
number is slightly higher than the amount of data transmitted in the
Layered Transfer migration, however this arbitrarily swaps, for every
experiment run and is therefore not attributed to the migration type.
On average, for 5 experiment runs for the only-random profile, the
values are approximately the same at 12.5 GB for the Layered Transfer
approach and 12.6 GB for the voyager method.

In contrary to the read requests, send in Figure 6.8, the payload
of the requests send in this experiment is very small. Therefore, the
payload of the service requests do not change the outcome of the total
amount of transferred bytes, as observed in Figure 6.8.

Figure 6.10 shows the network traffic during the migration of the
three different approaches for the profile only-new. The graph for
only-sequential looks exactly the same in terms of change rate and
total sum of exchanged bits, and is therefore not listed here. This
can be attributed to the fact, that none of the approaches triggers a
CoW action nor uses the actual remote read from via the target on the
source machine.

When chaining the file size of the initial files to 2 MB, the graphs
change as displayed in Figure 6.11 for the only read experiment. Here,
it can be observed, that due to the increased file size, the total data
transferred increases in two ways. First, all responses to requests to
the running service are 2 MB instead of 1 MB as before. In the Layered
Transfer migration now the outgoing network traffic is 2.2 GB of data
while the incoming data to the target remains around 1 GB. This is
attributed to the fact, that the service is running on the source machine
for most of the time. It has to respond with responses of 2 MB to the

[October 1, 2024 at 12:46]

36 evaluation results

0 10 20 30
100

50

0

50

100

Ne
tw

or
k

Us
ag

e
(M

B/
s)

(1) Cold Migration

Source 1.14 GB
Target 1.01 GB

0 10 20 30 40 50

(2) Layered Transfer

Source 2.20 GB
Target 1.01 GB

0 10 20 30 40

(3) Voyager

Source 1.75 GB
Target 1.54 GB

Time (s)

Figure 6.11: Network Traffic Comparison Reads 2MB with 500 Initial Files

service user during the migration. This data is therefore not registered
as incoming on the target server. In the Voyager migration, on the other
hand, this overhead of data can be observed on the target machine,
which runs the service during the migration. Here, the outgoing traffic
increases to 1.54 GB. In contrary to the Layered Transfer migration,
the outgoing network traffic of the source increases as well to 1.75

GB. This is inevitable since all data requested by the service has to be
remotely read on the source, which increases its outgoing traffic.
Note, that the total migration time is higher for the Layered Transfer
migration, which gives the service more time to send reading requests
in that experiment. While on average in this experiment 392 requests
have been sent during the voyager migration, 522 requests have been
sent during the Layered Transfer migration. The difference of number
of requests amounts to 130 requests, which results in additional 260

MB which would have been sent during the voyager migration if it
had taken as long as the Layered Transfer migration.
For the random-only profile with a file size of 2 MB, the transmitted
data between source and target machine increases to 1.44 GB for the
Layered Transfer method and to 1.4 GB for the Voyager approach.
This means 40 MB more traffic for the Layered Transfer migration
than for the Voyager migration. This is attributed to the fact, that
the Layered Transfer method executes CoW operations on the source
machine, which results in additional data. This additional data is then
copied to the target machine. In contrast to that, the voyager approach
performs the CoW operations on the target machine, which means they
do not have to be copied during the migration.

When changing the file size of initial files to 2 MB or 0.5 MB, no
significant difference can be observed in terms of total transferred
data and change rates for the profiles random-write, new-write and
sequential write.

[October 1, 2024 at 12:46]

6.7 consumed disk space 37

6.7 consumed disk space

In this section, the consumed disk space during the migration is evalu-
ated. Due to the use of CoW operations during the migration, files are
necessarily duplicated. This means that the layers persisted on the disk
can be larger than the size of the mounted volume. This difference is
regarded as access disk space consumption.

Naturally, the access space consumption for the cold migration is
always 0 since no layered volumes are used, and therefore CoW is not
performed. Additionally, in cases where only reading requests are sent
to the server, also no CoW operations are performed. This is also the
case for requests, that trigger a new file to be written. Therefore, solely
the experiments only-sequential and only-random are investigated in
this section.

On average of 5 executed Layered Transfer migrations with the same
parameters, the only-sequential experiment results consumes 0.1% of
disk space additional to the size of the volume on both the source and
the target machine. Since only sequential writes are being performed,
most of the writing operations will not trigger a CoW operation. This
results in such a low additional disk space consumption. For the voy-
ager migration, the average additional disk space consumption of 5

migrations amounts to 0.

The only-random experiment on the other hand results in more vari-
able values, since chances are high that all requests will trigger a CoW

operation. For the Layered Transfer migration, on the source machine,
the average additional disk space consumption across 5 experiment
runs amounts to 23.9%, while on the target machine it amounts to only
3%. The voyager migration shows opposite behavior. Here, the aver-
age disk space consumption on the source machine naturally amount
to 0%, while it amounts to 21.9% on the target machine. This is a
logical behavior, since the voyager migration does not make any use
of a layered volume on the source machine. All, changes happening
during the migration, are written to the target machine. The Layered
Transfer migration, on the other hand, makes use of a layered volume
both on the source and the target machine, which results in potential
additional disk space consumption on both machines. Here, most
of the changes happening during the migration are written to the
source machine and only a few to the target machine. In total, the
additional disk space consumption is slightly higher for the Layered
Transfer migration. Figure 6.12 provides a visual comparison between
the Layered Transfer and the voyager implementation in terms of disk
space consumption.

