
An Evolutionary Model for the
Milky Way’s Corona

Abstract

The study of the circumgalactic medium (CGM) around late-type galaxies is crucial due to its ties to
several open problems in the field, like the missing baryon problem, and the question of how cool gas
is accreted onto the galaxy to sustain the star formation over a long period of time. The CGM spans a
large volume, and is therefore able to contain a large amount of gas that can, overtime, efficiently feed the
galaxy. In this work, we focus in particular on the hot phase of CGM, also known as the corona, around the
Milky Way and Milky Way-mass galaxies. We study the evolution of such a corona using a semi-analytical
model assuming that it is in hydrostatic equilibrium, but evolves via radiative cooling and different forms
of heating. We implement evolution by cooling using a classical cooling function and by a more modern
code which also includes heating from the extragalactic ultraviolet background. Moreover, we implement
mechanical heating from a central source, resembling the source that inflated the Fermi and eROSITA
bubbles, by continuously injecting energy in inner few kpc of the system.

Our results show that in isolation, the centre of the corona cools rapidly within ∼ 10Myr, while the
outer regions remain relatively unchanged, but flows inwards at constant mass accretion rates between
0.2 and 1M⊙/yr, depending on the mass of our corona. By comparing the evolution of the density and
temperature of the corona with a steady-state cooling flow model from the literature, we show a remarkable
similarity between the two models. When we add heating from a central source, we estimate an upper
and lower bound on the range of powers for which the corona is not cooling nor heating being around
1041 – 1042 erg s−1, depending on the corona’s mass and the chosen distribution over which energy is in-
jected. Finally, we compare this range of powers with literature estimates of the Fermi and eROSITA power
source, by averaging them over an entire duty cycle. We find values similar to the power thresholds from
our evolutionary model. This could imply that the source that inflated the bubbles is able to stop the cooling
of the inner corona, and start a self-regulating cycle that keeps the corona in equilibrium for a long time.
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1 Introduction

The circumgalactic medium (CGM) is a large gaseous component in a galaxy’s halo, which is
closely tied to many processes pertaining to the evolution of galaxies. Studying the CGM is there-
fore crucial in understanding the role of supernova and black hole feedback, the regulation of
the star formation rate and the distribution of matter in galaxies (Tumlinson et al., 2017). The
CGM has been observed to consist of multiple phases ranging from the cool/cold CGM phase at
T < 105 K, the warm phase of the CGM of 105 ≤ T < 106 K and finally the hot CGM phase (or
corona for late-type galaxies) above T ≳ 106 K. Out of these phases, the hot CGM is likely the
most massive component in Milky Way-like galaxies, where the total mass seems to be at least
of the same order as the stellar component of the galaxy (?Bregman et al., 2022; Locatelli et al.,
2024; Zhang et al., 2024). The corona is primarily observed in X-ray emission and absorption,
but since Milky Way-like coronae typically have a low surface brightness, observing it has been
challenging, and therefore its properties are still not well known.

1.1 Two classical problems related to the CGM

The study of the CGM is primarily motivated by open problems in the field of formation and
evolution of galaxies. Among others, these are the missing baryon problem (McGaugh et al.,
2009; Dai et al., 2010) and the problem of sustaining the galaxy’s star formation rate (SFR) over
cosmic time (Fraternali & Tomassetti, 2012).

1.1.1 The missing baryon problem

The missing baryon problem comes from a discrepancy between the cosmological prediction for
the number of baryons, and the total observed baryonic matter in galaxies. Standard ΛCDM cos-
mology predicts a baryonic fraction (ratio of baryonic to dark matter mass) of fb ≡ Mb/Mdm ≈
18.7% across the universe (Planck Collaboration et al., 2020). Assuming the baryonic fraction in
the Milky Way is similar to the universal value, this would give around fbMvir = 2.3×1011 M⊙ of
expected baryonic matter for Milky Way-mass (assuming the dark matter mass is approximately
equal to the virial mass, Mvir = 1.3× 1012 M⊙ Bland-Hawthorn & Gerhard, 2016) galaxies. How-
ever, when we tally up all the observed baryonic matter from stars and interstellar gas, we get
a total mass of around 6 × 1010 M⊙ (Sparke & Gallagher III, 2007; Bland-Hawthorn & Gerhard,
2016), which is only 25% of the total baryon budget. We are therefore missing more than half of
the baryonic matter in Milky Way-mass galaxies, and the discrepancy is even higher for lower
mass galaxies (McGaugh et al., 2009). In the estimate of the missing mass above we have not
included the baryonic mass in the CGM, so including this could help to alleviate the problem.

Even though the CGM around Milky Way-mass galaxies is expected to extend to the virial
radius (roughly 250 kpc), most studies have reported detections up to only r ∼ 70 kpc (Dai et al.,
2012; Bogdán et al., 2013; Anderson et al., 2016; Das et al., 2020). Recently, a signal up to rvir from
stacked coronae in eROSITA (Zhang et al., 2024) has been observed, but such a signal still has to
be confirmed for the CGM around an individual galaxy. Assuming the CGM does extend up to
the virial radius, this would span a volume up to 0.1Mpc3 for the Milky Way (Bland-Hawthorn
& Gerhard, 2016), so even a low density gas can still contribute a large amount of mass to the
total baryon budget. Estimates of the contribution of the Milky Way hot CGM to the baryonic
mass budget range from 10% (?Faerman et al., 2020; Locatelli et al., 2024) to higher values around
30 – 50% (Faerman et al., 2017; Bregman et al., 2022; Zhang et al., 2024), where the variance in the
mass estimates primarily comes from the assumed metallicity, temperature and entropy profile
of the CGM. This already helps to alleviate the missing baryon problem significantly, and some
estimates even claim there is enough mass in the CGM to fully solve the issue (Nicastro et al.,
2023; Grønnow et al., 2024).
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CHAPTER 1 INTRODUCTION

1.1.2 Sustaining star formation in galaxies

In order to form stars, a gas cloud needs to cool to low enough temperatures such that it is dense
enough for gravitational instabilities to grow and start the collapse of the cloud. At this point
the gas is removed from the interstellar medium (ISM) and stays ‘trapped’ in the star, only being
returned at the end of the star’s lifetime for relatively massive stars. The amount of gas that is
returned to the ISM depends on the initial mass function (IMF), since high mass stars (M⋆ > 8M⊙)
have lifetimes around ∼ 10Myr they quickly return their gas via core collapse supernovae, but
low mass stars (M⋆ < 1M⊙) have lifetimes longer than the Hubble time, so the gas will stay
trapped forever. For a typical IMF (Salpeter, 1955; Scalo, 1986; Kroupa, 2002; Chabrier, 2003), the
mass in low mass stars dominates the total mass of stars that are formed, which implies only
fractions around 30 – 40% of the gas is returned to the ISM to contribute to the formation of new
stars (Cimatti et al., 2019).

When a star forming galaxy does not accrete new gas from outside the ISM, eventually the
reservoire of gas will run out and no more stars can be formed. The observed SFR in the Milky
Way has been put around 1 – 3M⊙/yr (Bland-Hawthorn & Gerhard, 2016), and has been shown
to be relatively constant for a long (τ ≥ 10Gyr) time (Twarog, 1980; Binney et al., 2000). It is
possible to estimate the depletion time τdep, time it takes for the galaxy to run out of its current
gas reservoire, by dividing the observed gas mass by the SFR, thus τdep ∼ Mg/ṀSFR. For Milky
Way-mass galaxies, this typically gives τdep = 2 – 4Gyr (Whitaker et al., 2012; Peeples et al., 2014;
Tumlinson et al., 2017) which is significantly lower than the time over which the Milky Way has
been forming stars. Chemical evolution models of the Milky Way additionally show that accretion
of low metallicity gas is needed at low redshift, in order to reproduce the chemical distribution of
stars in the disc (Schönrich & Binney, 2009; Kubryk et al., 2013; Schönrich & McMillan, 2017).

For galaxies to keep forming stars, accretion of new gas is therefore required. In the early
universe, constant mergers and accretion from nearby satellites are predicted to be able to supply
this fresh gas (Kereš & Hernquist, 2009), but the merger history of many star-forming galaxies,
including the Milky Way, has been quiescent for a long time (Helmi, 2008; Cooper et al., 2010;
Di Teodoro & Fraternali, 2014; Fragkoudi et al., 2020). Neighbouring galaxies therefore cannot be
the only source of gas, which leaves us with the accretion from the intergalactic medium (IGM)
or CGM (Fraternali & Tomassetti, 2012), and since both of these scenario’s involve gas flowing
through the CGM before accreting onto the galaxy, it is a crucial component in order to under-
stand gas accretion.

1.2 Observing the hot CGM / corona
The hot CGM, which we will refer to as the corona, is predicted by theory and by cosmological
simulations to be a large, diffuse body of shock-ionised gas at temperatures close to the virial
temperature, extending out to the virial radius of the halo (White & Frenk, 1991; Fukugita &
Peebles, 2006; Fielding et al., 2017). On large scales, the corona is believed to be in hydrostatic
equilibrium (Faerman et al., 2017, 2020), but on a small scale, nonequilibrium local conditions are
also considered to be important (Binney et al., 2009; Lochhaas et al., 2023). Due to its temperature
(around 106 K for the Milky Way), the corona is mainly observed in X-rays.

1.2.1 Milky Way observations

The corona of the Milky Way has been observed using [OVII] and [OVIII] absorption in active
galactic nuclei (AGN) sightlines (Gupta et al., 2012; Miller & Bregman, 2013) and from X-ray emis-
sion (?Li & Bregman, 2017; Ponti et al., 2023; Locatelli et al., 2024). Given an absorbing medium
of density n and size L, the column density of absorption lines scales with nL, whereas the col-
umn density of emission scales with n2L. Absorption can therefore probe larger distances, since
it fades more slowly than emission. On the other hand, emission maps are typically able to cap-
ture a larger area, since they are not constrained by the presence of slightlines. To fully study
the corona, it is therefore important to consider both emission and absorption (Gupta et al., 2012;
Kaaret et al., 2020). Regardless, observation of the Milky Way are still biased to distances close
to the galaxy (∼ 10 kpc) since these regions tend to dominate the total emission (Locatelli et al.,
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Figure 1: Left: Observed sky X-ray surface brightness of the eRASS1 [OVIII] emission from Lo-
catelli et al. (2024). The image is a Zenith Equal Area projection in galactic coordinates centered at
l = 270 and b = 0deg. The data in the image are background subtracted, but foreground contam-
ination from various sources is still clearly visible. Image taken from Locatelli et al. (2024). Right:
X-ray surface brightness profiles of stacked Milky Way-mass galaxies in eRASS:4 from Zhang et al.
(2024) showing a signal of the CGM out to the virial radius. The figure shows the stacked surface
brightness after masking and correction of misclassifications (SX,stack, green points), a model for
the unresolved AGN and X-ray binaries (SX,AGN+XRB+SAT, orange band), and the stacked CGM
X-ray brightness (SX,stack with AGN + XRB subtracted, purple band). The red-dashed line shows
the best fit β-model for SX,CGM, and the green dash-dotted line the virial radius.

2024). Modeling of the emission and absorption lines, additionally requires the careful subtrac-
tion of multiple foreground sources (local hot bubble, galactic disc, solar wind charge exchange)
in addition to an instrumental and cosmic X-ray background (Ponti et al., 2023). This has also
made constraining the inner regions r < 3 kpc of the corona challenging, since in this part of the
sky contaimination from the galactic disk is most significant, and the emission from the Fermi
and eROSITA bubbles also has to be taken into account (?).

In order to model the density of the corona, the temperature and metallicity of the gas often
have to be assumed. Typically, the corona is assumed (motivated by spectral fitting, Henley &
Shelton 2013; Ponti et al. 2023) to be isothermal with a temperature of T ∼ 2 × 106 K (?Locatelli
et al., 2024), but the metallicity still varies a lot from Z = 0.1 Z⊙ (Locatelli et al., 2024) to 0.3 Z⊙ (?Li
& Bregman, 2017) and up to even 0.5 Z⊙ (Faerman et al., 2017). In order to find a proper estimate
of the coronal density, the metallicity is important since a low metallicity gas needs a higher den-
sity to produce the same emission compared to a higher metallicity gas. Recently, Ponti et al.
(2023) have measured the metallicity of the corona to be considerably lower than the above as-
sumptions, between Z = 0.052 – 0.072 Z⊙, but with at most Z ∼ 0.1 Z⊙ still possible, considering
the uncertainty in the extragalactic cosmic X-ray background. Such a metallicity is considerably
lower than what has been used in many works (Miller & Bregman, 2013; ?; Faerman et al., 2017;
Li & Bregman, 2017) and therefore can have a significant impact on the inferred density and total
mass of the Milky Way corona.

1.2.2 The corona around external galaxies

The corona around other nearby galaxies has mostly been observed in individual galaxies by
directed pointings of XMM-Newton (Dai et al., 2012; Bogdán et al., 2013; Li et al., 2016; Anderson
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et al., 2016; Das et al., 2020), but these observations fail to detect emission of the corona beyond
70 kpc. More recent observations from the eROSITA all-sky surveys (eRASS:4) (Zhang et al., 2024)
have used stacking of multiple galaxies within M⋆ = 1010 – 1012 M⊙ to successfully measure
the emission from the corona beyond 100 kpc up to the virial radius, confirming the theoretical
predictions about its extent. Moreover, assuming Z = 0.1 Z⊙ and T = 0.5Tvir, where Tvir is the
virial temperature, for Milky Way-mass galaxies, the total mass of these coronae would be enough
to account for all the missing baryons. However, a higher metallicity and/or temperature, would
imply a significantly lower mass within the virial radius. To obtain a mass that is comparable to
the mass predicted by the cosmological baryon fraction, the corona would then have to extend
beyond the virial radius.

As an alternative to observing the X-ray emission of the gas, the thermal Sunyaev-Zeldovich
Effect (SZE) (Sunyaev & Zeldovich, 1970) can also be used to measure the gas in the galactic
corona. When radiation from the Cosmic Microwave Background (CMB) passes through a hot
plasma, photons will scatter off the free electrons and this will produce a distortion in the spec-
trum. Since the CMB is an almost perfect black-body at TCMB = 2.726K over the entire sky, these
distortions can be measured and converted to a total gas mass of the plasma (Birkinshaw, 1999;
Cimatti et al., 2019). Due to the strength of the signal, this technique has mainly be used to study
galaxy-clusters (for example, Vanderlinde et al., 2010) and massive early type galaxies (Greco
et al., 2015), but is now observable for lower masses. Bregman et al. (2022) measured the SZE of
the corona around 12 spatially resolved L⋆ galaxies. Stacking 11 of the lowest brightness galax-
ies gives a signal up to at least 250 kpc and the estimated average mass of the stacked coronae
turns out to be 30% of the missing baryons. Das et al. (2023) used the SZE to measure the coronal
mass for galaxies between M⋆ = 1010.6 – 11.3M⊙ and concluded that the corona of galaxies with
M⋆ = 1010.9 – 11.2M⊙ could be massive enough to reach the cosmological baryon fraction.

1.3 Gas accretion
We have seen that star forming galaxies require accretion of fresh new gas from the CGM to be
able to continue forming stars (Fraternali & Tomassetti, 2012). Gas accretion is typically described
as either hot-mode or cold-mode, depending on whether the halo is massive enough to shock heat
the gas or not (Dekel & Birnboim, 2006; Dekel et al., 2009; Kereš et al., 2009). The mass threshold,
is given by the shock-heating mass Msh, which varies slightly with redshift and is around Msh ≈
(5 – 7) × 1011 M⊙ (Cimatti et al., 2019). If a galaxy is accreting in cold-mode (M < Msh), gas
entering the halo from the IGM is not shock heated, allowing the cool T ∼ 104 K gas to reach the
inner galaxy. This type of gas accretion can take place in the form of filaments. Gas in hot-mode
accretion (M > Msh), instead, will be shock heated when it enters the halo and consequently will
fill the halo with a diffuse atmosphere of gas around the virial temperature. This corona can still
feed the galaxy if it is able to cool, for example via fountain accretion (Fraternali, 2017) or the
formation of cooling flows (Stern et al., 2019; Hafen et al., 2022).

Since haloes grow over time via hierarichal merging, and the shock heating mass Msh stays rel-
atively constant over time, most haloes at high redshifts are expected to be accreting gas through
cold-mode accretion. However, once they grew massive enough, accretion transitioned to hot-
mode, so this mode is mostly important in the later stages of galaxy evolution. For the Milky Way
halo, this transition from cold- to hot-mode accretion takes place somewhere after z ≈ 2 (van de
Voort et al., 2011) and but before z ≈ 1.5 (Grønnow et al., 2024), which implies most of the stars
in the Milky Way should have formed from the cooling of the corona, and not from cold-mode
accretion.

1.3.1 Hot-mode accretion

When the halo of a galaxy is massive enough for the IGM gas to virialize as it is accreted, a large
diffuse atmosphere, or hot CGM, forms around the galaxy. Dekel & Birnboim (2006) used this
to help show why the star formation in massive haloes quenches. However, hot-mode accretion
cannot correspond to the end of accretion of star-forming gas as in Milky Way-mass haloes star
formation continues at a relatively constant rate, even after the formation of the hot corona. In
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Figure 2: Schematic picture of the fountain accretion model, where a cold cloud is ejected from the
disc by supernova feedback and travels through the hot coronal gas on a semi-ballistic trajectory.
In the wake of the could, turbulent mixing between the cold and hot gas will trigger cooling of
the hot gas. This cooled coronal gas will then fall back onto the disc together with the cloud gas,
and be available to feed the star formation. Image taken from Fraternali et al. (2013).

the regime of hot-mode accretion, we therefore need a pathway for the gas to accrete from the hot
CGM onto the galaxy, where it can feed star formation.

For massive cluster-scale haloes, there has long been the idea of gas from the hot CGM los-
ing energy by radiative cooling and consequently compressing, forming a steady cooling flow
towards the centre of the cluster (Fabian et al., 1984; Kaiser & Binney, 2003). Such a cooling flow
would produce accretion rates of the order 10 – 100M⊙/yr and a central spike in emission in mas-
sive galaxies, both which are not observed. Radiative cooling of the gas must still take place,
however, in order to stop the formation of a cooling flow, there needs to be a heating source that
counterbalances the cooling, which is most likely a central AGN (McNamara & Nulsen, 2007).
The sitiuation can be different in galaxy-size haloes, where cooling flow models have been re-
cently revisited by Stern et al. (2019); Hafen et al. (2022). They build analytical solutions for a
corona with steady-state cooling flows (see Section 2.5) that are able to reproduce the observed
density distribution of the Milky Way (Li & Bregman, 2017) using a mass accretion rate equal to
the Milky Way’s observed SFR.

In an alternative scenario, thermal instabilities in the corona could form cool clouds through
precipitation, and once formed they are pressure supported in the ambient corona. These clouds
then lose orbital energy by ram pressure drag and eventually accrete onto the galaxy (Sormani &
Sobacchi, 2019; Voit, 2021). However, several studies have shown that the formation of thermal
instabilities are suppressed, disfavouring this accretion scenario (Binney et al., 2009; Joung et al.,
2012).

Instead of a cooling mechanism that requires spontaneous thermal instabilities, the instabili-
ties can also be induced by pertubations generated by the cool clouds ejected from the ISM, for
instance by supernova-powered superbubbles (Fraternali, 2017). Such clouds will typically be
ejected from the disc at high velocities and pass through the corona on a semi-ballistic trajectory.
When this cool cloud then comes in contact with the hot corona, it will cool parts of the hot gas via
turbulent mixing. The cooler coronal gas will then condense onto the wake of the cloud, which
will return to the galaxy with this additional mass (Marinacci et al., 2010; Fraternali et al., 2013).
These galactic ‘fountains’ can therefore be a medium for the galaxy to accrete gas effectively. A
sketch of the fountain accretion model can be seen in Figure 2, originally from Fraternali et al.
(2013).

1.4 Fermi and eROSITA bubbles
The Fermi and eROSITA bubbles (we will refer to them as the Milky Way bubbles) are large scale
(height ∼ 10 kpc), highly energetic structures, that are located above and below the Milky Way
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Figure 3: A composite, all-sky image of the Fermi and eROSITA bubbles. The cyan shows the
extended X-ray emission from eROSITA (Predehl et al., 2020), which completely encloses the GeV
emission from the Fermi bubbles shown in red (Selig et al., 2015). Image taken from Predehl et al.
(2020).

disc. The bubbles have been discovered relatively recently in all sky gamma-ray (Fermi-LAT, Su
et al., 2010) and X-ray (eROSITA, Predehl et al., 2020) surveys. Partial features of these bubbles
were observed earlier, like the North Polar Spur in the X-ray ROSAT survey (Snowden et al.,
1997), which turned out to align with the edge of the eROSITA bubbles. This feature was already
interpreted early on by some Sofue (2000); Bland-Hawthorn & Cohen (2003) as the edge of a su-
perwind bubble. The Fermi bubbles also coincide with the microwave haze (WMAP Finkbeiner,
2004), and both also emit a very hard spectrum, making their connection very likely (Yang et al.,
2018). A composite image of the emission of the Fermi (Selig et al., 2015) and eROSITA (Pre-
dehl et al., 2020) bubbles can be seen in Figure 3. Here, we can clearly see the spatial correlation
between the two structures, where the Fermi bubbles (red) are completely encompassed by the
eROSITA bubbles (cyan).

