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Abstract

Let D ≡ 1 mod 4 be a prime. Then the Ankeny-Artin-Chowla conjecture claims that for the smallest a, b ∈ N that

satisfy a2 −Db2 = ±4, we have that D ∤ b. Inspired by a similar notion in the case of number fields, we describe fake

real quadratic orders in function fields and use these to formulate an analogue of the Ankeny-Artin-Chowla conjecture.

We find that this analogue is false in general. We provide horizontal asymptotics when the constant field is finite,

which are largely inspired by unpublished work of Florian Hess, Renate Scheidler and Michael John Jacobson. We also

find conditions under which the analogue holds and we observe what happens when changing the fake real quadratic

order in natural ways.
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1 Introduction

Let D > 0 be a prime number that is congruent to 1 modulo 4 and let K = Q(
√
D). Then the ring of integers OK

can be calculated to be Z[ 1+
√
D

2 ]. According to Dirichlet’s unit theorem, the unit group O×
K then has rank 1, meaning

O×
K = Tor(O×

K)× ϵZ for some ϵ ∈ O×
K \ Tor(O×

K). Write ϵ = a+b
√
D

2 for some a, b ∈ Z such that a ≡ b mod 2.

In 1952, Ankeny, Artin and Chowla conjectured that D ∤ b. This hypothesis is refered to as the Ankeny-Artin-

Chowla conjecture. Up to this day, a counterexample has not been found and van der Poorten, te Riele and Williams

verified the conjecture for all D < 2 · 1011 that are congruent to 1 modulo 4.

Consequently, researchers have started analyzing various analogous criteria to the Ankeny-Artin-Chowla conjec-

ture. Firstly, Louis J. Mordell wondered if this would be the case if D is congruent to 3 modulo 4. (In which case

OK = Z[
√
D].) In 2024, Andreas Reinhart answered this by finding that D = 39028039587479 gives a counterexample.

Secondly, Henri Cohen suggested that by considering the fundamental unit of a so called fake real quadratic or-

der, an analogy can be made, to which he found counterexamples. This fake real quadratic order is obtained by

extending a real quadratic order by the inverse of a prime ideal.

Thirdly, Jing Yu and Jiu-Kang Yu have shown that the natural function field analogue of the Ankeny-Artin-Chowla

conjecture holds. This analogue states that given a field k and a squarefree f ∈ k[x], assuming O×
K = k[x,

√
f ]× is not

torsion, its fundamental unit a+ b
√
f for a, b ∈ k[x] satisfies f ∤ b.

In this project we propose yet another analogy using fake real quadratic orders in a function field setting, which

combines the ideas of Henri Cohen and Jing Yu and Jiu-Kang Yu. Let k be perfect of characteristic ℓ ̸= 2. To every

squarefree f ∈ k[x] and irreducible p ∈ k[x], there corresponds a fake real quadratic order, for which we ask if the

fundamental unit a + b
√
f satisfies f ∤ b. We refer to this property as the f.f. fake Ankeny-Artin-Chowla property.

We find many counterexamples to this property, but also found a criterion under which it always holds. Next to

this, we calculate the proportion of counterexamples when fixing f and varying p. This proportion is related to the

Ray Class Group, which is discussed in Subsection 2.3. We furthermore compare related fake real quadratic orders,

constructed by extending the constant field or by reducing a quadratic order over Q to a quadratic order over Fℓ for

some appropriate prime ℓ.

In Section 2, we provide some preliminary material. After that, in Section 3, we discuss the construction that is

also used to make fake real quadratic orders. In Section 4, I discuss the original Ankeny-Artin-Chowla conjecture

and Mordell’s variant on it. Subsequently in Section 5, we go over the analogy by Henry Cohen. We study the (real)

function field analogue in Section 6. The main section is Section 7, which is about the analogous fake function field

situation we are proposing. In Section 8, we give a conclusion and summary, additionally we pose some open questions.
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2 Preliminaries

In this thesis, we assume that the reader is familiar with the basics of commutative algebra, algebraic geometry and

algebraic number theory. Recommended material for this is found in [3], [7], [24]. Next to this, there is some additional

preliminary theory that I will give in this section. We start off with a few definitions. Then in Subsection 2.1, we give

the basics of hyperelliptic curves and (their) Jacobians. In Subsection 2.2, we describe the group (R[
√
D]/D)× for a

Unique Factorisation Domain R and a squarefree element D ∈ R. Lastly in Subsection 2.3, we go over the theory on

Ray Class Groups and Class Field Theory.

Definition 2.0.1. For any commutative ring A with 1 and ideal I ≤ A of finite index, we define N(I) := NA(I) :=

#(A/I).

Definition 2.0.2. For any finite extension of fields L/K and any α ∈ L, we define N(α) := NL/K(α) to be the

determinant of the K-linear map L → L given as sending any β ∈ L to αβ.

The above definitions have been taken from [24, pages 41-42].

Definition 2.0.3. For a field k, we write k for the algebraic closure of k.

Proposition 2.0.4. Let k be a field of characteristic ℓ. The following are equivalent.

1. Every irreducible polynomial over k has no multiple roots in k.

2. Every irreducible polynomial over k has a non-zero formal derivative.

3. Every irreducible polynomial over k is separable.

4. Every finite extension of k is separable.

5. Every algebraic extension of k is separable.

6. Either ℓ = 0 or every element of k is an ℓ-th power

7. Either ℓ = 0 or the Frobenius map x → xℓ is an automorphism of k.

8. Any separable closure of k is isomorphic to any algebraic closure of k.

We call k perfect if these statements hold.

Examples of perfect fields are fields of characteristic 0, algebraically closed fields, finite fields and algebraic exten-

sions of perfect fields. An example of an imperfect field is k(x), where k is a field of characteristic ℓ > 0 and x is

transcendental over k. This is because x is not an ℓ-th power in k(x). See [4, page 10].

Definition 2.0.5. Let G be a finite abelian group and let ℓ be a prime number. We define the ℓ-rank of G to be the

dimension of G/ℓG viewed as a Fℓ-vector space.
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Note that if G is a finite abelian group, we can find an isomorphism G →
∏n

i=1(Z/p
ri
i Z) for some p1, . . . , pn ∈ N≥0

and r1, . . . , rn ∈ N≥0, where the pi are primes. Then we see that G/ℓG ∼= (Z/ℓZ)#{i≤n:pi=ℓ} the ℓ-rank of G is given as

#{i ≤ n : pi = ℓ}. From here, it is not too hard to see that the ℓ-rank is the maximal number of linearly independent

elements of G of order ℓ, where we view G as a Z-module. See [20].

2.1 Hyperelliptic curves and Jacobians

The main reference in this subsection is given in [25].

Definition 2.1.1 (Weighted projective plane). Let k be a field. For (d1, d2, d3) ∈ Z3, we define P2
(d1,d2,d3)

to be the

geometric object such that P2
(d1,d2,d3)

(k) := (k3 \ {0})/ ∼, where (χ, η, ζ) ∼ (χ′, η′, ζ ′) if ∃λ ∈ k s.t. (χ′, η′, ζ ′) =

(λd1χ′, λd2η′, λd3ζ ′). We denote (χ : η : ζ) for the equivalence class of (χ, η, ζ) ∈ k3 \ {0}. The coordinate ring of

P2
(d1,d2,d3)

is k[x, y, z] with grading such that x has degree d1, y has degree d2 and z has degree d3. In this way, it

turns out that we can view P2
(d1,d2,d3)

as a projective variety in the usual sense. We also denote P2
g := P2

(1,g+1,1).

Definition 2.1.2. Let g ∈ N≥0. Notice that we can inject A2(k) into P2
g(k) in at least two ways: (χ, η) → (χ : η : 1)

and (χ, η) → (1 : χ : η). We will call the images of these two injections the standard affine patches of P2
g. The union

of the images of these two injections is P2
g(k) \ {(0 : 1 : 0)}.

For g > 0, the weighted projective plane P2
g is smooth everywhere except at (0 : 1 : 0), so every smooth point lies

on one of the standard affine patches.

Definition 2.1.3 (Hyperelliptic curve). Let g ∈ N. Let k be a field with characteristic unequal to 2. A hyperelliptic

curve of genus g over k is the subvariety of P2
g defined by an equation of the form y2 = F (x, z) where F ∈ k[x, z] is

homogeneous of degree 2g + 2 and squarefree in k[x, z]. We call the affine curves y2 = F (x, 1) and y2 = F (1, z) its

standard affine patches.

The term hyperelliptic curve often excludes elliptic curves and genus 0 curves in literature, however for our purposes,

we make a different convention. If g > 0, note that that (0 : 1 : 0) is not a point on the curve and so since F is

squarefree in k[x, z], we see this implies that hyperelliptic curves are smooth. For g = 0, the point (0 : 1 : 0) is not even

singular in P2
g = P2, so also those hyperelliptic curves are smooth. Furthermore, because F is squarefree in k[x, z], we

have that hyperelliptic curves are geometrically irreducible.

Definition 2.1.4. An algebraic group G over a field k is a variety such that G(k) is a group, the group law extends

to a morpism G×G → G and inversion extends to a morphism G → G.

Definition 2.1.5. An abelian variety is an algebraic group which is projective.

Elliptic curves are the most famous examples of abelian varieties. Unfortunately for g > 1, an hyperelliptic curve

is no longer an abelian variety. However, we can still consider a related abelian variety called the Jacobian.

Theorem 2.1.6 (Jacobian). For any smooth projective geometrically irreducible curve C of genus g over a field k,

there exists an abelian variety J over k of dimension g, unique up to isomorphism over k s.t. J(L) ∼= Pic 0
C(L) for all
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fields k ⊆ L ⊆ k. We call J the Jacobian of C. Here Pic 0
C(L) is the subgroup of the divisor class group consisting of

the elements with degree 0.

Proof. A sketch of the proof can be found in [12, pages 136-138].

The special thing about hyperelliptic curves where F (x, 1) is of odd degree is that there is actually an algorithm

for computing within the Jacobian, which I skip over for now. It can be found in [5, pages 95-101].

Corollary 2.1.7. For C as in Theorem 2.1.6 over a finite field k, the Picard group Pic 0
C(k) is finite.

Definition 2.1.8. Let ℓ be a prime and let C : y2 = F (x, z) be a hyperelliptic curve over Qℓ. We can without loss of

generality assume F ∈ Zℓ[x, z]. Then we define a new curve C̃ : y2 = F (x, z) over Fℓ (subvariety of P2
Fℓ,g

), we call this

the reduction of C modulo ℓ.

If C is defined over Q, then we just copy this terminology by viewing it as a curve over Qℓ. We call ℓ a prime

of good reduction if F if C is smooth (which is equivalent to F being squarefree for ℓ ̸= 2) and a prime of bad

reduction otherwise.

Assume that C has some k-rational point P0 and let i : C → J be the function that sends any P to [P − P0].

It extends to a morphism of varieties, which is injective if g > 0. Also for C over Qp and a prime ℓ, there is a map

C(Qℓ) → C̃(Fℓ). Note that any element of C(Qℓ) can be written as (χ : η : ζ) with χ, η, ζ ∈ Zℓ where ℓ does not

divide all χ, η, ζ. Then this map sends this to (χ : η : ζ). One can check that this is well-defined. This map can be

restricted to a map C(Q) → C̃(Fℓ).

Lemma 2.1.9. Let C be a hyperelliptic curve over Q. Then there is a commutative square

C(Q) J(Q)

C̃(Fℓ) J̃(Fℓ).

for any prime ℓ of good reduction. Here the map J(Q) → J̃(Fℓ) is induced by C(Q) → C̃(Fℓ), through divisors. The

same is true when replacing each Q by Qℓ.

There is also a generalization, extending Q to a number field k. Let Ok be its ring of integers and let q be a

prime ideal of Ok. Let C̃ be the curve obtained by reducing equations modulo q. Then there is a reduction map

C(k) → C̃(OK/q) that sends a (χ : η : ζ) with χ, η, ζ ∈ Ok, not all in q, to (χ : η : ζ). Again, we leave checking it is

well-defined as an exercise to the reader.

Theorem 2.1.10. Let q be a prime ideal of Ok such that C̃ is smooth. Then there is a natural injective group

homomorphism J(k)tors → J̃(Ok/q) induced by the map C(k) → C̃(Ok/q). Here J(k)tors is the torsion subgroup of

J(k).
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Proof. The proof can be found in [12, Theorem C.1.4 and Theorem C.2.6].

Corollary 2.1.11. Let ℓ be a prime of good reduction. Then there is a natural injection J(Q)tors → J̃(Fℓ). The same

holds when replacing Qℓ by Q.

Proof. Apply Theorem 2.1.10 to k = Q.

2.2 Describing the residue unit group (R[
√
D]/D)×

Let R be a Unique Factorisation Domain and let D ∈ R be squarefree; meaning the factorisation of D has no multiple

factors. We wish to describe the residue unit group (R[
√
D]/D)×.

Lemma 2.2.1. There is an injective group homomorphism R/D → (R[
√
D]/D)×, given by sending r ∈ R/D to

1 + r
√
D. As a consequence, there is a subgroup A ⊆ (R[

√
D]/D)× that is isomorphic to the additive group of R/D.

