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Abstract

Energy efficiency in cloud computing, and specifically Kubernetes, has been a major
topic of research in the past years as cloud datacenters grow and the importance of
minimizing carbon output increases. Much of this research focuses on the total energy
usage of a Kubernetes cluster and attempts to optimize this by various methods such
as energy-aware scheduling and datacenter- or cluster-wide metrics, without regard for
individual workloads. A lesser explored aspect which can provide useful insights into
Kubernetes power usage is a measure of power usage at the Kubernetes container level;
thereby providing insight into the power usage for each workload in a cluster.

In this research project, we experimentally evaluate the state-of-the-art Kubernetes
power estimation tooling: the Cloud-Native Computing Foundation’s Kepler. This tool
is evaluated on datacenter-grade hardware where its total Kubernetes node measure-
ments and its container power attribution for each of the available configurations and
available external sources is considered. We find that this tool does not produce satis-
factory power usage metrics in regard to container power attribution and that there are
significant limitations in several of the available node power measurement strategies.

To combat the limitations in Kepler, we create our own tool named KubeWatt based
on a recently introduced power mapping model. The architecture and implementa-
tion of KubeWatt are discussed along with an experimental validation of its features
and measurements. During this work, several limitations as well as some interesting
findings are discussed which may provide avenues for future research.
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1. Introduction

Datacenters and cloud computing are significant power
users. In 2021, cloud computing accounted for approx-
imately 1% of global power usage, with it estimated to
reach 8% before 2030 [1]. As the leading container or-
chestration platform, Kubernetes-based workloads play
a significant role in this power consumption. According
to a 2022 Red Hat report, up to 70% of IT organizations
use Kubernetes in some way [2]. As such, the energy us-
age and efficiency of applications running in Kubernetes
is of significant interest, since significant savings can be
made for both cost and carbon emissions in datacenter
computing.

Existing research into Kubernetes energy usage fo-
cuses on two specific metrics: waste and efficiency.
Waste, in the context of computing, is defined as the met-
ric of variation of the allocated resources minus the used
resources [3]. In short: waste resources are allocated
but go unused; as such, they are wasted. When optimiz-
ing deployments to minimize waste, the emphasis lies
on achieving 100% resource utilization as least waste-
ful. Minimizing energy waste can also lead to reduced
power consumption over all. Allocated resources that
go unused are not free, as overhead of these resources
existing also accounts for some power usage. By more
intelligently allocating resources and using as much of
these resources as possible, the impact of this overhead
is minimized.

The second metric, efficiency, is the measure of en-
ergy usage per ‘unit’ throughput. In 2015, researchers
have investigated the efficiency of workloads by relating
power divided by throughput against CPU load [4]. The
goal of this study was to find the sweet spot of resource
utilization where the system operates most efficiently,
that is, the most work completed per Joule. They found
that striving for 100% load is not themost efficient use of
power that is available to the system. They show a curve
of efficiency based on load that recommends approxi-
mately 80% load as the most energy efficient in their
experiments. Notably, for a static load, this would yield
a small amount of waste as it is defined above.

Based on results from these papers it is possible to
provision computers and workloads to optimize them in
terms of energy efficiency with a relatively small amount
of waste. However, this is only shown for workloads

as discussed in [4]: single machines. Many workloads
these days do not run on a plain operating system and
are rather deployed in Kubernetes. Since a single node
in a Kubernetes cluster can run many workloads at once,
optimizing its load becomes a more difficult problem. A
paper from 2022 [5] has found that in the cloud—specif-
ically Azure—VMs are often running far below the most
efficient load. As such, we can assume most Kubernetes
instances that run on similar VMs, are likely underpro-
visioned as well. A significant chunk of deployments
actually utilize below 10% of CPU time, something this
paper calls a “red VM” [5]. This phenomenon is called
cloud overprovisioning and is a significant waste of re-
sources and drives higher costs for the user of the provi-
sioned infrastructure.

Existing solutions attempt to optimize Kubernetes
cluster or even datacenter power usage as a whole [6],
[7]. This has yielded some promising results. A rela-
tively unexplored aspect of Kubernetes power optimiza-
tion is the energy usage at the deployment level. Provid-
ing the responsible person with an overview of power
used for their applications may provide a useful entry
point for energy use optimization, at the very least start-
ing with awareness.

There are existing tools which attempt to estimate
container-level power usage for Kubernetes or for
generic containers. One such tool is SmartWatts [8].
According to the related GitHub project, SmartWatts is
based on power models which relates total power usage
to resource usage of containers [9]. It measures total
energy consumption using RAPL and attributes this to
specific processes using HwPC (Hardware Performance
Counters). RAPL stands for Running Average Power
Limit and is an Intel processor feature. HwPC uses
RAPL to provide more granular insights into CPU power
consumption.

While SmartWatts seems like a promising tool for
power consumption analysis, its main drawback is in
its use of RAPL to obtain its metrics, which is unsup-
ported in virtualized environments: something which
the majority of the cloud landscape uses. In the case of
Kubernetes, we may instead consider Kepler [10]. Ke-
pler is the Cloud-Native Computing Foundation’s sand-
box level¹ Kubernetes operator which can export energy

¹Sandbox-level is the first of the three CNCF project maturity levels
[11]
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statistics to Prometheus² on a pod-granular level. While
Kepler does use RAPL, it uses it to train a runtimemodel
which does not depend on RAPL. This way, Kepler can
be used even in (virtualized) systems without access to
hardware counters. Note, however, that Kepler will use
such counters on systems that provide them, such as
bare-metal Kubernetes deployments, to enhance the ac-
curacy of measurements. Kepler is even able to use other
power sources, such as server management interfaces us-
ing the Redfish API standard [12], when available. In the
following, we present Kepler in more depth.

Kepler

Kepler stands for “Kubernetes-based Efficient Power
LevelExporter”. It estimates power consumption in Ku-
bernetes, specifically at the process, container and pod-
level. At its core, Kepler uses various resource utiliza-
tion metrics obtained using an eBPF program, a tech-
nology to allow running programs in the Linux kernel
[13], and collects various real-time power consumption
metrics such as RAPL for CPU and DRAM, NVML for
NVIDIA GPU power, ACPI, Redfish or IPMI for plat-
form power or regression-based models when no real-
time power metrics are available [14].

Using utilization metrics together with platform and
component power usage data, Kepler can estimate the
amount of energy each process, container or pod uses.
It does this by dividing total used energy into idle- and
dynamic-mode energy, using, what Kepler calls, their
“ratio power model”. Idle power is used by a system
regardless of resource utilization. Dynamic power is
power which can be directly related to resource utiliza-
tion and thereby attributed to a specific resource-using
process. The idle power is divided over all processes or
containers relative to the number of total containers run-
ning as described by the Greenhouse Gas protocol guide-
line [15]; the dynamic power is divided over processes
based on resource utilization [16].

Kepler can run in multiple configurations depending
on the available information of a system. In its most ba-
sic configuration, Kepler estimates power consumption
using a pre-trained model, which estimates energy us-
age based on available hardware counters such as CPU
utilization. A user of Kepler may train their own power

²A cloud monitoring system that has graduated CNCF maturity
level: https://www.cncf.io/projects/prometheus/

consumption model and use this instead of the provided
one. The authors of Kepler recommend doing this, since
any model is trained for a specific system and a custom
model will be most accurate. If available, Kepler can
also use RAPL to obtain platform or component power
consumption data, or use a Redfish API integration to
obtain platform data directly from hardware-level com-
ponents such as the power supply through a server man-
agement interface like Dell iDRAC.

Kepler’s metrics are divided into node-metrics and
container-metrics. The node metrics are, for each node
of the Kubernetes cluster, divided between the core,
dram, package, platform and uncore components. De-
pending on the configuration that Kepler runs in, each of
the metrics for these components may be derived from
a different source. For example, when running Kepler
using Redfish, platform power is derived from Redfish
while other components’ power is derived from RAPL.
For the containers, Kepler has similar power metrics
available and additionally has certain resource utiliza-
tion metrics for each container [17].

Previous papers have used Kepler, though none of
these validate its accuracy or suitability for the task it
performs. Gudepu et al. [18] use Kepler to obtain power
measurements and indicate it produces similar results to
Scaphandre, a tool which predicts power usage per re-
source; however, neither tool is validated using a source
of ground truth. Additonally, the authors do not show
the Kepler results. It is only mentioned that the results
are similar to Scaphandre. Soldani et al. use Kepler as
a demonstration of an eBPF use-case. While they show
a dashboard of energy measurements, these are not val-
idated as being accurate [19]. Centofanti et al. [20] in-
vestigate Kepler in comparison to Scaphandre and s-tui;
however, for Kepler they only consider the default con-
figuration. They find that all tools performed quite dif-
ferently in their tests and conclude that further research
is required to increase the robustness of these tools. An-
dringa [21] also investigates Kepler, finding that Kepler’s
metrics are not accurate as total cluster power is con-
cerned. The author does not investigate per-container
attribution further.