The X-ray emmissivity of the eROSITA bubbles is mostly due to the thermal emission of the
gas in the bubble and its shell. Most of the emission peaks in the 0.6 – 1.0 keV energy band of
eROSITA which, taking into account the telescope response, corresponds to emission of a hot hot
kBT = 0.3 keV gas (Predehl et al., 2020). The Fermi bubbles are visible in gamma-rays, but here
the exact emission mechanism is not yet certain. It is expected that the gamma-rays are produced
by cosmic ray (CR) interactions, which can be hadronic, where the gamma-rays will be produced
by collisions between protons and the hot gas via the decay of neutral poins, or leptonic where
electrons generate gamma rays via inverse-Compton scattering of the interstellar radiation field.
These models also depend on the mechanism that accelerates the CRs, which again is intimately
tied to the formation mechanism of the bubbles (Yang et al., 2018).

Although several theories for the formation of the Milky Way bubbles exist, their exact origin
is still unkown. Due to their position above and below the Milky Way galactic centre (GC), an
energetic outburst from this region is a likely contender. This typically leaves two main candidates
for the source of the bubbles, nuclear star formation (NSF) (Crocker et al., 2015) or past AGN
activity from the central supermassive black hole, called Sgr A∗ (Zhang & Guo, 2020; Yang et al.,
2022). Miller & Bregman (2016) and Predehl et al. (2020) both model the power of a continuously
injecting central source, assuming the bubbles are a massive galactic outflow. They estimate the
mechanical power of the source to be of the order of a few 1042 erg s−1, together with an age
of these bubbles of a few Myr to a few tens of Myr. Yang et al. (2022) instead show, using a
hydrodynamical simulation, that a very short jet activity of time-scales of 0.1Myr with a power
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of the order 1044 erg s−1 is able to create the Milky Way bubbles as well.
Even though the corona of the Milky Way is orders of magnitudes larger than the bubbles,

they still share an intimate connection. For instance, estimates of the formation of the Milky Way
bubbles depend on the density of the ambient medium, where a higher inner density would result
in a brighter X-ray signature near the galactic disc (Zhang & Guo, 2020). Moreover, the evolution
of the corona is influenced by galactic feedback. For instance, powerful feedback, for example
from an AGN, is able to heat gas in the corona, which would in turn decrease gas accretion and
star formation (Fielding et al., 2020; Voit et al., 2024). Conversely, more gentle supernova feedback
could act to stimulate gas accretion through the fountain accretion model (Fraternali, 2017). The
Milky Way bubbles are a good example of galactic feedback in the Milky Way, and can therefore
be useful to study the corona, and vice-versa.

1.5 Overview of the thesis
In this thesis, we study the evolution of a Milky Way-like corona using a semi-analytic evolution-
ary model. In Chapter 2, we explain the model, the various heating/cooling prescriptions, initial
conditions for the evolution and numerical details of the model. At the end of the section, we
also introduce a different analytic model of cooling flows in Milky Way-mass haloes which we
compare our results to. Our results are presented in Chapter 3, separated in the evolution with
only classical collisional ionisation equilibrium (CIE) cooling, cooling computed from non equi-
librium codes with heating from the extragalactic ultraviolet background (UVB) and finally with
heating from a central source. Here we also compare the results to the analytic model of cooling
flows, and put our results in a physical context. In our discussion (Chapter 4), we compare the
powers of possible sources of the Milky Way bubbles with our results, discuss assumption and
some numerical details, and test another analytic model for cooling flows with rotation. Finally
we summarize our findings and present our conclusions in Chapter 5.
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CHAPTER 2 METHODS

2 Methods

In this chapter, we present the model that we use to evolve the corona of the Milky Way. In Sec-
tion 2.1 we describe the physics of the model, show how we integrate the properties of the corona
at a given timestep and derive how the entropy evolves as a consequence of heating or cooling.
Then, we describe the various cooling and heating prescriptions that we employ in Section 2.2.
The numerical details of the integration and evolution, and our initial conditionsfor the Milky
Way’s corona are in Sections 2.3 and 2.4 respectively. Finally, Section 2.5 describes an analytic
model from the literature that describes a corona with steady-state cooling flows (Stern et al.,
2019), which we use to compare our results with.

2.1 Physical model
The model that we will use in this thesis was introduced by Kaiser & Binney (2003) to investigate
the evolution of the hot intracluster gas in the Hydra cluster. They assume that the gas around
the Hydra cluster to be hydrostatic equilibrium, but evolves by the formation of a cooling flow
through radiative cooling. Starting from an initial condition, as observed in X-ray by David et al.
(2001), they evolve the gas with their model until a high (ne > 0.3 cm−3) density in the centre is
reached and the cooling becomes too high to proceed with the integration. At this time, 284Myr
after the start of the evolution, they assume a cooling catastrophy occurs occurs in the centre,
and as a consequence the central AGN erupts and reheats the gas in the system. From this, they
conclude that the next AGN outburst should occur in roughly the same time.

We apply the same model to the Milky Way corona but instead of considering only radiative
cooling, we study how it evolves under various cooling and heating processes. Binney et al. (2009)
have applied this model to a Milky Way-like corona as well, but only to study the formation
of thermal instabilities. In this section, we focus on setting up and deriving the equations that
describe the corona’s pressure and mass, given a relation between the mass and entropy, and
how such a corona evolves over time. We solve these equations numerically, a procedure that we
describe in Section 2.3.

2.1.1 Static corona

For this model, we assume the corona to be a spherically symmetric, non-rotating body of gas,
approximately in hydrostatic equilibrium. The potential of this system is assumed to be domi-
nated by the potential of the dark matter halo Φ(r) ≈ ΦDM(r), which we assume stays constant
over time. Hydrostatic equilibrium for the corona then reads

dP (r)

dr
= −ρ(r)dΦDM(r)

dr
, (1)

where P (r) and ρ(r) are the pressure and density of the gas at radius r. Moreover, given the
spherical symmetry, the variation of the gas mass within radius r, M(r), is given as

dM(r)

dr
= 4πρ(r)r2. (2)

To solve the above equations, we need to know the density of the corona, which is actually
one of the quantities that we aim to compute. To get around this we introduce another quantity,
the entropy-index of the gas σ, which is defined as

σ ≡ P

ργ
, (3)

where the adiabatic index γ = CP/CV, is the ratio of the specific heats under constant pressure
(CP) and constant volume (CV). For a monatomic gas of point particles there are no internal
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degrees of freedom, so the adiabatic index is equal to γ = 5/3. The entropy-index relates to the
specific entropy (entropy per unit mass) as

S = CV lnσ + constant. (4)

Substituting Equation 3 back into Equations 1 and 2, one obtains (dropping the explicit depen-
dence on r)

dP

dr
= −

(
P

σ

)1/γ
dΦDM

dr
, (5)

dM

dr
= 4π

(
P

σ

)1/γ

r2, (6)

which we can solve numerically as two coupled differential equations, given a relation between
entropy-index and mass σ(M), and boundary conditions for pressure and mass. The boundary
condition for M(r = 0) = 0 is trivial, but we do not know P (r = 0) beforehand, since this will
depend on the density and temperature at r = 0, which in turn can vary over time. We therefore
assume the corona is in pressure equilibrium with the external IGM, and no gas flows in or out of
the system. The corona will then have a total mass Mtot at some outer radius Rout

M(Rout) ≡Mtot, (7)

where Mtot stays constant over time, and Rout is allowed to decrease (or increase) when the corona
contracts (or expands). The pressure at Rout, then, has to be equal to the pressure of the external
medium (P∞), giving

P (Rout) ≡ P∞, (8)

which will remain constant over time. This then gives us an outer boundary condition for the
pressure, making the problem of solving Equations 5 and 6 a two-point boundary value problem.
We solve this by applying a shooting method (see Section 2.3.2), where we iteratively guess P (r =
0) until the condition in Equation 8 is satisfied.

2.1.2 Time evolution

The corona obtained in the previous section will be in equilibrium, and stay that way forever if
the entropy-mass relation does not change. Typically, there are processes that are able to add or
remove entropy from the system, for instance through radiative cooling, or injection of energy by
feedback from supernovae or AGN. We treat the evolution of the corona as a series of different
equilibrium stages, or time-steps, where the evolution between the stages is based on the change
in the entropy-mass relation, which we derive in this section. We note that it is most useful to
focus on the change in entropy, as opposed to change in energy, since entropy is directly related
to radiative heating and cooling, where energy also depends on work done by external factors.
For example, when the system is cooling the system might lose some energy, but can regain part
of it due to work done by the surrounding IGM when the system contracts.

The relation between specific entropy and heating and cooling processes is given by the heat
equation (Clarke & Carswell, 2007)

ρT
dS
dt

= −L(T, nH, Z, r, . . .), (9)

where we neglect all non-radiative terms, and define L1 as some heating / cooling function of
energy per unit time per unit volume which can depend on various properties of the gas, like
temperature, density and metallicity. We take the time derivative of the specific entropy: (Equa-
tion 4)

Ṡ = CV
σ̇

σ
, (10)

1This is similar to the quantity Q̇ used for any change in heat in the system, but this typically also includes other
processes like thermal conduction. So, to avoid confusion, we use L to denote the radiative energy exchange processes
and volume. Using this definition, L is equal to ρL as defined in Clarke & Carswell (2007).
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and put this back into the heat equation (Equation 9) to obtain

ρTCV
σ̇

σ
= (µmpCV)nT

σ̇

σ
= −L, (11)

where we used ρ = µmpn, with µ being the mean molecular weight, mp the proton mass and n
the number density of all particles in the gas. We can isolate σ̇ and use CVµmp = kB/(γ − 1) (see
Appendix A.1), where kB is the Boltzmann constant, which then gives us

σ̇ = −σγ − 1

kB

L
nT

. (12)

To numerically find how entropy evolves, we use the Euler Method for solving differential
equations (Press et al., 2007), which uses forward-difference to approximate the time derivative
of the entropy-index

σ̇(t) ≈ σ(t+ δt)− σ(t)

δt
, (13)

and then isolates σ(t+ δt)
σ(t+ δt) ≈ σ(t) + σ̇(t)δt, (14)

to give the entropy at the next time step σ(t + δt), as a function of the entropy at current time t,
the analytic derivative σ̇ and the step-size δt. Finally, we then use Equation 12 to find how the
entropy changes as a function of cooling/heating as evaluated using the physical properties of
the corona at time t:

σ(t+ δt) ≈ σ(t)− σ(t)
γ − 1

kB

L
nT

δt, (15)

where σ(t) and σ(t+ δt) are both functions of M , and all the other quantities are evaluated at the
radius r that contain the mass M at time t.

With the new entropy-mass relation known at time t + δt, we can solve Equations 5 and 6 to
find P (r),M(r) at t+δt, which we then use to find σ(t+2δt) and so on. Repeating these two steps
allows us to compute how the corona evolves over time. We note that Equation 15 is more general
than Equation 10 from Kaiser & Binney (2003), which only considers radiative cooling. Of course,
the evolution will mostly be determined by our choice of L, which we discuss in Section 2.2.

It is instructive to rewrite the equations above in terms of a characteristic time-scale in which
the energy of the system changes significantly (tϵ) due to radiative cooling or heating. For a nearly
static fluid, where the velocity of the gas is much smaller than the sound speed, v ≪ cs, the total
energy of the system is approximately equal to its internal energy

ϵ ≈ U =
kBnT

γ − 1
, (16)

where ϵ and U are the total and internal energy per unit volume. We assume the internal energy
changes only through radiative cooling or heating, so

ϵ̇ ≈ −L. (17)

We then define tϵ to be the timescale in which the energy changes significantly, as the ratio of the
total energy and its derivative

tϵ ≡
ϵ

|ϵ̇|
≈ kBnT

(γ − 1)|L|
, (18)

where we take the absolute value of ϵ̇, since L can be positive when the system is cooling down,
or negative when the system is heating up. When we substitute the characteristic time-scale in
Equation 12, we get

tϵ =
σ

|σ̇|
, (19)

which shows that we can also interpret tϵ as the time-scale in which the entropy (index) changes
significantly. Finally, Equation 15 with the characteristic time-scale substituted then reads

σ(t+ δt) ≈ σ(t)

(
1− sgn(L)

δt

tϵ

)
. (20)
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where we multiply by the sign of L to account for the absolute value of L in Equation 18.
This form of the equation clearly shows us that change in entropy of the system is highest,

whenever the characteristic time-scale is small. Moreover, when cooling is dominant (L > 0), the
entropy in the system will decrease, while heating (L < 0) will make the entropy increase. We
also see that whenever the system is cooling, Equation 20 shows us that in order for the entropy
to stay positive, the step-size should be limited to δt < tϵ. However, since we are using an Euler
integration scheme, we have to keep the time-size low to reduce accumulation of large errors, so
in practice we always keep δt < tϵ/10 (see Section 2.3.3).

2.2 Cooling and heating processes
The evolution of the hot coronal gas will mostly be determined by the processes that remove
entropy from or inject entropy into the gas. In our model, L describes this as the rate per unit
volume (erg s−1 cm−3) that is heated (L < 0) or cooled (L > 0). In this Section, we describe three
prescriptions for cooling and/or heating that we use to evolve the corona. These are the scenario
of only cooling from a classical cooling function, cooling with heating from the extragalactic UVB,
and cooling with heating from a central source.

Typically, the most important factor which determines how much a gas cools radiatively, de-
pends on temperature and metallicity. The temperature mainly determines the state of hydrogen
atoms in the system, ionised or neutral (ionised for T ≳ 104 K) and for an ionised gas, which pro-
cesses will be important in ionisation/recombination and (de-)exitation of atoms in the gas. For
the corona of the Milky Way, with a temperature around T ∼ 106 K being significantly above the
threshold for ionisation of H and He, we consider the system to be fully ionised. The metallicity
of the gas is mainly important at temperatures around T ∼ 105 – 106 K, since here the majority
of the cooling comes from metal ions (C, O, Fe, Si, N and Ne). Therefore, a gas that has a higher
fraction of metals, will therefore also cool more efficiently (Maciel, 2013; Cimatti et al., 2019).

For this thesis, we assume the gas to be always fully ionised, which implies that the atomic
number density nt (neutral atoms and ions) will be equal to the number of ions ni

nt ≈ ni. (21)

The total number of particles, is then
n ≈ ni + ne (22)

where ne is the number density of electrons, where we assume the ratio between the ions and
electrons to be ne ≈ 1.2ni due to the contribution of Helium. For the mean molecular weight,
we take a value of µ = 0.62. These assumptions will only be valid for temperatures above T ≥
105 K, and we would need different values for lower temperatures. In practice, however, the
temperature in the evolution will remain above 105 K (see discussion in Section 4.2.4), so we do
not need to consider calculations for a medium which is not fully ionised.

2.2.1 Radiative cooling in collisional ionisation equilibrium (CIE)

The density of the gas, assuming it is optically thin such that radiation can escape the system,
will mainly determine the rate of collisional ionisation and collisional excitation. If the density
of the gas is high enough for these collisions to dominate ionisation, we can approximate the gas
to be in collisional ionisation equilibrium (CIE), which assumes that there is a perfect balance
between collisional ionisation and recombination rates. In addition, CIE assumes there is no
heating from the photoionisation. Classically, the CIE cooling functions from Sutherland & Dopita
(1993) (hereafter SD1993) have been used, so we will use them as our most basic prescription for
cooling (see Section 2.2.1). Using such a cooling prescription is also most analogous to the original
application of the model, by Kaiser & Binney (2003) on the evolution of the Hydra cluster.

Assuming CIE, the rate of radiative cooling can be written as

L = nentΛCIE(T,Z) (23)

where ne and nt are the electron and atom density of the gas, and ΛCIE(T,Z) is the CIE cooling
function (in erg s−1 cm3) from SD1993 that only depends on temperature and metallicity of the
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Figure 4: Net cooling functions (cooling Λ minus heating Γ) from SD1993 (blue line, Γ = 0) and
CLOUDY (Ferland et al., 2013) with photoionization from extragalactic UVB from Haardt & Madau
(2012) for hydrogen densities in the range nH = 1 − 10−6 cm−3 (black lines). The black and blue
lines indicate that cooling is dominant, and the gray lines denotes that heating is dominant. The
figure on the left shows the net cooling functions for Z = 0.1Z⊙ and the figure on the right for
Z = 0.3Z⊙.

gas. The blue line in Figure 4 shows how ΛCIE(T,Z) varies as a function of temperature, for two
metallicities. In this case, there is no heating in the system, so the sytem can cool indefinitely to
temperatures below T ≲ 104 K, where the gas no longer will be ionised and CIE no longer holds.
We therefore put an artificial temperature floor in the cooling function

ΛCIE(T,Z) = 0, for T ≤ 104.2 K, (24)

to halt the cooling.
For a system that is only cooling (L > 0), the characteristic time-scale in which energy changes

significantly, becomes equal to what is commonly defined as the cooling time tcool (Cimatti et al.,
2019)

tϵ = tcool, for L > 0. (25)

In this case, Equation 18 then becomes

tϵ = tcool ≈
2.2kBT

(γ − 1)neΛCIE(T,Z)
, (26)

where we have used Equations 23 together with nt ≈ ni, n ≈ ne+ni and ne ≈ 1.2ni to rewrite the
characteristic time-scale in terms of ne and ΛCIE.

2.2.2 Cooling with heating from photoionisation

Since the Milky Way corona can have a density as low as ne ∼ 10−5 cm−3 at large radii (?), assum-
ing CIE will no longer be valid. Our second cooling prescription therefore uses CLOUDY (Ferland
et al., 2013) to calculate a rate of cooling which is also valid at these lower densities. CLOUDY is a
full plasma simulation code, that is able to calculate the cooling or heating rates in non-equilibrium
gasses. It is therefore able to calculate rates for densities where CIE is no longer valid. Moreover,
it is possible to consider heating from photoionisation as well, where we choose to add photoioni-
sation from the local extragalactic ultraviolet background (UVB) at z = 0 (Haardt & Madau, 2012).
This source of photoionisation should be present throughout the Milky Way corona, and could
reduce the net cooling rate of the gas.

The cooling/heating rate are given by tables from CLOUDY, which are identical to those used
by Afruni et al. (2023), they directly give

L = LCLOUDY(T,Z, nH), (27)
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where nH is the number density of hydrogen atoms (neutral and ionised). Obtaining the hydro-
gen number density from the density ρ is not immediately obvious, since this depends on the
metallicity of the gas. However, for a given metallicity Z, the proportionality between nH and ρ
is fixed for all T :

nH = a(Z)ρ, (28)

where a(Z) is this proportionality constant depending on metallicity. We compute a(Z) directly
from the tables. These tables are then interpolated using a a Piecewise Cubic Hermite Interpolat-
ing Polynomial (PCHIP) (Fritsch & Butland, 1984), because linear interpolation was not accurate
enough and quadratic or higher order methods occasionally produced incorrect values due to
dramatic oscillations between control points in the interpolating polynomial.

The rates from CLOUDY with UVB for varying densities can be seen in Figure 4 as black or grey
lines depending on whether cooling or heating dominates. We see that around T = 105 the CIE
cooling function SD1993 is significantly higher, compared to the highest density in CLOUDY (nH =
1 cm−3) which should also approach CIE. Moreover, for densities (nH = 10−5 – 10−6 cm−3), we see
that cooling is significantly lower compared to higher densities. For these low densities, heating
also becomes dominant at and below the temperature T ≲ 3× 105 K.

As opposed to the case of SD1993, there is now a heating factor from the UVB which is most
significant at low temperatures (103 – 104 K depending on metallicity). We therefore no longer
need a temperature floor to halt the cooling at these low temperatures.

2.2.3 Heating from a central source

So far the cooling and heating processes we have considered are all based on physical quantities
of the gas temperature, density and metallicity and are independent on the position within the
corona. However, the corona is most likely influenced by feedback from the galaxy in the cen-
tre of the system only, which would make the heating/cooling prescription dependent on radius
r. Our main motivation for adding such a central source is the presence of the Milky Way bub-
bles (Su et al., 2010; Predehl et al., 2020) which likely have been created by some energetic source
in the galactic centre (GC) of the Milky Way. The implementation of this central heating source,
follows an approach motivated by AGN feedback models from simulations (Springel et al., 2005;
Weinberger et al., 2017). In these models, given some power of an AGN Ėtot (typically calculated
based on the accretion rate of the AGN), they inject this energy, weighted by a kernel, into the gas
as thermal energy. Such a kernel Ė(r) is dependent on position and can have any shape, as long
as its total power integrated over the entire volume equals Ėtot

Ėtot =

˚
Ė(r)dV . (29)

We note here that if the power Ėtot is energy per unit time, then the kernel Ė(r) will be energy
per unit time per unit volume. For this work, we use a spherically symmetric Gaussian kernel,
centered at r = 0, which, following the above condition for normalisation, is then given as

Ė(r) =
Ėtot

(2πλ2)
3/2

exp

[
− r2

2λ2

]
, (30)

where λ is the standard deviation, which defines the length scale of the kernel. More precisely, λ
defines the radius where 68% of the total energy is given to the gas inside this radius.

Finally, we include this central heating based on position of the gas into our model by adjust-
ing L based on CLOUDYwith the UVB. The cooling/heating rate of a gas with a given temperature,
density and metallicity at radius r from the centre is then simply the rate calculated by CLOUDY,
based on properties of the gas, plus the energy injected at position r by the central source:

L = LCLOUDY(T, nH, Z) + Ė(r) (31)

where the central power Ėtot, and scale λ are constants set depending on the model run.
We note that so far, the heating and cooling have been via radiation only. The thermal energy

injected from the central source, however, is best interpreted as mechanical energy, since it does
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not influence the calculation of the cooling/heating rates by CLOUDY. Radiative feedback from the
central source may be important as well (for instance from Sgr A∗ Bland-Hawthorn et al., 2019),
but is not considered here (see Section 4.4).