Proof. We construct a group homomorphism R → (R[
√
D]/D)× by sending r ∈ R to 1 + r

√
D. This is a group

homomorphism because

(1 + r1
√
D)(1 + r2

√
D) = 1 + (r1 + r2)

√
D + r1r2D = 1 + (r1 + r2)

√
D

for any r1, r2 ∈ D. Now this group homomorphism clearly has kernel D · R, so an injection R/D → (R[
√
D]/D)× is

induced.

There is also the natural ring homomorphism R → R[
√
D]/D, which has kernelD·R. Therefore, there is an injective

ring morphism R/D → R[
√
D]/D. So it also induces the injective group homomorphism (R/D)× → (R[

√
D]/D)×.

Let B denote its image. We notice that B ∼= (R/D)× ∼=
∏

i(R/Di)
× where D =

∏
i Di is the decomposition of D into

irreducibles.

Proposition 2.2.2. We have (R[
√
D]/D)× = A×B ∼= (R/D)× (R/D)×.

Proof. It is clear that A ∩ B = (1), since it consists of all elements a + b
√
D such that a = 1 and b = 0. Let

r + s
√
D ∈ (R[

√
D]/D)× be arbitrary. Then (r + s

√
D)(r − s

√
D) = r2. This shows r ∈ (R/D)×. So we can write

r + s
√
D = r(1 + sr−1

√
D) and so r + s

√
D ∈ A×B.

Example 2.2.3. Let R = Z. Then (Z[
√
D]/D)× ∼= (Z/DZ)×(Z/DZ)× for D ∈ Z squarefree, according to Proposition

2.2.2.

We can also note the following:

Proposition 2.2.4. Let R[
√
D] ⊆ S ⊆ Frac(R[

√
D]) be an intermediate ring satisfying S ∩ 1

DR[
√
D] = R[

√
D]. Then

S/D ∼= R[
√
D]/D as rings. Therefore, their unit groups are isomorphic as well.

Proof. It suffices to show that the map R[
√
D] → S → S/D has kernel D · R[

√
D]. The kernel can be described as

R[
√
D] ∩D · S. Then this fact follows directly by our assumption.
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Remark 2.2.5. This subsection is a generalization of ideas used in [11], in which the relevant example is S = OK where

K = Q(
√
D) is an imaginary quadratic number field with D < −2.

2.3 Ray Class Groups and Class Field Theory

The main source of this subsection is [10].

Let K be a global field, meaning it is either a finite extension of Q or of Fq(x), where q is a prime power and x

is transcendental over Fq.

Definition 2.3.1. We call a (formal) finite product of places m =
∏

p p
vp(m) a modulus if vp(p) ≥ 0 for all places p

and furthermore

1. If K is a number field, then vp(m) ≤ 1 for all real infinite places p and vp(m) = 0 for all complex infinite places

p.

2. If K is a function field, then vp(m) = 0 for all infinite places p.

Definition 2.3.2. Let a ∈ K×, n ≥ 0 and p a place of K. We say a ≡∗ 1 mod pn if

1. vp(a− 1) ≥ n for p a finite place.

2. σ(a) ≥ 0 for p a real infinite place with corresponding real embedding σ : K → R, if K is a number field.

Definition 2.3.3. Let a ∈ K× and m a modulus. We say a ≡∗ 1 mod m if a ≡∗ 1 mod pvp(m) for all places p

dividing p.

If K is a function field with constant field k, we let OK be the integral closure of k[t] in K. In the number field

case, we just let OK be the ring of integers as usual.

Proposition 2.3.4. Let m0 be the finite part of m. Then

Im := {I fractional ideal of K : vp(I) = 0 (∀p|m0)}

is a subgroup of the group of fractional ideals and

Pm := {α · OK : α ∈ K×, α ≡∗ 1 mod m}

is a subgroup of Im.

Proof. For any I, J ∈ Im, we have vp(IJ
−1) = vp(I)− vp(J) = 0− 0 = 0 for all p|m0. Hence IJ−1 ∈ Im. This shows

Im is a subgroup of the group of fractional ideals.
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Let α, β ∈ K× satisfy α, β ≡∗ 1 mod m. Then for any finite place p we have

vp(αβ
−1 − 1) = vp((α− 1)(β−1 + 1)) + (β−1 − 1) + (1− α))

≥ min{vp(α− 1) + vp(β
−1 + 1),vp(β

−1 − 1), vp(1− α)}

≥ min{vp(m), vp(m), vp(m)} = vp(m).

Here, we used that vp(β
−1 + 1) ≥ min{vp(β−1 − 1), vp(2)} ≥ min{vp(m), 0} ≥ 0 if the characteristic of K is unequal

to 2 and vp(β
−1 + 1) = vp(β

−1 − 1) ≥ vp(m) ≥ 0 if this characteristic equals 2.

Also σ(αβ−1) = σ(α)σ(β)−1 ≥ 0 for real embeddings σ in case K is a number field, so we see that αβ−1 ≡∗ 1

mod m. This has shown that Pm is a subgroup of the group of fractional ideals.

Furthermore we need to show that vp(α · OK) = 0 for all p|m0. Well, we observe that α · OK , (α − 1) · OK are

coprime ideals, for their sum contains α − (α − 1) = 1. Therefore, p does not divide both ideals and by assumption,

it divides (α− 1) · OK at least vp(m) ≥ 1 times. This shows p does not divide α · OK .

Definition 2.3.5. We define

Cl0m(K) := Im/Pm.

For the above definition, note that the relevant subgroup is actually a subgroup. We have the following result:

Theorem 2.3.6. Let m be a modulus with trivial infinite part m∞. If K is a number field, then there is an exact

sequence

1 {±1} (OK/m)× Cl0m(K) Cl0(K) 1.

If K is a function field with constant field k, then there is an exact sequence

1 k× (OK/m)× Cl0m(K) Cl0(K) 1.

Proof. All maps are constructed in the natural way; but before we check exactness, we first check whether they are

well-defined. The map (OK/m)× → Cl0m(K) is constructed as sending α ∈ (OK/m)× to [α ·OK ]m. Suppose α, β ∈ OK

and assume that α = β ∈ (OK/m)×. It follows that αβ−1 ≡∗ 1 mod m, hence [α · OK ]m = [β · OK ]m.

The map Cl0m(K) → Cl0(K) is defined as sending [I]m to [I]. Let us show that this map is well-defined. Sup-

pose fractional ideals I, J satisfy [I]m = [J ]m. Then IJ−1 = a · OK for some a ≡∗ 1 mod m. In particular, IJ−1 is

principal, so [I] = [J ].

Now we will show that this sequence is exact. It is clear that {±1} → (OK/m)× or k× → (OK/m)× respectively is

injective. Surjectivity of Cl0m(K) → Cl0(K) comes from the fact that each ideal is equivalent to an ideal coprime to
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m, which is implied by the approximation theorem. (See also [24, page 27]) Also note that the sequence is exact at

Cl0m(K).

Let E|K be a finite abelian field extension and let p be a non-zero prime ideal of K. Then we claim there is a

unique σ ∈ Gal(E|K) that induces the Frobenius morphism OE/P → OE/P for all prime ideals P of OE above p.

This fact induces a mapping Spec(OK)\{0} → Gal(E|K). By unique factorisation of prime ideals in OK , this induces

a group homomorphism IK → Gal(E|K), where IK is the set of fractional ideals of K, hence also when restricting to

the ideals coprime to a modulus m.

Definition 2.3.7. We say m is a modulus of E|K if under the group homomorphism IK → Gal(E|K) described

above, all principal ideals coprime to m are mapped to the identity map.

In this case, there is an induced group homomorphism Cl0m(K) → Gal(E|K), which we call the Artin map. Fact:

the Artin map is always surjective by [10, Theorem 3.3].

Theorem 2.3.8. Let m be a modulus. Then for every subgroup H of Cl 0m(K) there exists a unique field E|K s.t. m

is a modulus of E|K and H is the kernel of the surjective Artin map Cl 0m(K) → Gal(E|K). We call E the ray class

field corresponding to m.

Theorem 2.3.9 (Chebatorev Density Theorem, [14]). Let X be a subset of Gal(E|K). The density of primes of OK

that correspond under the Artin map to an element of X is equal to #X
#Gal(E|K) .
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3 Extending Dedekind domains by inverses of prime ideals

In this section, we will study the ring obtained by extending a Dedekind domain by inverses of prime ideals. This

construction is essential for defining and understanding so called fake real quadratic orders.

3.1 Inverting a single prime ideal

Let A be a Dedekind domain with field of fractions K. Then recall that any non-zero fractional ideal can be inverted.

Definition 3.1.1. Let p be a non-zero prime ideal. We let A[p−1] :=
⋃∞

i=0 p
−i.

Lemma 3.1.2. The elements of A[p−1] are precisely the elements of K that have non-negative valuation at every

prime ideal except p.

Proof. Suppose x ∈ K has vq(x) ≥ 0 for all q ̸= p. Consider the ideal xA, let its prime factorisation be pvp(x)
∏

q q
vq(x).

Then we see that therefore xA ⊂ pvp(x) ⊆ A[p−1].

Corollary 3.1.3. The set A[p−1] is a subring of K.

Proof. If x, y ∈ K× have non-negative valuation at a prime ideal q ̸= p, then vq(xy) = vq(x) + vq(y) ≥ 0 and

vq(x± y) ≥ min{vq(x), vq(y)} ≥ 0. Furthermore, vq(1) = 0 ≥ 0.

If A is a discrete valuation ring, then A[p−1] = K, so let us from now on assume A is not a Discrete Valuation

Ring. In this subsection, we prove that A[p−1] is a Dedekind domain and we describe its unit group and ideal class

group.

Lemma 3.1.4. The map {integral ideals of A coprime to p} → {integral ideals of A[p−1]} given by a → aA[p−1] is

an order-preserving bijection.

Proof. It is clear that it is order-preserving, let me now show that it is bijective. Suppose a1A[p−1] = a2A[p−1]. Then

the set of elements of non-negative valuation at p is a1 = a2, showing injectivity. Now let b be an ideal of A[p−1].

Then we claim that b = (b∩A)A[p−1]. To see one inclusion, let x ∈ b be arbitrary. Then there is a k s.t. x ∈ p−k. So

xpk ⊆ p−kpk = A. Also, clearly xpk ⊆ b, because x ∈ b. So xpk ⊆ b ∩ A and hence x ∈ p−k(b ∩ A) ⊆ (b ∩ A)A[p−1].

The other inclusion is clear.

Since this is order preserving and A is Noetherian by being a Dedekind domain, this also implies that A[p−1] is

Noetherian.

Corollary 3.1.5. In particular, this shows that A[p−1] is Noetherian.

Lemma 3.1.6. For any integral ideal a of A coprime to p, we have A/a ∼= A[p−1]/aA[p−1]. In particular, the bijection

given in Lemma 3.1.4 sends prime ideals to prime ideals and maximal ideals to maximal ideals.
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Proof. Let φ be the composition A → A[p−1] → A[p−1]/aA[p−1]. First off, I wish to show that it is surjective. Let

x ∈ A[p−1] be arbitrary. Let k = vp(x). Because a is coprime to pk, there exist some a ∈ a and u ∈ pk s.t. a+ u = 1.

Hence ax+ ux = x and since ax ∈ aA[p−1], we have x = ux in A[p−1]/aA[p−1]. Note that vp(ux) = 0, so ux ∈ A.

Now note that ker(φ) = A ∩ aA[p−1], which by the bijection in Lemma 3.1.4 is equal to a. So this shows A/a ∼=
A[p−1]/aA[p−1].

Corollary 3.1.7. A[p−1] is a domain of Krull dimension 1.

Proof. Indeed every non-zero prime ideal is maximal, and since there are at least two non-zero prime ideals of A

(because otherwise A is a Discrete Valuation Ring), there is at least one non-zero prime ideal of A coprime to p, which

shows that A[p−1] has at least one non-zero prime ideal.

Theorem 3.1.8. A[p−1] is a Dedekind domain.

Proof. Let b be a non-zero proper ideal of A[p−1]. Then by the bijection, we can write b = aA[p−1] for a = b ∩ A.

Now since a is an ideal in the Dedekind domain A, we can write a prime decomposition q1 · · · qr. (The primes

are not necessarily distinct) Now the ideals qiA[p−1] are found to be prime ideals of A[p−1]. Then we observe that∏
i qiA[p−1] and aA[p−1] = (

∏
i qi)A[p−1] are equal because their intersection with A is both

∏
i qi = a. So

∏
i qiA[p−1]

is a factorisation into prime ideals of b.

Example 3.1.9. There are two main examples for which we wish to apply this construction, in which case we call

it a fake real quadratic order. The first example is where A = OK with K|Q a number field. Specifically we will

study K imaginary quadratic. The second example is where A = OK is the integral closure of k[x] inside a finite

extension K|k(x), which is a function field over k. Geometrically, this is OX where X is an affine patch of the smooth

geometrically irreducible curve corresponding to K.

Remark 3.1.10. A scheme-theoretic interpretation of this construction can be given as follows: Start with a smooth

curve with at least two points. In other words, we start with Spec(A) with A a Dedekind domain which is not a Discrete

Valuation Ring. Let [p] ∈ Spec(A) be a closed point. Then we note that the topological spaces Spec(A[p−1]) and

X := Spec(A) \ {[p]} are homeomorphic, using the order-preserving bijection in Lemma 3.1.4. Let X → Spec(A[p−1])

be given by a ring homomorphism A[p−1] → OX(X), which can be constructed through the family of injections

A[p−1] → A[ 1f ] for f ∈ p. This induces a morphism of schemes, which turns out to be an isomorphism and so we

discover that the open subscheme X ⊆ Spec(A) is an affine smooth curve. (We skip the details)

Now not only is A[p−1] a Dedekind domain, but we can use information about A to gain information about A[p−1].

