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Abstract: Conceptors are versatile neuro-symbolic formalizations of concepts as they arise in
neural networks, with promising results on supervised tasks. However, the use of conceptors in
unsupervised settings remains largely unexplored. Meanwhile, previous brain science and AI
research used clustering to extract concepts from neural representations. This study combines
conceptor-based representations with clustering methods for the unsupervised extraction of human-
meaningful and coherent concepts from the activations of neural networks. Concretely, experiments
are conducted on the responses of an Echo State Network (ESN), a type of recurrent neural
network, to phoneme utterances from the TIMIT Acoustic-Phonetic Continuous Speech Corpus.
In preparation, conceptor-based classification was demonstrated, and ESN hyperparameters were
tuned. Then, two clustering methods, generalized centroid-based hard clustering and hierarchical
agglomerative clustering, are adapted to work with conceptors and extract concepts from the ESN’s
responses. The resulting concepts and concept hierarchies were significantly human-meaningful,
resembling established phonetic categories, and coherent. Conceptor-based clustering, although
in its infancy, represents a promising approach to unsupervised concept extraction and forming
conceptors without supervision. Applications in neuro-symbolic computational creativity, brain
sciences, time-series clustering, and neural network explainability are suggested.

1 Introduction

1.1 Background

Neural networks (NNs), both biological and arti-
ficial, can be framed as representational systems;
their neural activity serves as a representation of in-
puts∗ like sound or images (Kriegeskorte and Kievit,
2013). Moreover, NNs form concepts – representa-
tions of sets, or categories, of inputs (Rips, Smith,
and Medin, 2012, as cited in Jaeger, 2014b). For ex-
ample, a NN may use the phoneme /t/ as a concept
to represent a broad set of related speech sounds, like
the aspirated [th] (as in ”top”) and the unaspirated
[t] (as in ”stop”), which are functionally equivalent
in English. Symbols like the transcription ”/t/” will
be used as names for concepts. Concepts enable
various human cognitive functions like classifica-
tion, creativity, and language. Similarly, the study

∗The terms content and referent are also commonly used
by cognitive sciences to refer to the representee, but since I
intend to focus on artificial NNs, the notion of input is used.

of concepts is relevant to artificial intelligence (AI),
facilitating the development of these functions in
artificial neural networks (ANNs) and the integra-
tion of currently disjoint paradigms (Hofstadter and
Mitchell, 1994).

Cognitive sciences have often considered neural
activity and concepts separately at data-dynamical
or conceptual-symbolic levels of description, respec-
tively (Jaeger, 2014b). The data-dynamical level
considers high-dimensional, sub-symbolic, and neu-
ral phenomena of dynamical systems and NNs. In
contrast, the conceptual-symbolic level operates on
the concepts or symbols (in the broad sense) of, e.g.,
languages, logic, and Good old-fashioned AI. This
dichotomy still trenches through various fields that
deal with conceptual-symbolic phenomena emerg-
ing from data-dynamical events. Marrying these
levels can enhance our understanding of cognition
and its emulation, particularly in neuro-symbolic
AI (Sarker, Zhou, Eberhart, and Hitzler, 2021).

The neuro-symbolic conceptors (Jaeger, 2014b)
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formalize the notion of concepts as they are encoded
in neural activity. A conceptor is a positive semi-
definite matrix that captures the geometry of a
cloud of neural activation states (see Section 1.6.1).
When computed from a collection of neural states
corresponding to a specific concept (e.g., the neural
response to a recorded speech sound), the conceptor
represents the neural pattern characteristic for that
concept.
Conceptors are particularly relevant and practi-

cal means of capturing concepts. Various types of
neural activity patterns have been previously as-
sociated with concepts (attractors (Jaeger, 1999),
positions (Mao, Gan, Kohli, Tenenbaum, and Wu,
2019; Bricman, Jaeger, and van Rij-Tange, 2022), re-
gions (Jaeger, 2014b), directions (Graziani, Nguyen,
O’Mahony, Müller, and Andrearczyk, 2023; Kim,
Wattenberg, Gilmer, Cai, Wexler, Viegas, et al.,
2018), and clusters (Jaeger, 1999) in state space, or
more generally, in representational space (Borghe-
sani and Piazza, 2017; Balkenius and Gärdenfors,
2016)). Conceptors stand out with mathematical
properties and useful operators that play on their
neuro-symbolic nature. For example, the conceptor
formalism defines operators like abstraction order-
ing or logical conjunction and negation, which effec-
tively treat neural patterns as conceptual-symbolic
units.
Moreover, conceptors have led to promising re-

sults in classification and recognition tasks by link-
ing neural responses with concepts. Both classifica-
tion and recognition aim at linking a given input
with the correct concept (cf. Jaeger, 1999); that is,
activate the concept that represents the class of the
input. In particular, time series classification aims
to estimate the class of pre-segmented signals (one
label per segment), a segment referring to a continu-
ous portion of a time series isolated for analysis like
a phoneme (unit of speech) or word, whereas time
series recognition seeks to estimate the class present
within unsegmented signals (multiple labels per sig-
nal over time) (Lopes and Perdigao, 2011). Much of
conceptor-based time series classification research,
including Experiment 1, has been inspired by Jaeger
(2014b), which demonstrated this method in speaker
recognition on the Japanese Vowels dataset to about
99.9% accuracy exceeding most previous methods on
the task. In addition to its competitive performance,
this method offers extensibility to new classes with-
out retraining (incremental learning) and applicabil-

ity across various ANN architectures. Moreover, it
illustrates using conceptors to represent and relate
class concepts. Later, the method was successfully
adapted to classify brain data (Bartlett, Garcia,
Thill, and Belpaeme, 2019) and non-stationary time
series (Vlegels, 2022). Moreover, Chatterji (2022)
adapted the method to time series recognition on
the phonemes of the TIMIT Acoustic-Phonetic Con-
tinuous Speech Corpus (TIMIT) (Garofolo, Lamel,
Fisher, Fiscus, Pallett, and Dahlgren, 1993), the
dataset also used in the current study. Finally, most
conceptor-based work, including the current one,
has been demonstrated on Echo State Networks
(ESNs), a type of recurrent neural network that, for
properties, I elaborate on below, combine particu-
larly well with conceptors. Thus, conceptors could
successfully represent class concepts in supervised
time series classification and recognition.

Previous research has also explored the unsuper-
vised extraction of concepts from neural activity
using clustering, an unsupervised method for iden-
tifying groups (clusters) among data points. On
the biological side, studies in psychology and neuro-
science have applied clustering to identify and relate
the concepts represented in the brain (representa-
tional geometry analysis (Kriegeskorte, Mur, and
Bandettini, 2008; Kriegeskorte and Kievit, 2013;
Tucciarelli, Wurm, Baccolo, and Lingnau, 2019),
categorical representation Chang, Rieger, John-
son, Berger, Barbaro, and Knight (2010); Beach,
Ozernov-Palchik, May, Centanni, Gabrieli, and Pan-
tazis (2021); Brouwer and Heeger (2013), clus-
tering of existing categories (Mesgarani, Cheung,
Johnson, and Chang, 2014; Huth, Nishimoto, Vu,
and Gallant, 2012; Shepard, 1980), partitioning-of-
activation-space theory (Laakso and Cottrell, 2000)).
Typically, the procedure first defines some input
(stimulus) space and a representational (neural re-
sponse) space with functional correspondence. For
example, the input space may contain a set of speech
sounds presented to participants, while the repre-
sentational space contains the neural responses to
those sounds recorded from participants’ superior
temporal gyri (Mesgarani et al., 2014). Second, sim-
ilarities of represented inputs are measured, in this
case, using brain imaging, but behavioral data or
cognitive models are also common (Kriegeskorte
et al., 2008). Third, clustering algorithms like K-
means (Chang et al., 2010; Brouwer and Heeger,
2013; Huth, De Heer, Griffiths, Theunissen, and
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Gallant, 2016; Beach et al., 2021) and hierarchi-
cal agglomerative clustering (HAC) (Shepard, 1980;
Tucciarelli et al., 2019) identify clusters among the
represented inputs in representational space. Cru-
cially, clusters in representational space are inter-
preted as concepts (Mok and Love, 2019) †. With
this approach, Beach et al. (2021) found clusters of
represented sub-phonemic speech corresponding to
phonemes, and Mesgarani et al. (2014) found clus-
ters among represented phonemes corresponding to
super-phonemic categories like fricatives. In conclu-
sion, this clustering method was used to extract
concepts encoded by the brain.

Similarly, AI has applied clustering on the activa-
tions of ANNs to extract concepts, primarily to en-
hance explainability (Fel, Boutin, Béthune, Cadène,
Moayeri, Andéol, Chalvidal, and Serre, 2024). ANN
models can be difficult to explain on a data-dynamic
level. By extracting concepts, studies have aimed to
provide a condensed, more accessible representation
of high-dimensional ANN activations. For example,
like in some methods from brain sciences, Ghorbani,
Wexler, Zou, and Kim (2019) used K-means on the
Euclidean distances in state space to extract con-
cepts, representing meaningful groups of pixels on
input images. Liu and Arik (2020) used deep embed-
ded clustering (DEC) on the activations at different
layers of an ANN to extract concepts of varying
abstractions. DEC maps layer activations to lower-
dimensional latent spaces, then iteratively refines
latent representations and cluster assignments until
coherent clusters corresponding to visual concepts
are reached. Similarly, Song, Liu, Huang, Wang, and
Tan (2013) used used K-mean to identify concepts
in the latent activations of an autoencoder. Alter-
native approaches guide the extracted concepts to
align with human concepts for enhanced intelligi-
bility (El Shawi, 2024), which, however, qualifies
as supervised and may fail to reflect the model’s
representation (Kim and Chae, 2024).
While clustering of ANN activations has shown

promise for unsupervised concept extraction, fur-
ther advancements could be achieved by integration
with conceptors. First, previous work took a pas-
sive, observational stance, extracting concepts for
explainability without discussing their functional

†A parallel between clusters and concepts lies in the similar
desiderata of cohesion and coherency – members being close
to each other – also reflected in the loss functions of many
clustering algorithms and conceptors, respectively.

potential. Second, conceptors were not employed
despite their aptitude in representing concepts, vari-
ous practical operators, and theoretical relevance to
neuro-symbolic integration. Thus, this exploratory
study seeks to extract concepts by clustering with
conceptor-based representations. Specifically, it in-
vestigates whether conceptor-based clustering can
extract human-meaningful and coherent concepts
from ANN activations without supervision. Ghor-
bani et al. (2019) inspired the desiderata of human-
meaningfulness and coherency. An extracted con-
cept is human-meaningful if its semantics (the set
of represented inputs) align with that of a human
concept, like a theoretically established category.
An extracted concept is coherent if its instances are
similar to each other.

1.2 Motivation

I will now elaborate on two motivations for exploring
unsupervised concept extraction using conceptor-
based clustering: enhancing computational creativ-
ity methods and extending the conceptor formal-
ism. First, regarding creativity, many models use
conceptual-symbolic mechanisms to operate on data-
dynamical domains. For example, the movements of
stick figures (represented as data-dynamical signals)
can be morphed and newly recombined, provided
they are discretized into classes like Walking and
Jumping (Jaeger, 2014a). Similarly, the Omniglot
challenge involves the generation of new handwrit-
ten characters, which is possible only through the
currently manual identification of conceptual primi-
tives among data-dynamical signals (Lake, Salakhut-
dinov, and Tenenbaum, 2019; Fabi, Otte, and Butz,
2021). The same reliance on pre-established concepts
constrains traditional approaches like Hofstadter’s
models of analogical reasoning (Hofstadter, Mitchell,
and French, 1987; Hofstadter and Mitchell, 1994). In
these cases, unsupervised concept extraction meth-
ods may identify actionable concepts within the
data-dynamical representations of ANNs. This ad-
dition could advance neuro-symbolic approaches to
computational creativity, with possible implications
for other cognitive functions (c.f., Sheth, Roy, and
Gaur, 2023).