2.2.4 Convection

The various energy exchange processes described above have no constraints that would keep the
corona safe from instabilities. A region that decreases in entropy with outgoing radius, ∂S

∂r < 0,
will be convectively unstable (Balbus, 1995; Clarke & Carswell, 2007). In our initial condition
(see Section 2.4) a negative entropy gradient exists around r = 1kpc, and evolving the corona
results in this negative gradient increasing even further. Moreover, the prescription that includes
heating from a central source will only increase the entropy in the centre, which will result in a
large convectively unstable region if the power of the source is high enough.

We therefore implement a simple form of convection similar to what is done in Binney et al.
(2009), that we can apply to our initial condition to remove the unstable region, and apply at each
time-step to avoid unstable regions from forming. The method works iteratively and follows

1. find a region that is convectively unstable,

2. calculate the mass-weighted average entropy-index in this region σ̄,

3. set the entropy-index of the entire region to this average value,

4. repeat if convectively stable regions still exist.

The mass-weigthed average entropy-index for the convectively unstable region is given by (see
Appendix A.2)

ln σ̄ =

∑
i ln[σ(ri)]T (ri)m(ri)∑

i T (ri)m(ri)
(32)

where m(ri) is the gas mass in a shell at radius ri, T (ri) the temperature at ri, and σ(ri) is the
entropy-index at ri before the convective method is applied. The sum over i indicates that we sum
over all radii ri in the region with decreasing entropy-index. We note that we have to sum (and
not take the integral), since we apply this method to our corona which we integrate numerically.
The values of entropy, temperature and mass as a function of radius are therefore discrete and
the size of these ‘cells’ is determined by the radial step-size of the integrator of the corona (see
Section 2.3.1). We consider the shell at ri to extend from ri−1 to ri, so the mass in the shell is then
given by the difference in total mass m(ri) = M(ri)−M(ri−1), starting at m(0) = 0.

Since we remove convectively unstable regions at each time-step, the time-scale on which the
convection takes place should ideally be of the same order. We discuss the implications of this in
Section 4.2.3.

2.3 Numerical details
In Section 2.1 we have outlined a model that can describe the evolution of a spherical corona in
consecutive phases of hydrostatic equilibrium. The evolution of this model proceeds through two
main steps that are performed numerically

1. Given some entropy-mass relation at time t σt(M), and time independent boundary condi-
tions for M(r = 0) = 0 and P (Rout) = P∞, intregrate Equations 5 and 6 to find the pressure
Pt(r) and mass Mt(r) profiles of the corona at time t.

2. Given the properties of the corona at time t, Pt(r),Mt(r), σt(M), update the entropy-mass
relation for the next time-step σt+δt(M), using Equation 15.

In this Section we will explain the details of the numerical integration of a corona (Section 2.3.1)
given some P (r = 0),M(r = 0) and σ(M). We then show in Section 2.3.2 how we repeat this
integration with different P (r = 0) until we satisfy the outer boundary condition P (Rout) = P∞.
Sections 2.3.3 and 2.3.4 describe the details of the update in entropy and the stopping conditions
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for the evolution. Finally, Section 2.3.5 explains how we compute the mass accretion rate and
velocity of the gas, given a fully evolved corona. Figure 5 shows a schematic overview of how we
evolve the corona.

2.3.1 Integration of the static corona

Equations 5 and 6 are two coupled first order ordinary differential equation (ODE). We solve these
equations numerically with a Runge-Kutta method (Press et al., 2007), given initial conditions for
P (0),M(0) and entropy-mass relation σ(M). We make solving the ODEs’s explicit, by casing
Equations 5 and 6 into normal form (Landau et al., 2015):

dy

dr
= f(r,y), y = [P,M ]

T
, f(r,y) = [f0(r,y), f1(r,y)]

T
, (33)

dP

dr
= f0(r,y) = g(r)

(
P

σ(M)

)1/γ

, (34)

dM

dr
= f1(r,y) = 4πr2

(
P

σ(M)

)1/γ

, (35)

where the acceleration due to the gravitational potential g(r) is defined as g(r) ≡ −dΦ(r)/dr and
is assumed to be a known analytic function. Since we solve the equations numerically, the result-
ing pressure and mass profiles are discrete and only known at specific radii determined by the
step-size of the integrator. This also means that σ(M) is discrete, so we use linear interpolation2

to evaluate σ for any M between 0 and Mtot.
The integrator we use to get P (r),M(r) is an eighth order (O(h8), where h is the step-size)

Dormand-Prince (Dormand & Prince, 1980) embedded method (Dopr8533) outlined by Press
et al. (2007) in Section 17.2.4, based on the implementation of Hairer et al. (1993). This method
uses a PI (proportional- and integral feedback) stepsize controller, to determine the step-size in r
at each step of the integrator. This assures that the method has a good balance between precision,
by not taking steps that are too large, and computational cost, by not taking steps that are too
small. Moreover, at each step the integrator is able to provide dense output, meaning it is able to
evaluate P (r),M(r) for ri−1 ≤ r ≤ ri, where ri−1 and ri are the radius at the previous and current
step of the integrator, up to seventh order.

The integrator proceeds with steps in r, starting from r = 0, and stops at r = Rout. We,
however, do not know Rout a priori since it is defined to be the radius where the total mass is
equal to Mtot (Equation 7). To find Rout, we integrate until the mass at the current step M(ri)
exceeds Mtot. At this point, we know that Mtot is between mass of the previous and current step,
which is equivalent to Rout being between the radius of the previous and current step

M(ri−1) ≤ (Mtot ≡M(Rout)) < M(ri) ⇐⇒ ri−1 ≤ Rout < ri. (36)

We then find Rout using a root finding method on the dense output of the integrator between ri−1

and ri. The root finding method is a Secant method from Press et al. (2007), since the dense output
is a cubic polynomial and is therefore guarenteed to be smooth around the root. We modify the
implementation of the Secant method slightly to stop the root finding method whenever M(r)−
Mtot < Mtot/10

6.
Finally, the result of the integration is that we know the pressure P (r) and mass M(r) profiles

for discrete r between 0 and Rout :

integrate[P (0),M(0), σ(M)] → P (r),M(r) for r ∈ [0, r2, r3, . . . , rN−1, Rout]. (37)

2.3.2 Boundary condition for pressure

The integrator from the previous section is able to solve Equations 5 and 6 numerically given
pressure and mass at r = 0. However, as we have described in Section 2.1.1, our boundary

2We tried higher order (quadratic and quintic) interpolation as well, but due to excessive oscillations between control
points these schemes gave incorrect values.

3C++ implementation available at the webnote: Numerical Recipes Software 2007, “Routine Implementing an
Eighth-order Runge-Kutta Method,” Numerical Recipes Webnote No. 20 https://numerical.recipes/webnotes/
nr3web20.pdf
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Figure 5: Schematic of the different steps involved in the evolution, starting from initial condi-
tions (Section 2.4). The core loop of the evolution, inside the dashed box, consists of integrating
the corona (Sections 2.3.1 and 2.3.2), computing quantities for the time-step (Section 2.3.3), check-
ing stopping conditions (Section 2.3.4) and updating entropy (Section 2.3.3). If the method for
convection is used (Section 2.2.4), it is applied after the corona is integrated.
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Figure 6: Example of the shooting method in action, where we see pressure (left) and mass (right)
for varying trials of P̂0. The profiles are indicated by blue (P̂0 too low) or by red (P̂0 too high),
compared to the corona that satisfies the boundary condition in black. The target values for the
outer boundary condition (P∞ and Mtot) are shown as green dashed horizontal lines. The regimes
where the profiles hit one of the two stopping conditions P̂ (r) too low or M̂(r) greater than Mtot,
are indicated by grey arrows. This example is created using the mb2016 initial condition (see
Section 2.4).

condition for the pressure in our corona (Equation 8) is given at the outer radius Rout. Instead of
a standard initial value problem, which we can directly solve by applying our method outlined in
the previous section, we have a two-point boundary value problem, which requires some additional
steps to fully solve. The most straightforward method of solving such a two point boundary value
problem, is by using a shooting method (Press et al., 2007), which iteratively guesses values for the
pressure at r = 0, until the outer boundary condition is satisfied.

More precisely, given a trial value for the central pressure P̂ (0) (we use the hat to indicate a
trial corona), we integrate the corona to obtain the full pressure and mass profiles

integrate
[
P̂ (0),M(0), σ(M)

]
→ P̂ (r), M̂(r) for r ∈ [0, r̂2, r̂3, . . . , r̂N−1, R̂out]. (38)

When the trial corona gives an outer pressure value P̂ (R̂out) that is close enough to the boundary
condition ∣∣∣P̂ (R̂out)− P∞

∣∣∣ < P∞

106
, (39)

we accept the trial corona as the real corona. Otherwise, we refine our guess for P̂ (0) and repeat
the process. This process is actually also a root finding problem, and we use bisection (Press et al.,
2007) to find P (0) that satisfies Equation 39. Again, we also modify the original bisection algorithm
to stop whenever P̂ (R̂out) and P∞ are close.

Figure 6 shows the shooting method in action, where we see the trial pressure (left) and mass
(right) profiles for varying starting values P̂0. The corona that satisfies the boundary conditions
(green dashed lines) is indicated by the black line. The trial coronae that have P̂ (0) too high are
indicated by red. We see that they reach the stopping condition on M̂ > Mtot, but the P̂ (R̂out) is
too high, so they are not accepted. The pressure of trial coronae that have P̂ (0) < P (0), indicated
by blue, decreases too rapidly to reach Mtot. Since pressure can only decrease with radius, we
stop the integrator early whenever

P̂ (ri) <
P∞

103
(40)

since we know that it will never satisfy the boundary condition. Stopping the integration early
saves a lot of computational time, but makes the landscape for the root finding problem unreliable
at P̂ (0)≪ P (0). We can see this in Figure 7, which shows the result of the integration P̂ (R̂out) as
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Figure 7: Example of the curve that is optimized when we integrate the corona. The horizontal
axis shows the trial P̂0 normalized to 1 being the true value of P0, and the vertical axis shows the
resulting P (Rout) at the end of the integration, also normalized to the target value P∞. The target
for the optimization is indicated by a black cross. The flat section in the bottom left side of the plot
shows the effect of early stopping when pressure is too low. The full pressure and mass curves
that created this graph can be seen in Figure 6.

a function of the trial value P̂ (0). Both axes are normalized to the reference values (P∞ and P (0)),
such that the value that we are looking for is at (1, 1). The flat region of the curve on the left side
indicates the early stopping of the integrator.

2.3.3 Updating the entropy-mass relation

The previous two Sections describe how at a time t, given some σt(M), the corona is integrated
to obtain pressure Pt(r) and mass Mt(r) for r between 0 and Rout. We now describe how we
compute the change in entropy of the corona, given some prescription for heating/cooling (Sec-
tion 2.2).

The change in entropy, from σt(M) to σt+δt(M), is given by Equation 15. For this, we need to
compute total number density n(r), and temperature T (r) from the pressure P (r), mass M(r) and
entropy σt(M). First, we can compute the density ρ directly form the definition of entropy-index
(Equation 3), and use this to compute n = ρ/µmp, where we assume the mean molecular weight
to be µ = 0.62. Using the ideal gas law we can calculate the temperature of the coronal gas as

T =
P

nkB
. (41)

Since we want density and temperature as a function of radius, but entropy-index is given as a
function of mass, we compute the entropy as a function of r by evaluating it at the mass at that
radius σt(r) = σt(M(r)). Finally, we compute L, using the temperature and density, according to
any of the presciptions presented in Section 2.2.

Updating the entropy using Equation 15 requires us to make a choice for the step-size δt. From
the update rule in terms of the time-scale of energy/entropy change tϵ (Equation 20) we see that
whenever the corona is cooling (L > 0) and tϵ < δt, the update rule will cause the entropy-index
to be negative, which is unphysical. Moreover, the update rule is an Euler method, which requires
a small step-size to reduce the accumulation of large errors. So also in the case of heating (L < 0),
we want to keep the step-size small if the change in energy is large. Therefore, if tϵ is large, we
choose a constant value for the step-size δt0 between 0.1 – 1Myr. But when the timescale is of the
same order as this value, we reduce the step-size to be a factor 10 smaller than tϵ. Together this
gives

δt = min

(
δt0,

min
r

tϵ(r)

10

)
, (42)
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where we take the minimal value of tϵ(r), because the timescale can vary with radius.
With σt+δt(M) known, we then integrate the corona again to obtain Pt+δt(r) and Mt+δt(r). In

the cases where we include convection in our model (Section 2.2.4), we compute σt+δt,conv(M)
based on the corona at t + δt, and then integrate to obtain Pt+δt,conv(r) and Mt+δt,conv(r) for the
corona where convectively unstable regions have been removed.

2.3.4 Stopping conditions for the evolution

The cyclic process of integrating the corona and updating the entropy can in principle continue
forever using an arbitrarily small δt, so we put two stopping conditions on the evolution. First
we put a limit on the total number of iterations Niter,max, where we stop if the evolution reached

Niter,max = 4000 (43)

iterations. For an initial step-size of δt0 = 0.1Myr, this will mean the corona will evolve for a
maximum of 400Myr.

In practice, however, we typically see that the time-scale of energy change tϵ becomes low
before this limit is reached. In a situation where the corona primarily cools, it will result in a
decreasing tϵ, and consequently will cool even more (for instance, see Section 3.1). This will cause
δt to decrease rapidly (Equation 42), and the corona will no longer evolve in time. To reduce
wasteful computation when δt becomes too low long before the iteration limit is reached, we stop
the evolution whenever the step-size is below the lower limit δtstop, which we set at

δtstop = 0.01Myr. (44)

We discuss how these stopping conditions impact our results in Section 4.2.4.

2.3.5 Derived quantities

By evolving the corona, we can compute some additional observable quantities such as the mass
accretion Ṁ and the radial velocity vr. We calculate these quantities after we have completed the
evolution of our model, so they have no impact on the evolution itself.

The straightforward method of computing the mass accretion is to use the forward difference
approximation (Press et al., 2007):

Ṁ(t) ≈ M(t+ δt)−M(t)

δt
(45)

where M(t) and M(t + δt) are the masses at subsequent evolutionary steps, separated by δt.
However, this method does not work well when the timestep δt is very small, resulting in the
denominator blowing up. We therefore take another approach, taking into account multiple steps
of the evolution to estimate the mass accretion: To compute the mass accretion at radius r at time
t, Ṁt(r), we take all masses at r between t and t+∆t:

Mt(r), Mt+δt(r), Mt+2δt(r), . . . , Mt+∆t(r), (46)

where ∆t is larger than the timestep between evolutions δt. We then assume that the increase in
mass within this interval t to t + ∆t is linear, so we can fit a linear model through these points.
The slope of this line, will then give our value for Ṁt(r). We can then repeat this fit for multiple
radii to get Ṁt(r) across the entire corona.

Using the mass accretion, we can also compute the radial velocity of the gas in the corona. For
this, we assume that the mass in the system is conserved, meaning a change in mass at radius r,
must be caused by gas flowing from or to adjacent shells. The continuity equation, then gives us
vr:

Ṁ + 4πρr2vr = 0 =⇒ vr = − Ṁ

4πρr2
, (47)

where Ṁ and ρ are the mass accretion and density at radius r. Note that when mass flows towards
the galaxy, Ṁ will be positive and consequently the radial velocity will be negative. The radial
velocity therefore measures how fast the gas is moving away from the galaxy.
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2.4 Application to the Milky Way
Our aim is to study the evolution of a Milky Way-like corona, so therefore our initial conditions
will be based on Milky Way observations. For our system we need to specify the dark matter
halo, and density of the gas in the corona. Our model focuses on a corona without the presence
of a galactic disc, so we do not consider this component in our initial condition.

2.4.1 Dark matter halo

We assume that the Milky Way potential is completely dominated by the potential of the dark
matter halo, which we take to be a Navarro-Frenk-White (NFW) potential (Navarro et al., 1997).
The density distribution of such a potential is then given by (Cimatti et al., 2019)

ρ(r) =
4ρs

(r/rs)(1 + r/rs)
2 , (48)

where rs is the scale radius and ρs the density at the scale radius. The potential at radius r is then

Φ(r) = −16πGρsr
2
s

ln(1 + r/rs)

r/rs
, (49)

where G is the gravitational constant. To solve the equation for hydrostatic equilibrium (Equa-
tion 5), we require the derivative of the potential, which is given by

dΦ

dr
= −16πGρsrs

 r/rs
(1+r/rs)

− ln(1 + r/rs)

(r/rs)2

. (50)

Evaluating this derivative directly for r/rs → 0 will cause the denominator to blow up and is
therefore numerically unstable. We therefore take the Taylor approximation of Equation 50 (see
Appendix A.3) and use this to evaluate the gradient for r/rs < 0.005.

We expressed the NFW density and potential using the scale radius rs and density, but these
can be written in terms of the virial mass Mvir, virial radius rvir and concentration c ≡ rvir/rs. The
scale density is then given by

ρs =
Mvir

16πr3s [ln(1 + cvir)− cvir/(1 + cvir)]
. (51)

For the Milky Way halo, we use the parameters as given by Bland-Hawthorn & Gerhard (2016)

Mvir = 1.3× 1012 M⊙, rvir = 282 kpc, cvir = 10 (52)

where the virial mass also has been measured with Gaia to be around this value (Posti & Helmi,
2019). The corresponding scale radius and density can be seen in Table 1.

2.4.2 Density of the coronal gas

Gas in the corona is at a high temperature around the virial temperature of the halo, and is there-
fore observed in X-ray. For external galaxies and clusters, the X-ray surface brightness of gas in
the halo is typically modeled using a β-model (Forman et al., 1985; O’Sullivan et al., 2003; Li et al.,
2016; Zhang et al., 2024)

IX(R) ∝

[
1 +

(
R

rc

)2
]−3β+1/2

(53)

where R is the projected distance to the centre of the system, rc is the core radius and β determines
how steeply the model falls of at large R. Assuming that the emitting body of gas is spherically
symmetric, the density is then given by

n(r) = n0

[
1 +

(
r

rc

)2
]−3β/2

, (54)
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Table 1: Parameters for our two initial conditions of the Milky Way. The first three parameters
are for the gas density described by the β model (Equation 54), and are motivated by Miller &
Bregman (2016). The remaining parameters rs, ρs describe the NFW potential in which the corona
is embedded. The entries with double quotes (”), indicate that the value of the parameter is
identical to the other initial condition. The rescaled model contains roughly 3 times the mass
compared to the mb2016 model.

β rc n0,e Mcor(rvir) Z rs ρs
kpc 10−2cm−3 1010M⊙ Z⊙ kpc 10−26 g cm−3

mb2016 0.49 2.12 0.447 1.74 0.3 28.2 5.2
mb2016-rescaled ” ” 1.490 5.80 0.1 ” ”
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Figure 8: β-model (Equation 54) electron density profiles for the Milky Way corona, as observed
by Miller & Bregman (2016) (mb2016, blue) and a rescaled variant (mb2016-rescaled, orange).
The core radius rc of the β-model is indicated by a vertical dashed line.

where n0 is the density at the centre of the system. This β-model has a flat core with density n0

up to rc, and at larger radii decreases as a power law n ∝ r−3β .
Although observations of the Milky Way corona do not allow us to infer the radial profile from

the X-ray surface, the gas density of the corona is still assumed to follow a β-model (Equation 54).
Parameters for this model are then constrained with observations of [OVII] and [OVIII] absorp-
tion (Miller & Bregman, 2013), or emission (?Miller & Bregman, 2016; Locatelli et al., 2024). The
core radius for Milky Way-like coronae, typically have rc < 3 kpc (Miller & Bregman, 2013; Li
& Bregman, 2017), which is much smaller than the extent of the Milky Way disc. This means
that the region r < rc can only be observed towards the GC, but this area is heavily obscured by
the galactic disc and other sources like the Milky Way bubbles. Without the constraints for this
region, the parameters n0 and rc are degenerate and can therefore not be fitted simultaneously.
Alternatively, in the limit r/rc ≫ 1 Equation 54 can be approximated as

n(r ≫ rc) ≈ n0r
3β
c r−3β (55)

where the normalisation n0r
3β
c can then be constrained as a single parameter, removing the de-

generacy (?Locatelli et al., 2024). Unfortunately, our model starts the integration of the corona
from r = 0, so we cannot use this approximation.

Our first initial condition (we will refer to it as the mb2016 corona) is given by Miller & Breg-
man (2016), where they simultaneously fit a multi component model to fit both the corona along-
side the Fermi bubbles. For this they use emission lines from XMM-Newton and Suzaku, together
with a normalization for the corona of n0,er

3β
c obtained by ?. For the corona, they then fix this
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normalization (n0,er
3β
c = 0.0135 cm−3 kpc3β) and only fit rc and β, obtaining β = 0.49 ± 0.01

and rc = 2.12 ± 0.22 kpc. The central electron number density n0,e is then computed from the
normalization, resulting in n0 = 4.47× 10−3 cm−3.

Integrating this density profile gives a mass of Mcor ≈ 1.74 × 1010 M⊙ at r = rvir which is
around 10% of the missing baryons.4 This is relatively low compared to significantly higher frac-
tions obtained from stacking X-ray emission (Zhang et al., 2024) and stacking of the SZE (Breg-
man et al., 2022) around Milky Way-like galaxies. Additionally, Miller & Bregman (2016) assume
a metallicity of Z = 0.3Z⊙, which is relatively high compared to more recent observations (Ponti
et al., 2023), which are closer to Z = 0.1Z⊙, or even lower. A lower metallicity results in a lower
oxygen abundance, so in order to explain the same X-ray brightness we would need a higher den-
sity. Unfortunately these more recent estimates (Locatelli et al., 2024) do not constrain the inner
parameters (note that this does not affect the total mass much), so we cannot use them as an initial
condition. To still investigate the evolution of such a lower metallicity and higher mass CGM, we
use the same structural parameters (β, rc) as the Miller & Bregman (2016) profile, but rescale the
density such that the total mass at rvir is around 30% of the missing baryons. We refer to this
second initial condition as the mb2016-rescaled corona. The parameters of these two initial
conditions can be found in Table 1, and their electron density profiles can be seen in Figure 8.