[October 1, 2024 at 12:46]

38 evaluation results

Source Target
0

10

20

30

40

50

60

23.86%

3.06%

(1) Layered Transfer

Source Target
0.00%

21.90%

(2) Voyager

Ac
ce

ss
 D

isk
 S

pa
ce

 (%
)

Figure 6.12: Additional Disk Space Consumption 1MB 1000 Files Only Ran-
dom Write

Source Target
0

10

20

30

40

50

60

41.52%

7.16%

(1) Layered Transfer

Source Target
0.00%

36.64%

(2) Voyager

Ac
ce

ss
 D

isk
 S

pa
ce

 (%
)

Figure 6.13: Additional Disk Space Consumption 2MB 500 Files Only Ran-
dom Write

Since the additional disk space consumption is attributed to CoW

operations, the difference between the size of the layers and the size
of the volume grows with larger files. For example Figure 6.13 shows,
when increasing the initial file size from 1 MB to 2 MB, the average
access disk space consumption raises up to 7.2% on the target and to
41.5% on the source machine for the layered transfer. For the voyager
migration, the access disk space consumption increases to 36.6% on
the target machine.

When decreasing the file size to 500KB, the access disk space con-
sumption drops to 13.6% on the source and to 1.3% on the target for
the Layered Transfer migration, as observed in Figure 6.14. For the
Voyager migration, it drops to 13.5%. In this case, the additional disk
space consumption is approximately the same for the Layered Transfer
migration and the voyager migration, while for the other cases, the
Layered Transfer migration consumed more disk space on average.

6.8 downtime

In this section, the downtime of the service during the migration is
compared. In the experiment setup, the reverse proxy will respond
with a 502 HTTP error, when the service it redirects the traffic to, is

[October 1, 2024 at 12:46]

6.9 real world application profiles 39

Source Target
0

10

20

30

40

50

60

13.57%

1.25%

(1) Layered Transfer

Source Target
0.00%

13.45%

(2) Voyager

Ac
ce

ss
 D

isk
 S

pa
ce

 (%
)

Figure 6.14: Additional Disk Space Consumption 500KB 2000 Files Only
Random Write

not available. The downtime is measured by counting the number
of requests that result in a 502 HTTP error and dividing this number
by the number of total requests sent. Naturally, since the Layered
Transfer and the Voyager migration are designed to be live migrations,
the service is fully available during the migration. In the conducted
experiments, the calculated downtime for both approaches is 0%. For
all the conducted experiments, no single request resulted in a 502

response for the Layered Transfer approach and the voyager approach.
The cold migration, on the other hand, is in all conducted experiments
unavailable for 100%.

6.9 real world application profiles

The presented experiment configurations only-read, only-sequential,
only-random and only-new, which have been introduced in the former
sections of this chapter, have been chosen to create a clear overview
on which type of request influences which KPI in which magnitude.
However, it is not very likely that an application exclusively han-
dles requests of one kind. Therefore, the experiments read-heavy and
write-heavy, as introduced in Table 5.1, are conducted. The read-heavy
experiment typifies an application that reads from the file system most
of the time, with some write operations in between. This could for
example be a database with customer records. The write-heavy experi-
ment, typifies an application that mainly performs writer operations.
An example for this is a logging database or a sensor database, which
perform write operations most of the time with few reads in between.

Conducting the experiments with the read-heavy profile results in
approximately the same values as the only-read experiments. No sig-
nificant deviations are found. The outcomes, resulting from executing
the write-heavy experiments, result in approximately the same values
as the only-sequential experiments. Like for read-heavy, no significant

[October 1, 2024 at 12:46]

40 evaluation results

deviations are observed.

[October 1, 2024 at 12:46]

7
D I S C U S S I O N

This section of the thesis discusses the results, that have been intro-
duced in Chapter 6.

As introduced in Section 6.2, the migration time does not change
significantly for any profile and any migration method, up to a file
size of files to be migrated of 1 MB. With larger files, as tested for 2

MB, the migration time raises significantly when using the Layered
Transfer approach, for the profiles only-read and only-random. For
the only-random profile, the growing migration time can be attributed
to the fact that the service runs on the source machine during the
most time of the migration. This leads to more CoW operations on
the source side, which produces more data that has to be copied to
the target machine eventually. In general, more time is required, for
copying more data. In addition to that, the migration time of the
only-read profile also increases with growing file sizes. However, it
is not completely clear, where this increase of migration time can be
attributed to, since the only-read profile does not increase the amount
of data to be transferred in any way. It can be argued, that the voyager
migration is better suited for scenarios where the migration time has
to be kept as low as possible. Especially, when the file size of the files
to be migrated is larger than 1 MB.

When investigating the read latency, it is evident from the measure-
ments in Section 5.3, that the Layered Transfer migration approach has
an advantage in read latency in comparison to the voyager migration.
Due to the fact that the service needs to read most of the data remotely
from the source container, reading leads to a higher latency during the
voyager migration, than during the Layered Transfer migration. There-
fore, it can be argued, that the Layered Transfer migration approach,
is preferred for migrations of services with a read heavy profile over
the voyager migration. For write heavy applications, no significant
difference between the methods could be observed.

Section 6.4 introduces the CPU utilization during the different types
of migration. From the collected data, it is evident that the Layered
Transfer migration has a lower CPU utilization across all profiles
across the source and the target machine combined. However, the
largest difference can be observed on the target machine. This can be
attributed to the following phenomenon. Both, the voyager migration
and the Layered Transfer migration perform two main tasks: copying

41

[October 1, 2024 at 12:46]

42 discussion

the initial files from the source to the target machine, and remotely
reading files on the target machine from the source machine. During
the voyager migrating, both of these tasks are performed at the same
time. The Layered Transfer migration, on the other hand, first performs
the largest part of the copying task, and executing the remote reading
task afterward. This means the Layered Transfer migration performs
the tasks in a more sequential way than the voyager migration, which
performs both tasks in parallel. This leads to a lower CPU utilization
for the Layered Transfer migration. This effect might even be increased
when migrating to machines with a weaker CPU configuration, then
tested in the experiments. In summary, the Layered Transfer migration
is preferred over the voyager migration for CPU critical scenarios.