Second, I seek to extend the conceptor formalism
to unsupervised settings. Conceptors were success-
fully applied to supervised designs where the con-
cepts of interest had been given. For example, in
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speech classification and recognition, concepts were
provided as labels through the training data. How-
ever, the application of supervised conceptor-based
methods falls short when labeled data is unavail-
able. Moreover, even when available, pre-established
concepts may be suboptimal. For instance, the dis-
cretization of English speech into the phonemic
classes provided by the transcriptions of TIMIT
may be a suboptimal representation for speech
recognition systems. In these situations, an unsu-
pervised method to form conceptors corresponding
to meaningful and coherent neural patterns may
make conceptor-based methods more performant
and broadly applicable. This is similar to children
learning to distinguish phonemes without explicit
instructions (Maye and Gerken, 2000).

However, the unsupervised formation of concep-
tors remains largely unexplored, with only one work
combining conceptors and clustering; Mossakowski,
Diaconescu, and Glauer (2019) fed speech record-
ings to an ANN and captured its responses using
conceptors, one per speaker. Using HAC with a
fuzzy generalization of the Löwner ordering as a
(dis)similarity function, they organized the concep-
tors in an abstraction hierarchy. The authors dis-
cuss the potential of their method at enhancing
conceptor-based classification, but a lack of testing
left unclear whether the nodes of the resulting hi-
erarchy coincided with any meaningful or coherent
concepts.

1.3 Approach

1.3.1 ESNs

The present work focuses on ESNs for several rea-
sons. These differ from other recurrent neural net-
works in their large size (number of internal neu-
rons), high sparsity (the ratio of neurons to connec-
tions), and randomly initialized, untrained internal
and input weights (Yildiz, Jaeger, and Kiebel, 2012)
(see Section 1.5 for a formalization of ESNs). First,
training is only required for the output weights,
simplifying and isolating the developed methods.
Second, due to their lack of training, ESNs rely on
conceptors more than other types of ANNs as an
external control mechanism. Third, ESNs facilitate
the evaluation of the developed methods. They per-
form high-dimensional non-linear expansions, echos,
of their inputs (cf. Lukoševičius, 2012). This expan-

sion often retains much information, such that the
known clusters or labels of the inputs can serve as
ground truth to the extrinsic validation of clustering
or classification of the responses. Thus, concepts are
extracted from ESN states.

1.3.2 Phonemic Speech

Moreover, the methods are demonstrated on phone-
mic speech, a domain rich in conceptual-symbolic
structure. Phonemes are the smallest, distinguish-
able units of speech of a given language that can
change the meaning of a word. Sub-phonemically,
each phoneme represents a set of related sound
variations called phones, its allophones. For ex-
ample, the phoneme /t/ of the English-proficient
mind represents the phones [th], [t], and [R]‡. Super-
phonemically, various phonemic organizations have
been proposed by phonetics – the branch of linguis-
tics concerned with speech production and percep-
tion. For example, Figure 1.1 depicts a taxonomy
of the phonemes present in the TIMIT Acoustic-
Phonetic Continuous Speech Corpus (TIMIT)§.
TIMIT provides a rich set of speech recordings with
phonemic transcriptions and is the most common
dataset in phoneme recognition and classification
(Lopes and Perdigao, 2011). The depicted organi-
zation by the manner of phoneme production is
standard across the classical (Rabiner, 1978) and
more recent (Oh, Park, Kim, and Jang, 2021) liter-
ature and was provided in TIMIT’s documentation.

These conceptual-symbolic structures make
phonemic speech an ideal domain for demonstrat-
ing concept extraction by serving as ground truths,
against which the extracted concepts can be eval-
uated (Shepard, 1980; Oh et al., 2021; Chang
et al., 2010). ESNs have also shown an excellent
capacity for processing speech (e.g., Jaeger, 2014b),
partly due to their cyclic connections, which intro-
duce memory into the system. Therefore, phonemic
speech from TIMIT is used to demonstrate the pro-

‡Phonemes are broadly transcribed as indicated by slanted
brackets. Phones are narrowly transcribed as indicated by
square brackets. Phonetic transcriptions will be written using
the International Phonetic Alphabet (International Phonetic
Association, 1999).

§The TIMIT labels shown in Figure 1.1 and listed in
Table A.1 follow the IPA. The translation keys to the Greek
alphabet and the categories of the taxonomy come in the
documentation file phoncode.doc of the corpus, available
through the LDC website.
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posed ESN-based methods.
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Figure 1.1: A taxonomy of the phonemes in
TIMIT, created from the categories provided
by the dataset’s documentation, adding Root
and Consonants nodes following Rabiner (1978)
and Oh et al. (2021), and folding TIMIT’s labels
into phonemes according to Lee and Hon (1989)
by the mapping shown in Table A.1.

.

1.3.3 Approach

Figure 1.2 illustrates the current approach to con-
cept extraction. Two clustering algorithms are ap-
plied to group ESN responses to pre-processed
phonemic speech into concepts. In Experiment 2,
a generalized centroid-based hard clustering algo-
rithm (GCHC, cf. Sarmiento, Fondón, Durán-Dı́az,
and Cruces, 2019) is adapted to extract a set of
non-overlapping concepts from ESN responses to
phonemic speech. In Experiment 3, HAC (Everitt,
Landau, Leese, and Stahl, 2011) is adapted to ex-
tract a hierarchy of concepts from ESN responses to
pre-grouped phonemic speech. Found concepts are
then evaluated to determine whether they are coher-
ent and correspond to human-meaningful phonetic
categories.

In Experiment 1, phoneme classification was per-
formed primarily to tune the ESN’s hyperparam-
eters in preparation for the following concept ex-
traction experiments. Moreover, Experiment 1 has
the positive side-effect of demonstrating the ap-
plication of conceptors to the phoneme classifica-
tion on TIMIT, building on the method of Jaeger
(2014b). The currently highest accuracy of 78.4%
for phoneme classification on TIMIT’s test set was
achieved using fixed-sized kernel logistic regres-
sion (Karsmakers, Pelckmans, Suykens, and hamme,
2007, as cited in Lopes and Perdigao, 2011).

1.4 Contributions and Outline

This thesis makes the following contributions:

1. It demonstrates conceptor-based phoneme clas-
sification on TIMIT.

2. It proposes an unsupervised method for extract-
ing human-meaningful and coherent concepts
from ANN activations, as demonstrated on ESN
responses to phonemic speech.

3. It adapts two classical clustering algorithms to
conceptors, providing an unsupervised method
for forming relevant conceptors.

4. It suggests potential applications in neuro-
symbolic computational creativity, brain sci-
ences, time-series clustering, and ANN explain-
ability to be explored in future research.

The remainder of the thesis is organized as fol-
lows. The next sections provide formal definitions of
ESNs and conceptors, inspired by the detailed report
Jaeger (2014b). The Methods and Results section
covers data pre-processing, ESN response collection,
and the conceptor-based classification and concept
extraction by adaptations of GCHC and HAC. The
results are given directly after the corresponding
methods. In the Discussion, the methods, results,
and their implications for, i.e., computational cre-
ativity and the conceptor formalism are discussed.
The appendices contain additional information, ex-
periments, proofs, and an index of mathematical
notations.

1.5 Echo State Networks (ESNs)

Let us formalize an example ESN. Figure 1.3 depicts
a typical ESN as it is driven by an input sequence
u, possibly a speech recording, and elicits a high-
dimensional response x, the sequence of internal
states of the ESN’s reservoir. An output layer is
often added to ESNs, e.g., for time series classifi-
cation, regression, or generation, but omitted here
since the presented classification and concept extrac-
tion methods will only rely on the internal states of
the network.

Let N be the number of internal neurons. N will
typically be large relative to the dimensionality d of
the input. The input weight matrix W in ∈ RN×d,
the bias vector b ∈ RN , and the internal weight
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(A) Pre-processed
time-series

(B) Point clouds
in ESN state-space

(C) Concepts captured
by conceptors in 
conceptor-space

(D) Concept hierarchy
in conceptor-space

Pre-processed /b/
sample #13

Pre-processed /ah/
sample #1

…
…

HAC (Exp. 3)

Initial grouping
and conceptor
computation

GCHC (Exp. 2)

Drive 
ESN

Figure 1.2: We are given time series, the pre-processed phoneme recordings from TIMIT (A). These
time series drive an ESN, producing ESN responses, i.e., point clouds in state space (B). These
responses are initially grouped into concepts, each captured by one conceptor (C). In Experiment 2,
these concepts are refined using GCHC. In Experiment 3, these concepts are related in a hierarchy
using HAC to extract higher-level concepts (E).

Reservoir

Input

Response

Figure 1.3: An ESN driven with an input se-
quence. Dots represent neurons. Arrows repre-
sent synaptic connections.

matrix W ∈ RN×N are randomly initialized, the
latter of which will typically contain many zeros
to implement the sparsity of the reservoir. When
driven by a discrete input sequence u of length L, the
ESN elicits a response, the internal state sequence
x of dimensionality N and of the same length as
the input. The ESN’s update equation is that of
classical discrete-time recurrent neural networks:

x(n+1) = tanh(Wx(n) +W inu(n+1)+ b), (1.1)

where x(n) and u(n) are the internal reservoir state
and input column vectors at time step n and tanh
is the hyperbolic tangent.

1.6 Conceptors

1.6.1 Definition and Intuition

Conceptors are a means to capture and manipu-
late the internal representations of ESN, among
other features. Given a sequence of states x =
(x(1), ..., x(L)), which may have arisen from running
the above ESN, the conceptor matrix C computed
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from x minimizes the following loss function L:

L(C) =

L∑
n=1

||x(n)− Cx(n)||2/L+ α−2||C||2

C = argmin
C

L(C),

(1.2)

where α ≥ 0 is the conceptor’s aperture (further
explained below). The conceptor C that minimizes
L(C) may be analytically computed via the follow-
ing procedure:

1. Concatenate the states in x column-wise in an
N × L collection matrix X = [x(1)|...|x(L)].

2. Compute the correlation matrix R = XX ′/N .

3. Obtain the conceptor C(R,α) = R(R +
α−2I)−1.

Intuitively, a conceptor can be considered the
”’fingerprint’ of the activity of [a] network” over a
period of time (Jaeger, 2014b); this identifying ca-
pacity of conceptors is reflected in their loss function.
Minimizing L, the term ||x(n)−Cx(n)||2 nudges C
toward realizing an identity mapping for the sub-
space populated by states x, while the regularization
term α−2||C||2 draws the conceptor toward the zero
matrix, preventing it from becoming the identity
matrix. This tension causes the conceptor to re-
tain information along the axes that account for
more of the variance of x, where the minimization
of ||x(n)−Cx(n)||2 is most beneficial while filtering
out information along the less relevant axes. The
aperture parameter α controls the permissiveness
of this filtering by regularizing the conceptor. In
the geometric interpretation, reservoir states form
a point cloud in state space (−1, 1)N , whose shape
the conceptor approximates as a hyperellipsoid; the
ellipsoid’s axes, corresponding to the singular-value-
scaled singular vectors of the conceptor, align with
the principal components of the point cloud.