2.4.3 Boundary conditions and entropy-mass relation

To integrate the corona, we want to find our boundary condition P∞ for both the density profiles
described in the previous section. To find this value, we assume the temperature of the gas at
Rout = rvir to be equal to T = 106.3 K (?Ponti et al., 2023; Locatelli et al., 2024). For a discussion
of this assumption see Section 4.2.1. The resulting outer boundary condition on the pressure is
then P∞ ≡ P (Rout) = n(Rout)kBT (Rout) = 1.7 × 10−14 erg cm−3 for the mb2016 corona, and
P∞ = 5.7× 10−14 erg cm−3 for mb2016-rescaled.

To compute the entropy-mass relation σ(M) we first find σ(r) and M(r) for the initial con-
ditions. We obtain the mass by numerically integrating Equation 2, directly since the density is
known (Equation 54). We compute σ(r) using Equation 3, for which we first need to find P (r).
Integrating Equation 1 from 0 to r gives

ˆ P (r)

P (0)

dP = P (r)− P (0) = −
ˆ r

0

ρ(r′)
dΦ

dr′
dr′ ≡ −I(r), (56)

where, P (0) is the pressure at r = 0 and for convenience, we define I(r) to be the integral on the
RHS up to some radius r. We can find P (0) by evaluating the above equation at r = Rout

P (0) = P∞ − I(Rout) (57)

since P (Rout) = P∞, and we can numerically integrate I(r) for any r. Then, we use Equation 56
again to find P (r) = P (0)− I(r). Finally, we combine the pressure and density to compute σ(r).

The resulting pressure, mass and entropy profiles for both initial conditions can be seen in
Figure 9. The pressure profile, as expected starts around a constant value P (0) and decreases
until P∞. In the initial condition for σ, we see a small negative gradient around 1 kpc, which we
remove if our method of convection is enabled. The initial electron density can be seen in Figure 8,
and the temperature can be seen in our results, Figure 13.

2.5 Solutions for cooling flows in the corona
We can compare the resulting profiles from our integration with self similar, steady-state solutions
of cooling flows in galaxy-scale haloes by Stern2019. These solutions describe a possible scenario
of how shocked gas from hot mode accretion reaches the galaxy via cooling flows. First, gas from

4We define the missing baryons as Mb −Mdisc, where the expected baryonic mass Mb is obtained by multiplying the
cosmic baryon fraction (ratio of baryonic to dark matter density) fb = Ωb/Ωc ≈ 0.187 (Planck Collaboration et al., 2020),
by the virial mass of the halo Mb = fbMvir, and the total observed baryonic mass in the disc Mdisc ≈ M⋆ + Mgas,disc,
where we use M⋆ = 5×1010 M⊙ (Bland-Hawthorn & Gerhard, 2016) and Mgas,disc ≈ 8×109 M⊙ (Sparke & Gallagher III,
2007).
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Figure 9: Integrated pressure (left), mass (middle) and entropy-index (right) profiles for our two
initial conditions mb2016 (blue) and mb2016-rescaled (orange). The obtained boundary con-
ditions P∞ and Mtot are indicated by dashed and dotted horizontal lines in their respective plots.

the IGM is accreted and shocked to the virial temperature by the halo at some outer radius Rshock.
Subsequently, the gas cools radiatively and subsonically (M ≪ 0, where the mach number M
is the ratio of the radial velocity over the adiabatic sound speedM ≡ |vr|/cs) flows through the
halo towards the central galaxy. Finally, when the flow reaches the galaxy, at roughly the stellar
half-mass radius R1/2, angular momentum from the disc becomes important and the system will
no longer be spherically symmetric. Close to the disc, feedback from the galaxy can also reheat
the gas and influence the cooling flow. The solutions by Stern2019 describe this cooling flow in
the halo, and are only valid for the region within the shock radius (r < Rshock), and far away from
the galaxy (r > R1/2).

Stern2019 assume a spherically symmetric ideal fluid and no magnetic field, viscosity nor
thermal conduction. Moreover, they assume the flow to be in steady-state and subsonic. The
circular speed of the system vc is related to the gravitational potential Φ of the system by Φ =
−
´
(v2c/r)dr. They assume the potential to be dominated by the potential of the dark matter halo,

and assume the circular speed can be written as a power law

vc(r) = vc(Rvir)

(
r

Rvir

)m

, (58)

with m a constant, and Rvir the virial radius of the dark matter halo. For this power law, m = 0
describes an isothermal potential and m = −0.5 the potential of a point mass. Then, they assume
all the logarithmic derivatives of the density, temperature and radial velocity with respect to r:

d ln ρ

d ln r
,
d lnT

d ln r
,
d ln vr
d ln r

, (59)

to be constant, resulting in solutions which are self-similar, i.e. power laws in r. Finally, they
assume the cooling rate of the gas Λ to be constant, making the final expressions easier to work
with, at the cost of only minor inaccuracies. The self-similar steady-state solutions for the cooling
flows then give ρ(r), T (r), vr(r) in terms of mass accretion Ṁ , halo mass Mvir, cooling rate Λ and
m (Equation 58), and they depend on radius as

ρ ∝ rm−3/2, vr ∝ r−m−1/2, T ∝ r2m, (60)

where quantities other than r only influence the proportionality constants. For the full solutions
see Appendix A.5 and additionally for details of the derivation, comparison with numerical inte-
gration, simulations and application to other more massive haloes see Stern2019.

To compare the cooling flow solutions with our coronae, we choose values for Mvir, Λ and m
to match our initial conditions. We take the virial mass to be the same as the Milky Way dark
matter halo (Mvir = 1.3× 1012 M⊙, see Equation 52). The cooling rate depends on the metallicity
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of the corona, which we assume to be either 0.3Z⊙ or 0.1Z⊙. For a metallicty of 0.3Z⊙, we adopt
the same value as assumed by Stern2019 of Λ = 0.6×10−22 erg cm3 s−1, roughly corresponding to
the value of the cooling function at the flat part around T = 8× 105 K (see Figure 4). We similarly
choose the value for 0.1Z⊙ to be Λ = 0.25×10−22 erg cm3 s−1. We can find m by requiring that the
slopes of the density of the cooling flow solutions ρ ∝ rm−3/2, equals the slope of the beta model
in the large r limit ρ(r) ∝ r−3β (Equation 55). Setting these equal, and solving for m gives us

m = 3/2− 3β (61)

which, with our initial conditions for the Milky Way (β ≈ 1/2, Table 1) results in m = 0. We note
that this value is different from the value of m = −0.1, which Stern2019 determines based on the
circular velocity resulting from the combination of a central galaxy, a 1012 M⊙ NFW halo and an
outer component by Diemer & Kravtsov (2014). Since the difference in choice of m is small, it
does not influence our results significantly. We leave the mass accretion Ṁ free in order to the
compare accretion rates in the cooling flow solutions with our evolutionary model.

The full self-similar solutions for m = 0 are then given as (see Appendix A.5):

ρ(r) = 2.4× 10−5

(
Mvir

1012 M⊙

)0.36
(

Ṁ

M⊙/yr

) 1
2(

Λ

10−22 erg cm3 s−1

)− 1
2
(

r

100 kpc

)− 3
2

mp cm
−3

(62)

|vr(r)| = 12.9

(
Mvir

1012 M⊙

)−0.36
(

Ṁ

M⊙/yr

) 1
2(

Λ

10−22 erg cm3 s−1

) 1
2
(

r

100 kpc

)− 1
2

km s−1 (63)

T = 8× 105
(

Mvir

1012 M⊙

) 2
3

K (64)
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3 Results

In this chapter we present the results of running the evolutionary model with both the
mb2016 and the mb2016-rescaled initial conditions for the Milky Way. Both initial conditions
are density profiles described by beta models based on observations of the Milky Way corona
from ?Miller & Bregman (2016). The mb2016 profile is equal to the values of Miller & Bregman
(2016) and has a metallicity of Z = 0.3 Z⊙. The mb2016-rescaled initial condition has the same
shape, but is rescaled to have three times the mass and a metallicity of Z = 0.1Z⊙, to be more
in line with recent observations by eROSITA of the Milky Way corona (Ponti et al., 2023) and the
corona of Milky Way-like galaxies (Zhang et al., 2024) (see Section 2.4 and Table 1).

Using both initial conditions, we also vary the cooling and heating processes as described
in Section 2.2. We start by showing the results from the pure cooling case using the classical
SD1993 cooling function (Section 3.1). This case is most analogous to the original application
of the evolutionary model to the corona of the Hydra cluster by Kaiser & Binney (2003). We
then continue with comparing the classical cooling case, with a more modern cooling function
by CLOUDY (Ferland et al., 2013), where we also add photoionization from the extragalactic UVB
by Haardt & Madau (2012) (Section 3.2). Finally, we add a powerful heating source in the centre
of the system resembling the Fermi/eROSITA Bubbles (Miller & Bregman, 2016; Predehl et al.,
2020). We then vary the power of this central source to investigate how the corona evolves under
different heating sources (Section 3.3).

3.1 Classical cooling

In this section, we apply the evolutionary model from Kaiser & Binney (2003) to the corona of
the Milky Way as observed by ?Miller & Bregman (2016) (mb2016) and a variant rescaled in mass
(mb2016-rescaled) to represent more recent observations of the Milky Way and Milky Way
like galaxies (Ponti et al., 2023; Zhang et al., 2024). In analogy with what is done in Kaiser &
Binney (2003), we use a classical CIE cooling function from SD1993 (Section 2.2.1). The resulting
evolutions of the two initial conditions can be seen in Figure 10. In this Figure we see the elec-
tron density ne (first row), temperature T (second row) and entropy index σ (third row) profiles
displayed at time intervals5 of 0.5Myr (blue to red). The left column displays these profiles for
mb2016, and the right column for mb2016-rescaled.

For both initial conditions, we see that only the inner regions of the corona (less than a few kpc)
evolve significantly, whereas the rest of the corona stays relatively constant. In the inner regions,
as a result of cooling, the entropy index decreases (Equation 15), along with an increase in density
and a decrease in temperature. For the SD1993 cooling function, L ∝ n2

e (Equation 23), and
also L increases rapidly from temperatures of 106 K to 105 K (see Figure 4), which means cooling
experiences a runaway effect and will result in a cooling catastrophy. Since a higher cooling rate
results in a lower cooling time (Equation 26), we have to lower the step-size of the evolution
in order to avoid the entropy from becoming negative (see Equations 20 and 42). Because of
the runaway effect, the step-size will only decrease further and essentially the corona will not
evolve anymore with this model. We therefore stop the evolution when the step-size gets too
low (see Section 2.3.4, and discussion in Section 4.2.4). For the mb2016 case, the evolution stops
at ∼ 10Myr, whereas the mb2016-rescaled corona stops at ∼ 5Myr. Both are significantly
shorter than the expected age of the Milky Way corona of several Gyr (Cimatti et al., 2019). We
emphasise, however, that all the above occurs essentially within a few kpc of the corona, which in
reality is dominated by stellar components of the Milky Way. Our assumption of a spherical non-
rotating system will no longer be valid in this location due to the presence of the Milky Way disc.
Moreover, feedback from the galaxy will have an effect on the properties of the gas as well. We
can therefore not draw any clear conclusions about the physical implications of the rapid cooling
in the inner regions of our Milky Way corona.

5These time intervals are not to be confused with the step-size of the evolution δt.
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Figure 10: Full evolutions of the electron density, temperature and entropy-index of the
mb2016 (left column) and mb2016-rescaled (right column) initial conditions. Evolution uses
the classical CIE cooling function from SD1993, described in Section 2.2.1. The colour of the line
indicates the timestep of the evolution.

28



Sten Sipma An Evolutionary Model for the Milky Way’s Corona

10 5

10 4

10 3

10 2

10 1

n e
[c

m
3 ]

mb2016 mb2016-rescaled

105

106

107

T
[K

]

10 1 100 101 102

r [kpc]

1030

1031

1032

1033

[c
m

4
g

2/
3

s
2 ]

10 1 100 101 102

r [kpc]

0.0 2.6 5.2 7.8 10.3
t [Myr]

0.0 1.4 2.8 4.1 5.5
t [Myr]

Figure 11: Same as Figure 10, but now the evolution also uses the method for convection (Sec-
tion 2.2.4). The black dashed line is included as a reference to indicates final timestep of the
method without convection (full Figure 10).

When Kaiser & Binney (2003) applied this model to the Hydra cluster, they observed a sim-
ilar cooling catastrophy occuring in the centre of the cluster after 284Myr of evolution. At that
point, they also stop the evolution and assume the central AGN erupts and restores the density
and temperature to the initially observed conditions. Drawing similar conclusions for the Milky
Way would then suggest the black hole in the centre of the Milky Way would erupt within 5 to
10Myr. However, this ignores the presence of the Milky Way disc completely which most likely
has significant impact on the inner regions of the corona. Probably, the gas in this region will
either be accreted by the disc to feed star formation, or be reheated by feedback from the galaxy.
In Section 3.3, we explore the second scenario of galaxy feedback, by adding a heating source in
the centre of the system.

3.1.1 Inclusion of convection

In Figure 10, we see that the cooling occurs most rapidly just below 1 kpc, around the location
where the temperature is lowest in the initial conditions. This means, however that a negative
entropy gradient forms and that the region is convectively unstable. Since the cooling is most
rapid in this region, we can see if the rapid formation of a cooling catastrophy is partly caused by
this convectively unstable zone. We therefore run the evolutionary models again with the same

29



CHAPTER 3 RESULTS

parameters, only now with our convection method enabled. Essentially, this method makes sure
that at each timestep regions with negative entropy gradients are replaced by their mass-weighted
average entropy over the same region, removing the negative gradient (see Section 2.2.4). The
resulting density, temperature and entropy index for both initial conditions with convection en-
abled, can be seen in Figure 11, with the dashed black line representing the final profiles from the
model without convection.

In this Figure, we can see that due to the convection method the entropy index is now com-
pletely flat in the inner regions of the corona, which means that the convectively unstable regions
have been successfully removed. Compared to the final state of the model without convection
(black dashed line), we see that the dip in entropy (but also bump in density and dip in temper-
ature) is redistributed to the inner regions, resulting in a lower inner entropy index (and higher
density, lower temperature) at r = 0kpc. Beyond the region where convection is active, we see
that the evolution of the model with convection is identical to the evolution of the model with-
out convection. Also the evolution times remain identical, around the values of ∼ 10Myr and
∼ 5Myr for mb2016 and mb2016-rescaled respectively.

The rapid cooling in the centre is therefore not a consequence of the negative entropy gradi-
ents, since the evolution times of the coronae are unaffected. However, because the convective
method is able to remove the negative entropy gradients, whilst still evolving the outer parts of
the corona identically to the method without convection, we will use it for the rest of our results.

3.1.2 Mass accretion

An important role of the corona in the context of galaxy evolution is its ability to feed the galaxy
with gas to sustain the star formation. We therefore compute the mass accretion (see Section 2.3.5)
across the entire evolution of the corona, which can be seen in Figure 12. Here we see the mass
accretion profile for mb2016 in the left, and the accretion profile for mb2016-rescaled in the
right panel and the colour of the lines indicates the evolutionary time (from blue to red). For both
coronae, across the entire evolution, we see that the mass accretion is very small in the centre, and
increases with radius until it peaks and flattens out between 1 and 10 kpc. From that point on, it
stays roughly constant until it drops off a little bit at r > 200 kpc. Over time, the mass accretion
increases mostly in the centre and stays relatively constant beyond 10 kpc. In Figure 11 we saw
that the density increased by almost an order of magnitude in the centre of the corona, whereas in
the region beyond 10 kpc remained almost constant. It may therefore seem surprising to see that
mass accretion is higher at r > 10 kpc, however this is explained by the fact that volume scales
with radius as r3 and therefore even a small change in density at high r, will have a large impact
on the mass at such radii.

The increase in mass accretion as a function of radius below ∼ 1 kpc can also be explained by
the r3 scaling of volume. In the region below 1 kpc, the density is approximately constant with
radius due to the nature of the beta-model. As this region cools, the density increases at roughly
the same rate in this region and as a consequence stays constant over r. Therefore, the mass profile
scales with the volume and consequently the mass accretion profile also increases with r3.

The peak in mass accretion between 1 and 10 kpc coincides with the region around the core
radius of the beta-model, where the density as a function of radius starts to decrease. But also this
region marks the transition from the centre where density increases due to rapid cooling, to the
outer part of the corona, where the density stays constant over time. We see that at the start of the
evolution (blue lines in Figure 12) no peak has developed yet, however, since density increases
only in the centre of this region, Ṁ will increase faster around 1 kpc compared to 10 kpc which
results in the formation of the peak in Ṁ(r).

At large radii, where the mass accretion is roughly constant, the difference between the two
coronae is quite large. The corona of mb2016, shows a mass accretion of Ṁ ≃ 0.2M⊙/yr, whereas
the accretion in mb2016-rescaled is much higher at Ṁ ≃ 1M⊙/yr. This difference can mostly
be explained by the fact that the density in mb2016-rescaled is higher than in mb2016, there-
fore there is more cooling and consequently the mass accretion is higher. The lower metallicity of
Z = 0.1Z⊙, compared to Z = 0.3Z⊙ for mb2016, should have the opposite effect and reduce the
cooling in mb2016-rescaled. However, as we can see from the higher mass accretion and from
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Figure 12: Evolution of the mass accretion profiles for the mb2016 (left) and
mb2016-rescaled (right) coronae, with classical cooling from SD1993 and convection en-
abled. The mass accretion rates are calculated based on average differences between the mass
profiles M(r) at different timesteps (see Section 2.3.5).

the shorter evolutionary time of the system, the increased density clearly has a stronger impact
than the decreased metallicity.

? calculate the integrated mass accretion rate based on their observed density and estimated
cooling time (tcool) as

Ṁ(r) =

ˆ r

0

ρ(r′)

tcool(r′)
4πr′2dr ′. (65)

For a metallicity of Z = 0.3Z⊙, they estimate the integrated mass accretion rate to be between
0.1 and 0.2M⊙/yr, at an outer radius where the cooling time equals the Hubble time (around
40 kpc). The profile that matches the observed density from ? is mb2016, so we can only compare
the accretion rate of this profile. With a value of Ṁ ≃ 0.2M⊙/yr at a radius of 40 kpc, our mass
accretion rate seems to match well.

The current SFR in the Milky Way is estimated to be around 1 – 3M⊙/yr (Bland-Hawthorn &
Gerhard, 2016). If we interpret our values for mass accretion to be equal to the amount of fresh
gas that is fed to the galaxy in order to form new stars, we can see that with only radiative cooling
the mb2016-rescaled corona is able to be a major contributor to sustain the star formation
in the Milky Way. In practice, the amount of gas accretion needed to sustain the formation of
stars in disc galaxies, is lower than the SFR (Fraternali & Tomassetti, 2012), so the accretion from
mb2016-rescaled would then be sufficient. The gas accretion from the mb2016 corona is much
lower than the SFR, so if this corona is more representative for the Milky Way corona, additional
sources of gas accretion are needed in order to fully sustain the formation of stars over a longer
period of time. We note that our estimates here are in the absence of heating.

3.1.3 Comparison with steady-state cooling flow model

In the previous sections we have found that beyond a radius of a few kpc the profiles of density,
temperature and entropy-index, stay relatively unchanged for the few 5 – 10Myr that our model
runs. Moreover, the mass accretion in these regions is relatively constant at Ṁ ≃ 0.2M⊙/yr and
Ṁ ≃ 1M⊙/yr for mb2016 and mb2016-rescaled respectively. We can compare the density,
temperature and entropy-index profiles with the analytic model for steady-state cooling flows
in Milky Way-like haloes by Stern2019 (see Section 2.5). In Figure 13, we can see the density,
temperature and entropy index for both initial conditions (identical layout to Figures 10 and 11).
Overplotted as dashed gray lines are the steady-state cooling flow models by Stern2019 for mass
accretion rates of Ṁ = 0.1, 1.0 and 10.0M⊙/yr (see Equations 62 and 64). The slope of the lines
in the cooling flow model is set to m = 0, to best match the density in our initial condition. The
normalization of the cooling flow model is set by assuming Mvir = 1.3 × 1012 M⊙ and constant

31



CHAPTER 3 RESULTS

10 5

10 4

10 3

10 2

10 1

n e
[c

m
3 ]

0.1

1.0

10.0

mb2016

0.1

1.0

10.0

mb2016-rescaled

105

106

107

T
[K

]

Initial Condition
Cooling Flow Model
Cooling Flow Matching M

100 101 102

r [kpc]

1030

1031

1032

1033

[c
m

4
g

2/
3

s
2 ] 0.1

1.0
10.0

100 101 102

r [kpc]

0.1
1.0
10.0

Figure 13: Comparison of our initial conditions in electron density, temperature and entropy-
index for the mb2016 (left column) and mb2016-rescaled (right column) corona as purple
lines, with the same quantities predicted by the analytic steady-state solutions for cooling flows
in a m = 0 Milky Way-like halo from Stern2019 (see Section 2.5) as gray and black lines. The
grey gray dashed lines show the cooling flow solutions for mass accretion rates of Ṁ = 0.1, 1.0
and 10.0M⊙/yr (indicated in the figure). The black dotted line shows the cooling flow model
with Ṁ based on the evolution of the corresponding corona (mb2016: Ṁ = 0.2M⊙/yr and
mb2016-rescaled: Ṁ = 1M⊙/yr).
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cooling rates of Λ = 0.6 and 0.25× 10−22 erg cm3 s−1 for the mb2016 and mb2016-rescaled ini-
tial conditions, respectively. Finally, we also add black dotted curves for the cooling flow model
having mass accretion rates equal to those found for our model in Section 3.1.2.