To be precise, we can determine the group of units and the ideal class group.

Definition 3.1.11. We write o(p) for the order of the prime ideal p in Cl(A).

Theorem 3.1.12. If [p] is of finite order in Cl(A), then A[p−1]× = A× × ϵZ where ϵ ∈ A is such that ϵA = po(p) and

o(p) is the order of [p] in Cl(A). Otherwise A[p−1]× = A×.
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Proof. First assume [p] is a torsion element in the class group. Let γ ∈ A[p−1]× be arbitrary. Then for all non-zero

q ∈ Spec(A) distinct from p we have vq(γ), vq(1/γ) ≥ 0, showing vq(γ) = 0. This shows that γA = pk for some k ∈ Z.
By definition of o(p), this means o(p)|k. Then

γA = (po(p))k/o(p) = (ϵA)k/o(p) = ϵk/o(p)A.

So γ is of the form νϵk/o(p) with ν ∈ A×. This has shown that A[p−1]× ⊆ A× × ϵZ. The other inclusion is shown by

the fact that vq(ϵ) = vq(p
o(p)) = 0 for all q ∈ Spec(A) distinct from p.

If [p] is not torsion, then in our proof we have k = 0, showing γ ∈ A×.

Remark 3.1.13. Note that ϵ is unique up to multiplication by elements in A×.

Theorem 3.1.14. Cl(A[p−1]) ∼= Cl(A)/⟨[p]⟩.

Proof. The bijection in Lemma 3.1.4 can be used to induce a group homomorphism ϕ : Cl(A) → Cl(A[p−1]). (It is

easy to see that this is well-defined.) In other words [a] is sent to [aA[p−1]]. This new function is also surjective by

the map in Lemma 3.1.4 being surjective. Now suppose that [aA[p−1]] = [0] for some a. Without loss of generality,

assume it is integral. Then aA[p−1] = xA[p−1] for some x ∈ A[p−1]. Then aA[p−1] = (xpk)A[p−1] for all k ∈ Z. Take
k = −vp(x) and observe that xp−vp(x) is coprime to p, because its valuation equals 0. Therefore by the bijection in

Lemma 3.1.4, we see that a = xp−vp(x). So [a] = [p]−vp(x). This shows ker(ϕ) ⊆ ⟨[p]⟩. The other inclusion is clear, so

ker(ϕ) = ⟨[p]⟩. This proves the result.

Remark 3.1.15. The results in this subsection are a generalization of the case where A = OK for K an imaginary

quadratic number field, which has been done by Henri Cohen in [6] and worked out in more detail by Micheal Oh

in [19].

3.2 Inverting multiple prime ideals

Let the Dedekind domain A have at least n + 1 non-zero prime ideals, and let S = {p1, . . . , pn} be a finite set of

non-zero primes of Dedekind domain A. Then one can invert prime ideals one at a time, since at each step you start

off with a Dedekind domain and prime ideals not yet inverted are always sent to prime ideals. The ring one ends up

with is hence a Dedekind domain. Then the order in which one does this doesn’t matter.

Proposition 3.2.1. Let A0 := A and Ai+1 := Ai[(pi+1Ai)
−1] for all i = 0, . . . , n − 1. The ring An does not change

after reordering p1, . . . , pn. Denote A[p−1
1 , . . . , p−1

n ] = A[S−1] := An.

Proof. This ring is also equal to {a ∈ K× : vq(a) ≥ 0 (∀q ̸∈ S)} ∪ {0}.

We notice that A[S−1]×/A× ∼= Zm, where m is the number of primes in S of finite order in Cl(A). Also

Cl(A[S−1]) ∼= Cl(A)/⟨S⟩. Observe that therefore A[S−1] is a Principal Ideal Domain if and only if S generates

all of Cl(A).
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One could also ask if an infinite set of non-zero prime ideals could be inverted. Assume A has infinitely many

non-zero prime ideals. Let S be an infinite set of non-zero prime ideals (not all of them) and again define A[S−1] =

{a ∈ K× : vq(a) ≥ 0 (∀q ̸∈ S)} ∪ {0}. We can again see this is a subring of K, by looking at properties of valuations.

Proposition 3.2.2. Assume S is countably infinite. Then

A[S−1] =
⋃

T⊆S:T finite

A[T−1].

Proof. One inclusion is clear and for the other, you need the observation that each element of K× only has non-zero

valuation at finitely many primes.

Remark 3.2.3. In the case where A is the ring of integers of a number field, one can recognize A[S−1] as the ring of

S-integers. A nice resource is found in [18, page 71-72].
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4 Real quadratic orders in a number field setting

Let K|Q be a quadratic number field, then K = Q(
√
D) for some squarefree D ∈ Z. If D < 0, we call K imaginary

and if D > 0, we call K real.

Let K = Q(
√
D) be a real quadratic number field. Then by Dirichlet’s unit theorem, the rank of O×

K equals 1.

We shall be mostly interested in the case where D is prime.

4.1 D ≡ 1 mod 4

Let us for now assume D ≡ 1 mod 4, then OK = Z[ 1+
√
D

2 ]. We denote a+b
√
D for a fundamental unit with a, b ∈ 1

2Z.
In 1952, Nesmith Ankeny, Emil Artin and Sarvadaman Chowla conjectured the following:

Conjecture 4.1.1 (Ankeny, Artin, Chowla, [1]). If D ≡ 1 mod 4 is prime, then D ∤ b.

The motivation behind conjecturing this is that implies a certain class number formula holds in terms of the

fundamental unit, since they proved in 1962 in [2] the following:

Theorem 4.1.2. Let D ≡ 1 mod 4 be prime and let h be the class number of K. Then hb ≡ aBD−1
2

mod D, where

Bn is the n-th Bernoulli number.

And a year earlier, they showed that h < D in this context in [1], leading to:

Corollary 4.1.3. If the Ankeny-Artin-Chowla conjecture holds, then h is the unique representative of a
bBD−1

2
mod D

in {0, . . . , D − 1}.

What they were unaware of, is that Kiselev already proved these results in [13] in 1948. Also note that Theorem

4.1.2 implies that an equivalent condition for the Ankeny-Artin-Chowla conjecture in this case (D ≡ 1 mod 4 and

prime) is that BD−1
2

̸≡ 0 mod D.

The Ankeny-Artin-Chowla conjecture has been verified to hold for all such D < 2 · 1011 by van der Poorten, te

Riele and Williams in [26]. It seems therefore reasonable to believe that it holds. However, if one assumes that b

mod D behaves randomly, then the expected value for number of counterexamples for 5 ≤ D ≤ n is approximately

N(5, n) := 1
2 (log(log(n)) − log(log(5))). So we have N(5, 2 · 1011) ≈ 1.39. In this sense, it is not as special that a

counterexample hasn’t occured. Also, N(5, n) grows very slowly as n increases. For instance, to obtain an expected

value of 3, we need n > 8.05 · 10175, which means by the prime number theorem, we roughly need to check at least

1.98 · 10173 many prime numbers. See [26, page 1312].

4.2 D ≡ 3 mod 4

Now we shall assume D ≡ 3 mod 4, then OK = Z[
√
D]. Let a + b

√
D with a, b ∈ Z be the fundamental unit. Louis

Joel Mordell proved the following:
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Theorem 4.2.1 (Mordell, [17]). We have D ∤ b if and only if D ∤ E(D−1)/2, where En is the n-th Euler number.

Based on this, he proposed an analogue of the Ankeny-Artin-Chowla conjecture:

Conjecture 4.2.2 (Mordell). We have D ∤ b.

Letting go of the assumption that D is prime, small counterexamples were already found by Andreas Reinhart

in [21, Remark 5.5]. However very recently, he has actually found a counterexample for Mordell’s conjecture with

D = 39028039587479, which is prime [22].

Two analoguous rings have been analysed with a corresponding analogue to the Ankeny-Artin-Chowla conjecture

for a comparison, namely the fake real quadratics in number fields and the real quadratics in function fields. In this

thesis, I delve into another analogue situation, the fake real quadratics in function fields.
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5 Fake real quadratic orders in a number field setting

Let K = Q(
√
D) be an imaginary number field, with D < −2 squarefree. Let ω =

 1+
√
D

2 if D ≡ 1 mod 4
√
D if D ̸≡ 1 mod 4

, so that

OK = Z[ω]. Take any non-zero prime ideal p of OK , above a prime p.

Definition 5.0.1. For a non-zero prime ideal p of finite order o(p) in Cl(OK), we call OK [p−1] a fake real quadratic

order.

Note that O×
K is torsion by Dirichlet’s unit theorem. Therefore by Theorem 3.1.12, we have that OK [p−1]× ∼=

O×
K × ϵZ is the decomposition into the torsion and torsion-free part. Now one can ask if for ϵ = a+b

√
D

2 with a, b ∈ Z
we have that D|b. (We have a, b ∈ Z if D ̸≡ 1 mod 4)

Definition 5.0.2. We say the fake real quadratic order satisfies the n.f. fake Ankeny-Artin-Chowla property if D ̸ |b.

Remark 5.0.3. This definition involves a choice of ϵ and therefore it may depend on this choice whether the n.f. fake

Ankeny-Artin-Chowla property holds. In case |D| ≥ 5 however, we have O×
K = {±1} and hence the fundamental unit is

unique up to multiplication by ±1 by applying Remark 3.1.13. Hence in this case, the n.f. fake Ankeny-Artin-Chowla

property is independent of the choice of ϵ.

Recall from number theory that we call p inert if p · OK is a prime ideal and otherwise p · OK = pp (since K is

quadratic), we say p splits in OK . Here p denotes the image of p under the conjugation that sends
√
D to −

√
D.

Before we start, we first consider the case p|D. We observe that p|D splits, with p · OK = p2.

If D is prime, then p = D and so p = (
√
D), hence the fundamental unit is

√
D and o(p) = 1. Otherwise the

fundamental unit is p with o(p) = 2. (This is true no matter what D mod 4 is)

Assumption 5.0.4. From now on, we will assume p ∤ D.

In [6], Henri Cohen gives counterexamples to the n.f. fake Ankeny-Artin-Chowla property such as for p = 7 and

D = −3, where a fundamental unit can be given as −1+3
√
−3

2 . This example perhaps does not seem as satisfying, since

(−1+
√
−3

2 )( 1−
√
−3

2 ) = 2 +
√
−3 is an equally valid fundamental unit which satisfies the property. Therefore, Richard

Micheal Oh proposes in [19, page 37] another counterexample that does not come with such an issue, by looking at

|D| ≥ 5. That way, the only units in OK are ±1. Take p = 347 and D = −7, here the only fundamental units that

can be taken are ±(2 + 7
√
−7).

Hongyan Wang conjectured in [27, page 46] that fixing D, the proportion of counterexamples among those with

p ≤ N splitting goes to 1
|D| as N → ∞. Florian Hess, Renate Scheidler and Micheal John Jacobson proved this

conjecture in [11]. Applying Proposition 2.2.4 and Proposition 2.2.2 is a key element of the proof, which inspired the

proof of Theorem 7.4.5.

Now we will discuss some conditions I found under which the property does hold.
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Proposition 5.0.5. If p splits and p ∤ D, then 4N(a+b
√
D

2 ) = a2 −Db2 = 4c · po(p), for some c ∈ O×
K .

Proof. We can write the ideal (p)o(p) as po(p)po(p) = (a+b
√
D

2 )(a−b
√
D

2 ) = (N(a+b
√
D

2 )), so po(p) and N(a+b
√
D

2 ) are

equal up to multiplication in O×
K .

Corollary 5.0.6. If p splits and p ∤ D, then |D| < 4po(p) if D ≡ 1 mod 4 and |D| < po(p) if D ̸≡ 1 mod 4.

Proof. Since p splits, we have b ̸= 0, and so b2 ≥ 1. Because p ∤ D, we have a ̸= 0 and so a2 ≥ 1. Therefore,

4po(p) = |4cpo(p)| = |a2 −Db2| ≥ 1 + |D| > |D|.

In case D ̸≡ 1 mod 4, we can do even better. We then get OK = Z[
√
D] and so a, b are both even. Therefore,

a2, b2 ≥ 4 and so

4po(p) = |4cpo(p)| = |a2 −Db2| ≥ 4 + |4D| > 4|D|.

Proposition 5.0.7. If p ∤ D splits and |D| >


3
√
4 · po(p)/3 if D ≡ 1 mod 4

po(p)/3 if D ̸≡ 1 mod 4

, then the n.f. fake Ankeny-Artin-

Chowla property holds.

Proof. Taking the cube of both sides of the inequality, we get |D|3 > 4po(p) ≥ |Db2| if D ≡ 1 mod 4 and 4|D|3 >

4po(p) ≥ |Db2| elsewise. From these we can conclude that |D| > |b| ∈ Z if D ≡ 1 mod 4 and 2|D| > |b| otherwise. In
the first case, it is clear to see that the n.f. fake Ankeny-Artin-Chowla property holds. In the second case, observe

that b is even and so |D| > | b2 | shows that D does not divide b
2 and hence also not b.
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6 Real quadratic orders in a function field setting

The main goal of this subsection is to give a proof of a function field analogue of the Ankeny-Artin-Chowla conjecture,

found in [28].