The previous work is not completely sufficient to vali-
date Kepler’s accuracy. To be convinced of its accuracy,
we must validate that the total power reported by Kepler
matches the actual power that a system under test uses at
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the wall outlet, and we must validate that the power re-
ported per container matches closely to what is expected
taking into account resource usage by that workload.

Problem Definition & Contributions

To target energy efficiency and waste in Kubernetes at
the deployment level, we must first have (real-time) in-
sight into energy usage of Kubernetes deployments. In
this work we aim to make a contribution towards Kuber-
netes energy measuring. We therefore ask the following
question as the main guidance in our research:

How can we accurately measure or estimate
the power usage of Kubernetes containers
based on external measurements?

Moreover, as the current state-of-the-art focuses on
observability (as we will discuss in Section 2), we will
look for amethod tomeasure or estimate the power usage
of Kubernetes containers that can export these metrics to
an observability platform. An observability platform is
a centralized location in which, among others, metrics,
logging and traces of cloud environments can be stored.
The goal of observability is to give insight into complex
systems and to allow for troubleshooting and obtaining
insights from system data [22].

The question will be answered in two parts: first,
we will evaluate state-of-the-art tool Kepler, which
promises to have solved the aforementioned problem.
For Kepler, we pose the following additional research
questions:

kpRQ1 How accurate are Kepler’s total node measure-
ments compared to a ground truth?

kpRQ2 How (well) does Kepler attribute energy usage
to containers on the node?

kpRQ3 How do the different Kepler configurations af-
fect the accuracy of the reported metrics?

After evaluating Kepler, we build our own tool named
KubeWatt. This tool will serve the same purpose: to
measure container-level power usage in Kubernetes. For
this tool we ask similar questions:

kwRQ1 How accurate are KubeWatt’s total node mea-
surements compared to a ground truth?

kwRQ2 How (well) does KubeWatt attribute power us-
age to containers on the node?

kwRQ3 How accurately canKubeWatt’s base initializa-
tion mode report the static power value?

kwRQ4 How accurately can KubeWatt’s bootstrap ini-
tialization mode estimate the static power
value?

Note that these questions refer to certain modes in which
KubeWatt can run. These are discussed in more detail in
Section 6.

The rest of this work is structured as follows: in Sec-
tion 2 we discuss related work, apart from what has al-
ready been discussed above, to give context to this re-
search project and to provide an overview of the state
of the art. In Section 3, we introduce the experimental
setup that is used for all experiments, parts of which we
validate in Section 4. In Section 5, the Kepler evaluation
is performed. Then, in Sections 6 and 7 KubeWatt’s ar-
chitecture and evaluation are discussed respectively and
in Section 8 the research project is concluded and our
main research question is answered.

2. Related Work

Energy use in cloud computing and Kubernetes, and its
related concepts of energy efficiency and waste, have
been the topic of many previous research papers which
look at a variety of concepts such as efficiency in terms
of CPU load on bare-metal systems [4], using high-level
monitors in Kubernetes to obtain information on carbon
footprint [23], and energy efficient scheduling for Ku-
bernetes. Besides power measuring and automatic opti-
mization of power use, research into (over)provisioning
is also related, since the overprovisioning of resources
can lead to significant waste in resources and energy.

In this section we discuss the state-of-the-art of en-
ergy efficiency and monitoring in cloud computing and
Kubernetes and place our work in its context. It should
serve to the reader as a contextualization of this work
and will outline how this research project builds and im-
proves on existing research.

Existing papers which concern themselves energy us-
age in Kubernetes can be globally divided into two cat-
egories: (1) energy-aware scheduling and automatic op-
timization, and; (2) measuring energy consumption and
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related metrics. We discuss both of these separately in
Section 2.1 and Section 2.2, respectively. Moreover, we
discuss the related work of investigating and reducing
overprovisioning in Section 2.3. Lastly, we take a brief
look at observability in Section 2.4.

2.1. Energy-aware Scheduling and

Automated Optimization

The previously completed work in this category aims to
optimize the Kubernetes scheduler such that the clus-
ter as a whole is more energy efficient. The exact sub-
ject and goal of the research, and methods used by these
schedulers, of course, differs between papers. For exam-
ple, Douhara et al. built a workload allocation optimizer
(WOA-scheduler) and load balancer (WOA-LB) which
allocate workloads such that the energy usage of the Ku-
bernetes cluster under test is reduced by close to 10%.
It uses a neural network-based power consumption re-
duction function to accomplish this task. The authors do
mention a drawback to their energy reduction strategy,
namely higher response times for requests [6].

Another strategy entirely is chosen by Kuljeet Kaur et
al. Instead of a machine learning-based approach they
have formatted their scheduling problem using integer
linear programming based on a multiobjective optimiza-
tion problem. It is also not particularly concerned with
general-purpose clusters and focuses instead on indus-
trial Internet of Things. Its scheduler, named KIEDS,
proposes a reduction in energy usage of approximately
14.5%, when comparing it to data from a Google com-
pute cluster [24].

A more recent approach from 2023 is proposed by
Ghafouri et al. Their scheduling approach, Smart-Kube,
uses deep reinforcement learning to learn about the clus-
ter it is running on and provide a scheduler that is
custom-tailored to the cluster without manual configu-
ration. They perform tests in terms of three “strategies”,
these being consolidation which prioritizes energy sav-
ing, fairness which prioritizes balancing of utilization
between nodes, and balance which balances the previ-
ous two. While the authors do not specify specific en-
ergy saving numbers, they mention that their scheduler
is very good at consolidation and that this indicates good
energy saving potential [7].

Something that most if not all the papers in this cat-

egory have in common is that they measure the energy
used by some cluster as a whole; however, we should
consider a cluster in a more granular view as well. Work-
loads on a Kubernetes cluster can be quite heterogeneous
in nature, and therefore considering the energy usage of
smaller components might provide useful insights which
are not otherwise obtainable.

What all custom schedulers will have in common is
that, while they allow more efficiently utilization of re-
sources using strategies such as consolidation, they still
must abide by the resource requests and limits that work-
loads define [25]. This means that they cannot properly
target workload-level overprovisioning without violating
certain kubelet enforcements. We think an approach is
needed that allows optimizing individual deployments
by targeting those that are the least energy efficient di-
rectly. Naturally this means we need a way to calculate
the energy efficiency of an application running in Kuber-
netes, for which our work: obtaining a way to measure
energy usage of a Kubernetes container, is a precursor.

2.2. Energy measuring and Efficiency

In terms of energy measuring there are many aspects to
consider. Many papers introduce tools which may be
based on hardware or software, which measure a sys-
tem as a whole or measure the system in a more granu-
lar way. Moreover, tools are aimed specifically at bare-
metal systems, virtualized systems or specific container
environments. In this section, we consider some papers
which look specifically at measuring energy and energy
efficiency in virtualized environments, containerized ap-
plications, and Kubernetes.

Consider the paper by Lemoine [26]. This paper
investigates the energy efficiency of Kubernetes when
looking at the Horizontal Pod Autoscaler in a specific
deployment scenario named the Nominal:Backup Pro-
tection scheme. The paper defines a metric of energy
efficiency as

�� =
data_rate

power_consumption
. (1)

In fact, this is the same definition as employed by [4].
They continue to define metrics as related to a load bal-
ancing pool of pods and investigate the characteristics of
power usage related to horizontal scaling behavior. To

8



define pod-based power consumption the authors make
some optimistic assumptions regarding the utilization
and balancing of work over pods, stating that they as-
sume service load is equally balanced over pods in a load
balancing pool. They then analyze these for multiple
horizontal scaling parameters and provide guidance to
engineers attempting to introduce horizontal scaling for
the aforementioned N:1 protection setup. It is notewor-
thy to mention that the authors do not actually measure
power but rely completely on their power modelling.

More granular energy measurement techniques are
also proposed in some papers. In [27], a model is pro-
posed to increase reliability of fog computing³ that uses
Kubernetes. While reliability is not of particular concern
to us, the way the authors measure power consumption
per pod is interesting: A power metric is obtained from
different statistics and counters of the system running
Kubernetes. This provides a global estimate of power
used by the system. By multiplying this estimate with
time spent, a measure of energy use is obtained. To then
obtain ameasure per container/pod they consider the rate
of pod instantiation within the system. While this does
not give the exact power used by a system, it does pro-
vide a framework while facilitates the identification of
potential issues related to reliability and power usage.

The above work references [8], which introduces the
SmartWatts energy measuring tool. Recall that this was
already discussed in Section 1. As discussed, Smart-
Watts main limitation is in its use of RAPL, which is
not available in virtualized environments. For this rea-
son we consider Kepler instead, which has more options
to work with software models that are trained on actual
measurements [16].

Andringa [21] has also taken a look at the power-
measuring problem described above. In this study, exist-
ing solutions for energy-measuring at multiple levels are
evaluated and a new model for power mapping between
bare-metal, virtual machines and Kubernetes pods is in-
troduced. This model has promising results; however, it
is not yetmade available as a functioning tool. Moreover,
as this approach focuses on multiple levels of the Kuber-
netes stack, an in-depth study for Kubernetes specifically
is not performed.