1.6.2 Similarity Function

The similarity between two conceptors Ca and Cb

shall be defined as:

Sim(Ca, Cb) =
|(Sa)

1/2(Ua)
′(Ub)(Sb)

1/2|2

|diag(Sa)||diag(Sb)|
, (1.3)

where UaSa(Ua)
′ is the SVD of Ca and UbSb(Ub)

′

is the SVD of Cb. It is a function of the squared

cosine similarity of the conceptors that measures
the angular alignment between all pairings of singu-
lar vectors of the two conceptors weighted by the
corresponding singular values.

1.6.3 Aperture

The aperture of a conceptor can be set during its
computation, or when given a pre-computed concep-
tor C, its aperture can still be adapted by any factor
of γ > 0 using the aperture-adaptation function φ
that returns the aperture-adapted conceptor Cnew:

Cnew = φ(C, γ) = C(C + γ−2(I − C))−1 (1.4)

1.6.4 Logical Operators

Several logical operators have been meaningfully
defined on conceptors. Given two conceptors C and
B, we have the following definitions and semantics:

1. Negation (¬)

¬C := I − C (1.5)

It returns a conceptor that describes the linear
subspace complementary to that of C.

2. Conjunction (∧)

C ∧B := (C−1 +B−1)−1 (1.6)

C ∧ B returns a conceptor that describes the
intersection of the linear subspaces of C and B.
This method relies on the inversion of B and
C and thus fails when B or C contain singular
values of 0. Such singular values may occur
due to rounding or negating conceptors with
unit singular values. Because these cases could
not be prevented, a more robust definition of
conjunction was used (Appendix A.1).

3. Disjunction (∨)

C ∨B := ¬(¬C ∧ ¬B), (1.7)

by De Morgan’s law. It returns a conceptor
that describes the union of the linear subspaces
of C and B.

2 Methods and Results

The Python code is available on https://github.

com/jorisptrs/Unsupervised-Conceptors.
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Figure 2.1: Example of the twelve first segments
of one of TIMIT’s sentence utterances.

2.1 Dataset

TIMIT was chosen as the data source for it features
diverse and phonetically annotated speech signals. It
comprises 6300 sentence utterances. Each of the 630
US-based native-English speakers (30% female and
from eight dialect regions) read ten sentences: five
phonetically-compact, three phonetically-diverse,
and two dialect sentences. Each utterance comes
with a phonetic transcription that indicates which
of 64 phones is uttered at any time. Moreover, the
corpus is pre-split into a training (73% of the utter-
ances) and test set, used as such in Experiment 1.
Experiments 2 and 3 relied solely on the training
set.

2.2 Pre-processing

For all experiments, the following pre-processing
steps were performed. The utterances were seg-
mented according to the phonetic transcriptions
into n = 241225 segments (nTIMIT−train = 177080
and nTIMIT−test = 64145), each a vocalization of one
phone (Figure 2.1). The first d = 13 Mel Frequency
Cepstral Coefficients (MFCCs) were extracted from
each segment, consistent with previous literature
(Bromberg, Qian, Hou, Li, Ma, Matthews, Moreno-
Daniel, Morris, Siniscalchi, Tsao, et al., 2007). This
representation ought to isolate the information most
relevant to speech analysis. To compute the MFCCs,
the Librosa Python library (McFee, Raffel, Liang,
Ellis, Mcvicar, Battenberg, and Nieto, 2015) was
used with one MFCC vector computed every 1 ms
from a 2.5 ms long sliding window.
The resulting time series were normalized in

amplitude and time. First, the amplitudes varied
strongly across the channels (the lowest mean am-

plitude of an MFCC channel (µ1 = −593.2) is 24.2
times lower than that of the second lowest chan-
nel (µ4 = −22.4)). To provide each MFCC a simi-
larly strong effect on the ESN dynamics under the
identically distributed input weights, they were nor-
malized to a range of [−0.5, 0.5] across all samples.
Second, the series were normalized in time by fitting
each channel with a cubic spline and sampling it at
L = 10 temporally equidistant points to account for
differences in utterance speeds.
Lastly, the phonetic labels pi(i=1,...,c) were

mapped from the original set of 61 phones to a
subset of 39 phonemes P . Initially proposed by Lee
and Hon (1989), this mapping (Table A.1) amounts
to folding stress-related variations and allophonic
variations of phonemes (e.g., /em/ and /m/) into
the same classes. The mapping helped achieve rea-
sonable classification and clustering performances,
feasible computations, and consistency with the pre-
vious literature (Karsmakers et al., 2007; Chatterji,
2022; Oh et al., 2021; Lopes and Perdigao, 2011).

Thus, the resulting data consists of tuples D =
{(si, pi)|i = 1, ..., c} with MFCC time series si,
phone labels pi ∈ P , and the set of phones P after
folding (|P | = 39). The ready-made train-test split
from TIMIT was used, resulting in DTIMIT−train

and DTIMIT−test of respective lengths nTIMIT−train

and nTIMIT−test.

2.3 Model

The following ESN setup was used in all three ex-
periments. Its hyperparameters are summarized in
Table 2.1. The ESN consisted of N = 100 neurons
with a connection density of r = 10%. The entries
of W in and b were randomly sampled from a stan-
dard normal distribution and rescaled by factors of
kW in = 1.0 and kb = 0.6, respectively. W was ob-
tained by random sampling from a standard normal
distribution and rescaling the result to a spectral
radius of ρ = 2.3. The spectral radius of an inter-
nal weight matrix is its largest absolute eigenvalue.
The larger ρ, the farther W scales the internal state
during the state update along its first eigenvector,
leading to more chaotic behavior. ρ was adapted by
rescaling the initial internal weight matrix Wold to
Wnew = ρnew

ρ(Wold)
Wold where Wnew has the desired

spectral radius ρnew instead of the previous ρold.
The above hyperparameters were picked by hand

based on their effects on the accuracy in Experiment
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Hyperparameter Value
Number of neurons (N) 100
Connection density (r) 10%
Scaling factor for W in (kW in) 1.0
Scaling factor for b (kb) 0.6
Spectral radius (ρ) 2.3

Table 2.1: Final ESN hyperparameters.

1, previous research, and resource constraints. All
parameters were initially set to the values used in
the demonstration experiments of Jaeger (2014b)
(Section 4.1, p. 161). Deviating, N was kept as large
as possible under the available computational re-
sources. Larger sizes would have likely improved
performance after adapting the other hyperparame-
ters but may have increased the risk for overfitting
(Lukoševičius, 2012). The remaining hyperparame-
ters, r, kW in , kb, and ρ, were adjusted to maximize
the validation accuracy of phoneme classification in
Experiment 1. Moreover, automated hyperparame-
ter optimization was attempted (see Appendix A.4)
but not used due to its high computational cost and
intractably slow convergence.

The resulting ESN was driven on each time se-
ries si (i = 1, ..., c), producing the reservoir state
sequence xi. Concretely, each run started from the
same state x(0) sampled once from a standard nor-
mal distribution so as not to introduce meaningless
between-sample differences while providing the net-
work with an initial excitation. The following states
xi(t) (t = 1, ..., L) were computed via update Equa-
tion 1.1 and collected column-wise in the N × L
matrix Xi = [xi(1)|...|xi(L)] (this excludes the start-
ing state). Concluding, an ESN response collection
matrix Xi was computed for each si.

2.4 Experiment 1: Phoneme Classifi-
cation

2.4.1 Objective

Experiment 1 performed conceptor-based phoneme
classification on TIMIT to (a) optimize the ESN
hyperparameters on the data for the subsequent
unsupervised Experiments 2 and 3 and (b) demon-
strate the method by Jaeger (2014b) on this dataset.
For objective (a), I assume a positive relationship
between the accuracy of a conceptor-based classi-

fier at distinguishing concepts (i.e., classes) and the
capacity of a conceptor-based clustering algorithm
(used in Experiments 2 and 3) to extract these and
other relevant concepts given the same data and
using the same ESN. Both classification and clus-
tering require the ESN to be sensitive to relevant,
class-discriminating input differences. For Example,
hyperparameters like the aperture (Jaeger, 2014b)
and spectral radius (Yildiz et al., 2012; Chatterji,
2022) are commonly tuned based on dynamical fea-
tures of the ESN response, like its energy or the
Echo State Property, rather than its performance on
later use-cases. Thus, tailoring the ESN to data via
classification may also improve concept extraction
on that data.

2.4.2 Conceptor-based Classification

The classifier takes an ESN response and outputs
the assigned class. During training, the responses of
each class are captured with two conceptors. When
classifying an unseen input, its response is compared
to each class’s conceptors and assigned the class of
highest Evidence, a measure of proximity. Thus, this
method classifies time series based on ESN responses
as captured using conceptors; the assigned label is
equally applied to the response to the time series
and the time series.

2.4.3 Dataset

The pre-processed original datasetDTIMIT−train was
divided into a preliminary training set, Dpre−train,
and a validation set, Dval, to validate hyperparam-
eter and design choices. The split was 80/20, re-
spectively, stratifying over phonemic classes. Once
hyperparameters and methods were set, the classi-
fier was retrained on the whole of DTIMIT−train and
evaluated on DTIMIT−test.

2.4.4 Training

Training amounted to computing a positive concep-
tor C+

p and negative conceptor C−
p per class p ∈ P .

Each class’s positive conceptor captures the linear
subspace that ESN states of that class tend to oc-
cupy and was computed as follows. Let ηp be the
number of training instances of p. The state collec-
tion matrices corresponding to instances of p were
concatenated column-wise into a class-level collec-
tion matrix Xp = [X1|X2|...|Xηp ] from which C+

p
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was then computed with an initial aperture of α = 1
by steps 2 and 3 of the procedure for conceptor com-
putation (Section 1.6.1). These steps were repeated
for each class, obtaining the set of preliminary posi-
tive conceptors C+

pre = {C+
p |p ∈ P}.

2.4.5 Aperture Optimization

After computing the conceptors in C+
pre with an

initial aperture of α = 1, their apertures were
adapted. First, as specified in Appendix A.3.1, the
∇-criterion was used to estimate the aperture at
which the positive conceptors would be maximally
sensitive to scalings of the underlying states, a proxy
for discriminatory ability. Each positive conceptor
was aperture-adapted to this aperture, resulting in
aperture-optimized positive conceptors C+.

2.4.6 Trace Normalization

However, classification using C+ seemed biased.
The trace of a conceptor, the sum of its eigenval-
ues, reflects the total variance or volume of the
subspace it captures. Figure 2.2 shows at x = 1
that the conceptors in C+ varied in their traces.
Higher traces could arise from high-energy ESN
states, such as those associated with particularly
loud utterances. To illustrate the bias, let x be
an arbitrary ESN state of unknown distribution
(class). During classification, i.a., the Positive Ev-
idence E+(x, p) = x′C+

p x = x′USU ′x is compared
across classes p ∈ P , where USU ′ is the SVD of
C+

p . An increase in the singular values, reflected in
tr(C+

p ) =
∑

i S[i, i], would cause a higher expected
Positive Evidence for p. Thus, the Positive Evidence
component may cause classification to favor larger
conceptors.

To mitigate this potential bias, I normalized the
traces of the positive conceptors to a common target
value trtarget, the mean trace among the conceptors:

trtarget =
1

|C+|
∑

C∈C+

tr(C) ≈ 57.23 (2.1)

Algorithm A.1 was developed to adapt each con-
ceptor’s trace to trtarget with an error tolerance of
ϵ = 0.01. Figure 2.2, at adaptation steps x > 1,
shows the algorithm’s normalizing effects over its
iterations. The trace normalization led to a 0.1%
increase in validation accuracy. This increase seems

Figure 2.2: The traces of the positive conceptors
in function of the adaption steps. The mean trace
is initially at tr0. Step x = 1 is the aperture opti-
mization based on the ∇-criterion. The increase
in aperture caused the traces to increase and
diverge. The remaining steps x > 1 correspond
to the iterations of Algorithm A.1 that normalize
the traces to target value trtarget.

insignificant, although significance could not be sta-
tistically verified on only one run. Following Occam’s
razor, the method was not used in the final run.