Let k be a perfect field of characteristic ℓ ̸= 2 (some statements may also hold for more general k) and let K|k(x) be a
finite extension. We denote OK for the integral closure of k[x] in K, in analogy with a ring of integers in the number

field setting. Note that OK is a Dedekind domain by construction.

From now on, let’s look at the quadratic case, so K ∼= k(x)[y]/(y2 + h(x)y − f(x)) for some h, f ∈ k[x]. Now

because the characteristic doesn’t equal 2, we can complete the square and therefore without loss of generality we

have K ∼= k(x)[y]/(y2 − f(x)). Then OK = k[x,
√
f(x)]. We can also assume f squarefree. If f is constant, then

K is a constant extension, which we aren’t interested in, so let us assume f to be non-constant. Then K is the

function field of a hyperelliptic curve C/k which has an affine patch given by y2 = f(x). So picking an affine patch

given by y2 = f(x), we let K = k(x,
√
f(x)) and so OK = k[x,

√
f(x)]. We shall both use the language of the

function field K and of this corresponding hyperelliptic curve C. We call OK a maximal quadratic order, but we will

often just say quadratic order. The most important situation is k = Fq = Fℓr in this section, so that K becomes global.

In this function field setting, we shall also talk about a real and fake real quadratic order, and in both the real

and fake real quadratic case, there will be a fundamental unit ϵ = a+ b
√
f , where we will study the hypothesis f ∤ b.

In the real case, we will call this the f.f. Ankeny-Artin-Chowla property. In the fake real case, we will call this the

f.f. fake Ankeny-Artin-Chowla property. We treat the real case in this section and the fake real case in the next section.

We call OK real if deg(f) = 2g + 2, where g is the genus of the corresponding curve C. The name comes from

the following fact, which resembles the number field scenario:

Proposition 6.0.1. Let OK = k[x,
√
f(x)] be real with corresponding curve C. Let ∞+,∞− ∈ C(k) be the two points

at infinity. Then

O×
K =

k× × ϵZ if ∞+,∞− ∈ C(k) and [∞+ −∞−] ∈ J(k)tors

k× otherwise
,

for some ϵ ∈ O×
K \ k×.

Proof. First let us assume the conditions of the first case. Then div(ϵ) = m(∞+ −∞−) for some ϵ ∈ K, where m is

the order of [∞+ −∞−] in the divisor class group Clk(C). Here J is the Jacobian of C, recall its definition given in

Theorem 2.1.6. Since ϵ has no affine poles, it is in OK . This shows that ϵ ∈ O×
K , because its inverse also has no affine

poles, but at the same time it isn’t in k× since div(ϵ) ̸= 0. This shows that O×
K ⊇ k× × ϵZ.
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Now let η ∈ O×
K be arbitrary. Then it has no affine poles and neither does η−1, so it has neither affine poles

nor affine zeros. Hence div(η) = n+∞+ + n−∞− for some n+, n− ∈ Z. Since principal divisors are of degree 0, we

have n := n+ = −n−, so div(η) = n(∞+ −∞−). Hence m|n, since m is the order of [∞+ −∞−]. So div( η
ϵn/m ) = 0

and therefore η
ϵn/m ∈ k×, which shows η ∈ k× × ϵZ.

Now let us suppose ∞+,∞− ̸∈ C(k) or [∞+−∞−] is of infinite order in the divisor class group Clk(C). In both cases,

∞+ − ∞− is not a k-rational divisor of finite order in J(k). Let η ∈ O×
K , then it has neither affine poles nor affine

zeros, so because div(η) is of degree 0, it is a multiple of ∞+ −∞−. We assumed that ∞+ −∞− is not a k-rational

divisor of finite order, so this means div(η) = 0, hence η ∈ k×. Since k ⊆ OK , we have k× ⊆ O×
K .

Now look at k = Fq. We observe that J(Fq) is finite, which simplifies Proposition 6.0.1 a little. In case the leading

coefficient of f is square, the points at infinity are Fq-rational, so then O×
K = F×

q × ϵZ for some ϵ ∈ O×
K \ F×

q . If the

leading coefficient of f is non-square, then O×
K = F×

q .

Definition 6.0.2. Assume we are in the first case of Proposition 6.0.1 and denote ϵ = a+ b
√
f for a, b ∈ k[t]. We say

the f.f. Ankeny-Artin-Chowla property is satisfied if f ∤ b.

Note that this definition is independent of the choice of ϵ. The f.f. Ankeny-Artin-Chowla property has been proven

to always hold by Jing Yu and Jiu-Kang Yu. Before we give the proof, first we need to introduce the Mason-Stothers

Theorem, which is analogous to and precedes the abc-conjecture as posed in [16].

Theorem 6.0.3 (Mason-Stothers, 1984 [15]). Let a, b, c ∈ k[x] satisfy the following conditions:

1. a+ b = c

2. gcd(a, b, c) = 1

3. (a′, b′, c′) ̸= (0, 0, 0).

Then max{deg(a),deg(b),deg(c)} ≤ deg(rad(abc))− 1, where rad(abc) is the product of the distinct monic irreducible

factors of abc.

Theorem 6.0.4 (Yu-Yu, 1998 [28]). Let u = c + d
√
f ∈ O×

K be non-constant. Suppose u as a morphism C → A1
k is

seperable. (This is equivalent to k(u) being a seperable extension of k(x)) Then deg(gcd(f, d)) ≤ g.

Proof. Since u is a unit, we have that N(u) = c2 − fd2 ∈ k[x]× = k×. Let us write d = gcd(f, d)d̃ for some d̃ ∈ k[x].

Note that the separability assumption gives that u is not a ℓ-th power, hence c2,−fd2, N(u) are not all ℓ-th powers,

in case ℓ = 0. So we are allowed to apply the Mason-Stothers Theorem to c2,−fd2, N(u). Then we get

deg(d2f) ≤ deg(rad(N(u)c2fd2))− 1 = deg(rad(cfd̃))− 1 ≤ deg(c) + deg(f) + deg(d̃)− 1.

From this we see that

2 deg(d) + deg(gcd(f, d)) ≤ deg(c) + deg(d)− 1,
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hence

2 deg(gcd(f, d)) ≤ 2 deg(c)− 2 deg(d)− 2 = deg(f)− 2 = 2g.

This proves the result.

Remark 6.0.5. Jing Yu and Jiu-Kang Yu also gave a geometric proof involving algebraic differentials in [28]. Further-

more in the same paper, they proved something analogous for the case where the characteristic ℓ equals 2.

Corollary 6.0.6 (Yu-Yu, 1998 [28]). Assume that ∞+,∞− ∈ C(k) and [∞+ − ∞−] ∈ J(k)tors. Then the f.f.

Ankeny-Artin-Chowla property holds.

Proof. Let u in Theorem 6.0.4 be a fundamental unit ϵ. Then we notice that u is separable, otherwise k(u) ⊆ k(t,
√
f)ℓ,

hence u is an ℓ-th power; which contradicts ϵ being a fundamental unit. Therefore, deg(gcd(f, d)) ≤ g < 2g + 1 =

deg(f), so f ∤ gcd(f, d) and hence f ∤ d.
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7 Fake real quadratic orders in a function field setting

This is the main section of the thesis. Its goal is to study the behaviour of the property analogous to the Ankeny-

Artin-Chowla conjecture, using fake real quadratic orders in a function field setting. We start off with an introduction

in Subsection 7.1, explaining the analogy we are considering. In Subsection 7.2, we specifically assume that the genus

of curve C is 0, which allows for an equivalent condition to the f.f. fake Ankeny-Artin-Chowla property. Then in

Subsection 7.3, we give a few results that imply that the f.f. fake Ankeny-Artin-Chowla property holds, under certain

conditions. After that, Subsection 7.4 revolves around Theorem 7.4.5, which for the case the constant field is finite,

calculates the proportion of counterexamples when fixing the parameter f and varying parameter p. (This p is yet

to be introduced.) In Subsection 7.5, we show in Proposition 7.5.3 that in case the parameters behave nicely under

extending the constant field, doing so does not affect whether the Ankeny-Artin-Chowla conjecture holds. Next up,

Subsection 7.6’s main result is Theorem 7.6.5, which compares fake real quadratic orders over Q(x) to corresponding

reductions over Fℓ(x) for primes ℓ > 2. In Subsection 7.7, we generalize Subsection 7.6 by considering number fields

and their ring of integers modulo a prime ideal. In Subsection 7.8, we see that we can apply the ideas of Subsection

7.6 to say something about the fake n.f. scenario. Finally, in Subsection 7.9, we roughly sketch how to consider an

analogy for the case where the characteristic is 2.

7.1 Introduction

We call OK imaginary if f is of odd degree 2g + 1. Let a ∈ k× be the leading coefficient of f . Then we observe that

the affine curves y2 = f(x) and y2 = a2gf(xa ) are isomorphic and a2gf(xa ) is monic, so we can focus on f monic. Again

the name ”imaginary” comes from the number field setting, because of the following fact:

Proposition 7.1.1. If OK is imaginary, then O×
K = k×.

Proof. It is clear that k× ⊆ O×
K , so we must show these are the only units.

Function Field proof: Suppose a+ b
√
f ∈ O×

K . Then N(a+ b
√
f) = a2 − fb2 ∈ k×. This is impossible if a = 0, since

f has positive degree. Suppose b ̸= 0. Then a2, fb2 are respectively of even and odd degree, so their leading terms

don’t cancel out. This means that deg(a2 − fb2) ≥ deg(fb2) ≥ 1, which contradicts it being in k×. This shows b = 0,

so a2 ∈ k×, so a ∈ k×.

Geometric proof: Suppose a+b
√
f ∈ O×

K . Then it has neither affine zeros nor affine poles, so it can only have non-zero

valuation at the unique point at infinity. However div(a + b
√
f), being principal, has degree 0, so div(a + b

√
f) =

0 · ∞ = 0, which is equivalent to a+ b
√
f ∈ k×.

In this section, let OK be imaginary.

Definition 7.1.2. For a non-zero prime ideal p of finite order o(p) in Cl(OK), we call OK [p−1] a fake real quadratic

order.
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This name comes from the observation that we also have OK [p−1]× = k× × ϵZ, for ϵ ∈ OK such that ϵOK = po(p),

by Theorem 3.1.12 and in the case that k is finite, this means OK [p−1]× is of rank 1 and ϵ is a generator of it modulo

its torsion. We shall call this ϵ = a+ b
√
f the fundamental unit.

Note that if k is infinite, then OK [p−1]× has rank greater than 1. However even for infinite k, it makes sense to

call ϵ a fundamental unit. Namely, let’s view OK [p−1] as a ring extension of k[x], hence view OK [p−1]× as a group

extension of (k[x])× = k×. Then ϵ can be seen as a generator of OK [p−1]×/(k[x])× modulo its torsion. In the fake

real number field setting, this is also how we can view the fundamental unit; since there OK [p−1] is a ring extension

of Z and hence we view OK [p−1]× as a group extension of Z× = {±1}.

Next up, we find that there are two ways in which prime ideals of OK can occur.

Proposition 7.1.3. Let α ∈ k with minimal polynomial p ∈ k[x]. If (α, s(α)) is a k(α)-rational point on the curve C

with s ∈ k[x], then the prime factorisation of p · OK is given as (p, s −
√
f)(p, s +

√
f). If there is no k(α)-rational

point on the hyperelliptic curve of the form (α, y), then p · OK is prime already.

Proof. First we shall assume that a k(α)-rational point (α, s(α)) on the hyperelliptic curve exists. In order to prove

that (p, s−
√
f) and (p, s+

√
f) are prime, it suffices to show that they are the kernel of ring morphisms that map to

domains. Let us construct two ring morphisms k[x, y] → k[α] with kernel containing y2−f(x) in order to get two mor-

phisms k[x,
√
f(x)] → k[α]. These can be given as sending g ∈ k[x, y] to g(α,±s(α)). This has kernel (p(x), s(x)∓ y)

respectively which contains y2−f(x) ≡ (y−s(x))(y+s(x)) mod p. These morphisms k[x,
√
f(x)] → k[α] have kernel

(p, s±
√
f) respectively, which shows that this ideal in OK is prime because k[α] is a domain.

Now let me multiply these two ideals:

(p, s+
√
f)(p, s−

√
f) = (p2, ps, p

√
f, s2 − f).

Assuming p, f are coprime, this ideal is equal to (p) as it contains p2 and pf .

From now on, assume there is no k(α)-rational point (α, s(α)) on the hyperelliptic curve. Then we can recognize

p · OK as the kernel of k[x,
√

f(x)] → k[α, t]/(t2 − f(α)) induced by k[x, y] → k[α, t]/(t2 − f(α)) given as sending p

to p(α, t) mod (t2 − f(α)), which has a kernel generated by y2 − f(x). Since t2 − f(α) is irreducible over k[α] by

assumption, we have that k[α, t]/(t2 − f(α)) is a domain, this shows p · OK is a prime ideal.

Corollary 7.1.4. Let p be a non-zero prime ideal of OK , let p ∈ k[x] be the unique monic irreducible generator of

p ∩ k[x], let α ∈ k be a root of p. Then

• p = p · OK if and only if f(α) is non-square in k(α), if and only if there is no affine point in C(Fq(α)) with

x-coordinate α.