When we compare the density from the initial conditions, with the densities of the cooling
flow model, we see that indeed the slopes of both models at large radii (r > 10 kpc) are identical.
Of course, this is no coincidence as we have set m = 0 in the cooling flow model to match the
density slopes. With the slopes identical, we can then compare the normalizations of the two
models, which tells us something about the mass accretion since this is the only parameter that
we vary in the cooling flow model. We see that for both mb2016 and mb2016-rescaled, the
density profiles match the cooling flow models with mass accretion rates of respectively Ṁ = 0.2
and 1M⊙/yr (black dotted lines) remarkably well. The only difference is that the densities in
the initial conditions are slightly higher than the matching cooling flow models, however a small
difference can be expected, considering the mass accretion rates of our evolutionary model vary
slightly over the entire evolition and the values that have been used to produce the matching
cooling flow model have been estimated by eye.

We now look at the other quantities, starting from the temperature (middle row). Since m = 0
corresponds to an isothermal potential (Equation 58), the temperature profile of the cooling flow
model does not depend on radius. For our initial conditions, the temperature clearly increases
from 6×105 K at 1 kpc to 2×106 K at Rout, where this latter value is by construction. This change,
however, is less than an order of magnitude and especially compared to other quantities like the
density and entropy-index, the temperature is still relatively constant, and the temperature of the
cooling flow model lies between our extreme values. Finally, in the bottom row of Figure 13,
we compare the entropy-index from our model with the entropy-index from the cooling flow
model. We see that again the slope and magnitude of the two models are very close. We esti-
mate that the profile for mb2016 is closest to the cooling flow model with Ṁ ≈ 0.1M⊙/yr and
mb2016-rescaled is between Ṁ ≈ 0.1 – 1.0M⊙/yr. Both these values for the mass accretion
are therefore lower than what we expect from our comparison of the density between the two
models. This difference, however, is fully explained by the deviation in the temperature by using
the definitions of σ and the cooling flow model solutions. Entropy index is defined as σ ≡ Pρ−γ

and with the ideal gas law P ∝ ρT , we have σ ∝ Tρ−(γ−1), meaning when T increases, σ in-
crease proportionally as well. Moreover, in the cooling flow model, temperature does not depend
on mass accretion (Equation 64), and density depends on Ṁ as ρ ∝

√
Ṁ , together this gives

σ ∝ Ṁ−(γ+1)/2. Hence, a temperature which is higher compared to the cooling flow model, will
also give a higher σ, and consequently a cooling flow model with a lower Ṁ will match this σ
better.

In addition to the density and temperature, the cooling flow model also gives a solution for
the radial velocity of the gas, as a function of radius vr(r) (Equation 63), where it is assumed that
the gas flows towards the centre and therefore, by definition, vr(r) < 0. The radial velocity for our
evolutionary model can be computed via the continuity equation, using the mass accretion from
our previous results (see Section 2.3.5, Equation 47). In Figure 14, we can see the resulting radial
velocity profiles, where mb2016 corona is displayed on the left, and mb2016-rescaled on the
right. Similar to Figure 13, the radial velocities of the cooling flow model have been overplotted
as gray dashed lines for mass accretion rates of Ṁ = 0.1, 1.0 and 10.0M⊙/yr. At small radii the
radial velocity is between 1−10 km s−1 and increases with radius until it peaks around 1−2 kpc to
a value of 20− 100 km s−1. This increase and peak is similar to what we see in the mass accretion
profile (Section 3.1.2), and is also a result of the constant density in this region. Beyond the peak,
the velocity falls off again with a slope similar to the cooling flow model. In this region, the mass
accretion rate was more or less constant, so the decrease here is caused by the vr(r) ∝ ρ−1r−2 ∝
r−1/2 dependence at large r (Equations 47 and 55). Also similarly to the mass accretion, over time
the radial velocity mainly accelerates in the centre of the corona and stays more or less constant
beyond a few kpc. When we compare the radial velocity profiles with those of the cooling flow
model, we again see that the mb2016 and mb2016-rescaled coronae match the cooling flow
models with Ṁ ≃ 0.2 and 1M⊙/yr, respectively. The radial velocity profile of our evolutionary
model is computed using Ṁ(r) and ρ(r), both which matched the cooling flow model well. It is
therefore reassuring to see that the radial velocity also is a good match.
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Figure 14: Evolution of the radial velocity profiles for the mb2016 (left) and
mb2016-rescaled (right) coronae, calculated from the mass accretion rate profile (see
Section 2.3.5). Overplotted are the cooling flow models from Stern et al. (2019) as gray and black
lines (similar to Figure 13).

We would like to emphasise again, that when we take the mass accretion rate as computed by
our evolutionary model (Section 3.1.2) and use this value to compute the density distribution for
the steady-state cooling flow model, this distribution is almost identical to our initial condition
(beyond 10 kpc). Such a similarity is not necessarily expected, because the assumptions used by
the two models are very different. Our evolutionary model assumes that the corona is isolated
with no in- or outflows from the IGM. Moreover, we assume that this corona is in hydrostatic
equilibrium and evolve the corona numerically by radiative cooling using a CIE cooling function
(SD1993). The mass accretion rate is then computed a posteriori from the evolution of the mass
profile. The cooling flow model, instead, assumes a continuous steady-state cooling flow exists
in the corona, and that this flow is continuously being fed by gas accretion from the IGM. The
relation between the gas profiles (density, temperature, radial velocity) and properties of the halo
(virial mass, mass accretion) is calculated analytically, assuming a constant cooling rate. The fact
that these different assumptions produce similar results, implies that these assumptions might
enforce each other. For instance, the steady-state cooling flow seems to produce a corona which is
somewhat in hydrostatic equilibrium. And conversely, a corona in hydrostatic equilibrium with
radiative cooling produces a constant cooling flow.

Finally, we note that our model is not in steady-state, and the comparison between our model
and the cooling flow model is only valid for a short time (5 – 10Myr). In Section 4.2.6 we evolve
the corona for a longer (t > 300Myr) time, and see that in this case the mass accretion rates in
the outer region stay constant over this period as well. Therefore, the two models are likely still
similar over such time-scales as well.

3.2 CLOUDY with extragalactic UVB
In the previous section, we have seen that our evolutionary model with only radiative cooling
calculated with a classical cooling function from SD1993 produced coronae that cool in the centre
within 10Myr. However, our main interest is in the outer regions of the corona, where non-
spherical geometry and effects of the Milky Way disc do not affect our model, and it should be
closer to reality. This part of the corona in the Milky Way is expected to be stable for a much longer
time than 10Myr (Cimatti et al., 2019), so we want our evolution to take longer as well. Our first
step is to adjust the cooling prescription from the classical CIE cooling function (Section 2.2.1), to
the usage of CLOUDY (Ferland et al., 2013) in order to be more in line with other recent determina-
tions. In addition, we also add heating by photoionising radiation from the extragalactic UVB at
z = 0 (Haardt & Madau, 2012). We note that only considering heating from the UVB is very much
a lower limit to the more realistic case of the Milky Way, where additional heating is also likely to
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Figure 15: Same as Figure 10, but with cooling and heating from CLOUDY with photoionization
from the extragalactic UVB, and with convection enabled. The black dashed line shows the final
timestep of the evolution with classical cooling (see Figure 11).
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occur via black hole and stellar feedback. For more details see Section 2.2.2.
We evolve the two initial conditions (mb2016 and mb2016-rescaled) using the prescription

outlined above and with our convection method enabled to avoid the formation of negative en-
tropy gradients. The resulting evolutions of density, temperature and entropy index can be seen
in Figure 15, where the layout is similar to Figures from the previous section. The final timestep
of the evolution with classical cooling (Figure 11) is displayed as a black dashed line to com-
pare with the results obtained with the CLOUDY prescription. In the Figure, we can see that the
evolution with CLOUDY proceeds much like the evolution with classical cooling, where the inner
regions of the corona, with highest initial density, cool rapidly and consequently dominate the
evolution of the entire system. Also in this case, the outer regions of the corona seem to remain
virtually constant. The difference compared to the evolutions with the classical cooling is that the
evolution time is slightly longer, and the final density is slightly higher. Both can be explained by
looking at the difference in the cooling function.

The evolution time of the system, roughly 12Myr for mb2016 and 7Myr for
mb2016-rescaled, are slighly longer than the respective 10 and 5Myr with the classical cooling.
This longer evolution time for both systems can be explained by the difference in the radiative en-
ergy loss Λ− Γ between SD1993 and CLOUDY for temperatures 2× 104 K ≤ T ≤ 7× 105 K (black
dotted and dashed lines, compared to blue line in Figure 4). In this domain, the radiative en-
ergy loss from CLOUDY is significantly lower than the CIE cooling function, and as a result of
this lower cooling, the corona needs to evolve for longer to reach the same density as the clas-
sical cooling case. Even though the CLOUDY prescription includes heating from the extragalactic
background, whereas the classical cooling case does not include any heating at all, the difference
between the two prescriptions is mainly caused by the different calculation of the cooling rate Λ,
and not the additional heating Γ, which turns out to have almost no impact in this evolution (see
Section 4.2.5).

The final difference between the evolution with CLOUDY compared to the classical cooling,
is the density in the final timestep of the evolution. The density of the CLOUDY evolutions is
slightly higher than the final density from the classical cooling case, but this difference can also
be explained by the different cooling rates. The cooling time depends on density and cooling rate
roughly as tcool ∝ 1/(nΛ) (Equation 26). Since we use this cooling time as an upper limit to the
timestep in the evolution (δt ≤ tcool/10, Equation 42), and the evolution stops whenever a lower
limit on the timestep is reached δtstop, we can express this lower limit as a function of density and
cooling rate. We do this by assuming that when the limiting timestep is reached, it is set by the
upper limit defined by the cooling time

δtstop = tcool/10 =⇒ δtstop ∝
1

nΛ
. (66)

Since we have seen that the cooling rate Λ is lower for CLOUDY, a higher density is needed to
reach the same δtstop. Again, heating is not very relevant in this regime, because the density is
high ∼ 0.1 cm−3. Since we set δtstop to an arbitrary value, this difference in density at the final
timestep is purely a numerical effect.

Whilst there are slight differences in the inner parts of the corona, the region beyond a few
kpc from the centre seems to be unaffected by our change of the entropy update prescription,
but we will look at the slight differences in mass accretion in the next Subsection. Unfortunately,
our aim of extending the evolutionary time of the system by using CLOUDY only resulted in an
evolution of a few extra Myr. We therefore conclude that heating from the extragalactic UVB is
not sufficient to stop the corona from rapidly cooling in the centre. In the next Section (3.3), we
will explore additional heating sources with the similar aim to extend the evolution of the system.
Even though the prescription using CLOUDY did not have significant differences with the classical
cooling case, it should be more realistic, so therefore we will use it when exploring other heating
sources.

3.2.1 Mass accretion

Our results from the evolution of the corona using a classical cooling prescription, showed that
for radii beyond 10 kpc, the mass accretion of the mb2016 and mb2016-rescaled coronae were
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Figure 16: Comparison of mass accretion rates as a function of time from the classical cooling from
SD1993 (blue) and CLOUDY with photoionisation (orange), taken at radii of 20 and 100 kpc (full
and dotted lines). The mass accretion rates for the mb2016 and mb2016-rescaled are shown in
the same Figure, and indicated by arrows.

approximately constant with radius and time, with respective values of 0.2 and 1M⊙/yr. For
the evolution with CLOUDY, we can also compute the mass accretion profile (Section 2.3.5) and
investigate how they compare to our previous results. As we have seen in Figure 15, the evolution
in the outer region in density is essentially identical to the classical cooling case, and it turns
out that the mass accretion profile calculated from the evolution with CLOUDY, is also virtually
identical to Figure 12, so we do not show them here. Figure 16 shows instead the mass accretion
at r = 20 kpc (full lines) and r = 100 kpc (dotted lines), for both the CLOUDY (orange lines) and
classical cooling (blue lines) evolution. The values for mb2016 and mb2016-rescaled have
both been included in the same figure, and are indicated by arrows. Since the mass accretion
profiles from the CLOUDY and classical cooling evolution are very similar to each other, the values
of Ṁ at these two radii are very close to each other as well. In the Figure, we see that for both
cooling/heating prescriptions, at both radii Ṁ increases slightly over time, where this effect is
most pronouced for mb2016-rescaled, increasing from Ṁ ∼ 1.1M⊙/yr to 1.2M⊙/yr. At both
radii, we also see that the mass accretion from the CLOUDY evolution is slightly higher than the
classical cooling case, which is surprising since in the previous section we have seen that the
radiative energy loss in CLOUDY in general was lower than in SD1993. The temperature at these
radii, however, is roughly 106 K which is higher compared to the temperature in the inner regions
of the corona. In Figure 4, we can see that at this temperature, for the density of the corona at these
radii (ne ∼ 10−5 cm−3) the effective cooling rate of CLOUDY is actually higher than the cooling rate
from SD1993, which explains why the mass accretion is slightly higher as well.

3.3 Heating from a central source
In the previous two sections, our results have shown that in isolation, the centre of a corona, simi-
lar to the corona of the Milky Way, will cool within 5 – 10Myr. Changing the cooling prescription
and adding photoionizing radiation from the extragalactic UVB only delays the cooling in the
centre by 2Myr, which is not long enough if we want to evolve for a time-scale comparable to a
cooling time of tcool ≫ 100Myr an isothermal Milky Way corona (Binney et al., 2009). In order
to avoid the corona from rapidly cooling in the centre, we need additional heating, and the next
obvious choice is heating from some central source in the Milky Way disc. This source can be in-
terpreted as a galactic wind powered by supernovae, or the central black hole, which then could
also be the source that created the Milky Way bubbles (Su et al., 2010; Predehl et al., 2020).

The heating from the centre of the system is included in the model by choosing a fixed power
representing the total thermal energy injected into the system per unit time, Ėtot. We then inject
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this energy at each timestep, weighted by a Gaussian kernel centered at the origin and with scale
length λ (for details, see Section 2.2.3). We evolve the corona multiple times with varying Ėtot

Ėtot = 1039, 5× 1039, 1040, . . . , 5× 1042, 1043 erg s−1, (67)

to see what power scales are needed in order to stop the centre from cooling. We evolve the corona
with both initial conditions, using the CLOUDY prescription for updating entropy, combined with
the additional heating from the centre. For high powers, the entropy in the centre will increase
much faster than at larger radii, so to avoid negative entropy gradients we also include our pre-
scription for convection. We choose the length scale of the kernel to match the size of the Fermi
Bubbles with λ = 8kpc (height of 9 kpc Predehl et al., 2020). However, since the shape of the
kernel is spherical, whereas the bubbles are better described by a cylinder, we also run evolutions
with length scale λ = 5kpc roughly to match the volume of the Fermi Bubbles. Choosing a scale
length which matches the volume of the eROSITA bubbles instead, would also roughly result in
λ = 8kpc.6

The evolution of the corona heavily depends on the value of Ėtot, but in general evolves in
either of two cases, both which can be seen in Figure 17. In this figure we see the density, temper-
ature and entropy-index over the evolution of the system for mb2016, with λ = 8kpc. The left
column shows the evolution with a relatively low power (Ėtot = 1040 erg s−1) and the right col-
umn shows the evolution with a high power (Ėtot = 1042 erg s−1), where on both sides the dashed
black line represents the final timestep of the same corona without a central heating source (Fig-
ure 15). Our first case is represented in the left column, where Ėtot is low, resulting in heating
being subdominant to cooling. We can see in this case, that the evolutionary time of the system
(12Myr), and the density, temperature and entropy-index profiles in the final timestep almost ex-
actly match the final timestep of the corona with no heating (black dashed line). The result in this
case is therefore that the evolution proceeds almost identically as if there was no heating at all.

The second case, however, shows what happens to a corona under extreme heating with
Ėtot = 1042 erg s−1. In this case, the heating becomes dominant over the cooling in the centre,
resulting in a big decrease in density and increase in temperature. We see that in the first 30Myr
the density decreases by more than an order of magnitude from 4× 10−3 cm−3 to 10−4 cm−3, and
the temperature jumps from 7×105 K to 3×106 K. From that point on, the density keeps decreas-
ing and temperature keeps increasing, but it does so at a much slower pace. At the end of the
evolution, the corona has an inner density of 2× 10−5 cm−3 and a temperature of 4× 106 K.

The evolution in entropy-index is heavily influenced by our prescription of convection, which
can be seen in the fact that the entropy-index is constant for a large part of the corona. This is
caused by the fact that heating from the centre causes the entropy to go up only in the centre, and
therefore a negative entropy gradient will form. Our convective method removes these negative
gradient by replacing the unstable region with the average value of the entropy-index, resulting in
these large isentropic profiles. At the start of the evolution, the corona still has a positive gradient
starting from roughly 2 kpc. However, after a few tens of Myr, the isentropic region has developed
up to tens of kpc and reaches up to 200 kpc at the end of the evolution.

The evolutionary time in this extreme heating case is much longer (180Myr) than in the domi-
nant cooling case (about 10Myr), but interpreting this in a physical context is not possible due our
choice in stopping condition based on the size of the timestep. We stop the evoltion whenever the
timestep reaches a lower limit, which is set by the minimal value of the entropy update time-scale
|tϵ|, or whenever a maximum number of iterations is reached (Section 2.3.3). When cooling is
dominant, tϵ decreases rapidly due to the runaway nature of cooling, which causes the timestep
to also drop rapidly, and therefore the lower limit on δt is always reached before Niter,max. More-
over, the evolutionary time does not increase, even if we would use a lower limit on δt. However,
when heating is dominant (Λ − Γ < 0), the density and temperature in the corona increases, and
in turn the cooling rate Λ decreases. Since the heating is approximately constant, the effective
cooling rate Λ − Γ becomes more negative, so heating is also a runaway effect. Compared to

6To estimate the volume, we assume the shape of one Fermi Bubble to be a cylinder with radius of the base 3 kpc and
height 9 kpc and then multiply by 2 to account for the both bubbles above and below the Milky Way disc. The volume
of eROSITA is similarly calculated, but with a radius of 7 kpc and a height of 14 kpc. Values for the dimensions are taken
from Predehl et al. (2020).
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Figure 17: Evolution of two extreme cases heating, with a low power (left) and high power (right).
Both evolutions have initial condition mb2016, convection enabled and length scale for heating
λ = 8kpc. The black dashed line shows the last timestep of the evolution without heating, which
is fully shown in Figure 15. The time-steps between the curves are 1Myr and 10Myr for the left
and right columns respectively.
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cooling, however, the process is more gradual. The timestep will still decrease, but because it de-
creases more slowly, in some cases the maximum number of iterations is also reached. The choice
of these stopping conditions therefore will influence the total evolution time in the system, and
it is therefore not possible to put the evolutionary time in the extreme heating case in a physical
context. For the coronae that are heating, the evolution time is mostly between 100 – 400Myr, but
in principle they could evolve for much longer. For a detailed explanation see the discussion in
Section 4.2.4.

Observations of properties of the Fermi Bubbles, have estimated a gas density of nFB ∼ 8 ×
10−4 cm−3 and the temperature of TFB ∼ 4×106 K in the bubble (Miller & Bregman, 2016). As we
can see from Figure 17, these values for the density and temperature are achieved rather quickly
in about 10 − 20Myr. Showing that the case where heating is dominant to the cooling is able to
reproduce an environment similar to the Fermi Bubbles. The scale of the bubbles that we produce,
however, reaches to at least 70 kpc, which is one order of magnitude larger than the observed scale
of the Milky Way bubbles.

The results above focus on the evolution from the mb2016 initial condition, and power source
with length scale λ = 8kpc, however everything except the exact quantities and time-scales also
applies for the mb2016-rescaled initial condition and for λ = 5kpc. For our results, the main
difference between these parameters is the value of the power needed for heating to be dominant,
which we will discuss in the next subsection.

3.3.1 Heating threshold

We have seen that with a constant central heating source, the corona will be in either a regime
with runaway cooling or one with runaway heating. Since these regimes are a function of the
central power Ėtot, there must be some threshold power where the corona transitions from being
dominated by cooling to where heating is dominant. Since we have seen that the central density
increases in the case of cooling, and decreases in the case of heating, we can use this to find upper
and lower bounds for the threshold power. Figure 18 shows the electron density at r = 0 at the
end of the evolution, as a function of the power of the central heating source with λ = 8kpc
(upper panel) and σ = 5kpc (lower panel). The blue and orange colours show the values for
mb2016 and mb2016-rescaled respectively, where the large dots indicate the datapoints and
the dotted lines connecting them are only visual. For reference, the initial values of ne(r = 0)
have been included as dashed lines.

In both Figures, we see that for energies below Ėtot ≤ 5 × 1040 erg s−1 the final inner electron
densities are all constant around a value of ne = 0.1 cm−3, which is indeed similar to what we
see in the left column of Figure 17, where cooling is dominant. As we have seen from the evo-
lution without central heating, the density with mb2016-rescaled is higher at the end of the
evolution, which we also see here. Since heating does not have an impact in this regime, the scale
length of the kernel does not matter and the density values at the end of the evolution for λ = 8
and 5 kpc are the identical.