As introduced in Section 6.6, the Layered Transfer migration trans-
mits less data in total than the voyager migration for the only-read
profile. Since the voyager migration performs more remote reads, the
additional data, requested by the service, is both added to the source
outgoing traffic and the target incoming traffic. For a file size of 2 MB
(Figure 6.11) can be observed that even the migration time is lower
for the voyager, and therefore there are less reading requests, the
total amount of send data between the source and the target machine,
is the same for the Layered Transfer - and the voyager migration.
For the profiles only-sequential, only-random and only-new, no sig-
nificant difference could be observed. Since less data per request is
transmitted using the Layered Transfer migration compared to the
voyager migration, the Layered Transfer migration is regarded as more
data saving, and therefore recommended for migrations in bandwidth
critical scenarios.

In Section 6.7, the additional consumed disk space is introduced.
Since the CoW operation duplicates data on the disk, only the profile
only-random makes a difference in the measured data. The other pro-
files do not trigger the CoW operation at all, or in a neglectable amount.
In general, the total amount of consumed disk space seems to grow
with the size of the migrated files. This is reasonable, since only whole
files are copied by the CoW operation. This means, CoW on larger files
consumes more additional disk space. This holds for both, the voyager
and the Layered Transfer migration. While the Layered Transfer migra-
tion consumes most additional disk space on the source machine and
some on the target machine, the voyager migration consumes all addi-
tional disk space on the target machine. Therefore, the total amount of
additional consumed disk space is consumed by the Layered Transfer
migration, with a small difference to the voyager migration. However,
the recommendation for disk space critical migrations depends on the
disk space of the target and source machine. Scenarios where the disk
space is critical on the source machine are advised to use the voyager
migration, while scenarios with critical disk space on the target ma-

[October 1, 2024 at 12:46]

discussion 43

chine are advised to use the Layered Transfer migration. Scenarios in
which disk space is sparse in general are advised to use the voyager
or the cold approach, since the total amount of additional disk space
is slightly lower.

In Section 6.9, the results for the real-world application profiles are
introduced. It can be observed, that the read-heavy experiments yield
approximately the same results as the only-read experiments, while
the write-heavy experiments yield approximately the same results
as the only-sequential experiments. Therefore, the occasional writes,
which are executed during the migration in the read-heavy experi-
ments, are not found to have an influence on the general outcome
of the KPI measurements. The same holds for the write-heavy experi-
ments in respect to the occasional reads.

The observed decrease of migration performance for the KPIs la-
tency, network traffic and disk space consumption, is attributed to the
fact that CoW operations need to be performed during the migration.
This holds for both the Voyager and the Layered Transfer migration.
Therefore, it might not be beneficial to migrate a volume with very
large files (>100 MB) using one of these approaches. In a scenario
where a single byte in a 100 MB file is changed, the CoW operation
will produce 100 MB of access data. In such a scenario, it is more
advantageous to employ a different migration strategy, or to replace
the CoW mechanism by a different approach.

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

8
C O N C L U S I O N

In Table 8.1 it is shown how the Layered Transfer migration approach
improves the voyager approach in respect to the investigated KPIs.
This table is considered the summarized answer to research questions
RQ1 and RQ3. In general, one can conclude that the Layered Trans-
fer migration uses less CPU resources than the voyager approach.
Additionally, less data in total is consumed by the Layered Transfer
approach. Furthermore, for specific cases like read heavy applications,
the service has a lower latency during the Layered Transfer migration.
The KPIs additional disk space consumption, in general, could not be
improved on. However, the Layered Transfer migration uses less disk
space on the target machine than the Voyager approach. The migration
time on the other hand could not be improved by the Layered Trans-
fer migration. In all conduced experiments, no downtime could be
measured. Therefore, the voyager approach and the Layered Transfer
migration are considered equally available.

Summarizing the findings from the research, it is concluded that
the cold migration performs slightly better in comparison to the Lay-
ered Transfer migration. However, it does introduce downtime to the
application, which is not the case for the Layered Transfer migration.
This downtime decreases the quality of service of the application,
especially when migrating multiple times a day. This answers the
second research question, RQ2.

This research contributes to the research field of live migration by
introducing a novel approach of stateful live migration of container-

KPI Description

Migration Time - slightly slower

Latency +/- decreased for read, increased/identical
for random write

CPU Utilization + decreased

Memory Usage = equal

Network Traffic + decreased for read

Additional Disk Space -/+ decreased in total, increased for on target

Downtime = no measured downtime

Table 8.1: Improvements per KPI

45

[October 1, 2024 at 12:46]

46 conclusion

ized applications. It introduces and analyses the different strengths
and weaknesses in comparison to the state of the art. The evaluation
of the process serves as exploration of the strength and weaknesses.
In addition to that, it provides recommendation for practitioners on
which live migration approach to use in which scenario. Furthermore,
the research provides an implementation for the Voyager migration
and the Layered Transfer migration approaches, that can be used and
adapted by researchers and practitioners.

8.1 technical limitations

Regarding the design and the implementation of the Layered Transfer
migration approach, the following technical limitations emerge. As
the Layered Transfer migration is constructed, it does not allow for
a live migration of a volume, that is accessed by a container that
keeps files constantly open. In order to make sure that all writes are
consistently transmitted to the target machine, the migration process
needs to make sure that the files to be copied are not open and will
therefore not be changed in the future. This limitation can mitigated
by communicating to the service to release the file and make sure it is
not altered after its layer is copied. However, the application needs to
support such functionality.
In addition to that, the Layered Transfer migration process is con-
structed to migrate stateful services that provide control over their
writes. In the conducted experiments, writes are triggered by an ex-
ternal HTTP request, which is redirected to the target machine using
a reverse proxy. This makes the writes controllable from the outside.
However, some applications perform writes independent of outside
triggers, like indexing or removing temporary files. If these writes
happen during the migration, there is a chance that they are not
transmitted to the target machine and the migration is inconsistent.
However, this is mitigated by the fact that the container is started with
the exact same persistent data on the target machine. This will lead
to triggering the internal writing eventually on the target machine.
Ideally, such internally triggered are controllable from the outside of
the application. Then they can be disabled during migrations, which
mitigates this limitation. Since the current implementation is based
on CoW operations, it is not suitable to migrate a volume with very
large files. The larger the files get, the more data is duplicated during
a CoW operation. In order to mitigate this, the CoW mechanism has to
be replaced. Furthermore, replacing the CoW mechanism improves the
KPI measurement results.