• Otherwise p = (p, s−
√
f) for some s ∈ k[x] such that (α, s(α)) ∈ C(k(α)).
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Definition 7.1.5. We say a prime ideal p of OK is inert in the first case of Corollary 7.1.4 and we say it is split in

the second case of Corollary 7.1.4.

All of this can be translated to the language of divisors. Namely, let P = (α, β) ∈ C(k) and let p be the minimal

polynomial of α ∈ k. Then if β ∈ k(α), we have that

div(p) + 2 deg(p)∞ =
( ∑

σ(P ):σ∈Gal(k/k)

σ(P )
)
+
( ∑

σ(P ):σ∈Gal(k/k)

σ(ι(P ))
)

is the sum of two k-rational prime divisors. Here, ι : C → C is the morphism such that a point (x0, y0) ∈ C(k) is sent

to (x0,−y0). If β ̸∈ k(α), then div(p) + 2 deg(p)∞ is a prime divisor itself. Additionally these are the only types of

k-rational prime divisors.

If p is inert, then o(p) = 1 and so the fundamental unit of A[p−1] is p. This is hence a less interesting case.

Assumption 7.1.6. From now on, we will focus on the case where p splits.

Let σ ∈ Gal(K|k(x)) be defined as σ(c+ d
√
f) := c− d

√
f for all c, d ∈ k(x). We also denote σ by a bar.

Lemma 7.1.7. The induced ideal p, which is the image of p under σ, is also above p. Moreover, we have OK [p−1] ∼=
OK [p−1], the isomorphism being σ.

Proof. We notice that p = (p, s+
√
f) if p = (p, s−

√
f) for some s ∈ k[x]. Therefore,

p−1 = (pp(p)−1)−1 = (p · OK)−1p

is generated by 1 as a k[x]-module and s+
√
f

p . Similarly p−1 is generated by 1 and s−
√
f

p as a k[x]-module. So

OK [p−1] = OK [
s+

√
f

p
]

and

OK [p−1] = OK [
s−

√
f

p
].

The geometric view of this proof is that σ corresponds to the automorphism ι : C → C, and that removing an

affine point P from C gives an affine patch isomorphic to the affine patch attained by removing ι(P ).

Corollary 7.1.8. For each squarefree f ∈ k[x] and irreducible p ∈ k[x], there is a unique fake real quadratic order

(up to isomorphism) corresponding to it.

Definition 7.1.9. We say that the f.f. fake Ankeny-Artin-Chowla property is satisfied if f ∤ b.
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Notice that due to Remark 3.1.13, this definition is independent of the choice of ϵ. What we will be interested in

from now on, is to study when and how often the f.f. fake Ankeny-Artin-Chowla property holds. Before we do that,

let’s first develop methods to actually compute the fundamental unit.

Proposition 7.1.10. Let D be the k-rational divisor of degree 0 corresponding to p. Then L(−o(p)D) is 1-dimensional

and equal to Spank(a+ b
√
f) where a+ b

√
f is a fundamental unit for OK [p−1].

Proof. Let ν ∈ OK be arbitrary. Then ν ∈ L(−o(p)D) if and only if div(ν)− o(p)D is effective and of degree 0. That

is if and only if div(ν)− o(p)D = 0, if and only if div(ν) = o(p)D. Translating this to ideal language, ν ∈ L(−o(p)D)

if and only if νOK = po(p), if and only if ν is a fundamental unit for OK [p−1]. Fundamental units are unique up to

multiplication by an element of O×
K = k×.

Since the algebraic software package Magma has an implemented algorithm for computing Riemann-Roch spaces

based off the work of Florian Hess in [8], this gives us a way to compute a fundamental unit.

7.2 A characterisation for genus 0

Let us first investigate the genus 0 case, as it turns out to be simpler. We are dealing then with OK = k[x,
√
x+ a] for

some a ∈ k or equivalently the curve y2 = x+a. Through a coordinate change, we can assume we are dealing with the

curve y2 = x or equivalently OK = k[x,
√
x] = k[

√
x] ∼= k[t]. The following proposition gives an easy way to find out

if the f.f. fake Ankeny-Artin-Chowla property holds, as well as a method to construct examples or counterexamplese.

Proposition 7.2.1. Let p ∈ k[x] be irreducible and splitting over k[
√
x]. Then we can factor p(t2) = c(t)·(−1)deg(p)c(−t)

in k[t]. Conversely, for every c ∈ k[t] irreducible and not even (meaning c(−t) ̸= c(t).), we can find p ∈ k[x] irreducible

and splitting over k[
√
x] such that p(t2) = c(t) · (−1)deg(p)c(−t) in k[t].

Furthermore, the f.f. fake Ankeny-Artin-Chowla property holds for p if and only if c′(0) ̸= 0.

Proof. The first statement is simply translating Proposition 7.1.3 and Corollary 7.1.4 to polynomials, since OK is a

Principal Ideal Domain. So c(
√
x) is the generator of one of the prime ideals above p and also hence the fundamental

unit. Let us write c =
∑deg(c)

i cit
i, then we can write c(

√
x) = (

∑
1≤2j≤deg(c) c2jx

j) + (
∑

1≤2l+1≤deg(c) c2l+1x
l)
√
x.

Then the f.f. fake Ankeny-Artin-Chowla property holds if and only if x doesn’t divide
∑

1≤2l+1≤deg(c) c2l+1x
l, if and

only if c′(0) = c1 ̸= 0.

Example 7.2.2. Let us take p = x − 1 ∈ k[x]. Then p(t2) = t2 − 1 = (t − 1)(t + 1). Thus we have c(t) = t − 1

and so c′(0) = 1. The corresponding fake real quadratic order is OK [ 1√
x−1

], which satisfies the Ankeny-Artin-Chowla

conjecture.

Example 7.2.3. Let’s now do the converse for k = F3 and take c such that c′(0) = 0 to construct a counterexample,

so let us take c(t) = t3+t2−1 ∈ F3[t]. Then p(t2) = (t3+t2−1)(t3−t2+1) = t6−t4−t2−1. So p(x) = x3−x2−x−1.

We have found that the fake real quadratic order corresponding to p(x) = x3 − x2 − x − 1 is OK [ 1
x
√
x+x−1

] and does

not satisfy the Ankeny-Artin-Chowla conjecture.
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Corollary 7.2.4. Let g = 0. For all finite fields k = Fq, there exist examples of p splitting such that the f.f. fake

Ankeny-Artin-Chowla property holds, and examples such that it doesn’t hold.

Proof. One can use c(t) = t to construct an example such that it holds. The corresponding fake real quadratic order

is OK [ 1√
x
] where p(x) = x.

Note that the function Fq → Fq given as χ → χ3−χ2 is not an injection (since χ = 0, 1 get mapped to the same), hence

also not a surjection. Therefore, there is some η ∈ Fq which is not in its image, let c(t) = t3 − t2 − η. By construction,

c has no roots and hence is irreducible because deg(c) ≤ 3. So we can use c(t) to construct a counterexample since

c′(0) = 0. The corresponding fake real quadratic order is OK [ 1
x
√
x−x−η

] with p(x) = x3 − (x+ η)2.

Corollary 7.2.5. Let g = 0. Then the f.f. fake Ankeny-Artin-Chowla property holds for p splitting such that

deg(p) ≤ 2.

Proof. First note deg(c) = deg(p) ≤ 2. Then the requirement that c is not even shows c requires a linear non-zero

term, hence c′(0) ̸= 0.

7.3 Positive results

In this subsection we give some results that provide sufficient conditions to the f.f. fake Ankeny-Artin-Chowla property.

First however, there is some simple scenario that we wish to get rid of.

Proposition 7.3.1. Let p|f . If f is irreducible, then the f.f. fake Ankeny-Artin-Chowla property holds. If f is

reducible, then the f.f. fake Ankeny-Artin-Chowla property does not hold.

Proof. For f irreducible and p = f , we have p =
√
f · OK already principal, so

√
f is a fundamental unit. For f

reducible and p|f , we have p = p = (p,
√
f), so p2 = pp = p · OK , so p is the fundamental unit.

Now before we start having some more significant results, we start off with a useful fact about the fundamental

unit.

Proposition 7.3.2. If ϵ = a+ b
√
f is a fundamental unit of a fake real quadratic order OK [p−1] with p above p ∈ k[x]

splitting and p ∤ f , then N(a+ b
√
f) = a2 − fb2 = c · po(p) for some c ∈ k×.

Moreover, if a2 − fb2 = c · pm for some a, b ∈ k[x], m ∈ N and c ∈ k×, then o(p)|m and either a + b
√
f or

a− b
√
f is equal to ϵ

m
o(p) .

Proof. We have an equality of ideals:

(a2 − fb2) = (a+ b
√
f)(a− b

√
f) = po(p)po(p) = (p)o(p) = (po(p)).

Therefore a2 − fb2, po(p) generate the same ideal, so they differ multiplicatively by an element in O×
K = k×.
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If a2 − fb2 = c · pm, then there is an equality of ideals (a + b
√
f)(a − b

√
f) = (p)k = pkpk. Since p ∤ f , we

have that p is not a unit in OK [p−1] and so p ∤ (a+ b
√
f). Therefore by unique factorisation of prime ideals, we have

pm = (a+ b
√
f) or pm = (a− b

√
f). Then it follows from this that o(p)|m and a+ b

√
f = ϵ

m
o(p) .

Corollary 7.3.3. If p ∤ f is splitting in OK , then o(p) deg(p) ≥ deg(f) = 2g + 1.

Proof. Observe that b ̸= 0, since otherwise either p|f or p is inert. Then the Corollary follows from comparison of

degrees in the equation of Proposition 7.3.2.

Doing another simple comparison of degrees allows us to give a sufficient condition for the f.f. fake Ankeny-Artin-

Chowla property.

Proposition 7.3.4. Let p ∈ k[x] be irreducible, coprime to f and splitting over OK . Then if

o(p) deg(p) < 3 deg(f) = 6g + 3,

the f.f. fake Ankeny-Artin-Chowla property holds.

Proof. Since a2 has even degree and fb2 has odd degree, their leading terms don’t cancel out. Therefore

deg(fb2) ≤ deg(a2 − fb2) = deg(po(p)) = o(p) deg(p) < 3 deg(f).

Therefore deg(b) < 1
2 (2 deg(f)) = deg(f). So either f ̸ |b or b = 0. If b = 0 however, then p is the fundamental unit,

so po(p) = pp and so by unique prime ideal factorisation o(p) = 2 and p = p. That means that p corresponds to a

Weierstrass point, hence p divides f , which we assumed not to be the case.

Now we will give a result independent of o(p).

Theorem 7.3.5. Let p be irreducible, coprime to f and splitting over OK . Assume deg(p) ≤ g+1. Then the f.f. fake

Ankeny-Artin-Chowla property holds.

Proof. Let us apply the Mason-Stothers theorem to the equation a2 − fb2 = c · po(p). We notice that gcd(a, f) = 1,

otherwise a2−fb2 wouldn’t be coprime to f , which c ·po(p) is. Also, a, b are coprime, since otherwise a+b
√
f wouldn’t

be fundamental. This together with not all derivatives being zero, would allow us to use the Mason-Stothers theorem.

Suppose that all derivatives are zero. If the characteristic ℓ equals 0, then this would mean p is constant, which

is a contradiction. Now treat the case ℓ > 2. Then a2, fb2 are ℓ-th powers. The first gives that a is an ℓ-th power,

so let a = ãℓ for some ã ∈ k[x]. For the second, let k ∈ N the amount of times f divides b. Then we observe that

1 + 2k ≡ 0 mod ℓ. In other words, k = ℓ−1
2 +mℓ for some m ∈ N. Furthermore, notice that b2f−2k = (fb2)f−2k−1 is

an ℓ-th power, hence also bf−k. It follows that b = fk b̃ℓ for some b̃ ∈ k[t]. Therefore, we can write

fb2 = f1+2k b̃2ℓ = f1+(ℓ−1)+2mℓb̃2ℓ = f (2m+1)ℓb̃2ℓ.
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In other words, b
√
f = b̃ℓf (m+ 1

2 )ℓ. Now one can notice that (ã + b̃fm
√
f)ℓ = a + b

√
f . This is a contradiction with

the assumption that a+ b
√
f is a fundamental unit.

So not all derivatives are zero and we are allowed to use the Mason-Stothers theorem. Let us for a contradiction

assume the f.f. fake Ankeny-Artin-Chowla property doesn’t hold. Let b = fd for some d ∈ k[x]. The equation then

becomes a2 − f3d2 = c · po(p). The Mason-Stothers theorem gives

2 deg(a) ≤ deg(a) + deg(f) + deg(d) + deg(p)− 1,

from which we see

deg(a) + deg(p)− 1 ≤ deg(f) + deg(d) + 2 deg(p)− 2. (1)

It also gives us

3 deg(f) + 2 deg(d) ≤ deg(a) + deg(f) + deg(d) + deg(p)− 1,

which implies

2 deg(f) + deg(d) ≤ deg(a) + deg(p)− 1. (2)

Combining inequalities (1) and (2), we obtain

2 deg(f) + deg(d) ≤ deg(f) + deg(d) + 2 deg(p)− 2.

Therefore, deg(f) ≤ 2 deg(p) − 2. So 2 deg(p) ≥ 2 + deg(f) = 2g + 3. That implies deg(p) > g + 1. This contradicts

our assumption that deg(p) ≤ g+1, so our assumption that the fake f.f. Ankeny-Artin-Chowla property doesn’t hold,

is false.