As seen from the related work on energy measuring,

³Fog computing is a technique in which a substantial part of com-
puting for some task is carried out on edge devices [28].

existing models exist which are not readily usable as a
tool, and existing tools exist which are not validated ex-
haustively to work accurately and consistently. Hence,
this is what our research project will undertake.

2.3. Overprovisoning and waste

Besides the research which aims to improve or provide
insight into how systems use energy and how to optimize
this, research into overprovisioning is also related. It
looks specifically into how cloud infrastructure is provi-
sioned and if the provisioned resources are actually used.
Unused resources may lead to significant waste. While
most research to waste in cloud and Kubernetes is not
directly related to our goal, it is important to consider it
to underline the importance of this research project.

In 2022, Everman et al. looked at cloud waste and
cost using an analysis of 2019 Microsoft Azure traces
[5]. They look specifically at the allocation of provi-
sioned VMs and find that the average CPU utilization of
VMs is around 10%. They also find that approximately
75% of VMs have an average utilization of <10%. This
is obviously a significant waste of resources and can be
costly for the users of these VMs. As potential reasons
for this, the authors mention that users may simply be
prone to overprovisioning, users may be unaware of im-
provements in hardware, and users may be provisioning
a multicore system for non-parallel workloads.

This analysis is expanded upon by Huang et al.
[29]. This paper specifically targets overprovisioning
and excessive energy consumption by proposing twoVM
migration algorithms and two VM optimization algo-
rithms: Core Reduction (CR) and Shutdown (SD). To
estimate the power consumption of the VMs in ques-
tion, they use the SPEC CPU Power dataset [30] and
information from Azure traces. Their CR algorithm
finds potential wasteful VMs and simply reduces its core
count to reduce the overprovisioningwhileminimally af-
fecting performance. The SD algorithm identifies VMs
with extremely low utilization and shuts them down. It
is important to note here that, while not mentioned in
the paper, these algorithms are likely in conflict with
most cloud provider’s SLA, which will usually guar-
antee availability of resources as requested with some
minimum uptime percentage [31]–[33]. That makes
these algorithms, while effective, particularly aggres-
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sive. Of course, such algorithms could be offered as an
autoscaling/cost-saving measure that is opt-in, thereby
not conflicting with guarantees.

The drawback of this approach is similar to that which
we discussed in Section 2.1, where a cluster-wide or
datacenter-wide optimization strategy still must abide by
provisioning rules set by the user, meaning that overpro-
visioning is still very much possible. While we can cre-
ate a rudimentary metric of provisioning factor for Ku-
bernetes by simply dividing the CPU utilization by CPU
request, this does not give a complete picture. As we
know from [4], 100% utilization should not be the goal
as it is not most energy efficient where throughput is con-
cerned. Moreover, energy usage in Kubernetes is usually
guessed at instead of measured real-time, which makes it
harder to draw conclusions. Therefore, we must explore
energy usage in Kubernetes first.

2.4. Metrics and Observability

Kepler, which we discussed in the previous section and
which we will be exploring more, exposes its metrics in
Prometheus format. Their documentation recommends
using a Grafana dashboard to gain insights into these
metrics [34]. It is important for us to understand the
types and the impact of metrics in the context of observ-
ability.

A survey on metrics and measurement tools for sus-
tainability in cloud was performed in 2018 [35]. This pa-
per highlights the importance of metrics at various levels
and discusses also which types of metrics are important.
This survey explored the types of metrics and the mea-
surement tools that existed at the time related to sustain-
ability in cloud computing. From fine- to course-grained
they consider multiple metric scopes: component-level,
equipment-level, network resource-level, facility-level
and corporate-level. For sake of brevity we won’t dis-
cuss all discussed metrics here. According to the survey,
there is no current consensus on which metrics should
be used. They mention that there is significant overlap
in metrics as well, which makes comparing metrics very
difficult⁴.

From their extensive survey the authors make a few
observations. For instance, the vast majority of metrics
discussed consist of a performance part, a power/energy

⁴https://xkcd.com/927/

part and some emissions part. The only exception to
this is metrics which consider the number of users of a
system. The authors also emphasize the importance of
updating metrics to consider new technologies, as, for
example, software-defined networking has influence on
how per-port metrics are calculated. We have seen some-
thing similar earlier where many power-measuring tools
use RAPL which isn’t available on (somewhat newer)
virtualized machines.

A similar survey was performed in 2017. This survey
specifically looked at energy-efficiency metrics at the
datacenter facility, rack or equipment level [36]. From
both this and the previous survey we see a distinct lack
of deployment-level metrics where energy usage and ef-
ficiency is concerned.

A systematic literature study was performed in 2023
which does a state-of-the-art analysis on cloud observ-
ability [37]. It specifically looks at, among other ques-
tions, the motivation for equipping cloud(-native) appli-
cations with observability capabilities. They mention in
their conclusion that they found the main motivations to
be provisioning focussing on run-time tracing, measur-
ing system overhead, and scheduling. From amanagerial
perspective they mention motivations as root cause de-
tection, SLA management and end-to-end management.
Lastly, they mention observability is highly motivated
by the distributed nature of cloud applications, its in-
tegration with many other technologies, its heterogene-
ity, as well as testing concerns. The authors mention
Prometheus to be the most popular monitoring solution.

While observability methods and their usage in prac-
tice are not directly related to our work, it is important to
consider them in context. As observability tools become
the de facto standard for cloud monitoring, it is impor-
tant that a Kubernetes energy measuring tool also abides
by this standard and produces its metrics in Prometheus
format.

3. Experimental Setup

In the rest of this research project, several experiments
are run. For these experiments, of which the details are
discussed later, a Kubernetes cluster and observability
platform is required. Additionally, we wish to measure
ground-truth power of our Kubernetes cluster as well as
several other metrics.
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Figure 3.1: Complete testing setup, including Kepler and KubeWatt

In this section we discuss the experimental setup used
for the aforementioned experiments. In Section 3.1 we
outline the hardware that is used; in Section 3.2 we dis-
cuss the software and metrics gathering aspects of the
setup. Both Kepler and KubeWatt are deployed in this
experimental setup. Their deployments are discussed in
the respective sections: Sections 5 and 7. A complete
diagram of the testing setup, including Kepler and Kube-
Watt, is shown in Figure 3.1.

In the GitHub repository for this research project⁵,
configuration files are available for all components of the
experimental setup. Additionally, test scripts are avail-
able for the tests that are performed and datasets in CSV
format are available for all figures.

⁵https://github.com/bjornpijnacker/msc-thesis

3.1. Hardware

The hardware that will be used for the experiments con-
sists of a few different components: our main system un-
der test is a Dell PowerEdge R640 server. It is equipped
with two Intel Xeon Gold 6226R processors totaling 32
cores and 64 threads, 96GB of RAM and ∼256GB of
RAID1 SSD storage. Fedora Server 40 is installed. The
server is also equipped with Dell iDRAC9 from which
we can obtain, among others, power metrics using the
Redfish API integration. We will refer to this server as
SUT (for system under test) in the rest of this project.

A secondary machine is deployed alongside SUT. This
is a Lenovo m910q with an Intel Core i3-6100T, 8GB
of RAM, and 256GB of NVMe storage running Fedora
Server 40. This machine is meant for supporting work-
loads required for measuring and analyzing the tests we
perform on SUT. These supporting workloads are on a
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separate machine so that they don’t influence test results
of SUT. We will refer to this machine as tc (short for
ThinkCentre) in the rest of this project.

The power supplies of SUT are externally power-
monitored at the wall outlet in addition to the internal
power monitor that iDRAC provides. To this end we
use Plugwise EnergyMonitoring plugs of which the con-
troller is connected to tc.

3.2. Software

On SUT, we deploy a single-node Kubernetes cluster.
This cluster is bootstrapped using Rancher Kubernetes
Engine (RKE) [38] version 1.5.8. RKE allows us to
administer the cluster without running specific software
on-node, as it uses SSH to set up the cluster on the node.
The choice to use RKE was an arbitrary choice and was
chosen due to prior experience with the technology. For
the purposes of this research, the exact Kubernetes dis-
tribution should not matter as long as it can be installed
on bare-metal Linux. The cluster is set up in its most ba-
sic form, and we do not run any workloads on here that
are not necessary for our tests, such as nginx-ingress-
controller, in order to reduce the amount of noise that
our power and CPU metrics will see.

To gather and store metrics from various aspects of
the system under test, an observability stack is required.
In this case, Grafana and Prometheus are used both due
to prior experience with the technologies and because
Prometheus-format metrics are supported by all com-
ponents of which metrics are collected. Additionally,
Prometheus has had CNCF graduatedmaturity since Au-
gust 2018, making it the recommended metrics platform
for our use-case [39]. Grafana and Prometheus Server
are deployed and configured as services on tc, so their
processing does not influence the power used by SUT. A
list of all collected metrics is available in Appendix A.