As the power of the central source increases, we see that for all the coronae, the density sud-
denly drops to an extremely low value around 10−4 cm−3. This density is identical to the heating
dominant case, shown in the right column of Figure 17. This sharp decrease in density for increas-
ing Ėtot therefore denotes the region where the corona transitions from being cooling dominated
to being heating dominanted and the threshold power should be somewhere in this region. The
reason why the densities are constant for any power below or above the threshold are because
the stopping condition is determined by the density and vice-versa. This can be seen if we adjust
Equation 66 to also include heating:

δtstop ∝
1

n|Λ− Γ|
. (68)

Reading off the values above and below the threshold from Figure 18, the upper and lower
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Figure 18: Inner (r = 0) electron densities at the end of the evolution of mb2016 (blue) and
mb2016-rescaled (orange) coronae, as a function of the power of the heating source in the
centre of the system Ėtot (scale length λ = 8kpc above, λ = 5kpc below). The dotted lines
connecting the dots are a visual aid. As a reference, the initial densities at r = 0 are included as
dashed lines.
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bounds for the threshold power are:

for mb2016, with λ = 8kpc between Ėtot = (2− 3)× 1041 erg s−1,

for mb2016-rescaled, with λ = 8kpc between Ėtot = (10− 20)× 1041 erg s−1,

for mb2016, with λ = 5kpc between Ėtot = (0.5− 1)× 1041 erg s−1,

for mb2016-rescaled, with λ = 5kpc between Ėtot = (1− 5)× 1041 erg s−1.

Note that we have evolved the coronae with λ = 8kpc additional times around the threshold
region, in order to see if we would be able to find a power for which the corona was not cooling
nor heating dominated. However, we were unsuccessful in this regard, as can be seen in Figure 18,
where on both sides of the threshold the density tends to one of the two extreme cases.

For powers above the transition region, we see that the inner density remains constant to
around 10−4 – 10−5 cm−3, which is due to the lower limit on the timestep, but increases again
slightly for the mb2016 corona at Ėtot ∼ 5× 1042 erg s−1. This is also a numerical effect, however,
since the magnitude of the heating is so large, that the shooting method has issues with finding a
good P (0) to get P (Rout) = P∞ whilst keeping M(Rout) = Mtot, at some Rout and therefore stops
the evolution prematurely. It would be possible to tweak the integration further in order to solve
these issues, however, since the power at which this occurs is significantly above the transition
region, we are not interested in the exact evolution of the corona with this power and we choose
not to pursue it further.

In Figure 19 we show an example of the evolution with power just below (left column) and
above (right column) the threshold region for the mb2016 initial condition with λ = 8kpc.7 In the
left panels of the Figure, we see that the density increases (temperature decreases) in the centre
up to 1 kpc. Between 1− 20 kpc the density decreases (temperature increases), and beyond 20 kpc
the profiles stay relatively unchanged. By calculating L in the outer parts of the corona, we find
that it is also cooling here (L > 0). This indicates that in the centre the corona is cooling, in the
intermediate region it is heating, and beyond it is cooling again. This might be an indication
that the scale length of the kernel is too large or that the Gaussian shape of the kernel produces
tails which are too big. This same pattern is also present for coronae mb2016-rescaled with
λ = 8kpc and mb2016with λ = 5kpc, but not for mb2016-rescaledwith λ = 5kpc. Decreasing
the length scale therefore does not immediately make the corona uniformly cooling or heating.
Since these coronae are still dominated by cooling in the centre, and have therefore short evolution
times, we still use them as the lower bound on the transition region.

We see that the threshold for the mb2016-rescaled corona is always at a higher power
compared to the mb2016 corona with the same length scale. This difference is due to the higher
cooling in the mb2016-rescaled corona (for example see Section 3.1). More cooling means a
higher energy loss, and consequently more heating is needed to counterbalance this cooling.

We also see that the threshold changes significantly if we change the size of the kernel. A
smaller kernel size always produces a lower threshold, which again implies that the size, and
perhaps the shape of the kernel, is important. In our implementation, if we decrease the length
scale of the kernel whilst keeping the total power the same, the kernel will be more concentrated
and insert more energy in the centre. Therefore, to balance the cooling in the centre, we need less
total power, which should result in a lower threshold power. Since the kernel size seems to have
impact on the results, it may be useful to investigate more sizes in future work.

7Appendix C contains Figures 31 to 33 similar to Figure 19 but for the mb2016-rescaled corona, and with λ = 5kpc.
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Figure 19: Full evolutions of the electron density, temperature and entropy-index of the lower
(left column) and upper (right column) bounds to the threshold power of the mb2016 corona
with heating scale length λ = 8kpc. The colour of the lines indicate the time of the evolution. For
reference, the last timestep of the evolution without heating is included as a black dashed line (see
Figure 15). The time-steps between the curves are 1Myr and 10Myr for the left and right columns
respectively.
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4 Discussion

In this Chapter, we discuss our results shown in Chapter 3. We start by comparing the thresh-
old powers found in Section 3.3.1 to literature estimates of the Milky Way bubble power sources.
Then, we test various assumptions and numerical details of our model, and discuss whether and
how they influence our results. This includes, among others, the assumption of hydrostatic equi-
librium, the assumed temperature in the initial condition and the starting radius for the integra-
tion of the corona. Finally, we discuss an analytic steady-state model for rotating cooling flows in
the Milky Way by Stern et al. (2024), which is an extension of the nonrotating model (Stern2019),
and show that this model is not applicable in the region where it would be most useful: close to
the Milky Way disc.

4.1 Comparison with Milky Way bubble sources
We have seen that the evolution of a Milky Way-like corona is heavily influenced under the ad-
dition of a heating source originating from the centre of the system. Depending on the power of
the source, the system will either be cooling or heating dominated and should transition between
these regimes at some threshold power. Our results have shown that the threshold depends on
the initial condition and scale length of the kernel, in general is of the order of 1041 − 1042 erg s−1.
Since the implementation of heating from the centre was motivated by existence of the Fermi and
eROSITA bubbles, we compare our results to estimates of the power needed to inflate the bubbles
(Miller & Bregman, 2016; Predehl et al., 2020; Yang et al., 2022). We first briefly describe what
these estimates are, and how they are obtained and then proceed to compare them to our heating
thresholds.

4.1.1 Estimates for sources of the Milky Way bubbles

Since the bubbles are observed as large conical structures above and below the GC of the Milky
Way, it is most likely that their origin is tied to the GC as well. The most likely scenario is that
these bubbles are inflated by an energetic episode, powered by nuclear star formation (NSF),
or by the Milky Way’s central massive black hole, called Sgr A∗ (Yang et al., 2018). Typically,
the power of a NSF source, with SFR ≈ 0.08M⊙/yr in the Milky Way’s GC, is considerably
lower (1040 erg s−1, Crocker et al., 2015) than scenario’s involving an AGN (above 1042 erg s−1,
Miller & Bregman, 2016). The scenario involving NSF, therefore requires a longer time-scale (at
least 100Myr, Crocker et al., 2015) to form the bubbles, compared to the formation through an
AGN (Yang et al., 2018). We will consider estimates from Miller & Bregman (2016) (Fermi) and
Predehl et al. (2020) (eROSITA), who both estimated the power of the source that would inflate
those bubbles, based on observations. Moreover, we consider the results from Yang et al. (2022)
who simulated a short AGN episode producing a jet to form both bubbles.

Miller & Bregman (2016) observed regions close to the GC to constrain both the inner prop-
erties of the Milky Way’s corona and the Fermi Bubbles. Using these parameters, they then pro-
ceded to estimate what power would be required to inflate these bubbles. They assumed that
the bubbles are a continuous galactic outflow, in the energy conserving phase where radiative
losses can be neglected (Weaver et al., 1977; Veilleux et al., 2005). The time since the creation of
the bubble tage, and the mechanical energy injection rate ξĖ are then given as:

tage = 11.8

(
r

10 kpc

)( vexp
500 km s−1

)−1

Myr (69)

ξĖ = 3.7× 1042
( n0

10−3 cm−3

)( r

10 kpc

)2( vexp
500 km s−1

)3
erg s−1 (70)

where r is the currently observed radius of the bubble, vexp is the expansion velocity, n0 the ambi-
ent density, Ė the energy injection rate and ξ ∼ 0.3 the thermalization efficiency of the mechanical
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Figure 20: Literature estimates of the mechanical power and injection time of the Fermi and
eROSITA bubbles of the Milky Way. The estimates from Miller & Bregman (2016) (Fermi) and
Predehl et al. (2020) (eROSITA) are based on observations and assume the bubbles are winds
powered by a continuously injecting central source. The Seyfert case from Predehl et al. (2020)
assumes instead that the bubbles were formed by a shorter, more energetic episode. The estimate
from Yang et al. (2022) is based on the simulation of a short, highly energetic jet that reproduces
both the Fermi and eROSITA bubbles. The errorbars represent the range in the values as indicated
by the respective authors.

luminosity. For their observed parameters of the Fermi Bubbles and including their uncertainties,
they estimated the age of the bubbles to be tage = 3 − 5Myr and the combined energy injection
for both bubbles to be (2× ξĖ) = (1− 7)× 1042 erg s−1.

In the discovery paper of the eROSITA bubbles by Predehl et al. (2020), they estimated the
thermal energy of the bubbles based on their size, density and temperature of the emitting gas.
Taking the observed size, and assuming kT ≈ 0.3 keV and Z = 0.2Z⊙ they estimated the electron
density in the bubble to be 0.002 cm−3. Together this gives a thermal energy per bubble of Eth ≈
1.3× 1056 erg. Since the bubbles show a sharp boundary, they assumed the bubble is an outwards
adiabatic shock, and find mach numberM≈ 1.5 (or outwards velocity v ∼ 340 km s−1) based on
the difference between the temperature and density in-, and outside (Miller & Bregman, 2016) the
bubble. The expansion time of such a bubble will then be 20Myr, which then corresponds to a
source with power (1 − 3) × 1041 erg s−1 during the expansion. They additionally speculate that
the creation of the eROSITA bubbles would also be compatible with a short episode (1− 2Myr) of
Seyfert-like activity from Sgr A∗, with power 1043 erg s−1.

More recently, Yang et al. (2022) showed with a hydrodynamical simulation that a short out-
burst event of Sgr A∗ would be able to create the structure of both the Fermi and eROSITA bub-
bles. They simulated a short outburst of 0.1Myr that took place 2.6Myr ago, using FLASH (Fryx-
ell et al., 2000) a 3D adaptive mesh hydrodynamic code, using the CRSPEC module to model the
evolution of the CR spectrum. The CR evolution assumes a leptonic model, where electrons are
accelerated by the Sgr A∗ jet and lose energy via synchrotron radiation and inverse-Compton scat-
tering. The total power of each Sgr A∗ jet is set to a value of 3.16× 1044 erg s−1. At the end of the
simulation, the morphology and sizes of both the Fermi and eROSITA bubbles are successfully
reproduced.

The scenarios outlined above all give wildly different powers for the central energy source,
mainly due to the different time-scales on which the energy is injected into the bubble. Of course,
if the total energy of the Milky Way bubbles is fixed, a shorter injection time would imply a high
power and conversely, a longer time-scale a lower power. In Figure 20, we have combined the
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Figure 21: Combination of the threshold regions from Section 3.3.1 and literature estimates shown
in Figure 20. The literature estimates are converted to average powers, as described in Sec-
tion 4.1.2, where the upper and lower bounds represent the case with the smallest toff and highest
toff respectively. The threshold regions, the range in power where the corona goes from being
dominated by cooling to heating, from our results are indicated as blue (mb2016) and orange
(mb2016-rescaled) patches and the value in the middle of the range shows the scale length as
a dashed (λ = 8kpc) or dotted (λ = 5kpc) line.

estimated power and injection times of the four cases, where the errorbars correspond to the
ranges in the estimates as reported by their authors. In the Figure we can clearly see here that
the power estimates of the sources vary by three orders of magnitudes, and the injection time
by 2. We can also see here that low injection times are paired with high powers, and vice versa.
The time since the outburst could also be an important factor in the estimate of the power if the
bubbles would lose a significant amount of their energy since the outburst, in particular due to
radiation. However, Predehl et al. (2020) esimated that for the eROSITA bubbles the cooling time
of the gas is of the order of 200Myr, so radiative cooling is unlikely to be an important factor for
the time-scales that are considered here.

4.1.2 Comparison with the heating thresholds

Before we can compare our thresholds to the estimates of the Milky Way bubble power source, we
have to account for the fact that our values are calculated using a continuous heating source. This
is different from, for example, the process of AGN feedback, which is typically self regulating
because the luminosity of the black hole is tied to its accretion rate. When the accretion rate
is high, the black hole will have a high luminosity, heat the surrounding gas and consequently
lowering the accretion rate. The fraction of the time the AGN spends in such an outburst state
is called the duty cycle, typically being of the order of 10−3 − 10−2 (Cimatti et al., 2019). Such
self regulation may also be relevant for the NSF, where gas needs to be cool to form stars, but the
formation of young stars, together with the onset of type II supernovae, may stop the formation
of more stars by heating the gas.

Assuming the energy source has an outburst of duration ton with power Ėon, and is off for
remaining time toff in the cycle (so Ėoff = 0), the average power injected in the system during a
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full cycle is given by

˙⟨E⟩ = Ėonton
ton + toff

. (71)

In our model, heating is injected continuously into the system, so our threshold powers can al-
ready be interpreted as an average power. But to compare them to the estimates in the literature,
we have to compute the corresponding average power for each estimate. If a system is self-
regulating, it will have periods when it is dominated by heating (during the outburst) but also
periods when it cools back down. On time-scales that are much larger than the duty cycle, the
system will therefore not be cooling nor heating dominated, which means the average power of
the source should be similar to our threshold power, or at least be somewhere in the transition
region.

The duration of the outburst is given in all cases, and are ton = 3−5Myr for Miller & Bregman
(2016), ton = 20Myr for the wind case and ton = 1 − 2Myr for the Seyfert-like case of Predehl
et al. (2020) and ton = 0.1Myr for Yang et al. (2022). Estimating the time spent in the off state
is difficult, so we consider extreme boundaries. For the lower limit of toff , we take it to be equal
to time between when the energy source stops emitting and now. This implies that the next
energetic outburst of the source will occur very soon as well, which is an unlikely case. Both
Miller & Bregman (2016) and Predehl et al. (2020), only estimate the age of the bubble together
with the estimate for a continuous power source, so therefore we take toff = 0, assuming the
source keeps emitting energy up until very recently. For the Seyfert-like outburst, we assume
this occured when the bubble was created (20Myr ago), so accounting for the duration of the
outburst, we take toff ≈ 19Myr. The time since the outburst simulated by Yang et al. (2022) is
given explicitly, so we take toff = 2.5Myr. For an upper limit on toff we use the estimated cooling
time of the eROSITA bubbles by Predehl et al. (2020) (tcool ∼ 200Myr), and add that to the lower
limit of toff for each case.

Figure 21 shows the calculated upper and lower limits of the average powers of the es-
timate from Miller & Bregman (2016), Predehl et al. (2020) and Yang et al. (2022) as vertical
lines. Our ranges for the transition region, a range of powers between the regimes where
our coronae are cooling and heating dominated, are indicated with blue (mb2016) and orange
(mb2016-rescaled) horizontal patches, where the central value is marked with a dashed (scale
length λ = 8kpc) or dotted (λ = 5kpc) line of the corresponding colour. We see that the estimates
from Miller & Bregman (2016) and Yang et al. (2022) have the largest difference between the upper
and lower limits, because the lower limit ton+ toff ≤ 10Myr is very small compared to the cooling
time of 200Myr. It is also remarkable that the average power for these two estimates are almost
identical, with Yang et al. (2022) being slightly lower. We previously saw a large scatter in the
absolute values of the power estimates (Figure 20), but Figure 21 shows that the average powers
of the estimates are considerably closer to each other, even when considering the large scatter in
the values. The average powers from Predehl et al. (2020) estimates are lower than the estimates
from Miller & Bregman (2016) and Yang et al. (2018), possibly because they only consider the
energetics of the eROSITA bubbles.

When we compare our range for the transition region to the estimations from literature, we see
that our values for the power thresholds for both coronae range from 5 × 1040 erg s−1 to roughly
1 × 1042 erg s−1, where the range from the literature values is similar, but has higher upper val-
ues for the average power. The transition region for the mb2016 corona, with λ = 8kpc and
mb2016-rescaled corona, with λ = 5kpc (middle two regions) are within the uncertainties of
each of the literature estimates. The mb2016-rescaled corona, with λ = 8kpc (upper line) is
within the ranges off both Miller & Bregman (2016) and Yang et al. (2022), slightly outside the
range of the Seyfert-like estimate and far from the wind estimate from Predehl et al. (2020). This
latter estimate is also the only one that is of the same order as the lowest threshold from the
mb2016-rescaled corona, with λ = 8kpc.

Overall it is remarkable that the transition regions estimated with our evolutionary model,
are so similar to average powers of the Milky Way bubble sources as estimated in the literature.
Apart from the simplicity of our model (for example spherical symmetry), we have only required
that the inner source would be powerful enough to counterbalance rapid radiative cooling in
the centre. The fact that the power we obtain is similar to the observed power of the bubbles
suggests that the inner source in the Milky Way could be able to stop this cooling and onset a
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self-regulating mechanism that keeps the corona in equilibrium for very long times. The biggest
discrepancy between our values and the ones from literature is at high average power. However,
we note that this upper limit is estimated with toff = 0, implying the next energetic outburst of
the source starts very soon, and is therefore likely too high of an upper limit.

4.2 Impact of our model assumptions

4.2.1 Temperature of the Milky Way corona

In the literature, the Milky Way corona is typically assumed to be isothermal with a temperature of
log(T ) = 6.3 (?) or slightly lower around log(T ) = 6.23 (Ponti et al., 2023; Locatelli et al., 2024). For
our initial conditions, we assume the density to follow a beta-model (Miller & Bregman, 2016) and
the gravitational potential to be dominated by a NFW dark matter halo (see Section 2.4). When
we then assume the corona is in hydrostatic equilibrium to find the pressure and temperature, we
see that the corona is not fully isothermal (see for example middle panels of Figure 13).

We determine the boundary condition (P∞) for the integration of Equations 5 and 6 by as-
suming that the temperature at the virial radius is equal to log(T ) = 6.3, the same temperature
assumed by ?. We can then compute P∞ at this radius, since we know the temperature and den-
sity. Making this assumption on the temperature at r = rvir results in temperature of the corona
being lower than log(T ) = 6.3 for all r < rvir. However, observations of the Milky Way corona are
mainly sensitive to the emission within a few tens of kpc from the Sun (for instance, 80 per-cent
of the emission of the corona comes from 1 kpc < s < 20 kpc, s being the distance from the Sun
Locatelli et al., 2024), so ideally, the temperature in this region should then also be around the
commonly assummed value of log(T ) = 6.3.

We produce new temperature profiles for our initial conditions, by assuming that at some
different reference radius Rref , the temperature is equal to log(T (Rref)) = 6.3. Similar to Sec-
tion 2.4.3, we obtain P (r) by integrating Equation 1 from 0 to r (Equation 56), but now find P (0)
by evaluating the integral on the RHS I(r) at Rref

P0 = P (Rref) + I(Rref), (72)

where P (Rref) we can find using the number density given by the β-model, and the assumed
temperature at this radius. The full pressure profile is then obtained by evaluating P (r) = P (0)−
I(r) for radii between 0 and Rout. Finally, we compute the temperature profile using the ideal gas
law. We note that for Rref = Rout, this method produces the same temperature profile that we
have used throughout the thesis.

Figure 22 shows the temperature (left) and pressure (right) profiles obtained by taking Rref =
rvir, 100 and 10 kpc. For these coronae, we used the density from mb2016. We see that all temper-
ature profiles indeed match log(T ) = 6.3 (dashed grey line) at their respective Rref . The temper-
ature profile with Rref = 100 kpc (green) is overall similar to the original profile with Rref = rvir
(blue), but diverges around 100 kpc and at the virial radius has a temperature of 4 × 106 K. The
profile with Rref = 10 kpc, is very different, however, and increases rapidly starting at 3 kpc. At
the virial radius, the temperature of the corona is 108 K, which is unrealistic for the Milky Way
corona. To compensate for the higher temperatures at large r for Rref = 10 and 100 kpc, the pres-
sure is much lower. This could be advantageous for the numerical integration scheme, which
would need less precision, since the difference between P0 and P∞ would be significantly lower.

For this work, assuming the temperature is log(T ) = 6.3 at rvir is most appropriate, since
overall it creates a temperature profile that is closest to log(T ) = 6.3. However, different initial
conditions should be considered that give log(T ) = 6.3 around 10 kpc, but also remain around this
value at larger radii. A potential adjustment that could be made is in the gravitational potential
of the system. For our model, we assume it is dominated by the dark matter halo everywhere,
but we could also include the potential of the Milky Way disc, which would have large effects at
low r.
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Figure 22: Initial profiles for the temperature (left) and pressure (right) for varying radii Rref at
which we assume the temperature to be equal to log T (Rref) = 6.3 (grey dashed line). Throughout
the thesis we have used Rref = rvir = 282 kpc (blue line).

4.2.2 Assumption of hydrostatic equilibrium

At each time-step in the evolution of our model, we integrate the corona to get the pressure
and mass profiles at the new time-step. For this, we assume that the corona is in hydrostatic
equilibrium. However, since our model evolves the corona by heating or cooling, it is clearly not
fully in hydrostatic equilibrium. But, if the time scale of the evolution is longer than the time the
system needs to come to an equilibrium, we can expect that the corona time to re-adjust into a
temporary equilibrium.