Corollary 7.3.6. Let p ∤ f be splitting such that deg(p) ≤ 2. Then the f.f. fake Ankeny-Artin-Chowla property holds.

Proof. If g ≥ 1, this follows from Theorem 7.3.5. If g = 0, then this follows from Corollary 7.2.5.

Corollary 7.3.7. Let k be such that [k : k] ≤ 2. Then the f.f. fake Ankeny-Artin-Chowla property holds for p ∤ f
splitting.

Proof. This follows from the fact that in this case, all irreducible polynomials have degree at most 2.

Corollary 7.3.8. Let k be algebraically closed or let k = R. Then the f.f. fake Ankeny-Artin-Chowla property holds

for p ∤ f splitting.

Corollary 7.3.9. Let k be finite and fix p ∈ k[x] irreducible. Then for all but finitely many f ∈ k[x] squarefree among

those such that p is splitting, the f.f. fake Ankeny-Artin-Chowla property is satisfied.
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7.4 Horizontal asymptotics for k = Fq

We will now study horizontal asymptotics of the f.f. fake Ankeny-Artin-Chowla property in the global case, so in

the case k = Fq = Fℓr . Before we restrict to such k, we first describe (OK/f)× = A × B (see Subsection 2.2) where

A ∼= k[x]/f and B ∼= (k[x]/f)× for general perfect k, to give another characterization of the f.f. fake Ankeny-Artin-

Chowla property.

Lemma 7.4.1. Assume p ∤ f . The image of the fundamental unit ϵ under OK → OK/f is in (OK/f)×. Moreover,

the f.f. fake Ankeny-Artin-Chowla property holds if and only if the image of ϵ is not in B.

Proof. Observe that ϵϵ = c · po(p) is a unit in OK/f , as its inverse is h ∈ k[x] such that cpo(p)h ≡ 1 mod f , which

exists because p doesn’t divide f .

We see that A is torsion-free for characteristic ℓ = 0 and that every non-trivial element of A is of order ℓ if ℓ > 2.

In other words, if ℓ = 0, then A can be viewed as a Q-vector space and if ℓ > 2, then OK/(f) can be viewed as an

Fℓ-vector space.

Lemma 7.4.2. If ℓ > 2, (the torsion of) B is coprime to ℓ.

Proof. If not, then there is an element in B of order ℓ. This can be represented by a b ∈ k[x] coprime to f . Then

bℓ ≡ 1 mod f . So also bℓ ≡ 1 mod fi for each irreducible factor fi|f . Now since k is perfect and k[x]/(fi) is a finite

extension for all fi|f , we have k[x]/(fi) perfect. Therefore, we have b ≡ 1 mod f . So this element is trivial, which

contradicts it being of order ℓ.

Corollary 7.4.3. For ℓ > 0, the ℓ-part of (OK/f)× is A.

Corollary 7.4.4. Let c+ d
√
f := ϵm for some m ∈ Z.

• If ℓ = 0, then f |d if and only if f |b.

• If ℓ > 2 and ℓ ∤ m, then f |d if and only if f |b.

Proof. If ℓ = 0, then this follows from A being torsion-free. If ℓ > 2, then it follows from A being an ℓ-group.

Now assume k = Fq = Fℓr is finite. Then the following theorem holds, which is inspired by the work of Florian

Hess, Renate Scheidler and Micheal J. Jacobson in [11], which is the number field analogue.

Theorem 7.4.5. Fix f and vary p. Let G be the ℓ-part of Cl 0f (K). Then the proportion of p irreducible, splitting,

with deg(p) = n such that the fake f.f. Ankeny-Artin-Chowla property does not hold, approaches 1
#G as n → ∞.

Proof. Before we start, note that all but finitely many irreducible p ∈ Fq[t] are coprime to f , so we can focus on those.

We look at the exact sequence

1 → F×
q → (OK/f)× → Cl 0f (K) → Cl 0(K) → 1. (3)
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Then OK [p−1] gives a counterexample if and only if [p]
o(p)
f = [ϵ · OK ]

o(p)
f is in the image of B, i.e. has trivial A-part.

We decompose Cl 0f (K) ∼= G × H, where G is the ℓ-part and H is the part coprime to ℓ. (This can be done due

to the fundamental theorem of finitely generated abelian groups.) Then we see that A injects into G. The follow-

ing diagram gives an overview of the relations between the groups studied so far, where all horizontal and vertical

sequences are exact:

1 1

1 A G

1 F×
q (OK/f)× Cl 0f (K) Cl 0(K) 1

1 B H

1 1

.

We claim that in general [I]
o(I)
f is in the image of B if and only if [I]f ∈ H.

’If ’: [I]f has G-part 0 and A injects into G, so [I]
o(I)
f has A-part 0.

’Only if ’: If ℓ ∤ o(I), then [I]f ∈ H simply because G is a ℓ-group.

It remains to consider the case that ℓ|o(I), let’s show that this case doesn’t occur. If it did, then the G-component

[J ]f of [Io(I)/ℓ]f has order o(J) = ℓ in Cl 0(K) (because H is primary to ℓ) and hence satisfies [J ]
o(J)
f = [0] (It has

A-part 0 by assumption and B-part 0 by construction). So it is an element of G[ℓ], which is not induced by a member

of A[ℓ]. Hence A[ℓ] ̸∼= G[ℓ]. Now while finishing the final state of this master’s project, Florian Hess sent me a proof [9]

of the following:

Fact. The ℓ-rank of Clf (K) is equal to r deg(f).

As a consequence, (OK/f · OK)× and Cl 0f (K) are finite abelian groups of the same ℓ-rank and A,G are the corre-

sponding ℓ-parts. So this means A[ℓ] ∼= G[ℓ]. This is a contradiction, so the case that ℓ|o(I) cannot occur.

Therefore the cases where the f.f. fake Ankeny-Artin-Chowla property doesn’t hold are those where [p]f ∈ H. Now let

E be the class field corresponding to H. In other words, there is a surjective Artin map AE|K : Clf (K) → Gal(E|K)

which has kernel H, in other words G ∼= Clf (K)/H ∼= Gal(E|K).
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So by Lemma 7.4.1, this means that cases where the fake f.f. Ankeny-Artin-Chowla property doesn’t hold are those

where the image of [p]f in Gal(E|K) is trivial.

According to Theorem 2.3.9 for function fields, we have

#{p ∈ Spec(OK) : deg(p) = n and (p, E|K) = 1} =
1

#Gal(E|K)

qn

n
+ o

(
qn/2

n

)
∼ 1

#G

qn

n
.

We also have

#{p ∈ Spec(OK) : deg(p) = n} ∼ qn

n
.

These two facts combine to imply

lim
n→∞

#{p ∈ Spec(OK) : deg(p) = n and f |b}
#{p ∈ Spec(OK) : deg(p) = n}

= lim
n→∞

#{p ∈ Spec(OK) : deg(p) = n and (p, E|K) = 1}
#{p ∈ Spec(OK) : deg(p) = n}

=
1

#G
.

Remark 7.4.6. An analogous proof shows that Theorem 7.4.5 also holds when replacing the condition deg(p) = n with

the condition deg(p) ≤ n.

Remark 7.4.7. I checked this condition that the ℓ-rank of Cl 0f (K) is equal to r deg(f) before I received the proof of

Florian Hess in [9]. I have verified using Magma that the ℓ-rank of Cl 0f (K) equals r deg(f) for



g ≤ 5 if q = 3

g ≤ 3 if q ≤ 7

g ≤ 2 if q ≤ 25 or q = 29, 31, 37

g ≤ 1 if q ≤ 47

.

In the number field analogue in [11] on which this theorem and proof are based, there is no additional condition like

this required and the proportion is also independent of the ray class group, although the proof makes use of the ray

class group.

Corollary 7.4.8. We fix f and vary p. Assume ℓ ∤ #Cl 0f (K). Then the proportion of p irreducible, splitting, with

deg(p) = n (or deg(p) ≤ n), such that the f.f. fake Ankeny-Artin-Chowla property does not hold, approaches 1
qdeg(f) as

n → ∞.

Proof. Observe that the ℓ-rank of Cl 0f (K) is r deg(f), so we may use Theorem 7.4.5. In this case, we note that the

cokernel of injection A → G is trivial, so G ∼= A. In particular, the ℓ-rank of Cl 0f (K) is equal to the ℓ-rank of A, which

is r deg(f). Now apply Theorem 7.4.5 together with the observation that #G = #A = qdeg(f) to get the result.
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Given below is some numerical data showing how this proportion converges. I took k = F3,F5 for a low com-

putation time, since the amount of examples needed to be checked is roughly O(qn). A graph showing convergence

behaviour is given, as well as a table checking we can apply Theorem 7.4.5 and what therefore the expected proportion

is.

f G ∼= 3-rank of G r deg(f) Expected proportion 1/#G
x3 + 2x+ 1 (Z/3Z)3 3 3 3−3

x3 + 2x+ 2 (Z/9Z)× (Z/3Z)2 3 3 3−4

x3 + x2 + 2 (Z/3Z)3 3 3 3−3

x3 + 2x2 + 1 (Z/3Z)3 3 3 3−3

x5 + 2x3 + x2 + x+ 2 (Z/3Z)5 5 5 3−5

Table 1: Examples over F3

On the next page, there are some other examples with k = F5.
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f Representation of G 5-rank of G r deg(f) Expected proportion 1/#G
x3 + 2x+ 4 (Z/5Z)3 3 3 5−3

x3 + x+ 4 (Z/5Z)3 3 3 5−3

x3 + 3x2 + 2x+ 2 (Z/5Z)3 3 3 5−3

x3 + 3x2 + 2x+ 2 (Z/5Z)3 3 3 5−3

x3 + 3x2 + x+ 2 (Z/25Z)× (Z/5Z)2 3 3 5−4

Table 2: Examples over F5

7.5 Constant field extensions

A question that one might ask is; is satisfying the f.f. fake Ankeny-Artin-Chowla property independent of the constant

field? To be precise, let us start off with a fake real quadratic order over k(x) determined by f, p ∈ k[x], p irreducible

and f squarefree. Additionally assume p is irreducible in l[x] for some perfect field l extending k. Then there is a

canonical fake real quadratic order over l(x) corresponding to f, p. Does the f.f. fake Ankeny-Artin-Chowla property

hold over k(x) if and only if it holds over l(x)? Before we answer this, let us compare the corresponding residue rings.

Recall from Subsection 2.2 that (OK/f)× = A × B where A ∼= k[x]/f and B ∼= (k[x]/f)×. We put k, l in subscripts

of any variables to indicate we are working over k(x), l(x) respectively.
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Lemma 7.5.1. There is a commutative diagram of injective group homomorphisms:

Ak (OKk
/f)× Bk

Al (OKl
/f)× Bl

Proof. The ring morphism OKk
→ OKl

→ OKl
/f induced by Kk → Kl has kernel f · OKk

. Therefore, there is an

injective ring homomorphism OKk
/f → OKl

/f and so also an injective group homomorphism (OKk
/f)× → (OKl

/f)×.

The ring morphism k[x] → l[x] → l[x]/f has kernel f ·k[x], so there is an injective ring homomorphism k[x]/f → l[x]/f .

So there is also an injective group homomorphism on the additive groups, giving the injective group homomorphism

Ak → Al. It also means there is an injective group homomorphism of the unit groups Bk → Bl.

Here is a proof that the left square is commutative: take an element of Ak, it is of the form d mod f · l[x] for
some d ∈ k[x]. Its image in Al is also given as d mod f · l[x], but this time around, this is modular arithmetic in

l[x]. So the image of that would be given as 1 + d
√
f . And this is the same result that one gets if one first maps to

(OKk
/f)× and then to (OKl

/f)×.

Proving that the second square is commutative works very similarly.

Lemma 7.5.2. We have that ϵk is a positive power of ϵl modulo l×.

Proof. We note that pk is the pre-image of pl under the injective ring morphism OKk
→ OKl

. Therefore, p−1
k

is the pre-image of p−1
l under OKk

→ OKl
. Hence p−1

k ⊆ p−1
l and so there is an injective ring homomorphism

OKk
[p−1

k ] → OKl
[p−1

l ]. Therefore, there is also an injective group homomorphism k× × ϵZk → l× × ϵZl . In particular,

ϵk ∈ (l× × ϵZl ) ∩ OKk
is a positive power of ϵl up to multiplication in l×.

Proposition 7.5.3. Let f, p ∈ k[x] be such that f is squarefree in k[x] and p is irreducible in l[x]. Then the f.f. fake

Ankeny-Artin-Chowla property holds for the pair (f, p) over k(x) if and only if it holds for the pair (f, p) over l(x).

Proof. By Lemma 7.4.1, the f.f. fake Ankeny-Artin-Chowla property is satisfied if and only if the image of fundamental

unit under OK → OK/f · OK is in B. So the fake f.f. Ankeny-Artin-Chowla property is satisfied over k(x), l(x)if and

only if ϵk ∈ Bk, ϵl ∈ Bl respectively. Let m ∈ N be such that ϵkϵ
−m
l ∈ l×.

If ℓ = 0, then the Ak-part of ϵk is 0 if and only if the Al-part of ϵl
−m is 0, if and only if Al-part of ϵl is 0, be-

cause Al is torsion-free. So this is clear.