[October 1, 2024 at 12:46]

8.2 limitations of the evaluation 47

8.2 limitations of the evaluation

A limitation of the evaluation of the implementation is the humongous
amount and range of input parameters. The parameters initial file
size, number of initial files and the behavior profile of the application
have been taken into account. However, the scope of this research is
only large enough to explore a small range of the named parameters.
In addition to that, there are more parameters, that can potentially
influence the outcome of the results. Some of these parameters are
CPU power, network configuration, bandwidth, number of created
checkpoints during the migration and the efficiency of the implementa-
tion of the migration process itself. Naturally, this does not invalidate
but complement the presented results.

8.3 outlook

Future work could be focused on mitigating the overhead, that emerges
by the CoW operations. This could be done by chunking the files and
only copying the edited chunk to the upper layer. A different approach
is to use a union file system, that supports move-on-write operations,
that move the file to the upper layer instead of copying it. This would
completely remove the necessity of additional disk space. In addition
to that, conducing a more in depth exploration and analysis of the
implemented migration approach, with a broader range of param-
eters, can be conducted. In the current research, the live migration
has been implemented and evaluated, using HTTP requests as write
triggers. However, services like SQL databases require different access
protocols. Future research could focus on implementing the Layered
Transfer migration for stateful TCP connections. This would connect
this topic to the research on migrating containers including their ac-
tive TCP connections, conducted by Yu et al. [20]in 2023. A different
kind of related research could design and investigate a mechanism to
"leave a layer behind" on machines. In scenarios, where a container is
temporarily migrated to a different machine, it might be beneficial to
leave the lower layers behind on the original machine and reuse them
when the container is migrated back. Therefore, only the upper layer
from the new machine has to be copied, since the lower layers will
already be present on the original machine. Of course, this works best
for read heavy applications, that perform few CoW operations, which
basically make the existence of files in the lower layers obsolete.

[October 1, 2024 at 12:46]

[October 1, 2024 at 12:46]

A
A P P E N D I X

In order to provide all resources, used for the research, this appendix
chapter is added.

a.1 experiment measurements

This section complements the thesis document by adding the full
dataset of the measured KPIs in table form. For every experiment type,
the table displays the mean of 5 identical experiment runs. The follow-
ing sections are ordered by their application profile configuration.

a.1.1 Only Read

Migration Method cold layered transfer voyager

number_of_initial_files 1000.00 1000.00 1000.00

initial_file_size 1000000.00 1000000.00 1000000.00

migration_time 25.80 29.88 29.08

mean_cpu_source 8.52 11.68 12.18

mean_cpu_target 11.57 12.87 17.38

mean_cpu 10.05 12.27 14.78

netin_target 1005964084.80 1007078077.80 1322804003.80

netout_source 1058930921.80 1343226252.40 1391262913.20

mean_read 20.82 20.02 39.41

mean_sequential_write NaN NaN NaN

mean_random_write NaN NaN NaN

mean_new_write NaN NaN NaN

mean_mem_source 2835616301.20 2835616301.20 2835658335.40

mean_mem_target 2808330343.90 2808254229.20 2808254229.20

missed_requests 251.40 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 355.00 397.60 389.00

Table A.1: Only Read 1000 Files 1 MB

49

[October 1, 2024 at 12:46]

50 appendix

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 2000000.00 2000000.00 2000000.00

migration_time 25.63 42.45 29.42

mean_cpu_source 7.86 11.81 12.27

mean_cpu_target 10.47 9.51 18.87

mean_cpu 9.17 10.66 15.57

netin_target 1005788609.80 1007214607.80 1547024644.20

netout_source 1142978759.60 2205732690.80 1759492294.40

mean_read 134.21 149.71 132.61

mean_sequential_write NaN NaN NaN

mean_random_write NaN NaN NaN

mean_new_write NaN NaN NaN

mean_mem_source 2846027627.00 2846027627.00 2846027627.00

mean_mem_target 2805570705.26 2805561240.94 2805595626.40

missed_requests 249.40 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 353.20 522.60 392.60

Table A.2: Only Read 500 Files 2 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 51

Migration Method cold layered transfer voyager

number_of_initial_files 2000.00 2000.00 2000.00

initial_file_size 500000.00 500000.00 500000.00

migration_time 27.25 31.21 34.07

mean_cpu_source 8.30 10.95 12.35

mean_cpu_target 11.67 13.24 16.54

mean_cpu 9.99 12.09 14.45

netin_target 1006963093.00 1008044645.80 1258692991.80

netout_source 1034375891.60 1182412803.60 1302928765.20

mean_read 14.87 14.75 33.59

mean_sequential_write NaN NaN NaN

mean_random_write NaN NaN NaN

mean_new_write NaN NaN NaN

mean_mem_source 2846027627.00 2846027627.00 2846027627.00

mean_mem_target 2805635264.00 2805655855.00 2805717628.00

missed_requests 263.80 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 369.60 410.60 439.20

Table A.3: Only Read 2000 Files 0.5 MB

[October 1, 2024 at 12:46]

52 appendix

a.1.2 Only Sequential

Migration Method cold layered transfer voyager

number_of_initial_files 1000.00 1000.00 1000.00

initial_file_size 1000000.00 1000000.00 1000000.00

migration_time 28.49 29.86 26.05

mean_cpu_source 7.70 9.14 9.54

mean_cpu_target 10.78 12.39 13.85

mean_cpu 9.24 10.77 11.69

netin_target 1005879605.60 1007939465.60 1007579997.20

netout_source 1005878318.00 1008066076.60 1007419744.00

mean_read NaN NaN NaN

mean_sequential_write 5.80 6.78 6.28

mean_random_write NaN NaN NaN

mean_new_write NaN NaN NaN

mean_mem_source 2844359280.56 2844161837.00 2844161837.00

mean_mem_target 2805335150.40 2805370544.69 2805498849.00

missed_requests 278.20 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 382.20 397.40 358.80