To extract metrics from SUT at a hardware level, we
use an iDRAC exporter for Prometheus [40]. This ex-
porter also runs on tc and uses the iDRAC Redfish API
to extract available metrics. When Prometheus scrapes
the exporter endpoint, it uses the Redfish API to gather
the information and transform it to Prometheus format.
Of particular interest will be the power supply metrics
which will allow us to measure power going into the sys-
tem. Additionally, metrics from the Plugwise plugs are

imported using a Prometheus exporter driver [41]. It ex-
poses the current wattage used by one or more Plugwise
plugs in Prometheus format. This software must run on
the same system as the Plugwise controller is connected
to, this being tc.

Since Kepler uses RAPL as a source of power, we also
import RAPL data into Prometheus. For this purpose we
write custom software⁶ that can read the RAPL Power-
cap information and expose this to a Prometheus scraper.
While RAPL is an Intel processor technology, the Linux
power capping framework exposes the underlying RAPL
information as files in the Linux filesystem [42]. For
SUT, RAPL exposes—for each CPU—platform energy
usage and DRAM energy usage as a counter in µJ.

Lastly, we import Kubernetes cAdvisormetrics for our
Kubernetes node. This allows us to see per-container
metrics such as CPU and memory usage.

4. Verifying Power Measuring

Before running experiments which verify power usage,
we must consider how power is measured, as an impor-
tant aspect of the upcoming experiments is to accurately
measure power usage as a ground truth. As explained in
Section 3, we have deployed a Plugwise power measur-
ing plug to measure the total server consumption, and we
have iDRAC reporting power consumption as reported
by the power supplies. To verify that power measur-
ing is accurate, these two sources of power metrics are
compared to see whether their reported values match
up. If both sources produce the same measurements
then we can safely assume that they are accurate. More-
over, as Kepler also uses RAPL as a power source, we
compare RAPL to a ground-truth power measurement to
find whether it is accurate, and investigate whether there
is some quantifiable relation between the ground-truth
power measurements and RAPL power measurements.

4.1. Hardware measurements

On SUT, we run a script which uses stress-ng to stress
the system to induce power consumption we can mea-
sure. We run several CPU stressors. Since the exact
stressors do not matter, we choose a random sequence

⁶The source code is available at https://github.com/bjornpijnacker/
msc-thesis/tree/main/setup/sut/rapl-prometheus
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of stressors: [13, 5, 4, 13, 4, 2, 20, 10]. We run each for
a minute and sleep 30 s in between. We see the results of
this in Figure 4.1. This test is repeated three times, with
errors indicated by the shaded regions in the figure.
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Figure 4.1: Power metrics of iDRAC and Plugwise com-
pared

As we can see from this figure, the two metrics are
very similar. The main difference that we observe is
time-based, where the iDRAC measurements have some
more variance in time than the Plugwise measurements.
Value-wise the measurements are very close. Since both
measurement tools seem perfectly adequate for our case,
we will be using the Dell iDRACmeasurement for future
tests. We prefer iDRAC over Plugwise due to the inclu-
sion of the Redfish API in iDRAC, which allows both
Kepler and KubeWatt to use the power supply metrics.

4.2. RAPL and iDRAC

To measure the relation between RAPL and iDRAC,
we run a CPU stressor which slowly ramps up over the
range of CPU utilization to get a complete range of mea-
surements. The measurements over time should give
us an indication of RAPL’s accuracy as it pertains to
CPU power usage. We can then scatter the iDRAC
against RAPL values to find whether there is a relation-
ship which we can easily quantify. The test is repeated
four times.

Figure 4.2 shows the result of this test, where Fig-
ure 4.2a shows the runtime of the four tests and Fig-
ure 4.2b shows a scatter of the two metrics for all four
tests combined. From the first plot it is obvious that
RAPL does not produce an accurate reading of total sys-
tem power compared to what the power supply is actually
reporting, with RAPL underreporting power utilization
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Figure 4.2: Total power as measured by RAPL Powercap
(sum of all components) and iDRAC during
the ramp-up test

by approximately 100–150W. However, as displayed in
the second plot, the relationship seems very linear and
well-behaved. A linear regression on the data in Fig-
ure 4.2b finds a model with

iDRAC = U · RAPL + V,

with U = 1.16 and V = 93.0, with an '2-value of 0.85,
indicating that this fits the data quite well. Note that
this does not take into account the multiple components
which RAPL measures, where one component could re-
quire a different transformation to another; the test we
have run only stresses the CPU cores, not the other com-
ponents. This result simply indicates that RAPL could
be a good candidate for power measurement if tuned to
the system in question. Since we have iDRAC available,
we will use it as the single source of truth where pos-
sible, and we will not explore the idea of RAPL tuning
further.

5. Validating Kepler

Previously, we have seen Kepler as the state-of-the-
art energy-measuring tool for bare-metal and virtual-
machine based Kubernetes. Additionally, in Section 1
we have explained the need to experimentally validate
Kepler, and have asked a series of research questions to
guide this validation. Recall from this section:

kpRQ1 How accurate are Kepler’s total node measure-
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ments compared to a ground truth?

kpRQ2 How (well) does Kepler attribute energy usage
to containers on the node?

kpRQ3 How do the different Kepler configurations af-
fect the accuracy of the reported metrics?

To be able to accurately attribute energy usage to spe-
cific containers, Kepler must be able to accurately mea-
sure (or estimate) the total amount of energy that a node
is using. It is easy to compare this to a ground truth.
Since Kepler aims to supply granular information on en-
ergy usage in regard to pods and containers as well, we
will also validate how Kepler attributes energy to spe-
cific containers. We cannot measure a ground truth in
this aspect; however, we can investigate Kepler’s behav-
ior in certain scenarios and assess whether results are as
expected based on resource utilization that we manipu-
late. Lastly, we aim to investigate the different config-
uration options Kepler has available and discover what
effect these have on the metrics which Kepler exports.

In this section, we propose a number of experiments
that validate Kepler’s measurements as consistent and
accurate. The rest of this section proceeds as follows:
in Section 5.1 we discuss the experiment design and Ke-
pler deployment, in Section 5.2 we showcase the result
of the experiments, and in Section 5.3 a discussion of the
findings is provided.

5.1. Experimental Setup and Design

5.1.1. Deploying Kepler

To answer the posed questions, the testing setup as dis-
cussed in Section 3 is used. On the Kubernetes cluster,
four instances of Kepler are deployed, each with a dif-
ferent configuration. We deploy Kepler version 0.7.2 as
newer versions suffer from an issue where incorrect val-
ues are sometimes measured at random [43]. The Kepler
configurations that are used are:

1. kepler-default: This instance uses the de-
fault estimator model. Note that by default Ke-
pler does not support disabling RAPL in favour
of using the estimator, so for this deployment
a custom Helm chart is used which overrides

/sys/class/powercap/intel-rapl/, the lo-
cation at which the Linux Power Capping frame-
work exposes RAPL data [42], with an empty di-
rectory thereby making Kepler assume RAPL is
unavailable. This can be confirmed by checking
the logging, which indicates “Unable to obtain
power, use estimate method”.

2. kepler-custom: This instance is equal to
kepler-default except that it runs a custom
power model. More detail on training and us-
ing this custom model is given below. Note that,
again, a customHelm chart was used since the pro-
vided Helm chart does not have configuration op-
tions or manifests for running the required sidecar
deployment.

3. kepler-rapl: This instance runs Kepler with de-
fault settings and uses RAPL as a source of plat-
form and component power. There are no external
sources of power provided.

4. kepler-redfish: This instance runs Kepler us-
ing the Redfish iDRAC integration for platform
power. Since Redfish cannot provide component
power, RAPL is used for component power.

Custom Power Model

Kepler supports training a custom power model. This
model can be used when no other source of power is
available and is trained on the specific features of the
system it will be used on. According to Kepler docu-
mentation, it is necessary to train a custom power model
to overcome limitations of the pre-trained power model
and to tailor it to be system-specific [16]. The limitation
that is targeted here is that the default power model is not
tailored to the system in question. A power model works
only on the combination of hardware it was trained on,
as it estimates power consumption from utilization coun-
ters.

To train a custom power model, we use the Kepler
model server [44]. This extracts information from a run-
ning Kepler instance through Prometheus and uses these
metrics to train a model which can estimate energy based
on available counters. In themodel server, the Kepler au-
thors provide Tekton pipelines which contain the neces-
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sary steps to train the model⁷. The training can be con-
figured by choosing the correct pipeline and configur-
ing options such as the power source and feature group
to use. The single-train pipeline allows for training a
model on a single source, such as Redfish or RAPL, and
the complete-train pipeline attempts to use all available
sources to train a more complete model.

In our case, the model is trained on the Redfish
instance and Redfish data, as it provides a ground-
truth measurement of power usage, which is the most
truthful source available to us. We have additionally
validated its accuracy in Section 4. Moreover, our
attempts on training a model on the RAPL instance
were unsuccessful. Specifically, a single-train pipeline
run on rapl-sysfs source with the CounterIRQCom-
bined feature group failed with failed: [extract :
extract] AttributeError: 'NoneType' object
has no attribute 'to_csv' and a complete-train
run on combined sources redfish and rapl-sysfs failed
with failed: [train-from-query : pipeline-
train] cannot get pipeline; both errors that are
not mentioned in Kepler documentation and for which
we could not find an explanation.