If ℓ > 2 and ℓ ∤ m, then the Ak-part of ϵk is 0 if and only if the Al-part of ϵl
−m is 0, if and only if the Al-part

of ϵl is 0. This is because all elements of Al except the identity are of order ℓ.
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Now assume ℓ|m. Then ϵml is an ℓ-th power. So write ϵml = (c + d
√
f)ℓ = cℓ + dℓf

ℓ−1
2

√
f for some c, d ∈ l[x].

Hence cℓ is in cℓ · k[t]. Let χ be the leading coefficient of c, then (χ−1c)ℓ is monic, hence in k[x] by this logic. Writing

c =
∑

cix
i, we have hence χ−ℓcℓi ∈ k for all i. Since both k and l are perfect, we have that the frobenius k → k and

l → l are automorphisms of k, l respectively. Therefore the pre-image of k under Frobenius l → l is k. This implies

χ−1ci ∈ k for all i. Therefore, χ−1c ∈ k[x]. So c is in l× · k[x]. And without loss of generality, we can assume d monic

hence by similar logic, d is in k[x]. However that implies χℓ ∈ k×, since χ−ℓϵml ∈ OKk
. So χ ∈ k× (again since k, l are

perfect) and hence c+ d
√
f ∈ OKk

, which is a contradiction. So ℓ ∤ m and we are done.

What if p is not irreducible in l[x], but we just look at all the fake real quadratic orders over l(x) such that

the prime is above p? Then it turns out that whether the f.f. fake Ankeny-Artin-Chowla property is satisfied can

change. A simple example is when one takes l to be the splitting field of f . Then in the l(x)-situation, the f.f. fake

Ankeny-Artin-Chowla property always holds according to Corollary 7.3.6 because the new p is linear, while the fake

f.f. Ankeny-Artin-Chowla property doesn’t necessarily hold in the k(x)-situation.

7.6 Comparing k = Q,Qℓ with k = Fℓ

Let K = Q(t,
√
f(x)), we can without loss of generality assume f ∈ Z[x] monic. Let p ∈ Z[x] be monic irreducible

and let a+ b
√
f be a fundamental unit of OK , where a, b ∈ Z[x] and gcdi(ai) = gcdi(bi) = 1.

Definition 7.6.1. We say that a prime ℓ is of extra good reduction with respect to the fake real quadratic order

OK [p−1] if ℓ is of good reduction for the corresponding curve C and p mod ℓ is irreducible. We write OK [p−1] or

OK [p−1] mod ℓ for the fake real quadratic order corresponding to f, p.

How can one find out how many primes of extra good reduction there are? The following lemma answers that.

Lemma 7.6.2. Let L be the splitting field of p, let n = deg(p). Then if Gal(L/Q) as a subgroup of Sn contains

n-cycles, the proportion of ℓ such that p mod ℓ is irreducible is #{n−cycles in Gal(L/Q)}
#Gal(L/Q) , hence then there are infinitely

many such ℓ. Otherwise, there are no primes of extra good reduction.

Proof. There are only finitely many ℓ for which f mod ℓ isn’t squarefree, these are the primes of good reduction of

the hyperelliptic curve C. Therefore, we can focus on the condition that p mod ℓ is irreducible. Each element of

Gal(L/Q) can be given by a permutation of the roots of p and vice versa. This is the way in which we view Gal(L/Q)

as a subgroup of Sn. Let p =
∏r

i=1 pi for some r ∈ N, p1, . . . , pr ∈ Fℓ[x]. (not necessarily distinct.) Then the

corresponding permutation is the product of cycles where each pi corresponds with a deg(pi)-cycle. Therefore, p is

irreducible if and only if the corresponding permutation is an n-cycle. Then Theorem 2.3.9 implies the result. See

also [23].

Remark 7.6.3. We note that in this case, p splitting implies p splitting. The reverse is not true however. Take for

example ℓ = 5, p = x+ 1 and f = x. Then p is split in F5[x, f ] since the corresponding points are (−1,±2). (Due to

Proposition 7.1.3.) In contrast, p is not split in Q[x, f ], since −1 is not a square in Q.
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Lemma 7.6.4. Let ϵQ = a + b
√
f be a fundamental unit of OK [p−1] and let ℓ be a prime of extra good reduction.

Then a+ b
√
f is a fundamental unit of OK [p−1] mod ℓ.

Proof. We have a2 − fb2 = c · po(p) for some c ∈ Q× ∩ Z according to Proposition 7.3.2. Without loss of generality,

c = ±1. Then we reduce the fundamental unit modulo a prime of good reduction ℓ and so we get an equation

a2 − fb
2
= ±po(p). Since J(Q)tors → J̃(Fℓ) is an injective group homomorphism where J is the Jacobian of C

according to Theorem 2.1.10, we have o(p) is the order of the corresponding reduced prime ideal in OK [p−1]. Therefore

by Proposition 7.3.2, a+ b
√
f = ϵQ is a fundamental unit of OK [p−1] mod ℓ.

Theorem 7.6.5. Assume that there exists a prime ℓ such that p mod ℓ is irreducible. Then the following are equiv-

alent.

1. The f.f. fake Ankeny-Artin-Chowla property holds for OK [p−1]. (over Q(x))

2. For all but finitely many primes ℓ of extra good reduction, the fake f.f. Ankeny-Artin-Chowla property holds for

OK [p−1] mod ℓ.

3. For some prime ℓ of extra good reduction, the f.f. fake Ankeny-Artin-Chowla property holds for OK [p−1] mod ℓ.

Proof. (1) =⇒ (2): Let b = cf + d for some c, d ∈ Z[x] such that deg(d) < deg(f). Then d ̸= 0, since we assumed the

f.f. fake Ankeny-Artin-Chowla property to hold over Q(x). So there are only finitely many (integral) primes ℓ that

divide d, in which case b ≡ cf mod ℓ and hence the fake f.f. Ankeny-Artin-Chowla property does not hold. For all

other ℓ, d ̸≡ 0 mod ℓ, so the f.f. fake Ankeny-Artin-Chowla property holds.

(2) =⇒ (3): Follows from Lemma 7.6.2.

(3) =⇒ (1): We note that (f mod ℓ) ∤ (b mod ℓ) implies f ∤ b and then apply Lemma 7.6.5.

We can also rephrase this in terms of when the f.f. fake Ankeny-Artin-Chowla property is not satisfied. (This is

hence not new information, but can give helpful insight.)

Corollary 7.6.6. Assume that there exists a prime ℓ such that p mod ℓ is irreducible. The following are equivalent.

1. The f.f. fake Ankeny-Artin-Chowla property does not hold for OK [p−1]. (over Q(x))

2. For infinitely many primes ℓ of extra good reduction, the f.f. Ankeny-Artin-Chowla property does not hold for

OK [p−1] mod ℓ. (over Fℓ(x))

3. For all primes ℓ of extra good reduction, the f.f. fake Ankeny-Artin-Chowla property does not hold for OK [p−1]

mod ℓ. (over Fℓ(x))
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Example 7.6.7. It is however not the case that the f.f. fake Ankeny-Artin-Chowla property holding over Q(x) implies

it holds over Fℓ(x) for all ℓ of extra good reduction. Let m be an integer divisible by 3. Then we let

f = x3 − x− 1,

p = (x3 − x− 1)(x3 − x+m− 1)2 − (−x3 + x2 + x+ 1)2.

Observe that f is squarefree since it is squarefree modulo 3 and p is irreducible since it is irreducible modulo 3. In this

case, a fundamental unit is

ϵ = (−x3 + x2 + x+ 1) + (x3 − x+m− 1)
√
x3 − x− 1

by Proposition 7.3.2, since its norm is −p. Then the f.f. fake Ankeny-Artin-Chowla property by construction is true

over Q(x). It does not hold over Fℓ(x) for all primes ℓ of extra good reduction that divide m, since then m = 0. Also,

it holds over Fℓ(x) for all primes ℓ of extra good reduction coprime to m, since then m ̸= 0.

Taking m = 0 gives that the f.f. fake Ankeny-Artin-Chowla property does not hold for Q(x) and hence not for

all Fℓ(x) where ℓ is of extra good reduction, by Corollary 7.6.6.

We can also take m = ±1, letting go of the requirement that 3|m. Magma ensures us that p is still irreducible

and the fundamental unit is still the same. Then this gives that the f.f. fake Ankeny-Artin-Chowla property holds over

Q(x) and hence also over Fℓ(x) for all primes ℓ of extra good reduction, since m = ±1 ̸= 0.

Example 7.6.8. The m = 0 case is an example of a more general phenomenon; Let us have a case over Fℓ(x) where

the fake f.f. Ankeny-Artin-Chowla property does not hold and the prime ideal is principal. Write b = df for some

d ∈ Fℓ[x]. Then we take some lifts a, d, f of a, d, f . Furthermore let p := ±(a2 − f3d2) such that p is a lift of p. We

are garantueed f, p are squarefree and irreducible just like before. Then a+ df
√
f is a fundamental unit corresponding

to (f, p) again by Proposition 7.3.2, so it is a counterexample over Q(x).

Here is a table of constructed principal counterexamples over Q(x) in this way:

Genus f p a b
0 x x3 − 4 2 x
1 x3 − x− 1 fb2 − a2 x3 − x2 − x− 1 x3 − x− 1
2 x5 − x2 + x+ 1 fb2 − a2 x3 + x2 x5 − x2 + x+ 1
3 x7 + x2 − 1 fb2 − a2 x9 + x7 + x6 + x5 + x3 + x2 + x− 1 x7 + x2 − 1
4 x9 − x3 − x2 + x+ 1 fb2 − a2 x12 + x10 − x9 + x7 − x4 + x3 + x x9 − x3 − x2 + x+ 1

Example 7.6.9. Another way to view finding counterexamples where the prime ideal is principal is by looking at the

norm equation. Fix a, b ∈ k(x) and try to find solutions to a2 − f3d2 = p where f ∈ k(x) is squarefree and p ∈ k(x)
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and b = fd for some d ∈ k[x]. Take k = Q. There is a lot of room for attempts here, but a simple case would be

to consider f = x3 − 2 and b = 1 for instance. Vary a and see if you can make a(x)2 − (x3 − 2)3 irreducible. We

can immediately see that for instance taking a(x) = x gives a counterexample. This is analogous to what is done for

finding counterexamples to the n.f. fake Ankeny-Artin-Chowla property, as mentioned in [11].

We can also compare the cases k = Qℓ and k = Fℓ by reducing. We need to be careful: we assume ℓ is of extra good

reduction in the analogous sense. Again we have that the order of the prime ideal doesn’t change when reducing; so

again we have ϵFℓ
= ϵQℓ

. We write OK [p−1] mod ℓ again for the reduction of the relevant fake real quadratic modulo

ℓ.

Proposition 7.6.10. Let f, p ∈ Zℓ[x] be such that f monic squarefree and let K = Qℓ(x,
√
f(x)). Let p monic

irreducible splitting in OK and let p be a prime ideal of OK above p. Assume that ℓ is of extra good reduction. Then

the f.f. fake Ankeny-Artin-Chowla property holds for OK [p−1] if it holds for OK [p−1] mod ℓ.

Proof. Follows from f ∤ b implying f ∤ b.

7.7 Comparing k a number field with k = Fq

This subsection aims to generalize the previous subsection. Let k be a number field, Ok the ring of integers. Let

y2 = f(x) be (an affine patch of) a hyperelliptic curve over k; without loss of generality we let f ∈ Ok[x]. Assume

that f is monic. Let p ∈ Ok[x] be irreducible and let OK [p−1] be the fake real quadratic order corresponding to

f, p. Now reduce this modulo a prime ideal q of Ok above some integral prime ℓ > 2. When is this possible? Note

that Ok/q ∼= Fq, where q = ℓr for some r ∈ N. So it makes sense to reduce f to Fq[t], we want the reduction to be

squarefree. The same goes for p ∈ k[x] monic irreducible, we want the reduction to be irreducible.

Definition 7.7.1. We say that q is of extra good reduction if f mod q is squarefree and p mod q is irreducible. We

denote OK [p−1] = OK [p−1] mod q for the fake real quadratic order corresponding to f mod q, p mod q.

Lemma 7.7.2. Let l be the splitting field of q, let n = deg(q). Then if Gal(L|k) as a subgroup of Sn contains n-cycles,

the proportion of q such that p mod q is irreducible is #{n−cycles in Gal(L|k)}
#Gal(L|k) , hence in this case, there are infinitely

many. Otherwise, there are no primes of extra good reduction.

Proof. There are only finitely many q for which f mod q is not squarefree. This is because these q are precisely the

factors of disc(f) · Ok, of which there are only finitely many. The rest of the proof is analogous to the proof of Lemma

7.6.2.

Lemma 7.7.3. Let ϵk = a + b
√
f be a fundamental unit of OK [p−1]. Then ϵk = a + b

√
f is a fundamental unit of

OK [p−1] mod q.

Proof. The proof is analogous to the proof of Lemma 7.6.5.

Theorem 7.7.4. Let f, p ∈ Ok[x] be such that f is monic squarefree and p is monic irreducible splitting. Assume that

there exists a prime ideal q of extra good reduction. The following are equivalent.
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1. The f.f. fake Ankeny-Artin-Chowla property holds for OK [p−1] (over k(x))

2. For all but finitely many q of extra good reduction, the f.f. fake Ankeny-Artin-Chowla property holds for OK [p−1]

mod q.