2.4.7 Negative conceptors

From the aperture-optimized positive conceptors in
C+, the set of negative conceptors C− = {C−

p |p ∈
P} was computed. Each class’s negative conceptor
models the linear subspace complementary to the
space occupied by the states of all other classes. In
other words, it models the subspace that states from
none of the other classes are expected to occupy.
These semantics are reflected in their definition:

C−
p = ¬

∨
{C+

q |q ∈ P, q ̸= p}, (2.2)

where
∨

S is the associative disjunction of the |S|
conceptors of any set of conceptors S:∨

S = ((C1 ∨ C2) ∨ C3) ∨ ... C|S| (2.3)

Optimizing the apertures of the negative conceptors
C− decreased the validation accuracy by 0.97%, so
it was not done in the final run.

2.4.8 Testing

The Combined Evidence was used to classify time
series via the corresponding ESN responses. The
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Combined Evidence E(x, p) that some ESN state
x corresponds to class p is a measure of similarity
between that state and the positive and negative
conceptors of class p. Concretely, it is the sum of
a Positive Evidence E+(x, p), computed using the
positive conceptor C+

p , and a Negative Evidence
E−(x, p), computed using the negative conceptor
C−

p :

E(x, p) = E+(x, p) + E−(x, p),

E+(x, p) = x′C+
p x

E−(x, p) = x′C−
p x

(2.4)

E(x, p) is large when x is close to the linear subspace
modeled by conceptor C+

p but far from the linear
subspace which the other conceptors model (see
Equation 2.2).

To classify a point cloud X (a column-wise state
collection matrix), the class that maximizes the
mean Combined Evidence over all states (columns
of the collection matrix) is assigned:

argmax
p∈P

1

L

L∑
i=1

E(X[:, i], p), (2.5)

where L is the width of X.

Finally, when given any time series sinput, it is
assigned the class of maximal (mean) Combined
Evidence for Xinput, the ESN response to sinput.

2.4.9 Results

Table 2.2 shows the accuracies on the validation,
training, and test sets, all significantly above chance.
The confusion matrix in Figure A.1 of Appendix
A.3.5 visualizes the classification rates across the
classes and indicates a robust classification per-
formance across classes. Like Jaeger (2014b), I re-
peated the experiment with enhanced inputs (Ap-
pendix A.5), which improved the training accu-
racy to 63.64% but lowered the test accuracy to
49.13%. Given the promising classification accura-
cies, I reused the ESN setup and conceptor-based
classification mechanisms in Experiments 2 and 3,
where I turn to the unsupervised extraction of con-
cepts from ESN states.

Set Accuracy (%)
Validation Dval 57.40
Training DTIMIT−train 55.56
Test DTIMIT−test 54.05
Chance 100

|P | = 2.56

Table 2.2: Validation, training, and test accura-
cies compared to chance.

2.5 Experiment 2: Concept Extrac-
tion by Conceptor-Based GCHC

2.5.1 Objective

Now blinded to the phonemic classes, the unlabeled
ESN responses were clustered in four conditions
that determined the parameters of GCHC, aiming
to extract human-meaningful and coherent concepts
without supervision.

2.5.2 Dataset

For computational constraints, the experiment
was conducted using subsamples Dl,train ⊂
DTIMIT−train and repeated 10-fold (l = 1, ..., 10).
Each Dl,train encompassed a random subsample of
time series with the following constraints. First, they
stemmed from an independent sample 7 phonemes
Pl to reduce selection bias. The cardinality of
|Pl| = 7 aims to roughly align the difficulty with the
simple condition of Lerato and Niesler (2012), which
also performed clustering on TIMIT’s phoneme
recordings. Second, they stemmed from an inde-
pendent sample of 48 speakers with an equal ratio
across genders and dialect regions. This stratifica-
tion aimed to represent the population evenly. Third,
they stemmed from the phonetically compact sen-
tences, where each phoneme appears in only a few
phonetic contexts (e.g., /aa/ only before /f/), lim-
iting phonetic variability. Given these constraints,
15 time series per phoneme in Pl were selected for
n′ = 105 time series in Dl,train, with the remaining
time series Dl,test held out for testing.

2.5.3 GCHC

Using each subsample Dl,train, GCHC was per-
formed in four conditions. Next, I describe the algo-
rithm, including parameters and procedure, followed
by the conditions.
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GCHC is a clustering algorithm that identifies
K non-overlapping clusters (i.e., discrete concepts)
among its inputs by iteratively relocating a set of
cluster-defining centroids. Besides the number of
clusters K, it is parametrized by:

1. A clustering set D′ = {p1, p2, ..., pn} of the
points to be clustered.

2. A centroid computation function centroid(Cl)
that returns the centroid of a given cluster
Cl ⊂ D′.

3. A dissimilarity function d(p, µ) that returns the
dissimilarity between a point p and centroid µ.
This function is assumed to be non-negative
and monotonically increasing with dissimilarity.
Symmetry is not assumed (cf. Sarmiento et al.,
2019).

The algorithm minimizes loss function LGCHC :

LGCHC =

K∑
k=1

∑
pi∈Clk

d(pi, centroid(Clk)), (2.6)

where Clk is the set of points in the kth cluster.
To minimize this loss, the GCHC Algorithm 2.1

proceeds as follows. Centroids are initialized via
K-means++ initialization. After randomly selecting
a first initial centroid, this method selects each fol-
lowing initial centroid with probability proportional
to its squared dissimilarity from the nearest already
selected centroid. Compared to a random initializa-
tion, K-means++ initialization tends to produce
more evenly spread initial centroids and converge
faster and more consistently when applied to points
in Euclidean space (Arthur and Vassilvitskii, 2007).
After initialization, GCHC iteratively repeats the
following steps:

• Assignment step: Each data point is assigned
to the cluster with the least dissimilar centroid
using d(·, ·).

• Reassignment step: To prevent empty clusters,
which may occur after the Assignment step
(Bradley and Fayyad, 1998), the most misfit
point – the point with the largest dissimilarity
from its current cluster’s centroid – is reas-
signed to any empty clusters. Hence, all clus-
ters have at least one data point from which a
centroid can be computed.

• Centroid update step: The centroids are recalcu-
lated based on the newly formed clusters using
the function centroid(·).

This process terminates once all centroids converge
in their position or a maximum number of iterations
is reached.

2.5.4 Conditions

The experiment was performed in four conditions
that determine the parameters of GCHC:

• MFCC-Euclidean clustered time series directly.
This condition acts as a baseline by directly
clustering the time series by K-means, the spe-
cial case of GCHC on points in Euclidean space.

• ESN-Euclidean clustered the earlier collected,
but now unlabeled, ESN responses to the time
series by K-means.

• ESN-Evidence clustered the ESN responses,
but with conceptors as centroids and a derivate
of the Combined Evidence as dissimilarity func-
tion.

• ESN-Hybrid combined the ESN-Euclidean and
ESN-Evidence conditions.

Table 2.3 lists the arguments used as parameters
(columns) across conditions (rows).

2.5.5 Runs

Algorithm 2.1 was run in each condition for 20
runs with different initializations to average out
the effects of specific random cluster initialization
choices. Thus, 20 folds × 20 runs = 400 runs were
performed per condition. To limit the scope, the
number of clusters was fixed at K = 7, consistent
with the number of phonemic classes |Pl|.

2.5.6 Testing

The resulting clusters were evaluated using an in-
trinsic measure – based only on the data available
during clustering – and two extrinsic measures –
consulting the labels unavailable during clustering
as ground truths. The intrinsic mean intra-cluster
dissimilarity (MICD) aims to gauge the coherency
of the extracted concepts, whereas the extrinsic
normalized mutual information (NMI) and cluster
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Condition Clustering Set D′ Centroid computation
function centroid(Clj)

Dissimilarity function
d(p, µj)

MFCC-
Euclidean

MFCC time series:
{si|si ∈ Dl,train, si ∈
R13×10}

Element-wise mean:
1

|Clj |
∑

pi∈Clj
pi ∈ R13×10

Euclidean distance:
||p− µj || ∈ [0,∞)

ESN-
Euclidean

ESN responses:
{Xi|si ∈ Dl,train, Xi ∈
R100×10}

Element-wise mean:
1

|Clj |
∑

pi∈Clj
pi ∈ R100×10

Euclidean distance:
||p− µj || ∈ [0,∞)

ESN-
Evidence

ESN responses:
{Xi|si ∈ Dl,train, Xi ∈
R100×10}

Tuple of positive and
negative conceptorsa:
(C+

j , C−
j ) ∈

(R100×100,R100×100)

Reciprocal of Combined
Evidenceb: 1

E(p,j) ∈ [0,∞)

ESN-
Hybrid

ESN responses:
{Xi|si ∈ Dl,train, Xi ∈
R100×10}

Tuple of Euclidean- and
conceptor-based centroids:
( 1
|Clj |

∑
pi∈Clj

pi, (C
+
j , C−

j ))

Mean of Euclidean- and
conceptor-based
dissimilaritiesb:
||p−µj ||+ 1

E(p,j)

2 ∈ [0,∞)

Table 2.3: Arguments across clustering conditions. aThe ESN-Evidence centroid computation
function resembles the training procedure of Experiment 1 with the clusters as classes. It returns
a tuple of positive and negative conceptors representing class j with instances Clj. Note that
implementing this function also relies on the members of the other clusters to compute the negative
conceptors. bNo division by zero was encountered.

classification accuracy (CCA) aim to assess human-
meaningfulness of found concepts.

2.5.7 MICD

First, the MICD is the mean dissimilarity between
the clusters’ centroids and members across clus-
ters and a measure of mean cluster cohesion. It
resembles the loss function (Equation 2.6) but with
additional normalization by K and each cluster’s
size. With normalization, clusters of varying sizes
are considered equal, thus measuring the mean clus-
ter cohesion, interpreted as the mean coherency of
the extracted concepts. By its similarity to the loss,
the MICD may also indirectly inform about conver-
gence behavior; a steady reduction in MICD over
iterations is expected as clusters become increas-
ingly cohesive. Many alternative cohesion measures,
like the within-cluster sum of squares or silhouette
coefficient, were unsuitable because they assume
a distance metric with criteria not fulfilled by the
conceptor-based dissimilarity measures. Moreover,
the MICD should not be compared between the
conditions because they used different dissimilarity

functions.
Concretely, given a clustering Cl =

{Cl1, Cl2, ..., ClK}, where Clk is the set of
points assigned to cluster k, the MICD is calculated
as follows. For any cluster Clk, let the intra-cluster
dissimilarity be the mean dissimilarity between its
members pi and its centroid centroid(Clk), where
d(pi, centroid(Clk)) is the dissimilarity function
and depends on the condition. The MICD is then
the mean of the intra-cluster dissimilarity values
for all clusters:

MICD =
1

K

K∑
k=1

1

|Clk|
∑

pi∈Clk

d(pi, centroid(Clk))

(2.7)

2.5.8 NMI

Second, the NMI is an extrinsic measure of the simi-
larity between a clustering Cl = {Cl1, Cl2, ..., ClK},
where Clk is the set of points from the dataset
Dl,train assigned to cluster k, and the ground truth
phonemic grouping G = {G1, G2, ..., G|Pl|}, where
Gp is the set of points with label p in the dataset
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Algorithm 2.1 Generalized centroid-based hard
clustering (GCHC) pseudocode

Require:
Number of clusters K
[1] Clustering set D′ = {p1, p2, ..., pn}
[2] Centroid computation function centroid(Cl)
[3] Dissimilarity function d(p, µ)

Initialize K cluster centroids via the K-means++
initialization procedure: µ = {µ1, µ2, ..., µK}

while TRUE do
Reset all clusters: Cl = {∅, ∅, ..., ∅}

Assignment step:
for pi in D′ do
k ← argmin

1≤j≤K
d(pi, µj)

Assign pi to cluster k: Clk ← Clk ∪ pi
end for

Reassignment step to avoid empty clusters:
while any Clj is empty do

Find point pmax in D′ that is most dissimilar
to the centroid of its current cluster.
Move pmax from its old cluster to Clj . No
pmax should be moved twice to prevent infi-
nite loops.

end while

Centroid update step:
for j = 1 to K do
µj ← centroid(Clj)

end for

if converged (cluster assignments did not
change) or iteration limit reached then
break

end if
end while

return Set of clusters Cl =
{Cl1, Cl2, ..., ClK}

Dl,train. Its values range from 0 for entirely dis-
similar clusterings to 1 for identical clusterings. It
was used to compare the found clusters with the
phonemic classes of TIMIT, measuring their human-
meaningfulness.