To train the model, we run the default single-train
pipeline that the Kepler Model Server provides. The
pipelinerun is updated to use Redfish as an energy source
and to use CounterIRQCombined as feature group, since
this is the most complete group that Kepler model server
reports to be available. After the training is complete,
the model can run in the Kepler sidecar estimator. Our
model is suitable to be used as a node platform power
model, since it was trained on a source of platform
power.

5.1.2. Experiment design and system load

To answer the research questions that were stated earlier,
we run multiple tests. In this section we explain which
tests are performed and what results are expected. Each
test is repeated three times to ensure consistency.

For each test, stress-ng is used to perform load gener-
ation. This script allows for load generation with various
parameters and is customizable in that it lets the user se-
lect which subsystems of the computer are stressed, and

⁷https://github.com/sustainable-computing-io/
kepler-model-server/blob/main/model_training/tekton/

to what capacity [45].

Single-stressor CPU test

First, we run a simple arbitrary workload on the test clus-
ter, and observe the total system power usage of each
Kepler instance compared to the ground truth of power
and raw RAPL measurements. We investigate power
measurements and total energy usage over the test in-
terval. While running the test we investigate not only
the measurements that Kepler gives for our running test-
container but also look at the power/energy usage of
other containers in the cluster to gain insight into con-
tainer power attribution.

To verify total system energy measurements, we run a
single stress workload on our Kubernetes cluster. This is
invoked using stress-ng --cpu 32 --timeout 5m.
Afterwards, we let the system sleep for 5 minutes before
running the test load again. We repeat this three times.

Before running this test, we also set up 16 idle con-
tainers that use no energy. Theywill simply run the date
command then exit and not restart. These containers will
have the ‘Completed’ status while our main workload is
running. We turn off the pods, so they do not interfere
with the ‘dynamic’-mode power attribution by actually
using power. Installing these containers should yield a
situation closer to a real-world cluster, where a container
is not the only container on the cluster. However, as we
do not want these container to influence CPU utilization
and power usage, they remain as ‘Completed’ contain-
ers. We expect these containers to not be attributed any
power during the runtime of our tests since they are not
running.

Since our test is running in a container, we can track
the energy that Kepler attributes to each container in the
cluster. Since we run just a single workload that will not
use all cores of SUT, we expect the energy usage of all
containers to stay mostly static during the test, except for
the testing container, which should show a peak similar
to the peak we expect to see in total power usage. We
also expect all other containers in the cluster to be using
very little power compared to the test container since the
cluster should be mostly idle.

We obtain the total system energy from Kepler using
the kepler_container_joules_total Prometheus
metric and summing this for all containers, grouped by
Kepler instance. Since Kepler attributes all power used
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in the system to containers, this will give ameasure of the
total power per node. How Kepler decides the total node
power differs by configuration and depends on the power
metric source(s) that are available to that configuration.
Kepler will, for instance, use Redfish over RAPL for plat-
form power when both are available, and RAPL com-
ponent power over the estimation model when RAPL is
available.

With this test we attempt to verify both Kepler’s to-
tal system power measurements and gain insight into the
container attribution.

Node component tests

Besides total system power and per-container power, Ke-
pler also specifies power used per node-component. Ke-
pler has five different node-based measurements that it
provides as metrics: core, dram, package, platform and
uncore, where platform is the total node energy usage
and core, dram, package and uncore are all components
of the system. Specifically, the core metric is the power
usage of the CPU cores, dram is the power usage of the
system RAM, uncore includes the power usage of all
CPU components which are not the core itself, and pack-
age is the power of core and uncore combined. Of inter-
est to us is running a stressor such that we expect just a
single of these components to change, and observe what
happens.

We will be running three tests: one test that stresses
just CPU using stress-ng --cpu 16, one test that
stresses just RAM using stress-ng --vm 8 and one
test that stresses both as a combination of the earlier
two tests. We will let each run for five minutes with a

two-minute pause between each. Note that the stress-ng
RAM stressor will also somewhat stress the CPU as CPU
utilization is required to manipulate RAM.

What we expect to see is a spike in ‘core’ for the first
test, ‘dram’ in the second, and both in the third test. We
also expect the ‘dram’ component to not report much
power usage in the first test, and ‘core’ to report little
power usage compared to the CPU-stressor tests when
only running memory stressors.

5.2. Results

In this section we discuss the results of the several tests
that we have outlined earlier. The results are organized
per test and are used in Section 5.3 to answer the research
questions we posed in Sections 1 and 5.1. All tests are
run multiple times. Each figure in this section will indi-
cate with a solid line the mean test results and will indi-
cate with a shaded region the error as a 95% confidence
interval.

5.2.1. Single-stressor CPU tests

Figure 5.1 shows the power and total energy measured
during the test for each of the different Kepler deploy-
ments as well as the raw RAPL powercap and iDRAC
power measurements. As evident from these figures,
the different Kepler deployments report significantly
different findings. In Figure 5.2, the RSME between
each Kepler instance, iDRAC and RAPL is shown, to
further showcase this fact. Between kepler-redfish
and kepler-rapl there is an RSME of 165.3W, be-
tween kepler-redfish and kepler-default there is
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Figure 5.1: Power and energy as measured during the single-stressor test
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Figure 5.2: Internal RSME of power measurements for
the single-stressor test

an RSME of 368.9W, between kepler-redfish and
kepler-custom there is an RSMEof 369.2W. Then be-
tween kepler-rapl and kepler-default and kepler-
custom there is RSMEs of 215.6W and 215.9W re-
spectively and between kepler-default and kepler-
custom the RSME is 1.7W. This indicates that
each Kepler deployment has considerably different mea-
surements to one-another, except for kepler-default
and kepler-custom. It is notable that the values
for kepler-default and kepler-custom correspond
quite closely, since we had expected the custom trained
model to perform closer to the kepler-redfish in-
stance, as this was trained on kepler-redfish.

We also see that each Kepler strategy reports val-
ues which are very close to its external source of en-
ergy: the power graphs (Figure 5.1a) and energy totals
(Figure 5.1b) line up very well for kepler-redfish and
the iDRAC power, and for kepler-rapl and raw RAPL
powercap values. The RSME for kepler-redfish and
its power source iDRAC is 66.4W and between kepler-
rapl and RAPL itself is 4.9W. This alone would in-
dicate that kepler-rapl is more true to its source of
power than kepler-redfish though as evident from Fig-
ure 5.1a: the iDRAC measurement is somewhat mis-
aligned from kepler-redfish which will influence the
RSME.

Figure 5.3 shows the attributed container power of
the kepler-redfish instance summed by Kubernetes
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measurements of the single-stressor test

namespace. The results are partially what was expected:
the power attributed to the ‘stress’ namespace, which
houses exclusively the stress-test container running our
workload, corresponds to the generated load which was
expected. Two things in this figure are not as expected:
(1) there is a peak of power usage in other namespaces
after the stress-test pauses; (2) the ‘idle’ namespace con-
sistently uses ∼160W, even though it should not be us-
ing energy. This peak is easily explained by consider-
ing that iDRAC may measure slower than Kepler mea-
sures CPU usage. We verify this in Figure 5.4, where
we indeed see that power consumption metrics lack be-
hind CPU load metrics by up to 1min when CPU load
quickly decreases. This finding is in-line with the speci-
fication, as the Redfish API itself specifies power metrics
are updated on a one-minute interval⁸. We saw a simi-
lar situation in Section 4. In such a case, Kepler needs
to attribute more power usage among containers than is

⁸Available through redfish/v1/Chassis/System.Embedded.1/
Power/PowerControl API endpoint.
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actually occurring at that given moment, therefore artifi-
cially spiking the power usage of all workloads as CPU
usage suddenly changes.

We see unexpected power usage of the ‘idle’ names-
pace. To investigate this, we determine which containers
are using power according to Kepler. Looking into the
power attribution of all containers in namespace ‘idle’,
we see that there are containers that are reported to be
using ∼6W each according to kepler-redfish. Re-
call that we created these containers as part of the test,
and that the containers are not running. All power attri-
bution to these containers is of the ‘idle’ mode, where
the power attributed to our stress container was ‘dy-
namic’-mode power. In kepler-rapl, each container
is attributed ∼2.5W and in both kepler-default and
kepler-custom, the containers do not have reported
power usage at all.

Consider first kepler-redfish since this is the same
Kepler instance also depicted in Figure 5.3. While Ke-
pler reports the containers to be using power, accord-
ing to kubectl, the Kubernetes management CLI, these
pods are all in a completed status. There are no pods
that are actually running in the namespace ‘idle’. This
means that Kepler is reporting power usage for contain-
ers which are not running which indicates that it is not
able to properly attribute ‘idle’-mode power. Since the
total power usage of all containers was correct in regard
to the iDRAC measurement, this also indicates that Ke-
pler is in turn underreporting the idle power used by
other containers in the RAPL and Redfish implemen-
tation. The kepler-default and kepler-custom in-
stances do not report this erroneous power usage. In fact,
these estimator-based Kepler deployments show attribu-
tion data much closer to what we would expect given the
cluster load, in terms of power ratio. The only factor
which differs between deployments is the method used
to obtain total node and component power, since the ra-
tio power model is the same for each of them.