3. For some q of extra good reduction, the f.f. fake Ankeny-Artin-Chowla property holds for OK [p−1] mod q.

Proof. (1) =⇒ (2): Let ϵk = a + b
√
f . Now apply division by remainder to get b = cf + d for some c, d ∈ Ok[x].

Then there are only finitely many prime ideals q dividing d. Therefore there are also finitely many q of extra good

reduction such that this holds.

(2) =⇒ (3): This follows from the fact that there are infinitely many prime ideals of extra good reduction by

Lemma 7.7.2.

(3) =⇒ (1): We have that f ∤ b implies f ∤ b and then we apply Lemma 7.7.3

And again we can make a reformulation.

Corollary 7.7.5. Let f, p ∈ Ok[x] be such that f is monic squarefree and p is monic irreducible splitting. Assume

that there exists a prime ideal q of extra good reduction. The following are equivalent.

1. The f.f. fake Ankeny-Artin-Chowla property doesn’t hold for (f, p) (over k(x))

2. For infinitely many q of extra good reduction, the f.f. fake Ankeny-Artin-Chowla property doesn’t hold for (f, p)

(over Fq(x) with Fq
∼= Ok/q)

3. For all q of extra good reduction, the f.f. fake Ankeny-Artin-Chowla property doesn’t hold for (f, p) (over Fq(x)

with Fq
∼= OK/q)

Example 7.7.6. Here’s a (non-trivial) principal example for k = Q(i) where the f.f. fake Ankeny-Artin-Chowla

property doesn’t hold; let f = x3 − x − 1, p = f3 − (−2ix4 + (2 + 2i)x2 + (−8 − 8i)x + (−1 + i))2. We obtained this

example by lifting from F9, where one can lift a generator of F9 to −1 + i.

7.8 An application to the number field setting

Let OK [p−1] be a fake real quadratic order over Q(x) corresponding to f, p ∈ Z[x] such that f is monic squarefree and

p is monic, irreducible and splitting in OK . Let a+ b
√
f be the fundamental unit, so that a2 − fb2 = ±po(p). Now we

apply the following trick: plug in x0 ∈ Z such that |p(x0)| is prime and that f(x0) is negative and squarefree. Then

since a(x0)
2 − f(x0)b(x0)

2 = p(x0)
o(p), this induces the unit a(x0) + b(x0)

√
f(x0) in the fake real quadratic order in

the number field setting, with discriminant D = f(x0) and above the prime |p(x0)|. We notice that if o(p) = 1, then

this necessarily gives the fundamental unit. Therefore in this case, a (fake real principal) counterexample to the f.f.

fake Ankeny-Artin-Chowla property over Q(x) induces a (fake real principal) counterexample over Q. Considering

the Subsection 7.6, we hence see that we can move a (fake real principal) counterexample over Fℓ(x) to a (fake real
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principal) counterexample over Q.

This method works, but not for the p(x0) that have been confirmed to have no counterexamples for −D < p(x0). This

is because D is negative, thus the equation a(x0)
2 −Db(x0)

2 = p(x0)
o(p) implies −D < p(x0)

o(p).

Example 7.8.1. An example of this manoeuvre is given as follows: Take the genus 0 counterexample f = x, p = x3−4,

plug in x0 = −3. Then we get D = f(−3) = −3 and prime |p(x0)| = | − 31| = 31. This is one of the counterexamples

found by Micheal Oh in [19, Appendix D].

We obtain another example when plugging in x0 = −19, we then get D = f(−19) = −19 and |p(x0)| = |−6863| = 6863.

This example is not in [19, Appendix D].

We note that similar strategies have already been applied, as mentioned in [11].

7.9 Characteristic 2

Up to now, we have been assuming that ℓ := char(k) ̸= 2. In this subsection, let us study the case that ℓ = 2.

Let K|k(x) be a quadratic extension, then any primitive element α(x) has minimal polynomial y2 + h(x)y + f(x)

for some h, f ∈ k[x]. My first claim is that as long as the corresponding curve is smooth, we have that OK , which

we again define to be the integral closure of k[x] in K, is given as k[x, α(x)]. Additionally, deg(f) is either 2g + 1 or

2g + 2 and deg(h) ≤ g + 1. Lastly we notice that for deg(f) = 2g + 1, i.e. odd, we have O×
K = k×, since there is one

point at infinity. So when we consider the fake real quadratic order OK [p−1] for a p such that o(p) < ∞, we again

have OK [p−1]× = k× × ϵZ, where ϵ generates po(p). Since ϵ is not of the form a+ b
√
f anymore, but rather a+ bα, it

may not make sense anymore to ask whether f divides b.

In order to fairly compare, we have to explain why in the ℓ ̸= 2 case, the condition f ∤ b is inherent to the k[t]-

algebra OK rather than to the specific generator
√
f . One way we can do that, is to argue that f, b are invariants of

the k[t]-algebra OK up to unit multiplication. Let 1, c+ d
√
f be generators of OK viewed as a k[x]-algebra. Then OK

is also generated by 1, d
√
f , which shows that d ∈ k×. In this sense, we can write

ϵ = a+ b
√
f = (a− bd−1c) + bd−1(c+ d

√
f) = ã+ b̃(c+ d

√
f)

In this sense, we notice b̃ is only a unit multiple away from b. Additionally, the discriminant of the minimal polynomial

of c+ d
√
f is a unit multiple away from f . This can be seen by completing the square.

Now go back to the characteristic 2 situation, where ϵ = a+ bα. I wish to argue that h ∤ b is the natural question to

ask. Note that h2 is the discriminant of the polynomial y2 + h(x)y + f(x). Again observe that if OK is generated by

1, c+ dα, then it is generated by 1, dα and therefore d ∈ k×. One can check that x2 + (dh)x+ (c2 + cdh+ d2x) ∈ k[x]

is the minimal polynomial of c + d
√
f , and therefore its discriminant is d2h2, which is a unit away from h2. From
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this point of view, it is logical to argue that h2 ̸ |b is the right criterion to consider. However, it would make sense to

consider whether hi ∤ b instead for all irreducible factors hi|h, since in the original Ankeny-Artin-Chowla conjecture we

look modulo something irreducible/prime. Let us assume h is squarefree for simplicity, then we can also look modulo

h. This approach is also similar to the approach given in [28] for the real quadratic case.

We again have the exact sequence

1 → k× → (OK/h)× → Cl 0h (K) → Cl 0(K) → 1,

and we can identify through this sequence the elements of Cl 0h (K) corresponding to counterexamples. Notice that

OK/h ∼= k[x,
√
f ]/h, where α mod h is sent to

√
f mod h. Given specific f, h, one computes (k[x,

√
f ]/h)× and which

elements are in the subgroup induced by (k[x]/h)×. Since h is squarefree, (k[x]/h)× ∼=
∏

i(k[x]/hi)
× is hence of odd size.

Now notice that all squares of (k[x,
√
f ]/h)× are induced by (k[x]/h)×, for if we take c+d

√
f mod h and square it, we

obtain c2+fd2. This shows that this subgroup is of index 2 and so, we deduce that (k[x,
√
f ]/h)× ∼= (k[x]/h)××Z/2Z.

(Because (k[x]/h)× is coprime to 2) In a similar way as in Theorem 7.4.5, we discover that if the 2-rank of Cl 0h (K) is

r deg(h), then the proportion of counterexamples is 1
#G , where G is the 2-part of Cl 0h (K).

Here is an example. Take k = F2, f = x3 + x2 + 1, h = x. Then it turns out that Cl 0h (K) ∼= Z/4Z. Hence its

2-part is also Z/4Z. So we expect that the proportion approaches 1
4 and it does, considering for deg(p) ≤ 18 we have

a proportion of around 0.249 or 24,9%, which I checked numerically.

The fundamental unit also has a norm equation corresponding to it, namely

a2 + abh+ b2f ∈ k×po(p).

It would be nice if using this norm equation we would be able to find a condition under which h ∤ b is true, but it is

not as obvious as the ℓ ̸= 2 case. In conclusion, the ℓ = 2 case is similar, but can make things more complicated.
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8 Conclusion and open questions

In this thesis, we have been looking at a few analogues of the Ankeny-Artin-Chowla conjecture, out of which the f.f.

fake analogue is the one that is introduced in this Thesis. We have seen Mordell’s conjecture and the n.f. fake and f.f.

fake variants do not hold in general. On the other hand, the f.f. real variant does hold.

We zoomed in on the f.f. fake variant to study the behaviour of the f.f. fake Ankeny-Artin-Chowla property when vary-

ing various parameters. We have also seen that there is some interplay between different types of fake real quadratic

orders. First off, one can extend the constant field in an appropriate way and whether the f.f. fake Ankeny-Artin-

Chowla property holds is not affected. Next to this, a f.f. fake real quadratic order with k = Q induces f.f. fake real

quadratic orders with k = Fq and also induces n.f. fake real quadratic orders. If the Ankeny-Artin-Chowla property

is not satisfied in the f.f. fake scenario with k = Q, then it is also not satisfied in the f.f. fake scenario with k = Fq,

and also in the n.f. fake scenario if the prime ideal is principal.

Here are some open questions regarding the f.f. fake Ankeny-Artin-Chowla property:

1. We know that for each genus, there are counterexamples to the f.f. fake Ankeny-Artin-Chowla property with

k = Q where the prime ideal is principal. Are there also counterexamples where the prime ideal is not principal?

If so, how does one find them (efficiently) if possible?

Notice that a counterexample over k = Q also induces a counterexample over any field k of characteristic 0

that doesn’t contain the roots of p. Therefore, answering this open question for Q automatically answers it for

any such k.

2. Given p ∈ k[x] irreducible, can we determine if there exists f squarefree coprime to p such that the Ankeny-

Artin-Chowla conjecture doesn’t hold for (f, p)? We already saw in Corollary 7.3.9 that for finite k, we can

check this in finite time.

However now the question arises: how does the answer relate to deg(p)? We know for deg(p) ≤ 2 that the

f.f. fake Ankeny-Artin-Chowla property always holds by Corollary 7.3.6.

3. Given any field k (perfect of char. ℓ ̸= 2) can we decide if there are counterexamples? If [k : k] ≤ 2, then the f.f.

fake Ankeny-Artin-Chowla property always holds by Corollary 7.3.7.

4. Suppose K is real (i.e. f is of even degree) and ∞+ −∞− is not a k-rational divisor of finite order in Clk(C).

Then O×
K is finite by Proposition 6.0.1 and so we can consider OK [p−1] for a prime ideal of finite order, there is

again a fundamental unit ϵ = a+ b
√
f . One could study whether f ∤ b always holds in this setting and whether

the results for the f.f. fake case can be carried over.

5. For ℓ = 2, does there exist a positive result; affirming the f.f. fake Ankeny-Artin-Chowla property under some
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conditions? Perhaps one could manipulate the norm equation a2 + abh+ b2f ∈ k×po(p) again using the Mason-

Stothers theorem.
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9 Magma implementations

The following Magma codes are also found in a Github respository.

The following Magma code computes the fundamental unit for fake real quadratics over k(t) for char(k) ̸= 2, checks

the f.f. fake Ankeny-Artin-Chowla property and provides additional information.

1 function AAC_check(F,f,p)

2 // (Given the exact constant field F) This checks if the pair (f,p) satisfies the

f.f. fake AAC property and outputs that as a boolean value.

3 // Moreover , outputs a,b s.t. the Fundamental Unit is given as a+b*sqrt(f). Also

the order of the prime ideal in the ideal class group is computed.

4 if not(IsIrreducible(p)) then

5 error("p␣must␣be␣irreducible");

6 end if;

7 R<t>:= PolynomialRing(F);

8 C:= HyperellipticCurve(f);

9 J:= Jacobian(C);

10 K<x,y>:= FunctionField(C);

11 O:= CoordinateRing(C);

12 S:= Zeros(C,Evaluate(p,x));

13 D:=S[1];

14 P:= Points(C)[1];

15 Pplace := Place(P);

16 D1:=-D+Degree(D)*Pplace;

17 pt:= JacobianPoint(J,D1);

18 m:= Order(pt);

19 AFF <Y>,toAlgFF := AlgorithmicFunctionField(K);

20 V,phi := RiemannRochSpace(FunctionFieldDivisor(m*E1));

21 bas := Basis(V);

22 gamma := phi(bas [1]);

23 toCrvFF := Inverse(toAlgFF);

24 yAlgFF := toAlgFF(y);

25 b := Eltseq(gamma)[2];

26 quotient , remainder := Quotrem(R!b,R!f);

27 AAC_true := not (remainder eq 0);

28 return AAC_true , Eltseq(gamma)[1], Eltseq(gamma)[2],m;
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29 end function;

The following function computes the groups in the ray exact sequence.

1 function ClassFieldGroups(C)

2 // Given a hyperelliptic curve C: y^2=f(x) over a finite field , this outputs

(O_K/<f>)^x, Cl_f(K), Cl(K), with K=k(C).

3 f:= HyperellipticPolynomials(C);

4 S:= Zeros(C,f);

5 tuples :=[];

6 for i in [1..#S] do

7 tuples := Append(tuples ,<S[i],2>);

8 end for;

9 E:= Divisor(tuples);

10 E:= FunctionFieldDivisor(E);

11 J:= Jacobian(C);

12 A:= RayResidueRing(E);

13 B:= TorsionSubgroup(RayClassGroup(E));

14 F:= AbelianGroup(J);

15 return A,B,F;

16 end function;
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