Table A.4: Only Sequential 1000 Files 1 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 53

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 2000000.00 2000000.00 2000000.00

migration_time 23.72 26.74 23.36

mean_cpu_source 8.13 9.31 9.38

mean_cpu_target 12.27 13.39 14.32

mean_cpu 10.20 11.35 11.85

netin_target 1005441445.60 1008388068.20 1006760297.60

netout_source 1005436387.20 1008495358.40 1006607569.00

mean_read NaN NaN NaN

mean_sequential_write 11.53 6.09 7.07

mean_random_write NaN NaN NaN

mean_new_write NaN NaN NaN

mean_mem_source 2841475559.51 2841545213.20 2841545213.20

mean_mem_target 2806052418.74 2805954481.47 2805726378.80

missed_requests 231.80 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 334.80 366.20 332.00

Table A.5: Only Sequential 500 Files 2 MB

[October 1, 2024 at 12:46]

54 appendix

Migration Method cold layered transfer voyager

number_of_initial_files 2000.00 2000.00 2000.00

initial_file_size 500000.00 500000.00 500000.00

migration_time 34.49 32.96 28.93

mean_cpu_source 6.84 8.93 9.43

mean_cpu_target 10.19 12.75 14.03

mean_cpu 8.51 10.83 11.73

netin_target 1006891307.20 1008470858.40 1009119824.20

netout_source 1006893452.00 1008613049.00 1008949628.60

mean_read NaN NaN NaN

mean_sequential_write 12.02 9.00 6.30

mean_random_write NaN NaN NaN

mean_new_write NaN NaN NaN

mean_mem_source 2834687875.29 2833191747.80 2832828399.00

mean_mem_target 2806468170.00 2806587022.59 2806575758.00

missed_requests 327.60 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 441.80 428.00 388.00

Table A.6: Only Sequential 2000 Files 0.5 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 55

a.1.3 Only Random

Migration Method cold layered transfer voyager

number_of_initial_files 1000.00 1000.00 1000.00

initial_file_size 1000000.00 1000000.00 1000000.00

migration_time 24.34 33.83 29.32

mean_cpu_source 8.46 11.11 11.52

mean_cpu_target 11.74 14.41 16.17

mean_cpu 10.10 12.76 13.85

netin_target 1005882577.20 1247753492.20 1273696514.00

netout_source 1005877020.00 1247832359.80 1273507148.00

mean_read NaN NaN NaN

mean_sequential_write NaN NaN NaN

mean_random_write 6.71 220.89 183.98

mean_new_write NaN NaN NaN

mean_mem_source 2845050333.00 2845050333.00 2845050333.00

mean_mem_target 2806755684.80 2806755684.80 2806755684.80

missed_requests 237.40 0.00 0.00

additional_disk_space_source 1.00 1.23 1.00

additional_disk_space_target 0.00 1.04 1.22

total_requests 340.80 436.60 391.80

Table A.7: Only Random 1000 Files 1 MB

[October 1, 2024 at 12:46]

56 appendix

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 2000000.00 2000000.00 2000000.00

migration_time 26.50 37.58 27.95

mean_cpu_source 7.86 11.00 11.10

mean_cpu_target 10.77 14.35 16.26

mean_cpu 9.32 12.68 13.69

netin_target 1005441240.60 1455736038.80 1397200600.00

netout_source 1005435812.60 1455790061.80 1397038180.80

mean_read NaN NaN NaN

mean_sequential_write NaN NaN NaN

mean_random_write 6.55 408.52 335.59

mean_new_write NaN NaN NaN

mean_mem_source 2840849286.02 2842108996.20 2842108996.20

mean_mem_target 2806121968.65 2806184072.68 2806035759.00

missed_requests 258.40 0.00 0.00

additional_disk_space_source 1.00 1.42 1.00

additional_disk_space_target 0.00 1.07 1.37

total_requests 362.00 474.20 378.40

Table A.8: Only Random 500 Files 2 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 57

Migration Method cold layered transfer voyager

number_of_initial_files 2000.00 2000.00 2000.00

initial_file_size 500000.00 500000.00 500000.00

migration_time 26.20 34.72 33.88

mean_cpu_source 8.61 11.15 12.04

mean_cpu_target 12.50 14.78 17.07

mean_cpu 10.56 12.96 14.55

netin_target 1006883080.00 1146861621.20 1241801740.00

netout_source 1006878003.20 1146968151.80 1241590527.60

mean_read NaN NaN NaN

mean_sequential_write NaN NaN NaN

mean_random_write 8.46 200.89 169.60

mean_new_write NaN NaN NaN

mean_mem_source 2843412356.49 2843182442.60 2843182442.60

mean_mem_target 2806047084.00 2806047084.00 2806047084.00

missed_requests 253.40 0.00 0.00

additional_disk_space_source 1.00 1.14 1.00

additional_disk_space_target 0.00 1.01 1.13

total_requests 359.20 445.60 437.00

Table A.9: Only Random 2000 Files 0.5 MB

[October 1, 2024 at 12:46]

58 appendix

a.1.4 Only New

Migration Method cold layered transfer voyager

number_of_initial_files 1000.00 1000.00 1000.00

initial_file_size 1000000.00 1000000.00 1000000.00

migration_time 26.78 29.74 27.20

mean_cpu_source 8.11 9.64 9.12

mean_cpu_target 11.35 13.14 14.05

mean_cpu 9.73 11.39 11.58

netin_target 1005952321.60 1007370067.60 1007380980.00

netout_source 1005951633.20 1007481990.00 1007226846.60

mean_read NaN NaN NaN

mean_sequential_write NaN NaN NaN

mean_random_write NaN NaN NaN

mean_new_write 5.91 5.71 6.69

mean_mem_source 2840461220.65 2840812769.20 2840812769.20

mean_mem_target 2805540031.00 2805550048.24 2805581213.00

missed_requests 259.40 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 365.20 395.80 370.60

Table A.10: Only New 1000 Files 1 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 59