To find out why we observe this difference, let’s con-
sider each Kepler deployment and each power com-
ponent. Even though we have simplified our deploy-
ments as kepler-redfish, kepler-rapl, etc, this per-
tains only to the total system energy usage; what Ke-
pler calls ‘node-platform’. Kepler also measures node
components, such asDRAM, package and uncore, which
may use different sources depending on availability. By

kepler- rapl redfish custom default
core rapl rapl rapl rapl
dram rapl rapl rapl rapl
package rapl rapl rapl rapl
platform none redfish none none
uncore rapl rapl rapl rapl

Table 1: The source of Kepler node-metrics for different
deployment configurations

reading labels from the Kepler metrics we can find these
sources for each node-metric. This is shown in Table 1.

We see that, except for the
kepler_node_platform_joules_total metric,
RAPL is used as source everywhere. This makes sense,
because Redfish can only provide total system power
at the power supply level; it does not know how much
of this power is CPU, DRAM, or other components,
hence RAPL is used to obtain this information where
available. For the systems that do not use Redfish,
there is no source of total platform power; therefore,
kepler_node_platform_joules_total is obtained
by using the available models. For the kepler-default
and kepler-custom, RAPL is also named as a source;
however, this is simply because the model was trained
using RAPL as a source with regards to component
power.

Since kepler-default and kepler-custom use the
same models for component power, and kepler-rapl
and kepler-redfish use the available RAPL data for
component power, we can attribute that the observed dif-
ference to (at least) one of the component metrics.

To see whether Kepler can correctly attribute power
once the inactive pods have been deleted, consider the
following. First, we start 64 idle pods that run date and
complete. We choose a large number so that their pres-
ence and absence has a large and thus easy to observe
effect on measurements. After these complete we give
the system one minute to stabilize. We then run a small
(8 CPU) stressor and after twominutes we delete all inac-
tive pods simultaneously, then observe how the container
attribution of Kepler changes. We expect that Kepler re-
allocates the idle-mode power usage to all other running
containers, and that the dynamic-mode power attribution
does not change.
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The results of this test are presented in Figure 5.5. In
Figure 5.5a the total power reported by the Kepler de-
ployments as well as iDRAC and RAPL directly are de-
picted.

As evident and as expected, deleting the inactive pods
does not have an effect on total system power, since these
pods were idle. Figure 5.5b shows the power attributed
by Kepler to each namespace. Figures 5.5c and 5.5d
show this for ‘dynamic’-mode and ‘idle’-mode power
respectively. Recall that the ‘stress’ namespace houses
solely our stressor pod and that the ‘idle’ namespace only
has the 64 idle pods. As the test starts, the total power
goes up for the ‘stress’ namespace as expected. As the
idle pods are deleted, the ‘idle’-mode power for the ‘idle’
namespaces quickly goes to zero as expected. Power is
re-attributed throughout the other namespaces over all
remaining containers.

After deleting the idle pods we also see the dynamic-
mode power usage for ‘stress’ go down and the dynamic-
mode power usage for ‘system’ go up. Note that the CPU
usage of the workload remained at 100% and consistent
throughput was indicated throughout the test as per the
stressor logging, as also indicated in Figure 5.5f. The
change in power attribution here is unexpected, since
the ‘system’ namespace is not running any workloads.
The upward trend of this namespace goes matched with
a downward trend in reported dynamic power usage for
the ‘stress’ namespace. This power is being attributed
to pods named ‘system_processes’, which is a reserved
name in Kepler for processes that cannot be attributed
to a pod. After stopping the testing workload running in
the ‘stress’ namespace, we see that the ‘system’ names-
pace also reports using less power. Note that while Fig-
ures 5.5b to 5.5d show namespace power usage for the
kepler-redfish instance, the same behavior shows for
all other deployments of Kepler as well. We conclude
that Kepler was not able to properly attribute the power
used by the stressing container to that container.

Figure 5.5e gives insight into why Kepler is reporting
this power usage for ‘system_processes’. In this figure,
we see a similar situation as Kepler reported: cAdvisor
reports CPU utilization for containers without a names-
pace as well as for containers with a namespace. Look-
ing at the raw data, all the values without a namespace
are one of: (1) actual system processes; (2) slices, where
these slices are grouped metrics of multiple processes.

For instance, the id=/kubepods.slice/kubepods-
besteffort.slice labelled metric gives aggregated
CPU utilization for all best-effort pods. When consid-
ering only the actual containers, such grouped slices
should be ignored. Filtering the cAdvisor output to only
include actual containers gives the result as shown in
Figure 5.5f, which is exactly as expected given the stres-
sors that were run.

From the several tests performed above, we can con-
clude that Kepler is unable to properly attribute power
usage based on resource utilization.

5.2.2. Node component tests

The results of the node-component tests are shown in
Figure 5.6. We consider the reported package consump-
tion and DRAM consumption, since our RAPL deploy-
ment does not support specifying core/uncore package
components separately. The blue shaded regions spec-
ify the runtime of the CPU-only test, memory-only test
and combined test, respectively.

In Figure 5.6a we see the package power that Kepler
reports. This includes the CPU cores as well as un-
core⁹ components such as the memory controller. For
the RAPL-powered Kepler deployments, we can see that
there is lower reported package power usage during the
non-CPU test. Some power usage is reported, however,
which can be attributed to the memory controller and the
CPU overhead of reading/writing to the memory often.
For kepler-default and kepler-custom, the Kepler
instances which use estimation instead of RAPL, we see
results which are not as expected. For each of the tests,
the power usage is reported higher than the previous one.
However, we would have expected the second test to use
less power than the first one at the CPU-level, which is
also what RAPL reports.

In Figure 5.6b we see the reported DRAM power. As
expected, RAPL does not attribute any power to DRAM
when the CPU-only test is running. For the second
and third test we see that the memory is indeed using
some power, and that this is equal for both memory
tests. For the kepler-default and kepler-custom in-
stances, we see a similar result to the package power,
where consumption increases for each consecutive test.

⁹Uncore refers to the functions of the CPUwhich are not in the core
but are closely connected to the core for performance reasons.
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Figure 5.5: The result of deleting inactive pods. The blue markers indicate the times at which (1) the stressing load
was started; (2) the inactive pods were deleted; (3) the stressing load was stopped, respectively. The
tests were repeated four times.

For kepler-rapl and kepler-redfish we see that it
corresponds exactly to RAPL.

In Figures 5.6c and 5.6d we see the matrix of root
mean squared error such that we can properly compare
the different metric sources. We see that for both pack-
age and DRAM components, kepler-rapl, kepler-
redfish and RAPL itself have a very small error to
one another. The same holds for kepler-custom and

kepler-default. Between these two groups the error
is, however, quite significant with an ∼172W error for
package component and ∼7W error for the DRAM com-
ponent. These errors are approximately 64% and 55.5%
of the maximum measured value.

Conclusively, we have seen that Kepler deployments
which can read RAPL values to obtain component
power, kepler-redfish and kepler-rapl in our case,
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Figure 5.6: Kepler node component measurements for Package and DRAM. Shaded regions indicate respectively:
(1) a 16-stressor CPU test; (2) an 8-stressor memory test; (3) the previous two combined. The bottom
figures indicate root mean squared error heatmaps for the top figures.

do so accurately, as the measured values do not signif-
icantly deviate from what RAPL reports. Recall that
the RAPL values are not accurate to the ground truth,
as seen in Section 4. For the kepler-default and
kepler-custom instances, which do not have direct ac-
cess to RAPL, the reported power is not as close and does
not follow the same trend as RAPL does. For kepler-
custom, however, this is as expected, since we were un-
successful in training a custom node component model
based on RAPL.

5.3. Discussion

With the tests we have performed above, we can now
answer the research questions posed in Section 1.

kpRQ1: How accurate are Kepler’s total node
measurements compared to a ground truth?

In regard to external power sources we consider only the
kepler-redfish and kepler-rapl instances, as these
subscribe to an external source of power usage. In gen-
eral we have seen that Kepler is able to accurately use an
external power source in its metrics. kepler-redfish
reported a node power value RSME of 66.36W to
iDRAC itself, most of which is caused by measurement
latencies; kepler-rapl reported an RSME of 4.91W to
RAPL itself. We have seen a good example of this in the
kepler-redfish deployment, where total energy usage
over time corresponds closely with that of iDRAC itself.
Similar results hold for kepler-rapl which corresponds
closely with RAPL values even though these are not ac-
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curate to the actual energy that is used when not properly
calibrated.