To compute the NMI, the mutual (shared) infor-
mation I between Cl and G is normalized by the
mean entropy (uncertainty) H within each cluster-
ing (Lerato and Niesler, 2012):

I(G,Cl)

=
∑

Gp∈G

∑
Clk∈Cl

P (Gp ∩ Clk)log
P (Gp ∩ Clk)

P (Gp)P (Clk)

H(Z)

= −
∑
Zp∈Z

P (Zp)logP (Zp), for some grouping Z

NMI(G,Cl) =
I(G,Cl)

1
2 [H(G) +H(Cl)]

(2.8)

2.5.9 CCA

Third, the CCA measures the classification accu-
racy of the conceptors derived from the clusters
on new phonemes. Like the NMI, the CCA is an
extrinsic measure of cluster alignment with the
ground truth phonemic classes. However, whereas
the NMI focuses on the cluster members (i.e., the
concept instances), the CCA focuses on conceptor-
based representations of the clusters. The CCA
is a practical attempt at interpreting clusters as
human-meaningful concepts on par with phonemic
classes by measuring phoneme classification per-
formance. For computation, it was assumed that
each cluster corresponded to exactly one of the
phonemic classes in P . Clusters were matched with
classes via the Kuhn-Munkres algorithm (Plummer
and Lovász, 1986, mentioned in Song et al., 2013),
using the linear sum assignment function from
the SciPy library (Virtanen, Gommers, Oliphant,
Haberland, Reddy, Cournapeau, Burovski, Peter-
son, Weckesser, Bright, van der Walt, Brett, Wilson,
Millman, Mayorov, Nelson, Jones, Kern, Larson,
Carey, Polat, Feng, Moore, VanderPlas, Laxalde,
Perktold, Cimrman, Henriksen, Quintero, Harris,
Archibald, Ribeiro, Pedregosa, van Mulbregt, and
SciPy 1.0 Contributors, 2020). Concretely, this algo-
rithm finds the match between clusters and classes
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that globally maximizes the cumulative cardinality
of the intersections between matched clusters and
classes. Then, Experiment 1 was essentially repli-
cated; a conceptor-based classifier was trained on
the clusters to classify the respective matched class
and tested on Dl,test.

2.5.10 Results

Table 2.4 compares the scores of the extrinsic perfor-
mance measures (columns) of the clustering results
across conditions (rows) averaged across runs. Two
additional rows were added, Random clusters and
Dataset classes, with the scores of a random clus-
tering and a clustering that perfectly matched the
ground truth class labels, respectively. All condi-
tions significantly exceeded random clustering in
NMIs and CCAs. A one-way repeated measures
ANOVA revealed a significant effect of the condi-
tion on NMI (F (3, 57) = 8.57, p < 0.001). However,
a Tukey post-hoc analysis revealed no significant
difference pairwise differences between the condi-
tions (p > 0.05). For CCA, the ANOVA revealed
no significant effect of condition (F (3, 57) = 1.19,
p = 0.32).

Condition NMI CCA
MFCC-Euclidean 0.488 0.459
ESN-Euclidean 0.468 0.455
ESN-Evidence 0.488 0.472
ESN-Hybrid 0.465 0.455
Random clusters 0.0871 0.251
Dataset classes 1.0000 0.700

Table 2.4: Mean extrinsic scores of final cluster-
ings between conditions.

Figure 2.3 plots the NMIs over the iterations
for each condition, averaged across runs. The NMIs
increased across conditions during the first iterations
but then stagnated.

Figure 2.4 illustrates the normalized MICDs over
the iterations, averaged across runs for each con-
dition. They were normalized by scaling to a unit
range to accommodate the different original ranges
of each condition. An exponential decay in MICDs
is observed across all conditions. More than 70%
of the change in MICDs and NMIs occurred across
conditions within the first three iterations. The oc-
casional peaks and progressive increases in variances

Figure 2.3: The NMIs of the clusterings over the
iterations averaged across runs. For reference,
horizontal lines indicate the NMIs of randomly
initialized clusters and the dataset’s classes.

can be attributed to the gradual termination of runs,
causing changes in the samples underlying the mean
computation (Appendix A.6.2).

Figure 2.4: The MICDs of the clusterings over
the iterations averaged across runs.
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2.6 Experiment 3: Concept Extrac-
tion by Conceptor-Based HAC

2.6.1 Objective

This experiment aims to extract a hierarchy of con-
cepts from the ESN responses to phonemes captured
by the positive conceptors in C+ from Experiment 1,
using an adaptation of HAC. Whereas Experiment
2 extracted non-overlapping concepts among ESN
states pre-grouped by phoneme segments, Experi-
ment 3 extracted concept hierarchies among ESN
states pre-grouped by phoneme classes.

2.6.2 HAC

I first describe HAC and then elaborate on how its
three parameters were set to adapt it to concep-
tors. HAC is a clustering algorithm that identifies
a cluster hierarchy among its inputs by iteratively
grouping the inputs into higher-level clusters. The
conceptor-adapted HAC is parametrized by:

1. A clustering set. Its points are classically in
Euclidean space. However, here, they were the
positive conceptors from Experiment 1, each
representing one phoneme in conceptor space:

DHAC = C+ = {C+
p |p ∈ P} (2.9)

2. A dissimilarity measure between two points
pi and pj . Here, the difference from 1 of the
conceptor similarity of pi and pj was used:

dHAC(pi, pj) = 1− Sim(pi, pj) (2.10)

This function fulfills several desiderata for a
dissimilarity measure: non-negative, symmetric,
and zero for identical inputs.

3. A linkage function dlink(Cli, Clj) that returns
the dissimilarity between two clusters Cli and
Clj . Here, the mean pairwise dissimilarity be-
tween the points in the two clusters (average
linkage) was used:

dlink(Cli, Clj)

=
1

|Cli||Clj |
∑

px∈Cli,py∈Clj

dHAC(px, py)

(2.11)

This linkage function tends to produce more
balanced clusterings by considering the average

rather than extreme values like some alterna-
tives (Manning, Raghavan, and Schütze, 2008).

After defining the parameters, the HAC Algo-
rithm 2.2 proceeds as follows. One cluster is initial-
ized per data point. Then, HAC iteratively merges
the clusters with the smallest dissimilarity dlink into
a new cluster. This process terminates when only
one cluster remains, resulting in a binary tree in
which each node corresponds to a cluster formed by
merging two children.

Algorithm 2.2 Hierarchical agglomerative cluster-
ing (HAC) pseudocode

Require:
[1] Set of points D′ = {p1, p2, ..., pn}
[2] Dissimilarity function d(pi, pj)
[3] Linkage function dlink(Cli, Clj)

Initialize a cluster for each point: Cl← D′

while number of clusters > 1 do
Find the two most similar clusters:

Cli, Clj ← argmin
Cli ̸=Clj

dlink(Cli, Clj)

Update clusters in Cl:
Remove Cli and Clj
Add Clmerged = Cli ∪ Clj

end while

2.6.3 Results

Figure 2.5 depicts the resulting cluster hierarchy as
a dendrogram. Each leaf on the left represents a
phoneme. Clusters emerge toward the right, repre-
senting increasingly abstract concepts. The abscissa
of the links corresponds to the dissimilarity between
the corresponding children.
Several overlaps could be identified between

the HAC phoneme clustering results and phonetic
groups depending on the choice of phonetic model. I
begin by comparing the clusters based on the man-
ner of production as provided by TIMIT (Figure 1.1).
Table 2.5 depicts their overlaps with phonetic groups
in the left column and their associated phonemes
in the right column. Each group also corresponds
to a HAC cluster except bold phonemes that were
moved between sibling clusters. The two primary
clusters encompass consonants (top) and vowels
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Figure 2.5: Dendrogram of the concept hierarchy from clustering phoneme-representing conceptors
with the adapted HAC.

(bottom, orange), with a dissimilarity of about 0.015.
Within the consonants cluster, five subgroups can
be identified. The red subcluster corresponds to
fricatives and affricates (enclosed), both produced
with air friction. The green subcluster encompasses
stops (top) and nasals (bottom). Within the vowel
cluster of Figure 2.5, no significant correspondence
between the sub-clusters and tongue positions or
other articulatory features (like in Pfeifer and Balik
(2011)) is apparent.

The phonemes in the Mixed group were consid-
ered separately because their articulatory features
resemble both vowels and consonants. The group
contains the glides /l/ and /r/, semivowels /w/ and
/y/, and liquid /hh/. These instances were moved
since no cluster exclusively corresponded to the
mixed group. Lastly, the silence /h#/ was consid-

ered separately, like in TIMIT’s categorization.

3 Discussion

The present work explored conceptor-based cluster-
ing for extracting coherent and human-meaningful
concepts from ANN activations without supervision.
The developed methods were demonstrated on ESN
responses to pre-processed phoneme utterances from
TIMIT.

3.1 Experiment 1

Experiment 1 served to (a) optimize the ESN on
the data in preparation for the unsupervised Experi-
ments 2 and 3 and (b) demonstrate conceptor-based
time series classification on TIMIT.
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Group Phonemes of Group

Conso-

nants

Fricatives
th f sh

z s dh v

Affricatives jh ch

Stops
p b d

t g k dx

Nasals m n ng

Vowels

ow aa oy

ah uh er

aw ay ey eh

ae iy ih uw

Mixed l r w y hh

Silence h#

Table 2.5: Phonetic categories (based on the man-
ner of production) among the concepts that re-
sulted from HAC. Bold phonemes were moved
from sibling clusters into their current place.

Regarding objective (b), a testing accuracy of
54.05% was achieved, significantly above chance,
suggesting that conceptor-based time series was
successfully demonstrated on TIMIT. A difference
of 1.51% to the training accuracy suggests a slight
overfitting.

Unfortunately, a performance comparison to pre-
vious phoneme classification experiments on TIMIT
is impeded by differences in data selection, pre-
processing, and testing. For example, Karsmakers
et al. (2007), holding the leading testing accuracy of
78.4%, pre-processed the data into 181-dimensional
vectors by combining, among other features, 24
MFCCs and their first and second-order derivatives,
which differs from my 13× 10 dimensional MFCC
time series.

More insightful conclusions can be drawn by com-
parison to previous conceptor-based time series clas-
sification methods. First, the current method, al-
though lower in accuracy than Jaeger’s (2014b)
99.9%, points to the applicability of conceptor-based
classification to more complex datasets; With three
times as many classes and greater phonetic varia-
tion, the pre-processed TIMIT dataset was more
complex than their Japanese Vowels dataset. Like-
wise, Vlegels (2022) and Bartlett et al. (2019) distin-
guished between only 14 and 3 classes, respectively.