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 2000000.00 2000000.00 2000000.00

migration_time 26.97 28.42 23.86

mean_cpu_source 7.58 9.12 9.32

mean_cpu_target 11.21 13.16 14.36

mean_cpu 9.39 11.14 11.84

netin_target 1005514236.00 1006786658.40 1006703578.40

netout_source 1005513044.60 1006897735.80 1006556183.00

mean_read NaN NaN NaN

mean_sequential_write NaN NaN NaN

mean_random_write NaN NaN NaN

mean_new_write 22.60 6.80 6.50

mean_mem_source 2836775196.52 2841413552.94 2841505806.60

mean_mem_target 2806790934.00 2806790934.00 2806790934.00

missed_requests 259.00 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 366.60 382.80 337.00

Table A.11: Only New 500 Files 2 MB

[October 1, 2024 at 12:46]

60 appendix

Migration Method cold layered transfer voyager

number_of_initial_files 2000.00 2000.00 2000.00

initial_file_size 500000.00 500000.00 500000.00

migration_time 27.93 32.47 28.06

mean_cpu_source 8.05 9.15 9.40

mean_cpu_target 12.19 13.38 14.66

mean_cpu 10.12 11.26 12.03

netin_target 1006967069.00 1008433264.80 1008572925.60

netout_source 1006962408.40 1008560329.80 1008399966.60

mean_read NaN NaN NaN

mean_sequential_write NaN NaN NaN

mean_random_write NaN NaN NaN

mean_new_write 5.68 7.68 8.21

mean_mem_source 2834684780.65 2833080395.52 2837141822.60

mean_mem_target 2806790934.00 2806790934.00 2806790934.00

missed_requests 273.20 0.00 0.00

additional_disk_space_source 1.00 1.00 1.00

additional_disk_space_target 0.00 1.00 1.00

total_requests 377.00 423.00 379.20

Table A.12: Only New 2000 Files 0.5 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 61

a.1.5 Read Heavy

Migration Method cold layered transfer voyager

number_of_initial_files 1000.00 1000.00 1000.00

initial_file_size 1000000.00 1000000.00 1000000.00

migration_time 22.58 28.05 29.37

mean_cpu_source 8.96 11.25 11.32

mean_cpu_target 11.93 12.78 16.16

mean_cpu 10.44 12.02 13.74

netin_target 1005972869.40 1020228321.20 1265468316.60

netout_source 1048807305.80 1269055683.80 1332599601.60

mean_read 18.78 19.39 41.20

mean_sequential_write 5.34 9.70 16.80

mean_random_write 6.54 255.46 254.98

mean_new_write 5.06 6.80 8.42

mean_mem_source 2839058656.18 2840896395.20 2840896395.20

mean_mem_target 2803926244.39 2804157940.00 2804157940.00

missed_requests 220.00 0.00 0.00

additional_disk_space_source 1.00 1.01 1.00

additional_disk_space_target 0.00 1.00 1.02

total_requests 323.20 379.20 392.20

Table A.13: Read Heavy 1000 Files 1 MB

[October 1, 2024 at 12:46]

62 appendix

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 2000000.00 2000000.00 2000000.00

migration_time 27.61 39.54 27.19

mean_cpu_source 6.52 11.05 11.50

mean_cpu_target 9.16 10.37 18.63

mean_cpu 7.85 10.71 15.06

netin_target 1005749534.80 1042218305.60 1446657983.20

netout_source 1122223585.20 1912318106.40 1594921505.00

mean_read 125.88 145.14 134.79

mean_sequential_write 5.05 11.64 11.88

mean_random_write 5.63 428.96 370.51

mean_new_write 5.33 8.09 5.62

mean_mem_source 2837006917.53 2836544987.80 2840944178.80

mean_mem_target 2804339372.53 2804263902.20 2804263902.20

missed_requests 266.00 0.00 0.00

additional_disk_space_source 1.00 1.03 1.00

additional_disk_space_target 0.00 1.00 1.02

total_requests 373.20 493.40 370.40

Table A.14: Read Heavy 500 Files 2 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 63

Migration Method cold layered transfer voyager

number_of_initial_files 2000.00 2000.00 2000.00

initial_file_size 500000.00 500000.00 500000.00

migration_time 28.86 29.99 33.14

mean_cpu_source 7.82 10.79 11.85

mean_cpu_target 11.12 13.08 15.91

mean_cpu 9.47 11.93 13.88

netin_target 1006943538.00 1015069253.20 1210221081.20

netout_source 1029353233.00 1148415362.80 1244689435.20

mean_read 14.15 14.55 34.83

mean_sequential_write 5.56 13.29 12.97

mean_random_write 7.81 152.52 508.82

mean_new_write 7.59 6.58 6.31

mean_mem_source 2833522937.30 2837570382.12 2840587113.40

mean_mem_target 2804816345.00 2804816345.00 2804816345.00

missed_requests 277.40 0.00 0.00

additional_disk_space_source 1.00 1.01 1.00

additional_disk_space_target 0.00 1.00 1.01

total_requests 385.80 398.60 430.00

Table A.15: Read Heavy 2000 Files 0.5 MB

[October 1, 2024 at 12:46]

64 appendix

a.1.6 Write Heavy

Migration Method cold layered transfer voyager

number_of_initial_files 1000.00 1000.00 1000.00

initial_file_size 1000000.00 1000000.00 1000000.00

migration_time 25.28 29.82 26.21

mean_cpu_source 8.33 9.92 10.12

mean_cpu_target 11.27 12.54 14.38

mean_cpu 9.80 11.23 12.25

netin_target 1005902488.40 1032434699.20 1064000269.60

netout_source 1011897761.40 1062595415.40 1068983526.00

mean_read 18.78 19.94 37.61

mean_sequential_write 5.72 7.54 7.48

mean_random_write 6.87 184.68 243.92

mean_new_write 12.27 7.76 6.02

mean_mem_source 2840569384.48 2841991825.60 2841991825.60

mean_mem_target 2805997588.46 2806055268.50 2805728396.20

missed_requests 243.20 0.00 0.00

additional_disk_space_source 1.00 1.03 1.00

additional_disk_space_target 0.00 1.00 1.02

total_requests 350.40 397.00 360.80

Table A.16: Write Heavy 1000 Files 1 MB

[October 1, 2024 at 12:46]