The kepler-default and kepler-custom in-
stances, which used estimation instead of a power
source, were not able to properly estimate the total
power that a node uses. In the single-stressor test, these
instances were off by over 99% when compared to the
iDRAC value, which represents the true power that the
system used. The default estimator model is obviously
not suitable for the specifications of SUT; however,
training a custom model for this goal did not appear to
be a workable alternative.

It should be noted that training ones ownKeplermodel
is not an easy task. There is technical and architectural
documentation available on the model server, but there
is no concise documentation available that helps the user
in choosing the correct configuration options, debugging
the model training when it fails, validating the trained
model or using the trained model with the Kepler Helm
chart. The available documentation is also inaccurate
in some places; for instance, the documentation speci-
fied only RAPL or ACPI are available to train the model;
however, the model server training parameters also allow
using Redfish and other such sources [46], [47], though
using Redfish to train the model did not work in our case.

kpRQ2: How (well) does Kepler attribute energy
usage to containers on the node?

The container power attribution leaves much to be de-
sired. In the tests we have seen multiple examples of
container power attribution that were clearly inaccurate
and sometimes inexplicable, both in idle- and dynamic-
mode power. In regard to container power attribution,
Kepler does not produce proper measurements. As we
have seen in the inactive-container deletion test, Kepler
misattributes some power to system processes, where it
should not be doing so. Additionally, as we have seen in
the single-stressor test, Kepler attributes power to non-
running containers, which is also not correct.

kpRQ3: How do the different Kepler configurations
affect the accuracy of the reported metrics?

The total node power differed significantly from con-
figuration to configuration. As already discussed, with
iDRAC having the true source of power, the kepler-
redfish instance was able to accurately access and por-

tray this value. The kepler-rapl instance had a RSME
of 18.7% compared to iDRAC; however, we saw that the
relation between RAPL and therefore kepler-rapl and
iDRAC and therefore kepler-redfish is a linear one.
The accuracy of kepler-default and kepler-custom
was much worse where they reported an RSME with an
error of over 99% when compared to the iDRAC value.

When attributing energy to containers we saw iden-
tical behavior in each of the four Kepler deployments.
This makes sense, as they are all running the same power
attribution model against the available node metrics, and
are all able to access the same source of resource utiliza-
tion counters. The differences that were observed are
explained by considering that idle- and dynamic-mode
power are attributed differently and that the ratio of idle-
to-dynamic-mode power is obtained from node metrics
whose values differ by configuration.

6. KubeWatt Architecture and

Implementation

In Section 5 we have shown that Kepler is not a suitable
tool for producing container-level power metrics in Ku-
bernetes. As an alternative, we will create our own tool:
KubeWatt. It will be based partially of the power attri-
bution model which is proposed in [21], which yielded
promising results in container/pod power attribution.

In this section we discuss the implementation of a
proof-of-concept version of KubeWatt. It is imple-
mented based on some assumptions, which are discussed
later, to make it suitable for the testing environment we
use for its evaluation. This means the tool might not
be suitable for all environments, though we aim to dis-
cuss these details where necessary. Assumptions that we
make are numbered for this purpose and are discussed in
Section 6.4.

Functionally, there are only a few simple requirements
for KubeWatt:

1. It must be able to read Kubernetes CPU utilization
for both node and container resources.

2. It must be able to obtain node power usage from a
source of power.

3. It must be able to split power usage into static and
dynamic parts.
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4. It must produce Prometheus-style metrics for con-
tainer power usage.

The first two requirements are obvious: in order to calcu-
late power usage of a container, KubeWatt must at least
know the total power usage of the node that container is
running on, and it must know the amount of resources
that container uses on the node.

The third requirement is one that is of considerable
importance to the workings of KubeWatt, and is some-
thing that we also have seen in Kepler. Dividing the
power usage into ‘static’ (or ‘idle’ in Kepler) and ‘dy-
namic’ parts, aims to account for the power usage of a
Kubernetes cluster and server when no workloads are
running. The simple act of turning on a server and run-
ning a Kubernetes cluster uses some amount of power
which cannot be attributed to any specific container.
KubeWatt therefore splits the total power into two com-
ponents, such that the static power can be indicated in
total, and the dynamic power, which is the difference be-
tween static and total power, can be attributed amongst
Kubernetes containers. KubeWatt will indicate static
power as a single number in its output, since it indicates
overhead that is not easily attributed to any specific con-
tainer. Note that this definition of overhead includes Ku-
bernetes control plane containers. These are therefore
excluded from the dynamic power attribution. Any ad-
ditional power usage incurred by the control plane will
instead be attributed to other running containers causing
the control plane to use power.

6.1. KubeWatt modes

KubeWatt runs in one of three modes. The first two
modes, ‘base initialization’ and ‘bootstrap initialization’
are initialization modes. They run as a one-off job to ini-
tialize KubeWatt parameters. These modes analyze the
cluster which KubeWatt will run on and find the static
power value for each node in the cluster. This value is
calculated once and not updated without manual inter-
vention; therefore, we assume that this does not change
over time.

Assumption 1 The static power of a server does not sig-
nificantly change over time.

The third mode of KubeWatt is the ‘estimator’-mode. It
receives the result of the initialization and produces the

Prometheus metrics for containers. We will discuss each
mode in more detail below.

6.1.1. Base initialization mode

The base initialization mode is the simplest mode that
KubeWatt can run in. It expects an empty Kubernetes
cluster running no more than the Kubernetes control
plane. KubeWatt expects its user to specify which pod
names are part of the control plane as a set of regular ex-
pressions, such that it can validate the cluster is indeed
empty before starting.

Over a period of 5 minutes, KubeWatt measures the
power usage per node every fifteen seconds, which is av-
eraged to produce the static power value per node. We
expect that this mode will produce the most accurate re-
sults for the static power value, as it directly measures
the idle cluster.

6.1.2. Bootstrap initialization mode

The bootstrap initialization mode is an alternative to the
base initialization mode. It attempts to find the static
power value from a cluster which is already running
workloads that cannot be turned off for testing. Since
this mode makes an estimation of the static power value
based on measurements, the base initialization mode
should be preferred if possible.

This mode gathers both CPU-usage data for each node
and power usage data for each cluster node. Data is gath-
ered every fifteen seconds for half an hour. Afterwards,
KubeWatt checks whether the data has enough variabil-
ity and a sufficient distribution to draw conclusions from.
If not, data collection is repeated. If the data is sufficient,
KubeWatt continues with data analysis.

To gauge whether data is sufficient to perform analysis
with, KubeWatt checks the rough distribution of the data.
The collected CPU-usage values are placed in buckets.
KubeWatt then checks the amount of measurements in
the largest bucket, and validates that no bucket has fewer
values then some factor of this. By default, each bucket
should have at least half as many values as the largest,
to ensure a relatively uniform distribution. The buckets
are 10% in size between 20% and 80% CPU utilization
by default. All of these values are configurable in the
KubeWatt configuration files. Changing the bucket pa-
rameters may be useful in a cluster which never reaches
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as low as 20% CPU. This does not hold for the upper
bound, since the user can run an artificial stressor to gen-
erate higher CPU-load. During the evaluation of Kube-
Watt we will explore what effects such a restricted range
of measurements may have on the output of the bootstrap
initialization mode.

As previously named, the static power should include
the Kubernetes control plane utilization at idle. To
achieve this, the CPU-usage of the control plane con-
tainers is gathered at the same time as the node CPU-
usage and power usage. The set of control plane con-
tainers is known as the user is required to specify these,
as also named above. The control plane CPU utiliza-
tion is averaged to give an indication of stable control
planeCPU-usage. Note that we cannot expect the control
plane CPU utilization to remain stable when the cluster
has load. As the idle control plane utilization is encapsu-
lated in the static power value, any power usage caused
by higher utilization in result of cluster load will be at-
tributed amongst the containers causing this load.

To finally derive the static power usage, a third-degree
polynomial regression is performed on the collected
data. From initial testing, a third-degree polynomial
tended to fit the data best, though this will be evaluated
in the next section. The polynomial coefficients are sub-
sequently used to find the estimated power usage at the
average CPU-usage of the control plane. This then gives
us the static power for each node in the Kubernetes clus-
ter.

6.1.3. Estimation mode

The estimation mode is what we consider the ‘main’
mode of KubeWatt. This mode takes the output from
either initialization mode as input and actually estimates
the amount of power that each container in the Kuber-
netes cluster uses. When running in this mode, Kube-
Watt exports metrics to Prometheus (see Appendix A).

To achieve this, we use the model proposed in [21],
named ‘pod mapping’. We do, however, make a few
changes. In [21] the following model is proposed to map
bare-metal power consumption to virtual machines, and
virtual machine power consumption to pods:

Define power(·) as the power usage of some compo-
nent and cpu(·) as the CPU utilization of some compo-
nent.