Further lessons lie in the attempted methodolog-
ical deviations from Jaeger (2014b). The first at-
tempted deviation was to normalize the traces of the
positive conceptors C+ across classes to mitigate
a potential classification bias. However, since this
intervention did not seem to increase validation ac-
curacy significantly, it was not used in the final run.
Future work should further investigate the described
bias and its proposed remedy, empirically by sta-
tistically testing the effect of normalizing the trace
on accuracy with cross-validation or analytically by
verifying whether the proposed reasoning is sound,
especially in the classification over multiple classes
and with Negative Evidences. The second deviation
from Jaeger (2014b) was not to optimize the aper-
tures of the negative conceptors. This deviation was
used in the final run since it improved validation
accuracy significantly. Repeating Jaeger’s (2014b)
experiment is advisable to validate the benefits of
the intervention.

Moreover, the attempt to further increase classi-
fication accuracy by modifying the data (Appendix
A.5) was unsuccessful. This attempt involved con-
catenating the input and response before process-
ing. Although this change led to a significant in-
crease in training accuracy, testing accuracy de-
creased, suggesting overfitting. A possible reason
for why this overfitting occurred for me, but not
in Jaeger (2014b), is the difference in the dimen-
sionality of the classified vectors z. My vectors were
(13 + 40)× 10 = 530-dimensional, compared to 88
dimensions in their setup. The information within
the data might not have sufficed to learn the rele-
vant patterns across such a high-dimensional space;
the data required for effective learning increases
exponentially with input dimensionality (curse of
dimensionality (Bishop and Nasrabadi, 2006)). More
generally, this issue highlights the complexity of reg-

ularizing a conceptor-based classifier (with N(N+1)
2

parameters to regularize with symmetric concep-
tors: quadratic in N) compared to alternatives like
classification via a trained ESN output layer (with
|P | × N output weight matrix parameters to reg-
ularize: linear in N). Thus, unless overfitting can
be prevented, this modification seems to offer no
benefit and even adds computational cost.

The fulfillment of motivation (a) rests on an as-
sumption to be verified. The results suggest that
the ESN could effectively represent the data such
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that its phonemes could be distinguished during
classification. Based on the earlier assumption, this
discriminatory capacity of classification transfers
to clustering on the same data and with the same
ESN. The ESN was the same, and while the data
pools changed for Experiment 2, these changes seem
negligible. First, experiment 2 only used the phonet-
ically compact sentences, but this constraint likely
favored clustering by decreasing intra-class variabil-
ity. Second, although Experiment 2 relied on subsets
of seven of the original 39 phonemes, these subsets
were randomly sampled. Moreover, by tuning the
network to the pre-established phonemic classes, a
confirmation bias may have acted in favor of their
extraction, improving extrinsic validation scores.
However, this bias likely had a minimal and uniform
impact across all classes and conditions. Experiment
3, which used the same conceptors (i.e., data) as
Experiment 1, does not face these concerns.
In conclusion, Experiment 1’s significant classifi-

cation accuracy points to the greater applicability
of conceptor-based classification to more complex
datasets. It also suggests that the involved ESN,
with its hyperparameters, represented the data well
enough to extract phonemic and super-phonemic
concepts in Experiments 2 and 3.

3.2 Experiment 2

Experiment 2 explored the potential for unsuper-
vised concept extraction from ANN activations in
four variants of GCHC: MFCC-Euclidean (base-
line K-means clustering on time series), ESN-
Euclidean (K-means on ESN responses), ESN-
Evidence (conceptor-based with Combined Evidence
as the dissimilarity function), and ESN-Hybrid (a
hybrid of ESN-Euclidean and ESN-Evidence).
On the one hand, all conditions outperformed

random clustering by a significant margin in both
extrinsic measures, NMI and CCA. This result sug-
gests that GCHC, including its conceptor-based vari-
ants, could extract significantly human-meaningful
concepts when evaluated against the phonemes of
TIMIT.

On the other hand, although the first ANOVA
indicated that at least one condition significantly
differed from the others in its effect on NMI, the
Tukey test did not reveal significant differences be-
tween any pairs of conditions. Thus, the experiment
provided insufficient evidence to tell which method

was more effective in extracting human-meaningful
concepts. Similarly, the second ANOVA showed a
32% chance of observing the CCA results under
the null hypothesis of no effect of condition. Future
studies could replicate this experiment on larger
datasets to address this uncertainty.

The striking similarity across conditions suggests
high mutual information between ESN states and
their inputs, providing evidence of their nature as
high-dimensional non-linear expansions, echos, of
the inputs (cf. Lukoševičius, 2012). In contrast, the
activations of trained ANNs are attuned to spe-
cific features of the inputs. Thus, the activations of
trained ANNs may encode concepts that GCHC may
extract neither from inputs (MFCC-Euclidean) nor
activations (ESN-Euclidean) but from conceptors
(ESN-Evidences). Thus, I hypothesize that training
favors the extrinsic performance of conceptor-based
concept extraction.
Moving to the intrinsic measure, the exponen-

tial decay of MICDs across conditions (Figure 2.4)
indicates that mean cluster cohesion increases as
expected over iterations but at a decreasing rate.
The occasional increases in MICDs could be at-
tributed to the gradual termination. This course
is consistent with the stagnation of NMIs (Figure
2.3) and suggests the proper convergence of GCHC
and its ability to extract increasingly coherent and
human-meaningful concepts over the iterations.

In conclusion, the experiment suggests significant
potential in GCHC, including its conceptor-based
adaptations, for extracting human-meaningful and
coherent concepts. However, more research is needed
to clarify whether there are significant differences
to the Euclidean-based approaches.

3.3 Experiment 3

Experiment 3 adapted HAC in search of super-
phonemic concepts among the 39 conceptor-
represented phonemes. A strong resemblance be-
tween the extracted concepts and established pho-
netic categories suggests human-meaningfulness and
coherency.
The resemblance was more apparent to catego-

rizations based on manner and place of production
than alternative phonetic features. Since the ESN
and its concepts could have only represented acous-
tic information from isolated segments, this result
underlines the dominant influence of place and man-
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ner of production on acoustics suggested by the
phonetic (International Phonetic Association, 1999;
Garofolo et al., 1993; Rabiner, 1978) and reflected
by the brain’s representation of phonemic speech
(Mesgarani et al., 2014; Shepard, 1980).

The only phonemes to be moved among sibling
concepts for a neat alignment with production man-
ner categories were among TIMIT’s Fricatives and
Semivowels and Glides (the latter also includes liq-
uid /hh/). The hierarchical phoneme clustering of
Oh et al. (2021) similarly struggled with these cate-
gories. The misalignment of fricatives likely resulted
from their noisy acoustics caused by friction. Sim-
ilarly, the misfit of semivowels, glides, and liquid
reflects their intermediate articulatory properties.
Therefore, the algorithm’s errors may have been
caused by and confirm phonetic properties.
In conclusion, the proposed conceptor-adapted

HAC has the potential for extracting human-
meaningful and coherent concepts, and the results
reflected some established perspectives from pho-
netics.

3.4 Euclidean to Conceptor-based
Clustering

In retrospect, the following changes enabled the
adaptation of K-means and HAC, two classical clus-
tering algorithms operating in Euclidean space, to
conceptor-based representations. On the one hand,
their mean and Euclidean distance functions could
have also been applied to conceptor matrices as
element-wise operations. On the other hand, this
could have interfered with the geometric interpre-
tation and the definition of conceptors; the formal-
ism conceives conceptors as hyperellipsoids in state
space and as ”regularized identity maps” (Jaeger,
2014b), as captured by their loss. These aspects
are crucial for, i.a., the semantics of their operators.
However, the mean and Euclidean distance lack such
a clear geometric interpretation. Moreover, adding
two conceptors, as done by the mean, does not neces-
sarily return a new conceptor. Thus, for consistency
with the original framing of conceptors, the follow-
ing adaptations were made in ESN-Evidence and
ESN-Hybrid of Experiment 2 and in Experiment 3:

1. The mean became disjunction with aperture
adaptation in the Centroid update step of Ex-
periment 2. In classical K-means, cluster cen-

troids are computed via the mean, which col-
lects the information of member points by sum-
mation and normalizes it by division by cluster
size. By analogy, the information of member
conceptors was collected by disjunction and
normalized through aperture adaptation.

2. The Euclidean distance became the reciprocal
of the Combined Evidence in the Assignment
step of Experiment 2 and the difference from
1 of the conceptor similarity in Experiment
3. Classical K-means assigns points to clus-
ters by Euclidean distance to the respective
centroids. By analogy, conceptor points were
assigned by the reciprocal of the Combined
Evidence, 1/E(·, ·), for the respective centroid.
Moreover, in classical HAC, the distance be-
tween two clusters is computed by the mean
Euclidean distance of their members. By anal-
ogy, the distance between conceptor clusters
was computed by the mean of their members’
dissimilarity, 1− Sim(·, ·).

The ESN-Hybrid condition is worth highlight-
ing. By combining the ESN-Euclidean and ESN-
Evidence, the hybrid carried information about both
centers and spreads of clusters; the centroids of ESN-
Euclidean are cluster means, and the centroids of
ESN-Evidence are conceptors that capture cluster
variance. Therefore, I expected it to benefit from a
richer cluster representation than its constituents.
The high hopes for the hybrid were backed by its
resemblance to affine conceptors, an extension pro-
posed by Jaeger (2014b), which accounts for both
the variance and the mean of state clouds in the
conceptor computation. By not forcing the ellipsoids
to be centered at the origin, these affine conceptors
may more accurately model state clouds. However,
the insignificant performance differences between
the ESN-Hybrid and any of the other conditions cast
doubt on its benefits. If the still outstanding devel-
opment of affine conceptors succeeds, they could po-
tentially enable a simpler, computationally cheaper,
and more effective means of integrating information
about cluster means and variances.

Other adaptations would also have been possible.
For instance, Mossakowski et al. (2019) used the
fuzzy generalization of the Löwner ordering to clus-
ter conceptors. Mossakowski et al. (2019) lacking
validation, Experiment 3 provides more rigorous ev-
idence that clustering conceptors can extract coher-
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ent concepts. Regarding the dissimilarity, however,
an informal adaptation of Experiment 3’s method
to that dissimilarity function seemingly led to less
human-meaningful taxonomies on the present task.
A dedicated study could aim to elucidate the dif-
ferences between our dissimilarity measures. Ulti-
mately, choosing a dissimilarity function that iden-
tifies meaningful and coherent concepts can require
the consideration of the properties of the input,
neural network, and task (Shepard, 1980).

3.5 Computational Creativity

I will now discuss the implications of this study in
light of the two primary motivations. The first moti-
vation was to advance neuro-symbolic approaches to
computational creativity. Previous computational
approaches with creative potential relied on the
availability of pre-established or manually identi-
fied concepts (Jaeger, 2014a; Lake et al., 2019; Fabi
et al., 2021; Hofstadter et al., 1987; Hofstadter and
Mitchell, 1994; Ha and Eck, 2017). The developed
methods pave the way toward overcoming this re-
liance by autonomously extracting relevant concepts;
their subsequent combination, morphing, or analogy
could generate new relevant concepts. Implementa-
tions might draw on traditional cognitive models of
creativity, the various mechanisms available for con-
ceptors, and the (re)generative capacities of ESNs
with output layers (Jaeger, 2014a). A similar case as
for creativity may hold for other cognitive functions
(Sheth et al., 2023); various conceptual-symbolic
models of cognition exist that future research could
attempt to apply to data-dynamical content with un-
supervised concept extraction methods as a bridge.