We can quantify this by comparing the speed at which the gas flows through the system,
to the sound speed of the gas. If the flow speed is much smaller than the sound speed, our
assumption of hydrostatic equilibrium can still be used (Forman et al., 1985). We compute the
mach number (M ≡ |vr|/cs) at radius r by dividing the radial velocity, calculated from the mass
accretion (Equation 47), by the isothermal sound speed

cs =

√
kBT

µmp
. (73)

We use the isothermal sound speed, as opposed to the adiabatic sound speed, because our corona
is explicitly evolving by a change in entropy and therefore cannot be adiabatic.

Figure 23 shows the evolution of the mach number of the mb2016 (left) and
mb2016-rescaled (right) coronae, evolved with classical cooling (Section 2.2.1). For both coro-
nae, the mach number is small in the centre, increases with radius up to 1 kpc and then falls off
again at large radii. This is very similar to the shape of the radial velocity, shown in Figure 14.
The mach number peaks around 1 kpc at the end of the evolution, at value of roughlyM∼ 1. Ev-
erywhere else, the mach number is well below 1, and always stays belowM = 0.1 beyond 10 kpc.
Assuming hydrostatic equilibrium to integrate the corona at each time-step seems therefore a
well-founded assumption.

4.2.3 Time-scale of convection

Our results have shown that when we evolve a Milky Way-like corona with our evolutionary
model, a large negative entropy gradient develops in the centre of the corona, which makes this
region convectively unstable. To avoid these unstable regions from forming, we implement a
method from Binney et al. (2009), which at each time-step finds regions that have negative entropy
gradients, and replaces the entropy of the entire region by the mass-weighted average of the
entropy (see Section 2.2.4). Here, we compare the scale at which the convection takes place, to the
sound speed of the system.
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Figure 23: Evolution of the mach numberM = |vr|/cs of the mb2016 (left) and mb2016 (right)
coronae, using the CIE cooling function from SD1993.

We apply the convective method at each time-step, which are of the order δt ∼ 0.1 – 1Myr.
From Figure 11, we see that the entropy is flat in the centre up to a radius of 1 kpc, which means
the convection method is applied on this scale. The temperature in this region is roughly 5×105 K,
so the isothermal sound speed (Equation 73) is roughly 80 km s−1. Dividing the length scale by
the sound speed gives us a rough indication of the time-scale at which convection can take place.
For the length scale of 1 kpc and the sound speed at T ∼ 5 × 105 K this will be tconv ≈ 12Myr.
This time-scale is a factor 10 – 100 longer than our time-steps of around δt ∼ 0.1 – 1Myr. The
method for removing negative entropy gradient, therefore seems to act too fast on the system.
However, we have seen in Section 3.1.1, that the evolution of the corona beyond the region that
is cooling rapidly (r > 3 kpc) is not affected by the application of the convection method. Our
results concerning the mass accretion in the outer parts of the corona, and the comparison with
Stern et al. (2019), should therefore remain unaffected.

When we add heating from the centre to our evolution, we see (right column, Figure 17) that
the region with constant entropy is significantly larger at the end of the evolution, extending
even beyond 100 kpc. Since the heating is injected into the centre of the system, the entropy will
increase only here and hence the convection method will cause this entropy to be ‘transported’
outwards. The temperature in this region is now around 4 × 106 K, so cs ≈ 230 km s−1. The
time-scale on which the convection acts in the case of heating, is then tconv,heat ≈ (100 kpc)/cs ≈
400Myr which is significantly longer than our estimate without heating. However, when we
include heating from the centre, our results no longer focus on the precise evolution of the system.
We are mostly concerned whether the corona is cooling or heating dominated. Convection will
only ever transport entropy to larger radii, and as a consequence, the density (temperature) in
the region from which the entropy is transported will only increase (decrease), and therefore the
cooling in this region would become more efficient. So, by enabling convection, the cooling in the
region which is heated can only become more efficient compared to the case without convection.
If the corona is already heating dominated, it will therefore still be heating dominated when we
would not use convection method, thus it will have no impact on our upper bounds of the power
threshold.

The convective method could have an impact on the lower bound of the power threshold,
however, if the length scale of the kernel would be much smaller than the region which is rapidly
cooling. We would then get a situation, where within the length scale, the system would be
heating and beyond it, the system would be cooling. However, as we see from the evolution of
the corona with Ėtot at the lower bound of the threshold (left column, Figure 19), the opposite is
the case, where the system is heating at r ∼ λ and is cooling at the centre. If we were to decrease
the length scale, we would need to make sure that the convective method is adjusted such that it
would act on time-scales of the same order as the time-step (0.1 – 1Myr).

In conclusion, the scale at which our convection method acts seems to be too large compared
to the length travelled at the sound speed of the system. However, we have also shown that our
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Figure 24: Comparison of the evolution of the mb2016-rescaled corona with classical cooling
from SD1993 under different lower limits on the time-step: δtstop = 0.01Myr (blue, original),
0.001Myr (orange dashed-dotted) and 0.0001Myr (green dotted). The left Figure shows the elec-
tron density at the end of the evolution, when the time-step limit is reached, where the grey line
indicates the density at t = 0. The Figure on the right shows the evolution time at each iteration,.

results are not significantly impacted by this convective method. Regardless, it is still important
to investigate methods for removing these convectively unstable regions further, primarily in the
case where there is an entropy generating source in the centre of the system.

4.2.4 Stopping conditions and evolution of the time-step

One of the numerical stopping conditions for our evolutionary model, is given by a lower limit on
the time-step δtstop. For our results, we have set this limit at δtstop = 0.01Myr, which is one to two
orders of magnitude lower compared to the initial time-step δt0 = 0.1− 1Myr. In this subsection
we describe the evolution of the time-step δt, and then also justify why setting this limit does not
affect our results.

As we have discussed before, cooling is a runaway effect, because when the gas cools, the
density (temperature) increases (decreases) which results in even more efficient cooling (see Fig-
ure 4). Since, the cooling time sets the upper limit on the time-step to tcool/10, increased cooling
will eventually decrease the time-step, and due to the runaway nature of cooling will keep de-
creasing it. Since there is no mechanism to stop the cooling, the time-step quickly decreases to a
point where the evolution no longer progresses.

Figure 24 shows the effect of various δtstop = 0.01, 0.001, 0.0001Myr on the evolution of the
mb2016-rescaled corona, with classical CIE cooling from SD1993. On the left side we see the
electron density at the final time-step, for the various δtstop, where a smaller value will result in
a higher density in the centre of the corona. However, the corona beyond 1 kpc stays the same.
On the right panel we see the evolution time as a function of iteration number. For the first 50
iterations, the time-step stays constant, and the evolution time therefore increases the most here.
Then, the time-step is lowered quickly due to the cooling and immediately flattens out. All three
stopping conditions follow the same curve, but naturally stop at a different iteration number. The
final evolution times for the three stopping conditions are almost equal at 5.52, 5.61 and 5.62Myr
for δtstop = 0.01, 0.001, 0.0001Myr, respectively. Even though the density in the centre is affected
by the limit on the stopping condition (see Equation 66, and Figure 24), the density beyond 1 kpc
is not, and since changing the stopping condition does not affect the evolution time significantly,
our results are not affected by using δtstop = 0.01Myr.

The evolution of the time-step in the case where the corona is being heated, is slightly different
compared to the cooling case. The time-step is still determined by the time-scale of energy change
tϵ, which now depends on both cooling and heating as tϵ ∝ 1/(n|Λ− Γ|) (Equation 18, with L ∝
n2(Λ− Γ)). Since our model includes continuous heating with a constant power, Γ is constant and
if the heating is dominant, Γ > Λ. Moreover, because the corona is heating, the density increases,
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Figure 25: Comparison of the change in timestep δt as a function of iteration number for
the mb2016-rescaled corona under varying heating powers Ėtot (indicated by colour) with
λ = 8kpc. The stopping conditions on the evolution, lower limit on time-step δtstop = 0.01Myr
(horizontal) and an upper limit on the number of iterations Niter = 4000 (vertical) are included
as black dashed lines. The green/blue lines are in the regime where cooling is dominant, and the
orange/red lines are in the regime where heating is dominant.

which in turn decreases Λ, and as a result, tϵ will become smaller. In this case, the time-step also
decreases, but now it decreases much less rapidly compared to the cooling case. We can see this
in Figure 25, where we show δt over the entire evolution of the mb2016-rescaled corona, for
varying Ėtot. In all the cases, the timestep stays constant for roughly the first 100 iterations, while
afterwards we can see differences. As we have seen before, when cooling is dominant (green
and blue lines) δt decreases rapidly until it reaches δtstop. The red and orange colours indicate
evolution where heating is dominant, and we see that δt decreases much more slowly and only
stops because we have set a limit of 4000 iterations. We also see that coronae with a smaller Ėtot
(but still heating dominated), decrease their time-step later in the evolution compared to coronae
with higher Ėtot, resulting in a longer evolution time.

We see that the evolution that are dominated by heating all stop when the iteration limit of
Niter = 4000 is reached. In principle, the evolution can continue beyond this point, but it will not
change whether the corona is heating or cooling dominated. Varying this limit will significantly
change the total evolution time of these system, which is the reason why we cannot put them
in a physical context. But, the limit will not affect the upper bound on the power threshold and
therefore not influence our results in this regard.

4.2.5 CLOUDY cooling and heating

In our results (Section 3.2) we have seen that when we use CLOUDY, with photoionisation from the
extragalactic UVB, to calculate how the entropy evolves over time (see Section 2.2.2), the centre
of the corona cools slightly more slowly compared to when we use classical cooling from SD1993.
Here, we investigate if this is due to the different calculations made in the cooling function (Λ) by
CLOUDY, compared to SD1993 or due to the addition of heating through photoionizing radiation
from the extragalactic UVB. We evolve the mb2016 corona again, with identical parameters to the
evolution shown in Figure 15, but now we no longer consider the heating from photoionisation.
Figure 26 shows the electron density (left) of the corona with (blue) and without (orange) pho-
toionisation at t = 8Myr. Because the differences are not visible by eye, the right panel shows
the difference between the electron density with (ne) and without (ne,noheat) photoionisation. In
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Figure 26: Comparison of evolution of the mb2016 corona with convection between cooling from
CLOUDY with (blue) and without (orange, dashed) heating from photoionisation. The left panel
shows the electron densitiy at t = 8Myr for both cases. The right panel shows the difference
between the density with heating ne and without heating ne,noheat, at the same time-step. The
scale of the vertical axis is in units of 10−6.

this panel, we see that the difference is negative for r < 1 kpc, and for larger radii is around 0.
This implies that ne < ne,noheat in the centre, which is the region that in general has the most
cooling. A higher density for ne,noheat is expected, since no heating would results in a higher net
cooling rate. The relative difference between the two cases, however, is of the order 10−6, which
is incredibly small. At large radii, we do not see much difference, which is most likely because
the cooling rate in this region is much lower.

Since the difference between the cases is very small, this tells us that photoionisation from
the UVB does not play a significant role in the evolution of the corona. Figure 27 shows the net
cooling function from CLOUDY with (black) and without (grey) photoionisation for metallicities
Z = 0.1 Z⊙ (left) and Z = 0.3 Z⊙ (right). In this figure, we see that for all densities and both
metallicities, beyond T > 105 K the net cooling functions with and without heating are identical.
Only at lower temperatures we see the difference caused by photoionisation. For the evolution
with our coronae, we see that (for example in Figure 15) the temperature of the corona always
remains above T > 105 K. Combined with the fact that photoionisation only becomes relevant
below this temperature, this explain why it seems that photoionisation does not have any effect
on the cooling of the corona. Photoionisation can still have an impact when the corona cools
below T < 105 K, for instance, when the gas is accreted by the galaxy. It therefore follows that
photoionisation mostly plays a role at the interface between the corona and the Milky Way disc,
which we do not consider in our model.

4.2.6 Integration with nonzero starting radius

A dominating factor in our results is the fact that cooling is most rapid within the few outer
kpc of the corona. As a result, most of the evolution in density, temperature and entropy also
occurs in this region. In reality, however, this region harbours the stellar disc and bulge together
with the gaseous disc of the Milky Way, so several of our assumptions break down. The Milky
Way disc is mostly an axisymmetric system, with rotation around the axis perpendicular to it.
Therefore, assuming a spherically symmetric and non-rotating corona will not be valid in this
region. Moreover, the gas in the corona close to the galaxy, will likely interact with it. For example,
the gas can be reheated by galactic feedback, which would affect the equilibrium of the corona. A
possible solution is to avoid integrating this inner region altogether, but this is not possible in the
model due to our boundary conditions.

The integration of the equations for hydrostatic equilibrium (Equations 5 and 6) starts at r = 0,
which allows us to safely assume the boundary condition on the mass M(r = 0) = 0. If one were
to start the integration from some point r0 > 0, we would need to also know M(r0). At t = 0
this is not a problem, since ρ(r) is known and we can integrate the density to get Mt=0(r0). The
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Figure 27: Net cooling functions (cooling Λ minus heating Γ) from CLOUDY (Ferland et al., 2013)
with photoionisation from extragalactic UVB from Haardt & Madau (2012) for hydrogen densities
between nH = 1−10−6 cm−3 (black lines), and without photoionisation (grey lines). The figure on
the left shows the net cooling functions for Z = 0.1 Z⊙ and the figure on the right for Z = 0.3 Z⊙.

issue arises however when we perform the first time evolution step by changing the entropy (see
Section 2.1.2) and have to integrate using the new boundary condition. Let us say that this new in-
tegration occurs at time t1 and the time before the update step is t0, we then need to know Mt1(r0)
before we start the integration. When the corona cools, it constracts and the new mass at this radius
will be higher than before: Mt1(r0) > Mt0(r0). The difference between these two masses is given
by Ṁt0(r0)δt, where Ṁt0(r0) is the mass accretion rate at t0 and δt is the time-step used in the
update step. In order to know Ṁ(r0), for instance by using the forward difference approximation
(Equation 45), we need to know Mt1(r0), which is unfortunately exactly the boundary condition
that we want to find out. In order to find an appropriate value for this boundary condition, we
therefore would have to make some additional assumptions or completely change the integration
scheme.

Changing the integration scheme is beyond the scope of this work, however we could still
make a simple assumption in order to check if the outer part of the corona is affected by the rapid
cooling in the centre. We make the assumption that mass does not flow through our boundary
condition at r0, which would keep M(r0) constant over time. With this assumption, we evolve the
mb2016 corona, with SD1993 cooling and convection (Section 2.2.4) for starting radii of r0 = 0.1, 1
and 10 kpc. The resulting mass accretion profiles can be seen in Figure 28, where the result with
r0 = 0.1 kpc (left) and r0 = 1kpc (right) can be seen on the top row, and r0 = 10 kpc in the
bottom left panel. We can see that the mass accretion profiles and evolutionary times for the 0.1
and 1 kpc are very similar to the normal evolutionary runs starting at r = 0 (bottom right panel).
This is because these starting radii are still within the region with rapid cooling (Figure 11), and
therefore the effect on the outer parts of the corona will be similar. The main difference, due to
the integration starting at larger radii, is the mass pile up at r0, which we can see by the mass
accretion approaching 0 at the starting radius. This is of course expected, as we assumed M(r0)
to be constant here.

The evolution with starting radius r0 = 10 kpc is a bit more interesting, because this starting
radius is in a regime which does not cool rapidly within a few Myr. In this case, we see that the
evolution also runs for significantly longer (> 300Myr), but the mass accretion profile still stays
relatively constant beyond 30 kpc. The value of the mass accretion rate in the regime where it is
constant, is around Ṁ ≃ 0.2M⊙/yr. This value is similar to what we find for the mass accretion
in our integration starting from r = 0 (Section 3.2.1). We therefore can conclude that the rapid
cooling of the inner corona does not seem to have a significant effect on the outer regions of the
corona, meaning our estimation of Ṁ and comparison with the cooling flow model from Stern
et al. (2019) still holds. In other words, our model with pure radiative cooling also reaches a
steady-state inflow with similar properties to a model specifically designed with that purpose.
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Figure 28: Evolution of mass accretion profiles for nonzero starting radius r0 = 0.1, 1.0 and 10 kpc
for the integration of the mb2016 corona, with classical CIE cooling from SD1993 and with con-
vection enabled. The original mass accretion profile for r0 = 0, can be seen in the bottom right
(similar to Figure 12). A grey dashed horizontal line is included to indicate Ṁ = 0.2M⊙/yr.
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Figure 29: Integrated particle paths tracing the velocity field of the analytic steady-state cooling
flow solutions with rotation from Stern et al. (2024). The four different particles start at r = 40 kpc
with varying starting angles θ0 = 0.1π, 0.3π, 0.4π and 0.5π. The starting position is indicated
with a cross, and the positions where the particle first attains ε ≥ 0.5 and 1.0 are indicated by
a triangle and circle respectively. To compute the velocity fields, we take Rc,max = 15 kpc, vc =

200 km s−1, Ṁ = 2M⊙/yr and Λ = 0.6× 10−22 erg s−1 cm3.

4.3 Steady-state cooling flows with rotation
In this thesis, we have compared our results of applying an evolutionary model from Kaiser &
Binney (2003) to the corona of the Milky Way, with analytic solutions of steady-state cooling flows
from Stern2019 (Section 2.5). We saw that at large radii, these models produce almost identical
results, since when we use the mass accretion calculated from our evolutionary model as a param-
eter in the cooling flow model, the same density distribution is recovered. The main disadvantage
of both models is that they assume a spherical system with no rotation, which is clearly not valid
close to the Milky Way disc. To solve this issue, the nonrotating cooling flow model was recently
extended to include rotation by Stern et al. (2024). This would be a significant step forward, but
we have noticed that the assumptions of this model break down for small radii, as we will show
in this section. Unfortunately, the region where this model would mainly improve upon the non-
rotation solutions from Stern2019 is close to the rotating Milky Way disc, where r is also small.
Far away from the disc, the rotation is small and the non-rotating model already works, which
means we also have no need for this model in this region. Taking these two together, the model
from Stern et al. (2024) does not improve upon the non-rotating model. We will first explain how
the nonrotating analytic solutions are extended to include rotation (for a detailed derivation see
the original paper by Stern et al., 2024), and then show that the model fails when the radius is too
small.

4.3.1 Derivation of the rotating solutions

Similar to the non-rotating solutions, they make the assumption that a cooling flow of gas exists in
a halo, where the gravitational potential of the dark matter halo is dominant and can be described
by the circular speed vc(r) being a powerlaw in r. Instead of a spherically symmetric system,
they now assume that the system is rotating with angular frequency Ω about the z-axis, and is
axisymmetric around this axis. The angle θ is then the angle between the z-axis and the x − y
plane, starting from θ = 0 along the z-axis. Since the system is now axisymmetric, properties
of the gas are described by r and θ (as opposed to only r in a spherical system). The effects of
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rotation increase as the flow approaches the disc in the centre of the system, thus with decreasing
r, so they introduce a pertubation parameter

ϵ ≡
(

r

Rc,max

)−2

, (74)

where Rc,max is the maximum radius in the x−y plane where the aximuthal velocity vϕ of the gas
is equal to the circular velocity vc. The gas properties, then, are taken to be first order pertubations
in ϵ

P1(r, θ) = P0(r)[1 + ϵ(r)fP (θ)], (75)
ρ1(r, θ) = ρ0(r)[1 + ϵ(r)fρ(θ)], (76)

vr,1(r, θ) = vr,0(r)[1 + ϵ(r)fvr (θ)], (77)
vθ,1(r, θ) = vr,0(r)ϵ(r)fvθ (θ), (78)

where the subscript 0 implies the quantity is given by the nonrotating cooling flow solutions of
Stern2019 and subscript 1 denotes the solutions with rotation. The functions fq(θ) for quantity q
are arbirary functions of θ and they are found by inserting the perturbed solutions (Equations 75-
78) into the hydrodynamical equations with rotation (see Stern et al., 2024, Section 2.4). The full
solutions for pressure, density and velocity are then given by

P1(r, θ) = P0(r)

[
1 +

R2
c,max

r2

(
3

4
sin2 θ − 5

8

)]
, (79)

ρ1(r, θ) = ρ0(r)

[
1 +

R2
c,max

r2

(
11

4
sin2 θ − 35

24

)]
, (80)

vr,1(r, θ) = vr,0(r)

[
1−

R2
c,max

r2

(
23

12
sin2 θ − 65

72

)]
, (81)

vθ,1(r, θ) = −vr,0(r)
R2

c,max

r2
5 sin(2θ)

18
. (82)

4.3.2 Application to the Milky Way

When we apply these solutions to the Milky Way, however, we are unfortunately still restricted
to regions far away from the disc. We can almost directly see this from the pertubation parameter
ϵ (Equation 74), which should remain small ϵ≪ 1, so

r2 ≫ R2
c,max. (83)

Taking the value of Rc,max ≈ 15 kpc for a Milky Way like disc, equal to the value used by Stern
et al. (2024) we see that the radius must be much larger than the size of the Milky Way disc.
Moreover, since the scale height of the disc is roughly 1 kpc (Cimatti et al., 2019), the cooling flow
will hit the point of r ∼ Rc,max significantly before it is close to the disc. To visualize the flows
described by these solutions, we put four particles at r = 40 kpc for angles θ0 = 0.1π, 0.3π, 0.4π
and 0.5π and integrate their paths according to the velocity field defined by Equations 81 and 82.
We can see the resulting traces edge-on in Figure 29, where the horizontal axis shows the radius
R in the plane of the disc and the vertical axis shows the height above the disc z. The starting
locations are marked by a cross and the location in the flow where for the first time ϵ = 0.5 and
1.0 are marked by triangles and circles respectively. We see that close to the starting location the
flows are similar to radial flows described by the non-rotating solution. As the radius decreases,
the solutions deviate slightly from the radial solutions, and slowly tend to turn towards the point
with R = Rc,max, z = 0. At the end, all the particles end up at this point by construction, where
the paths with starting angles θ0 = 0.1π and 0.3π have to make extreme turns in order to get
there. Clearly this behaviour is not physical, and indeed it all happens within r < Rc,max, where
the assumption of perturbative flow is no longer valid.
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Figure 30: Evolution of the specific angular momentum (in the z-axis) of the same 4 particles
from Figure 29. The horizontal axis is shifted such that t = 0.0 indicates the time of which the
temperature of the gas in the flow is T = 105 K (the temperature is higher before). The triangle
indicates the position where ε = 0.5 for the first time.