A.1 experiment measurements 65

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 2000000.00 2000000.00 2000000.00

migration_time 24.33 31.36 24.98

mean_cpu_source 8.20 9.45 10.01

mean_cpu_target 11.53 11.94 14.60

mean_cpu 9.87 10.70 12.30

netin_target 1005485071.80 1064148135.00 1092640727.60

netout_source 1018045953.20 1152858576.40 1106973398.00

mean_read 106.09 123.94 115.49

mean_sequential_write 6.12 10.41 6.97

mean_random_write 5.88 222.99 295.65

mean_new_write 5.57 8.36 7.26

mean_mem_source 2837739021.81 2841162537.99 2841591384.80

mean_mem_target 2804536009.00 2804483465.15 2804302480.80

missed_requests 237.40 0.00 0.00

additional_disk_space_source 1.00 1.06 1.00

additional_disk_space_target 0.00 1.01 1.04

total_requests 340.60 412.20 348.60

Table A.17: Write Heavy 500 Files 2 MB

[October 1, 2024 at 12:46]

66 appendix

Migration Method cold layered transfer voyager

number_of_initial_files 500.00 500.00 500.00

initial_file_size 500000.00 500000.00 500000.00

migration_time 12.66 13.18 9.66

mean_cpu_source 4.82 5.83 6.33

mean_cpu_target 7.05 8.08 9.47

mean_cpu 5.93 6.96 7.90

netin_target 251778528.60 256737670.60 259813905.20

netout_source 254165627.60 265188748.80 262943513.00

mean_read 21.96 13.65 18.93

mean_sequential_write 5.71 8.17 6.32

mean_random_write 6.54 184.71 54.02

mean_new_write 6.49 6.05 6.54

mean_mem_source 2840409533.96 2838443479.20 2840271384.53

mean_mem_target 2803368368.00 2803368368.00 2803368368.00

missed_requests 120.40 0.00 0.00

additional_disk_space_source 1.00 1.02 1.00

additional_disk_space_target 0.00 1.00 1.01

total_requests 224.40 230.40 195.20

Table A.18: Write Heavy 2000 Files 0.5 MB

[October 1, 2024 at 12:46]

B I B L I O G R A P H Y

[1] AUFS. url: https://aufs.sourceforge.net/.

[2] Thad Benjaponpitak, Meatasit Karakate, and Kunwadee Sri-
panidkulchai. “Enabling Live Migration of Containerized Ap-
plications Across Clouds.” In: Proceedings - IEEE INFOCOM
2020-July (July 2020), pp. 2529–2538. issn: 0743166X. doi: 10.
1109/INFOCOM41043.2020.9155403.

[3] Marco Iorio, Fulvio Risso, Alex Palesandro, Leonardo Camiciotti,
and Antonio Manzalini. “Computing Without Borders: The Way
Towards Liquid Computing.” In: IEEE Transactions on Cloud
Computing 11.3 (2022), pp. 2820 –2838. issn: 2168-7161. doi:
10.1109/TCC.2022.3229163. url: https://doi.org/10.1109/
TCC.2022.3229163..

[4] Paulo Souza Junior, Daniele Miorandi, and Guillaume Pierre.
“Stateful Container Migration in Geo-Distributed Environments.”
In: Proceedings of the International Conference on Cloud Computing
Technology and Science, CloudCom 2020-December (Dec. 2020),
pp. 49–56. issn: 23302186. doi: 10.1109/CLOUDCOM49646.2020.
00005.

[5] Paulo Souza Junior, Daniele Miorandi, and Guillaume Pierre.
“Good Shepherds Care for Their Cattle: Seamless Pod Migra-
tion in Geo-Distributed Kubernetes.” In: Proceedings - 6th IEEE
International Conference on Fog and Edge Computing, ICFEC 2022
(2022), pp. 26–33. doi: 10.1109/ICFEC54809.2022.00011.

[6] Kiranpreet Kaur, Fabrice Guillemin, and Francoise Sailhan. “Con-
tainer placement and migration strategies for cloud, fog, and
edge data centers: A survey.” In: International Journal of Network
Management 32.6 (Nov. 2022). issn: 10991190. doi: 10.1002/NEM.
2212.

[7] Kiranpreet Kaur, Fabrice Guillemin, and Francoise Sailhan. “Live
migration of containerized microservices between remote Kuber-
netes Clusters.” In: (2023), pp. 114–119. doi: 10.1109/INFOCOMWKSHPS57453.
2023 . 10225858{\ " {i } }. url: https : / / hal . science / hal -

03466765v2.

[8] Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk,
Stefan Tai, and Marcel Kunze. “Cloud Federation.” In: The
Second International Conference on Cloud Computing. 2011. isbn:
9781612081533.

67

[October 1, 2024 at 12:46]

https://aufs.sourceforge.net/
https://doi.org/10.1109/INFOCOM41043.2020.9155403
https://doi.org/10.1109/INFOCOM41043.2020.9155403
https://doi.org/10.1109/TCC.2022.3229163
https://doi.org/10.1109/TCC.2022.3229163.
https://doi.org/10.1109/TCC.2022.3229163.
https://doi.org/10.1109/CLOUDCOM49646.2020.00005
https://doi.org/10.1109/CLOUDCOM49646.2020.00005
https://doi.org/10.1109/ICFEC54809.2022.00011
https://doi.org/10.1002/NEM.2212
https://doi.org/10.1002/NEM.2212
https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225858{\"{i}}
https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225858{\"{i}}
https://hal.science/hal-03466765v2
https://hal.science/hal-03466765v2

68 bibliography

[9] Demetrio Laganà, Carlo Mastroianni, Michela Meo, and Daniela
Renga. “Reducing the Operational Cost of Cloud Data Centers
through Renewable Energy.” In: (2018). doi: 10.3390/a11100145.
url: www.mdpi.com/journal/algorithms.