3.6 Unsupervised Conceptors

Regarding the second motivation, the present
method could extend the conceptor formalism to
unsupervised applications and enhance supervised
ones. The current task differs from previous ones.
Unlike the supervised task of computing the sin-
gle conceptor that best captures a group of states,
Experiments 2 and 3 aimed to find a set of concep-
tors that collectively best capture an ungrouped set
of states. By pivoting toward unsupervised concep-
tors, this attempt could broaden the applications of
conceptors, for example, by enhancing supervised
approaches (time series classification like in Experi-

ment 1, Jaeger (2014b), Bartlett et al. (2019), and
Vlegels (2022), and recognition like in Chatterji
(2022)); extracted concepts could be used as in Oh
et al. (2021), which informed and improved phoneme
classification on TIMIT by training additional clas-
sifiers on super-phonemic concepts extracted by
hierarchical clustering. More research is needed to
explore the formation and use cases of unsupervised
conceptors.

3.7 Practical Applications

Additional applications result from the present
method’s capacity to represent various types of
time-extended data, including brain data, ANN ac-
tivities, and other time series. First, it could inte-
grate with previous studies on concept-extraction
from brains (Kriegeskorte and Kievit, 2013; Lin,
Mur, Kietzmann, and Kriegeskorte, 2019; Tuccia-
relli et al., 2019; Balkenius and Gärdenfors, 2016;
Shepard, 1980; Chang et al., 2010; Laakso and Cot-
trell, 2000), building on the insights of Bartlett
et al. (2019) for applying conceptors to brain data.
Thus, it could contribute to better understanding
the conceptual structures by which the human brain
represents and categorizes stimuli. In this context,
the conceptor-based representation may open possi-
bilities like ordering the extracted concepts by their
abstraction relationships (Mossakowski et al., 2019;
Jaeger, 2014b; Bricman et al., 2022).

Second, in the context of ANN explainability,
the approach could improve on previous clustering-
based concept extraction methods (Fel et al., 2024;
Liu and Arik, 2020; Ghorbani et al., 2019; Song et al.,
2013) by offering new ways of analyzing the concepts
post-extraction. For example, an extracted concept’s
neural pattern may be reactivated for inspection by
projecting the NN’s state into the corresponding con-
ceptor’s subspace. Moreover, conceptor-represented
concepts could be compared to user-queried con-
cepts (cf. Kim et al., 2018) and among each other,
where a possible pipeline could extract base con-
cepts by Experiment 2’s method and relate them
by Experiment 3’s method (i.e., analyzing the rep-
resentational geometry (Kriegeskorte and Kievit,
2013)). Similarly, Nested State Clouds (Bricman
et al., 2022) may relate the concepts extracted by
my methods in a semantic graph.

Third, the current methods may offer performance
and efficiency benefits for time series clustering. As
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mentioned, the high mutual information between in-
puts and ESN responses enables the mutual transfer
of clusterings and classifications. Thus, the meth-
ods of Experiments 2 and 3, although formulated
with a focus on neural activations, can be applied
to cluster the input time series (cf. Estevan, Wan,
and Scharenborg, 2007, Atencia, Gallicchio, Joya,
and Micheli, 2020). The most similar study, Lerato
and Niesler (2012), was outperformed in NMIs by
about an order of magnitude across conditions. This
comparison is based on the NMI of their HAC at
seven clusters in their simple condition. We used an
equivalent definition of the NMI. While this tenfold
improvement suggests a significant contribution to
the field of time series clustering, it may have not
only resulted from differences in clustering methods;
perhaps normalizing phoneme segments to 10-step
time series was superior to their dynamic time warp-
ing in this context. Moreover, restricting the data
to vowels, which I did not do for consistency with
my other experiments, may have added difficulty to
Lerato and Niesler’s (2012) task.

Moreover, my method can be more efficient than
other time series clustering approaches. For example,
dynamic time warping, used to compute distances
between variable-length time series for clustering
(Lerato and Niesler, 2012), scales quadratically with
sample length. Conceptors, however, can compress
variable-length time series, and even groups of time
series, to constant-sized objects; the conceptor com-
putation is linear in their (cumulative) length, and
subsequent conceptor comparisons are independent
of it. However, since the present method dealt with
the variability in phoneme segment lengths by nor-
malizing them in time, their original lengths did
not affect time complexity once pre-processed, and
more research is needed to explore this efficiency
benefit.

3.8 Time Efficiency and Convergence

The time complexity of the GCHC algorithm in
Experiment 2 may be expressed in terms of the
clustering set size n, number of clusters K, input di-
mensionality d, ESN dimensionality N and number
of iterations required for convergence T . The imple-
mentation includes the K-means++ initialization
and then repeats the Assignment and Centroid up-
date steps for T iterations. The complexity of each
component depends on the conditions, as shown in

Table 3.1.

Condition Dissimilarity
computation

Assignment
step

MFCC-
Euclidean

Euclidean distance
in O(d)

O(nKd)

ESN-
Euclidean

Euclidean distance
in O(N)

O(nKN)

Conceptor-
based

Combined Evidence
in O(N2)

O(nKN2)

Centroid compu-
tation

Centroid
update step

MFCC-
Euclidean

Mean in O(d) O(nd)

ESN-
Euclidean

Mean in O(N) O(nN)

Conceptor-
based

Conceptor computa-
tion in O(N3)

O(KN3)

Table 3.1: The complexity classes of the main
steps of GCHC (third column) and their most
expensive computations (second column) across
conditions (rows).

The dissimilarity computation dominates the As-
signment step, while the centroid computation domi-
nates the Centroid update step. With the current pa-
rameters, both computations are significantly more
expensive in the conceptor-based conditions, which
involve matrix multiplications and inversions of com-
plexity O(N3); in contrast, the Euclidean-based
conditions scale linearly with input or ESN dimen-
sionality. Concluding, GCHC has time complexities
of:

• O(TnKd) for MFCC-Euclidean

• O(TnKN) for ESN-Euclidean

• O(TKN3) for conceptor-based conditions

In practice, Euclidean-based conditions may be fa-
vored for their computational efficiency. A middle
way could be to identify clusters using a Euclidean-
based representation, exploiting its efficiency, and
then compute conceptors for each cluster, thereby
still profiting from the geometric interpretability
and mechanisms available with a conceptor-based
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representation. The insignificant between-condition
differences in extrinsic performances facilitate this
practical flexibility.
The adapted HAC algorithm in Experiment 3

begins by computing O(n2) pairwise dissimilari-
ties, each involving the conceptor similarity func-
tion with matrix multiplications and inversions in
O(N3). This first step amounts to O(n2N3) op-
erations. Then, the algorithm, over n − 1 itera-
tions, finds the two closest clusters to merge using
O(n2) simple float comparisons. This second step
amounts to O(n3) operations. With the current pa-
rameters, the adapted HAC algorithm is dominated
by the initial dissimilarity computation, resulting
in a time complexity of O(n2N3). Thus, when com-
paring the conceptor-based clustering approaches,
GCHC scales better than HAC with the clustering
set size.
Convergence could be guaranteed in some con-

ditions. In Experiment 2, methods akin to GCHC
typically assume a distance function that fulfills
the triangle inequality for convergence (Banerjee,
Merugu, Dhillon, Ghosh, and Lafferty, 2005). This
assumption holds for the Euclidean, but not the
conceptor-based conditions, which use Combined
Evidences. Nonetheless, the consistently and contin-
uously decaying MICDs (Appendix A.6.2) suggest
convergence across conditions to local optima. HAC
makes no such assumptions on the dissimilarity func-
tion (Jain, 1988), guaranteeing convergence even
with the conceptor-based dissimilarity function in
Experiment 3.

3.9 Limitations and Future Direc-
tions

Several limitations of the present study remain to be
addressed by future research. Confounding variables
introduced additional difficulty. Classes of variables
like gender, dialect region, and co-articulatory con-
text (especially in Experiment 2, which was con-
strained to phonetically compact sentences) may
have competed with phonemes and other phonetic
categories for clusters. Future studies could use
larger and more diverse datasets to dilute the effects
of confounding variables while assessing generaliz-
ability.
Moreover, the methods extracted concepts from

the representations of pre-segmented signals. Fur-
ther research could generalize it to unsegmented

signals, potentially building on the attempt in Ap-
pendix A.7, to extend its applicability.

Lastly, one may object that the phonemic con-
cepts extracted in this work stretch or oversimplify
the perhaps more popular conception of concepts as
high-level entities like ”cow”. However, this distinc-
tion dissolves at a neural level; concepts may differ
semantically, but structurally, they seem equally
reducible to observable patterns of neural activity
(according to physicalism). Focusing on the small-
est possible concepts of speech allowed for more
methodological exploration without losing control.
Nonetheless, future research could apply the pre-
sented method to more abstract concepts, such as
those represented by large language models. Hu-
man feedback could be consulted to evaluate the
meaningfulness of extracted higher-level concepts
(Ghorbani et al., 2019). In this attempt, alterna-
tive clustering algorithms or dissimilarity measures
may also bear potential; soft clustering, for exam-
ple, might enable the extraction of fuzzy concepts
(cf. Chatterji, 2022, Mossakowski et al., 2019) by
assigning states a degree of membership.

4 Conclusions

In summary, Experiment 1 successfully demon-
strated conceptor-based phoneme classification and
tuned the ESN for the subsequent concept extrac-
tion experiments. Experiment 2 found that a gener-
alized centroid-based hard clustering, when paired
with conceptors, can extract human-meaningful and
coherent concepts, although the conceptor-based
approach had no significant edge over the simpler
and more efficient ESN- and time series-based con-
ditions. Experiment 3 adapted hierarchical agglom-
erative clustering to conceptors, extracting human-
meaningful and mostly coherent concepts with a
strong correspondence to established phonetic cate-
gories related to place and manner of articulation.

Collectively, these findings suggest that conceptor-
based clustering can extract human-meaningful and
coherent concepts from the activations of ANNs
without supervision. While promising use cases lie
in brain concept extraction, enhancing supervised
conceptor-based methods, computational creativity,
time-series clustering, and ANN explainability, the
most critical next research step seems to be apply-
ing the present methods to trained architectures
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to verify the differences between conceptor-, ESN
response- and input-based approaches to concept
extraction.
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Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Funda-
mental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Jamie Vlegels. Multivariate time series classification
using conceptors: Exploring methods using astro-
nomical object data. Bachelor’s thesis, University
of Groningen, 2022.

Izzet B Yildiz, Herbert Jaeger, and Stefan J Kiebel.
Re-visiting the echo state property. Neural net-
works, 35:1–9, 2012.

27



A Appendix A

A.1 Robust Conceptor Conjunction

C ∧B := (PR(C)∩R(B)(C
† +B† − I)PR(C)∩R(B))

†

(A.1)
This more robust definition of conceptor conjunction
was used. An algorithm for computing projector
matrix PR(C)∩R(B) is given on pp. 174-175 of Jaeger
(2014b).

A.2 Dataset

Table A.1 lists the phone labels, their frequencies
within the processed TIMIT dataset, and the corre-
sponding phonemes.