This same note was made by Cassen & Pettibone (1976), who studied accretion via rotating
Bondi flows. Their approach is similar, where the rotating solution is a first order pertubation in
small ε ≡ (Γ∞cs/GM)

2, where Γ∞ is the specific angular momentum far away from the centre, cs
the sound speed and M the mass of the accreting body. For their pertubations, the zeroth order
solution is also equal to the original non-rotating solutions by Bondi (1952) for spherically sym-
metric accretion. Similar to our Figure 29, Cassen & Pettibone (1976) show the velocity vectors of
the accretion flow at multiple scales. The scale that corresponds to the region where the solutions
are invalid is shown in Figure 3c of their paper, where we see the exact same turns close to the
rotating plane that we see in the paths starting at low θ0.

4.3.3 Conservation of angular momentum

In an axisymmetric system, the specific angular momentum of gas along the axis perpendicular to
the plane of rotation jz is expected to be conserved along flowlines, which is also shown explicitly
by Stern et al. (2024), Equation 20. We compute the specific angular momentum of the gas along
the track of the cooling flow by Stern et al. (2024) for the four particles starting at r = 40 kpc, and
initial angle θ0 from 0.1π to 0.5π (same as Figure 29) as

jz = Ωr2 sin2 θ, (84)

where Ω is the angular frequency of the rotating gas. Figure 30 shows how the angular momen-
tum changes for these particles, along the flow, up to the point where it reaches a temperature of
T = 5K. In the simulations of Stern et al. (2024) this point indicates when the particle cools and
is accreted by the disc, and angular momentum is conserved up to this point (see Figure 4 from
their paper). We can see that jz of the particle initially placed in the plane of the disc (θ0 = 0.5π),
is indeed conserved, as it stays constant across all time. The other three particles, however, all
increase in jz when they get closer to the disc, where the biggest increase is for θ0 = 0.1π, close
to the point where T = 105 K. We note that jz already increases before the perturbation param-
eter becomes too large (ε ≥ 0.5, indicated by the triangle). This shows that in general, angular
momentum is not conserved for the rotating solutions described by Equations 79 – 82.

It is therefore evident that close to the disc of the Milky Way, where the pertubation param-
eter becomes too large, and angular momentum is also no longer conserved, we cannot use the
solutions for steady-state cooling flow with rotation. This unfortunately defeats the purpose of
the model, since this is exactly the region where the non-rotating solutions from Stern2019 are
no longer applicable. In the regime far away from the galaxy, the rotating solutions are valid,
but become identical to the non-rotating solutions, so they do not improve upon the non-rotating
model.
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4.4 Future Work
One of the most obvious improvements to the model developed here, would be to add angular
momentum, which becomes mainly important close to the centre of the system. How this could
be implemented in the model is not obvious, but most certainly would require the system to
be axisymmetric. Moreover, the integration process of the static corona would also have to be
changed significanly, since we would also have to integrate over θ, the angle between the axis
and plane of rotation, in addition to the current integration over the radius.

Our implementation of the heating source can also be studied further, where our results have
shown that the shape of the kernel influences the strength of the source required to stop the corona
from cooling. Additionally, the region of the corona that is heated extends to a significantly larger
scale (r > 100 kpc) than the size of the Milky Way bubbles (r ∼ 10 kpc). It could be interesting to
adjust the shape and size of the kernel to produce a scale that is closer to the Milky Way bubbles.

Moreover, our heating source mainly considers the effect of mechanical feedback, which is
typically relevant for AGN or starburst driven winds (Veilleux et al., 2005) and AGN in radio
mode (Cimatti et al., 2019). We do not consider the effect of radiation, which is important if an
AGN accretes fast enough to be have quasar mode feedback (Cimatti et al., 2019). The radiation
could serve to photoionise the gas in the corona, which would have an impact on the equilib-
rium calculations in the cooling function. Including radiation could be important for studying
the source of the Milky Way bubbles, since the Magellanic Stream shows evidence of large-scale
ionization cones originating from Sgr A∗ (Bland-Hawthorn et al., 2019). Including this in our
model can in principle be done using CLOUDY, where we would then include such a radiative
source in the calculation of the cooling rates.

In calculating the average power of estimates from the Fermi and eROSITA bubble sources,
we had to assume how long it will take until the next energetic outburst occurs, toff . We took
the extreme upper bound to be toff = 0, and the lower bound to be toff = 200Myr, motivated
by the cooling time of the eROSITA bubbles (Predehl et al., 2020). In principle, we could use our
model to get a more refined estimate of toff by starting the evolution from an initial condition
which includes the Milky Way bubbles, and then let the system evolve by only cooling. Such
an initial condition could be based on observations of the bubbles, or based on our own results
from a corona dominated by heating. We have shown that, with heating, such a corona produced
densities and temperatures similar to those present in the Fermi bubbles. The time the system
would evolve could then be used to obtain a self-consistent estimate for toff .

Our current density distribution for the initial condition is based on observations from ? and
further constraints in the centre by Miller & Bregman (2016). More recent observations of the
Milky Way corona exist (Locatelli et al., 2024), which also show the presence of a large disc-like
component, closer to the galaxy. These observations are not constrained in the centre however,
which is needed in order to start the integration from r = 0, so if these constraints were to be
added, this distribution could be used as a new initial condition.

The corona in our model is assumed to be supported by thermal pressure. However, turbu-
lence (Buie et al., 2020; Chen et al., 2023) and cosmic rays (Salem et al., 2016; Ji et al., 2020) can
also contribute significantly to the total pressure of coronal gas. CGM models that consider such
additional pressure terms (for example Faerman et al., 2017; Dutta et al., 2024) are typically able
to reproduce the emission and absorption from [OVI] (Tumlinson et al., 2017) significantly better
compared to models like Gupta et al. (2012) and ?, that are based on [OVII] and [OVIII]. In princi-
ple, it is possible to add additional pressure terms to our model, which would require modifying
Equation 1.

A technical improvement can be made in the efficiency of the implementation of the PCHIP
interpolation scheme on a 3 dimensional grid. Currently, this uses a pure Python implementa-
tion from Scipy (Virtanen et al., 2020), and is a large bottleneck in the evolution which use the
CLOUDY cooling/heating prescription. Improving this implementation, for example with just-in-
time (JIT) compilation from Numba (Lam et al., 2015), would allow the evolution to either run for
longer, have a smaller timestep, or it would be possible to run a finer grid search to find bounds
to the threshold power.
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5 Conclusions

In this thesis, we have studied the evolution of a Milky Way-like hot CGM (or corona) using
an evolutionary semi-analytic model from Kaiser & Binney (2003). This model assumes that
the corona is approximately in hydrostatic equilibrium, and evolves through a changing of the
entropy using classical CIE cooling. We have extended this model to use a non-CIE cooling
function (CLOUDY), and have included heating by photoionisation from the extragalactic UVB
and heating from a central heating source. We have evolved this model using two initial condi-
tions, one based on observations of the Milky Way corona (mb2016 ?Miller & Bregman, 2016) and
one being a rescaled version of the first model motivated by recent observations of stacked MW-
mass galaxies (Bregman et al., 2022; Zhang et al., 2024, mb2016-rescaled). The mb2016 and
mb2016-rescaled coronae have total masses at r = rvir being 10 and 30% respectively of the
missing baryons in the Milky Way. The respective metallicities are assumed to be Z = 0.3 and
0.1 Z⊙. The results of evolving the Milky Way-like coronae with the various cooling/heating pre-
scriptions can be summarised as follows

1. When we evolve the two coronae with classical cooling (Sutherland & Dopita, 1993) and
with CLOUDY (Ferland et al., 2013), we see that the centre (r < 1 kpc) of the corona cools
within 10Myr, where the mb2016-rescaled corona cools roughly a factor 2 faster than the
mb2016 corona. During the evolution, the mass accretion beyond 20 kpc is roughly constant
up to the virial radius, at approximate values of Ṁ ≃ 0.2M⊙ for mb2016, and Ṁ ≃ 1.0M⊙
for mb2016-rescaled, and only increases slightly across the evolution of the corona. This
shows that the rescaled Milky Way corona would be able to sustain the star formation in the
Milky Way in its own, whereas the corona as observed by ? needs an additional mechanism
of gas accretion. For both cases, the Milky Way would not need much feedback to limit
excess gas accretion, since the accretion rates are of the same order, or lower than the SFR
observed in the Milky Way.

2. The density, temperature and radial velocity of both coronae beyond 10 kpc are very similar
to the profiles predicted by the cooling flow model from Stern et al. (2019), which shows
that an isolated cooling corona in approximate hydrostatic equilibrium produces the same
distributions as one with the assumption of a steady-state cooling flow with accretion from
the IGM.

3. We have seen that heating by photoionising radiation from the local extragalactic UVB is
not effective during the main phase of the evolution of our model (around 10Myr), since
the temperature of the gas is above T > 105 K. During the rapid (t ≪ 1Myr) cooling in the
centre of our model, the gas becomes cooler (T < 105 K) and at this point the UVB could
have an impact on the cooling of the gas, and consequenty play a role in the accretion of this
gas onto the galactic disc.

4. By heating the coronae with a constant central source with different powers, we see that
for a high power source, the centre of the corona heats quickly to a density and temper-
ature similar to those observed in the Fermi bubbles (Miller & Bregman, 2016), and then
keeps heating indefinitely. For a low power source, the evolution of the corona is not influ-
enced significantly. The transition region, or threshold power, for which the corona is not
heating nor cooling, depends on the initial condition and the shape of the heating kernel,
but is between Ė = (0.5 – 3) × 1041 erg s−1 for mb2016 and Ė = (1 – 20) × 1041 erg s−1 for
mb2016-rescaled.

5. We compare our range for the threshold powers with estimates of the source that inflated
the Fermi and eROSITA bubbles (Miller & Bregman, 2016; Predehl et al., 2020; Yang et al.,
2022), by assuming this source is self-regulating and therefore neighter cools nor heats the
corona on time-scales longer than the duty cycle. We then calculate the average power of
such a source over its complete duty cycle, where we consider a wide range for the time in
which the source does not inject energy in the corona (toff ). Most of the resulting average
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powers are remarkebly similar to the threshold powers estimated in this thesis. Only the
estimate from Predehl et al. (2020) is considerably lower compared to the other estimates,
which might be related to the fact that it only estimates the energy in the eROSITA bubbles.

6. The agreement between the threshold powers, and the average powers of various estimates
of the Milky Way bubbles, suggests that the source that created the bubbles is able to stop
the corona from rapidly cooling in the centre, and start a self-regulating cycle that could
keep the corona in equilibrium for a long time.

Future improvements for our model include a further study of the central heating source,
where we could consider the impact of photoionising radiation from this source, and investigate
the effect of different kernel shapes and sizes. We could also consider the addition of angular
momentum in the model, or vary initial conditions like the gas density or Milky Way potential.
Finally, we can also use our model to study the time the Milky Way bubbles need to cool, and
thereby get a more direct estimate for toff .
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AGN active galactic nuclei

CGM circumgalactic medium

CIE collisional ionisation equilibrium

CMB Cosmic Microwave Background

CR cosmic ray

GC galactic centre

IGM intergalactic medium

IMF initial mass function

ISM interstellar medium

JIT just-in-time

NFW Navarro-Frenk-White

NSF nuclear star formation

ODE ordinary differential equation

PCHIP Piecewise Cubic Hermite Interpolating Polynomial

SFR star formation rate

SZE Sunyaev-Zeldovich Effect

UVB ultraviolet background
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A Calculations and Derivations

A.1 Rewriting thermodynamical quantities
We can rewrite the term CVµmp using the following relations and definitions of specific heats,
specific gas constantR, the mass of a mole mmol and the Boltzmann constant kB

CP = CV +R, R = R/mmol, mmol = NAµmp, R = kBNA, γ = CP/CV. (85)

CP = CV +R, (86)
R
CV

=
CP

CV
− 1, (87)

R = CV(γ − 1). (88)

Then, rewritingR:

R = R/mmol, (89)

R =
kB/NA

NAµmp
=

kB
µmp

. (90)

Combining Equations 88 and 90 finally gives us:

kB
µmp

= CV(γ − 1) =⇒ µmpCV =
kB

γ − 1
. (91)

A.2 Average entropy-index in an unstable region
We derive the equation which we use to calculate the average entropy-index σ̄ used to remove
regions with negative entropy gradients (see Section 2.2.4), using the method outlined in Binney
et al. (2009). Given a region with a negative entropy gradient starting at radius r1 and ending at
r2 (S(r1) > S(r2)), in this region the entropy never increases

S(ri) ≥ S(rj), for r1 ≤ ri ≤ rj ≤ r2. (92)

To remove the negative gradient, we change the entropy at each radius ri in the unstable region
from the initial entropy S(ri) to the mass-weighted average value S̄. The difference is then given
by

S̄ − S(ri) = dS(ri) =
dQ(ri)
T (ri)

, (93)

where T (ri) is the temperature and dQ(ri) is the change in specific heat at radius ri, and we used
the relation between change in specific entropy and specific heat for a reversible transformation
dQ = TdS . When we apply this change, no heat enters or leaves the region, so the sum of all
changes in heat should be 0 ∑

dQ(ri) = 0. (94)

Using the definition of a specific quantity dQ(ri) = dQ(ri)/m(ri), where m(ri) is the gas mass
inside the shell at radius ri, and multiplying Equation 93 by the temperature and shell mass, we
then obtain ∑

i

T (ri)m(ri)
[
S̄ − S(ri)

]
=
∑
i

dQ(ri) = 0. (95)

Finally, we isolate S̄

S̄ =

∑
i S(ri)T (ri)m(ri)∑

i T (ri)m(ri)
, (96)
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to get the average entropy in terms of entropy, temperature and mass in the convectively unstable
region. Since our model makes use of the entropy-index, we substitute S = CV lnσ + constant in
in Equation 96, and the constants cancel out to give

ln σ̄ =

∑
i ln[σ(ri)]T (ri)m(ri)∑

i T (ri)m(ri)
. (97)

A.3 Taylor approximation for NFW potential
When we evaluate the gradient of the NFW potential (Equation 50) numerically for very small r
(r ≪ rs), there are some instabilities due to being close to dividing by 0. To compute this potential
without issues, we therefore separate the functional part of the gradient

dΦ

dr
= −16πGρsrsf(r/rs), where f(x) ≡

x
(1+x) − ln(1 + x)

x2
, (98)

and evaluate the limit
lim
x→0

f(x) = −1

2
. (99)

Since f(x) converges as x → 0, we can evaluate dΦ/dr using a taylor series whenever r is suffi-
ciently small to avoid numerical instabilities. The second order taylor expansion of f(x) is

f(x) ≈ −1

2
+

2

3
x− 3

4
x2 +O(x3), (100)

so, at the end we compute f(x) as follows

f(x) =


− 1

2 + 2
3x−

3
4x

2 if x < 0.005

x/(1+x)−ln(1+x)
x2 otherwise

(101)

A.4 Units in integration
To avoid numerical instabilities due to floating point calculations (Landau et al., 2015), we choose
units for our quantities such that their values will be around 1. To keep the quantities in their
chosen unit, we then have to determine multiplication constants for every equation we use. Given
a quantity Q and chosen unit Qu, and Q̂ the value of Q in the chosen unit (i.e. Q̂ = Q/Qu), we
determine the multiplication constant C for the equation as follows

P = nkBT ≡ P̂Pu = n̂nu kB T̂ Tu, (102)

≡ P̂ = n̂T̂ ·
(
nuTukB

Pu

)
, (103)

≡ P̂ = Cidealn̂T̂ , (104)

where the multiplication constant is then (in our chosen unit system)

Cideal ≡
nuTukB

Pu
≈ 1.380× 103. (105)

For our calculations, we have used the following units

temperature : 106K mass : 108M⊙ pressure : 10−13erg cm−3

length : pc density : mpcm
−3 number density : cm−3

entropy-index : 1030cm4 g−2/3 s−2 time : Myr velocity : km s−1
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A.5 Full steady-state cooling flow solutions for Milky Way mass
haloes

Here we derive the full density, radial velocity and temperature profiles from the general steady-
state solutions of Stern2019 for the Milky Way. First we rewrite the general solutions in terms
of m, and finally in the specific case of m = 0 as well. The general form of these steady-state
solutions for these specific quantities can be written as

ρ(r) =
mp

X

√
9B

40πA

√
Ṁ

Λ

vc(r)

r3/2
, (106)

|vr(r)| =
X

mp

√
5A

18πB

√
ṀΛ

vc(r)r1/2
, (107)

T (r) =
6

5A

(
r

Rvir

)2m

Tvir, (108)

where X is the hydrogren fraction of the gas, assumed to be X = 0.75, the other constants A,B
come from the integration and can be expressed as a function of m

A ≡ v2c
c2s

=
9

10
(1− 2m), B ≡ tflow

tcool
= 1 + (4/3)m, (109)

and, we used nH = Xρ/mp andM = |vr|/cs =
√
A|vr|/vc to convert equations 26 and 27 from

Section 2.3 in Stern2019. To apply these relations to the Milky Way, we use the following approx-
imation of the circular speed as used by Stern2019, Section 2.5:

vc(r) = 140

(
Mvir

1012 M⊙

)0.36(
r

100 kpc

)m

km s−1, (110)

and use the following forms for the virial radius and temperature (equations 8,9 in Stern2019) as
a function of the virial mass of the halo

Rvir = 260

(
Mvir

1012 M⊙

)1/3

kpc, (111)

Tvir = 6× 105
(

Mvir

1012 M⊙

)2/3

K. (112)

We use these expressions to convert equations 106-108 to be in units similar to Stern2019, but still
as a function of m

ρ(r) = 2.3× 10−5

√
B

A

(
Mvir

1012 M⊙

)0.36
(

Ṁ

M⊙/yr

)1/2(
Λ

10−22 erg cm3 s−1

)−1/2(
r

100 kpc

)m−3/2

mp cm
−3,

(113)

|vr(r)| = 13.6

√
A

B

(
Mvir

1012 M⊙

)−0.36
(

Ṁ

M⊙/yr

)1/2(
Λ

10−22 erg cm3 s−1

)1/2(
r

100 kpc

)−m−1/2

km s−1,

(114)

T (r) =
7.2× 105

A · 2.62m

(
Mvir

1012 M⊙

)2/3−2m/3(
r

100 kpc

)2m

K. (115)

71



CHAPTER A CALCULATIONS AND DERIVATIONS

For m = 0, we then finally obtain

ρ(r) = 2.4× 10−5

(
Mvir

1012 M⊙

)0.36
(

Ṁ

M⊙/yr

)1/2(
Λ

10−22 erg cm3 s−1

)−1/2(
r

100 kpc

)−3/2

mp cm
−3,

(116)

|vr(r)| = 12.9

(
Mvir

1012 M⊙

)−0.36
(

Ṁ

M⊙/yr

)1/2(
Λ

10−22 erg cm3 s−1

)1/2(
r

100 kpc

)−1/2

km s−1,

(117)

T = 8× 105
(

Mvir

1012 M⊙

)2/3

K. (118)
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B Code

The code that has been written to produce the results and plots in the thesis is published on
Github8. This repository contains a mix of a general-purpose package containing code for the
integration (folder KB_Model) and interpolation of CLOUDY tables (folder CLOUDY). Notebooks
and scripts that have been used to produce the results and create all plots can be found in the
Notebooks folder. These notebooks have been executed on the Kapteyn servers, using the
anaconda3/2024.02 kernel, Python version 3.11.7. To use the code in for example the KB_-
Model module, you can add the directory to the path variable

1 from pathlib import Path
2 import sys
3 module_location = Path(’/path/to/the/folder/KB_Model’) # Specify
4 sys.path.append(str(module_location))

and then you can import submodules, for example

1 from models import beta_model

Make sure to properly specify these paths before executing the notebooks.

8url: https://github.com/StenSipma/MscThesisAstronomy
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Figure 31: Full evolutions of the electron density, temperature and entropy-index of the
lower (left column) and upper (right column) bounds to the threshold power of the
mb2016-rescaled corona with heating scale length λ = 8kpc. The colour of the lines indi-
cate the time of the evolution. For reference, the last timestep of the evolution without heating is
included as a black dashed line (see Figure 15).
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Figure 32: Full evolutions of the electron density, temperature and entropy-index of the lower
(left column) and upper (right column) bounds to the threshold power of the mb2016 corona
with heating scale length λ = 5kpc. The colour of the lines indicate the time of the evolution. For
reference, the last timestep of the evolution without heating is included as a black dashed line
(see Figure 15).
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Figure 33: Full evolutions of the electron density, temperature and entropy-index of the
lower (left column) and upper (right column) bounds to the threshold power of the
mb2016-rescaled corona with heating scale length λ = 5kpc. The colour of the lines indi-
cate the time of the evolution. For reference, the last timestep of the evolution without heating is
included as a black dashed line (see Figure 15).
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