[10] Craig A Lee, Robert B Bohn, and Martial Michel. “The NIST
Cloud Federation Reference Architecture.” In: (2020). doi: 10.
6028/NIST.SP.500-332. url: https://doi.org/10.6028/NIST.
SP.500-332.

[11] Liqo. url: https://liqo.io/.

[12] Lele Ma, Shanhe Yi, Nancy Carter, and Qun Li. “Efficient Live
Migration of Edge Services Leveraging Container Layered Stor-
age.” In: IEEE Transactions on Mobile Computing 18.9 (Sept. 2019),
pp. 2020–2033. issn: 15580660. doi: 10.1109/TMC.2018.2871842.

[13] Matplotlib — Visualization with Python. url: https://matplotlib.
org/.

[14] Shripad Nadgowda, Sahil Suneja, Nilton Bila, and Canturk Isci.
“Voyager: Complete Container State Migration.” In: (2017). doi:
10.1109/ICDCS.2017.91.

[15] Moustafa Najm and Venkatesh Tamarapalli. “Towards cost-
aware VM migration to maximize the profit in federated clouds.”
In: Future Generation Computer Systems 134 (2022), pp. 53–65. doi:
10.1016/j.future.2022.03.020. url: https://doi.org/10.
1016/j.future.2022.03.020.

[16] Overlay Filesystem — The Linux Kernel documentation. url: https:
//docs.kernel.org/filesystems/overlayfs.html.

[17] P.Haul - CRIU. url: https://criu.org/P.Haul#Destination.

[18] Paramiko documentation. url: https://www.paramiko.org/.

[19] Project Jupyter Documentation — Jupyter Documentation 4.1.1 alpha
documentation. url: https://docs.jupyter.org/en/latest/.

[20] Yenchia Yu, Antonio Calagna, Paolo Giaccone, and Carla Fabi-
ana Chiasserini. “TCP Connection Management for Stateful Con-
tainer Migration at the Network Edge.” In: Mediterranean Com-
munication and Computer Networking Conference (2023), pp. 151–
157. doi: 10.1109/MEDCOMNET58619.2023.10168849.

[21] Fei Zhang, Guangming Liu, Xiaoming Fu, and Ramin Yahyapour.
“A Survey on Virtual Machine Migration: Challenges, Tech-
niques, and Open Issues.” In: IEEE Communications Surveys and
Tutorials 20.2 (Apr. 2018), pp. 1206–1243. issn: 1553877X. doi:
10.1109/COMST.2018.2794881.

[22] lsof Documentation. url: https://manpages.ubuntu.com/manpages/
bionic/en/man8/lsof.8.html.

[October 1, 2024 at 12:46]

https://doi.org/10.3390/a11100145
www.mdpi.com/journal/algorithms
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://doi.org/10.6028/NIST.SP.500-332
https://liqo.io/
https://doi.org/10.1109/TMC.2018.2871842
https://matplotlib.org/
https://matplotlib.org/
https://doi.org/10.1109/ICDCS.2017.91
https://doi.org/10.1016/j.future.2022.03.020
https://doi.org/10.1016/j.future.2022.03.020
https://doi.org/10.1016/j.future.2022.03.020
https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html
https://criu.org/P.Haul#Destination
https://www.paramiko.org/
https://docs.jupyter.org/en/latest/
https://doi.org/10.1109/MEDCOMNET58619.2023.10168849
https://doi.org/10.1109/COMST.2018.2794881
https://manpages.ubuntu.com/manpages/bionic/en/man8/lsof.8.html
https://manpages.ubuntu.com/manpages/bionic/en/man8/lsof.8.html

bibliography 69

[23] mount(8) — mount — Debian testing — Debian Manpages. url:
https://manpages.debian.org/testing/mount/mount.8.en.

html.

[24] pandas - Python Data Analysis Library. url: https://pandas.
pydata.org/.

[October 1, 2024 at 12:46]

https://manpages.debian.org/testing/mount/mount.8.en.html
https://manpages.debian.org/testing/mount/mount.8.en.html
https://pandas.pydata.org/
https://pandas.pydata.org/

[October 1, 2024 at 12:46]

D E C L A R AT I O N

Put your declaration here.

Groningen, August 2024

Patrick Lindner

[October 1, 2024 at 12:46]

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	2 Related Work
	2.1 Stateless Container Migration
	2.2 Stateful Live Migration

	3 The Layered Transfer Migration
	3.1 Infrastructure
	3.2 Migration Stages

	4 Implementation and Technical Details
	4.1 Voyager Migration
	4.2 Cold Migration
	4.3 Technological Stack
	4.4 Layered Volume
	4.5 Checking for open Files
	4.6 Merging Layers
	4.7 Lazy File Transfer
	4.8 Requirements for the Machines
	4.9 Improvements

	5 Evaluation Design
	5.1 File Based Dummy Application
	5.2 Machine Setup
	5.3 Request Latency
	5.4 Machine Statistics
	5.5 Consistency
	5.6 Experiments and Parameters
	5.7 Data Collection

	6 Evaluation Results
	6.1 Plot Clarification
	6.2 Migration time
	6.3 Request Latency
	6.3.1 Read Latency
	6.3.2 Random Write Latency
	6.3.3 New Write and Sequential Write Latency

	6.4 CPU Utilization
	6.5 Memory Usage
	6.6 Network Traffic
	6.7 Consumed Disk Space
	6.8 Downtime
	6.9 Real World Application Profiles

	7 Discussion
	8 Conclusion
	8.1 Technical Limitations
	8.2 Limitations of the Evaluation
	8.3 Outlook

	A Appendix
	A.1 Experiment Measurements
	A.1.1 Only Read
	A.1.2 Only Sequential
	A.1.3 Only Random
	A.1.4 Only New
	A.1.5 Read Heavy
	A.1.6 Write Heavy

	 Bibliography
	Declaration