A.3 Additions to Experiment 1

A.3.1 Aperture Optimization using the ∇-
criterion

We are given a set of conceptors C = {Cp|p ∈ P}
representing a set of classes P and computed with
initial apertures of α = 1. The objective is to maxi-
mize the sensitivity to differences in the underlying
ESN dynamics since we assume this to improve the
expected classification performance on similarly dis-
tributed testing data. This objective is operational-
ized by the ∇-criterion, a function of conceptor
C and candidates aperture adaptation factor γ ¶.
It returns the gradient of the Frobenius norm of
the aperture-adapted conceptor with respect to the
logarithm of γ:

∇(C, γ) = d

d log(γ)
||φ(C, γ)||2 (A.2)

Intuitively, this gradient corresponds to the sensi-
tivity of conceptor C to changes in aperture (i.e.,
scalings of the underlying ESN states, see p. 49 of
Jaeger (2014b)). In Experiment 1, the optimal aper-
ture γp was approximated for each conceptor Cp by
sweeping through 200 candidate values γcandidate
in the interval [0.001, 500) on a logarithmic scale;
logarithmic, for the optimal value, was expected
on the lower end of the interval. γp was set to the
γcandidate that maximized a numerical approxima-
tion of ∇(Cp, γcandidate). This derivative was numer-
ically approximated using a finite forward difference

¶In this case, γ equals the resulting aperture αnew, since
γ = αnew

α
and the current aperture α = 1.

Phone Folded #Training #Test
iy 6953 2710
ih ix 13693 4654
eh 3853 1440
ae 3997 1407
ah ax-h ax 6291 2343
uw ux 2463 750
uh 535 221
aa ao 6004 2289
ey 2282 806
ay 2390 852
oy 684 263
aw 729 216
ow 2136 777
l el 6752 2699
r 6539 2525
y 1715 634
w 3140 1239
er axr 5453 2183
m em 4027 1573
n en nx 8762 3112
ng eng 1368 419
ch 822 259
jh 1209 372
dh 2826 1053
b 2181 886
d 3548 1245
dx 2709 940
g 2017 755
p 2588 957
t 4364 1535
k 4874 1614
z 3773 1273
v 1994 710
f 2216 912
th 751 267
s 7475 2639
sh zh 2389 870
hh hv 2111 725

h# (si-
lence)

dcl tcl kcl
bcl pcl pau
epi q gcl

39467 14021

Σ 39 22 177080 64145

Table A.1: Phone labels and their frequencies.
Column 1: Phone classes. Column 2: Phones
originally present in TIMIT but folded into a
class with the left-adjacent phone. Columns 3
and 4: Number of speech samples of each class.
Bottom row: Sums of classes or samples.
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with a step size of ∆γ = 10−4. |P | = 39 values
γp (p ∈ P ) resulted. Finally, the apertures of all
positive conceptors were adapted using the mean
γopt =

1
|P |

∑
p∈P γp ≈ 133.98 resulting in the set of

aperture-optimized conceptors Copt.

A.3.2 Trace Normalization

We are given a conceptor C and a target trace
trtarget. The objective is to adapt C to trtarget,
maintaining its semantics as much as possible. In the
following Algorithm A.1, the trace of C is adapted
indirectly through its aperture; the algorithm itera-
tively adapts the aperture by a factor of the current
trace error ratio until reaching the target trace. This
indirection is effective since for the conceptors in
C+

opt (and any other soft conceptors with at least
one singular value strictly between 0 and 1), the
trace and aperture are positively related, as demon-
strated in Proposition 1 (Appendix A.3.3). This
indirection seemed necessary since it was unclear
how to otherwise adapt a conceptor’s trace while
preserving its idempotency (C = C2) and most of
its semantics.

Algorithm A.1 Adapt the trace of a conceptor

Require:
Conceptor C whose trace is to be adapted to
trtarget
Target trace trtarget
Error tolerance ϵ

while TRUE do
if |trtarget − tr(C)| < ϵ then

break
end if
γ ← tr/tr(C)
C ← φ(C, γ)

end while
return C

A.3.3 Proposition 1

Let C be a conceptor with aperture α ∈ (0,∞)
and singular values s1, ..., sN with at least one si ∈
(0, 1). Let conceptor Cnew = φ(C,αnew/α) be the
aperture-adaptation of C with new aperture αnew ∈
(0,∞) and trace tr(Cnew). Then,

dtr(Cnew)
dαnew

> 0.

A.3.5 Additional Results of Experiment 1

The confusion matrix in Figure A.1 shows the classi-
fication rates across the phonemic classes. For every
phoneme, their correct classification rate (diagonal
entries) was higher than the misclassification rate
as any individual other class (off-diagonal entries),
suggesting a robust, above-chance classification per-
formance across all phonemic classes. Error rates
seem elevated within groups with a shared manner
of production, such as vowels (top left quadrant)
and consonants (bottom right quadrant).

A.4 Additions of Experiment 2: Hy-
perparameter Optimization

Hyperparameters kb, kW in , r, and ρ were also
tuned automatically via Bayesian optimization us-
ing the Bayesian Optimization python package
(Nogueira, 2014). Bayesian optimization was pre-
ferred over a more straightforward grid search since,
considering the high computational complexity of
training the classifier (about 30 minutes on my
computer), the reduced number of training steps
outweighed the overhead added by the Bayesian
optimizer. Specifically, the optimization objective
was to maximize the testing accuracy of phoneme
classification in Experiment 1. After ten initial ex-
ploration steps, 40 optimization steps were taken.
At each optimization step, a set of hyperparam-
eters is sampled from a promising region of the
hyperparameter space, aiming to maximize an esti-
mated surrogate f̄ for the unknown objective func-
tion f : (ρ, kW in , kb, r) −→ accuracy. The surrogate
estimate is improved after training and testing the
phoneme classifier with these hyperparameters on
the training set (with a train-test split). For a de-
tailed review of Bayesian optimization, see Frazier
(2018). The hyperparameter space was restricted to:

• Bias scaling parameter b ∈ (0, 2)

• Input weight scaling parameter kW in ∈
(0.01, 0.99)

• Spectral radius r ∈ (0.01, 4)

• Internal weight density ρ ∈ (0.01, 1)

Figure A.2 shows the hyperparameter and corre-
sponding accuracies across optimization iterations.
The optimizer seems not to have converged within
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A.3.4 Proof of Proposition 1

Proposition 3 of Jaeger (2014b) provides the singular values of φ(C,αnew/α) in function of C’s singular
values. I substituted them in the second line:

tr(Cnew) = tr(φ(C,αnew/α))

=

N∑
i=1

{
si

si+α−2
newα2(1−si)

for 0 < si < 1

si otherwise

dtr(Cnew)/dαnew =

N∑
i=1

{
d si
si+α−2

newα2(1−si)
/dαnew for 0 < si < 1

dsi/dαnew otherwise

=

N∑
i=1

{
0−si(−2α2(1−si)α

−3
new)

(si+α−2
newα2(1−si))2

for 0 < si < 1

0 otherwise

=

N∑
i=1

{
2α2(1−si)si

α3
new(si+α−2

newα2(1−si))2
for 0 < si < 1

0 otherwise

> 0,

since α > 0, αnew > 0, and 0 < si < 1 for at least some i.

the allocated 60 iterations. Given the intractability
of this method, parameters were eventually picked
by hand.

A.5 Extension of Experiment 1: In-
clusion of Input States

Experiment 1 was repeated, slightly adapting its
methods to better account for non-stationary time
series sources. Jaeger (2014b) demonstrated that
conceptors might be used to classify signals pro-
duced by stationary and non-stationary processes.
Stationary processes produce the same kind of signal
(with the same probability distribution) over time;
for example, white noise or sin waves result from
stationary processes. Meanwhile, non-stationary pro-
cesses change their properties over time, leading to
signals like speech whose probability distributions
change over time. Previously, the order within a
sequence of states was lost when deriving a con-
ceptor. However, this temporal order is relevant
for non-stationary sources like speech production
and may be valuable during classification. Jaeger
(2014b) approached this limitation by unrolling the
ESN response x(n)n=1,...,L into a vector z reserving
a dimension for each step in time. Moreover, the
input signal s is appended to z for additional in-
formation. z = [x(0); s(0);x(1); s(1); ...;x(L); s(L)].

For z, the same classification procedure applies. New
hyperparameters were picked by hand; the ESN size
was reduced to N ′ = 40 neurons due to the larger
computational complexity of this method, but the
same density of r′ = 10% was used. Scaling factors
were changed to k′W in = 1.5 and k′b = 0.2. A spec-
tral radius of ρ′ = 1.5 was used. A training accuracy
of 63.64% and a test accuracy of 49.13 were reached.

A.6 Additions to Experiment 2

A.6.1 K-means++ Initialization

Algorithm A.2 contains the pseudocode of K-
means++ algorithm for improved centroid initial-
ization.

A.6.2 Unaveraged MICDs

Figure A.3 plots the MICDs of all runs and condi-
tions. They all continuously decreased, indicating
the consistent convergence of GCHC toward cohe-
sive clusters.

A.7 Extension of Experiment 2: Seg-
mentation

The following is an informal generalization of the
method of ESN-Evidence from Experiment 2 to
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Figure A.1: Multi-class confusion matrix of the classification results. The colors represent the
relative frequencies of the predictions (x-axis) made for each class (y-axis).

Figure A.2: The accuracy (red) for hyperparameters configurations (dotted lines) across iterations
of Bayesian optimization.
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Algorithm A.2 K-means++ initialization of cen-
troids.

Require:
Number of clusters K
Set of points D = {p1, p2, ..., pn}
Dissimilarity function d(pi, pj)

Choose first centroid µ1 uniformly at random
from D

for k = 2 to K do
For each point pi, compute squared dissimilar-
ity from nearest centroid‖:

dmin(pi) = min
0<j<k

d(pi, µj)
2

Choose pi ∈ D as the next centroid µk with

probability
dmin(pi)∑n
j=1 dmin(pj)

end for

return Set of centroids µ = {µ1, µ2, ..., µK}

Figure A.3: Unaveraged MICDs of all runs across
iterations.

Figure A.4: Generated time series (first subfig-
ure), its ground truth classes (second subfigure),
and the clusters assigned by the algorithm (third
subfigure). The x-axis represents the time steps
and the y-axis the signal values.

unsegmented time series. The input time series was
a mixture of Gaussian noise and a succession of sin
waves with random amplitudes and frequencies (see
first subfigure of Figure A.4). An ESN processed
them. Then, GCHC was used similarly to ESN-
Evidence on the individual ESN states. However,
now, groups of states were clusters. Their conceptors
were the centroids. Assignments were done using
the Combined Evidence, averaged over states. To
incentivize continuous segments, a Gaussian filter in
time was applied to the Combined Evidences during
the Assignment Step, so that states that are closer
in time would be more likely to be assigned the
same cluster.
The significant overlaps between found clusters

(third subfigure of Figure A.4) and ground truth
classes (second subfigure of Figure A.4) suggest the
potential of this method for concept extraction from
unsegmented time series and simply for time series
segmentation.
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B Appendix B

Notation Meaning
A′ or x′ Transposes of matrix A or vec-

tor x
I N × N identity matrix, N to

be inferred from context
[x|y] Matrix resulting from the

column-wise concatenation of
vectors x and y

[x; y] Matrix resulting from the row-
wise concatenation of vectors x
and y

A[:, y] Vector corresponding to the
y’th column of matrix A

A[x, :] Vector corresponding to the
x’th row of matrix A

A[x, y] Element corresponding in the
x’th row and y’th column of
matrix A

|S| Cardinality of set S
||A|| Frobenius norm of matrix A
diag(A) Vector containing the main di-

agonal of matrix A
|x| Magnitude of vector x
A† Pseudo-inverse of square ma-

trix A
R(A) Range of matrix A
tr(A) Trace of square matrix A
PS N×N Projector matrix on the

linear subspace S of RN , N to
be inferred from context

S ∩ Z Intersection of linear spaces S
and Z

Table B.1: Nomenclature
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