Let 18 be some bare-metal machine of which
power(18) and cpu(18) are known. Let E=,8 be some vir-
tual machine identified by = running on 18 . Then, given
cpu(E=,8) as known we can define

power(E=,8) = power(18) ·
cpu(E=,8)
cpu(18)

(2)

as the power usage for each VM. Then, let ?<,= be
some pod identified by < running on a Kubernetes clus-
ter on the set of E where the pod runs on E<,=. Given
cpu(?<,=), then:

power(?<,=) = power(E=,8) ·
cpu(?<,=)
cpu(E=,8)

. (3)

Together, Equations (2) and (3) map the power of a bare-
metal machine through a virtual machine to the Kuber-
netes pod level, based on CPU utilization.

We make some changes for our case. We define
power3 (·) and powerB (·) as the dynamic and static frac-
tions of power as described above, respectively, with

power(·) = power3 (·) + powerB (·).

Then let =8 be some Kubernetes node whose power
power3 (=8) and powerB (=8) are known. Let 2<,8 be a
Kubernetes container running on node =8 , and identified
uniquely by <. Given the CPU utilization of 2<,8 , we
have

power(2<,8) = power3 (=8) ·
cpu(2<,8)∑
8 cpu(2<,8)

. (4)

Importantly, we make the distinction between∑
8 cpu(2<,8), the CPU usage of all containers on a

node combined, and cpu(=8), as the metrics API of
Kubernetes includes overhead CPU usage such as
system processes in the latter metric, which is already
included in static power and should not be attributed
to Kubernetes containers [48]. Equation (4) gives
us a metric of power usage for each container in a
Kubernetes node as derived from the node power usage
and container CPU utilization.

Both the model proposed in [21] and our own make
an important assumption:

Assumption 2 Any Kubernetes cluster node is the only
workload running on the underlying machine whose
power is measured, that being a virtual or bare-metal
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machine.

This is an important distinction since this constraint
makes it possible to measure the power usage of some
Kubernetes node accurately by gauging the power usage
of the underlying virtual or physical machine.

6.2. Power collector

The ‘power collector’ component of KubeWatt is respon-
sible for providing a measure of power usage in Watts
per node in the Kubernetes cluster. In our implementa-
tion, the only implemented version of this interface is the
RedfishPowerCollector class, which uses the Red-
fishAPI of iDRAC in SUT to obtain power usage from the
power supply. KubeWatt does not care about the source
of power and the implementation is abstracted behind the
PowerCollector interface, meaning that it is easily ex-
tended to use other power sources.

The RedfishPowerCollector collects power infor-
mation from server management interfaces which im-
plement the Redfish API. For each Kubernetes node
named in config field collector.node-names, Kube-
Watt expects a corresponding Redfish entry in the
collector.power.redfish map. Each of those must
contain a host, username, password and list of Redfish
ComputerSystem names. Since a single Redfish API can
return multiple systems [12], we require that the user of
KubeWatt specify which system(s) correspond to which
Kubernetes node. The power readings for each system
are summed per Kubernetes node to provide the final
power values.

6.3. Kubernetes metrics collector

The Kubernetes metrics collection component is
responsible for obtaining CPU usage metrics of
both nodes and pods in the Kubernetes cluster. It
uses the metrics.k8s.io/v1beta1/pods and
metrics.k8s.io/v1beta1/nodes Kubernetes API
endpoints for pods and nodes metrics respectively. The
nodes endpoint returns CPU utilization in ns for each
node. The pods endpoint returns CPU utilization in in
ns for each container in each pod [48]. In the Kubernetes
Java API implementation, which KubeWatt uses, the
pods metrics are available per namespace [49].

6.4. Assumptions

In this section, we have made several assumptions which
influence the architecture and implementation of Kube-
Watt. We now discuss these assumptions, show why it is
safe to make these assumptions, and discuss what situa-
tions may occur in which these assumptions do not hold.

6.4.1. Assumption 1: The static power of a

server does not significantly change

over time.

We assume that the static power consumption of a server
does not significantly change over time. To validate this,
let’s consider the energy usage of SUT. Note that this
server is deployed under less-than-ideal conditions, in an
archival room with fluctuating temperatures.

In Figure 6.1 the power usage of SUT between 2024-
08-05 11:00 and 2024-10-14 11:00 is shown. The large
peaks in this figure indicate the periods in which tests
were run, leading to high power usage for a short period
of time.
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Figure 6.1: Power usage of SUT over ∼2 months

Power usage at idle, the static power, is indicated in
Figure 6.2a. The data was filtered by removing measure-
ments equal to and above 215W and equal to and below
207W as this removes the peaks without affecting the
data at idle power usage. These filter values were ob-
tained by visual inspection of the data. Note that these
metrics include the Kepler deployments as discussed in
Section 5.1. This results in more dynamic and noisy data
than otherwise expected with a completely empty clus-
ter. For all the KubeWatt tests, these Kepler deployments
have been removed, and we will subsequently observe a
lower static-power value that we see here. These deploy-
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ments were still active during the two-month observation
shown above, as this was the period in which the Kepler
experiments (Section 5.2) were running.

From Figure 6.2a, we see that power usage is quite
consistent over the measured period. The adjusted data
has a mean of 210.15W with a standard deviation of
0.95, which is an error of just 0.45% from the mean.
This distribution is also shown in Figure 6.2b. This in-
dicates that the static power usage of the server does not
significantly change over time.
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(a) Power usage at idle of SUT over ∼2 months
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Figure 6.2: Power usage at idle of SUT as measured by
iDRAC

In a situation where this assumption does not hold
true and the static power load of a server does change
over time, the behavior of KubeWatt depends on how this
value changes. If the value is very noisy, but the mean
value over time is consistent, then the readings over time
of KubeWatt will remain consistent. When considering
small time-windows, KubeWatt will be somewhat inac-
curate in this situation as its exact values of static and
dynamic power will not be completely correct. As the
actual power usage drops below the static power value

as KubeWatt knows it, dynamic power will become zero
and no power is allocated to containers. If the value
is not noisy but changes, for example, based on room
temperature over a longer period of time then KubeWatt
will under- or overestimate the amount of static power
and thereby over- or underestimate the amount of dy-
namic power, respectively, and container power corre-
spondingly.

6.4.2. Assumption 2: Kubernetes lives alone

We have assumed that a Kubernetes node is the only
measurable workload running on some underlying ma-
chine whose power is measured. In the case of Kube-
Watt’s proof-of-concept implementation, this is very
important. Since power is measured through Redfish,
KubeWatt only knows how much power the entire server
in question is using. If there are other significant work-
loads running on that server besides the Kubernetes clus-
ter under test, KubeWatt does now know how much of
this power usage is attributable to Kubernetes and how
much is not.

This assumption does not need to hold in general. A
potential workaround to this requirement is to use the
power mapping model discussed in Section 6.1.3 to map
the used power of an entire system to separate workloads
as if these were, for instance, their own virtual machines.
Such mapping is extensively discussed in [21], so this
work does not explore that possibility.

7. KubeWatt Evaluation

To evaluate KubeWatt we ask similar questions to how
we evaluated Kepler. Recall that these are the same ques-
tions as posed in Section 1.

kwRQ1 How accurate are KubeWatt’s total node mea-
surements compared to a ground truth?

kwRQ2 How (well) does KubeWatt attribute power us-
age to containers on the node?

Obviously, these questions hold for KubeWatt’s ‘estima-
tor’ mode. As we evaluate KubeWatt by considering
each of its modes separately, we additionally ask for the
initialization modes:

kwRQ3 How accurately canKubeWatt’s base initializa-
tion mode report the static power value?
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kwRQ4 How accurately can KubeWatt’s bootstrap ini-
tialization mode estimate the static power
value?

The testing setup as discussed in Section 3 is used;
however, the four Kepler deployments have been re-
moved as these are no longer necessary. As depicted,
KubeWatt is now deployed.

7.1. Experiment design

For the initialization modes, we want to verify that the
output that KubeWatt gives is equal to the static power of
the system. We have seen the actual static power value in
Assumption 1. Note that this value includes the Kepler
deployments that could not be filtered from the data.

To evaluate the base initialization mode, we run the
KubeWatt job on SUT with nothing else running on
the cluster. The following list of pod names is pro-
vided to KubeWatt as control plane: nfs-.*, calico-
.*, canal-.*, coredns-.*, metrics-.*, tekton-
.*, kubewatt-.*. Note that tekton-.* is not tech-
nically part of the control plane; however, it could not
be easily removed and as it is idle, it should not have a
significant impact on findings.

We repeat this six times in sequence, then verify that
the output value closely corresponds to the expected
power value. To obtain the expected power value, the
power use reported by iDRAC is tracked during the run-
time of each of the initialization job runs.

For the base initialization mode we evaluate whether
the resulting values are consistent over multiple runs and
whether the resulting values are accurate to the expected
value.

To evaluate the bootstrap evaluation, we run a best-
case test, where the cluster will be stressedwith a random
stressor. Stress-ng is used to create stressors at a random
CPU level between 1–64 that last three minutes. This
creates a CPU load that should be uniformly distributed
across the entire CPU range of SUT.

Since it is not possible to use a synthetic load to de-
crease the CPU utilization below what a running system
normally has, KubeWatt allows modification of the min-
imum CPU value it checks for when validating the data.
Tuning this value avoids a situation where KubeWatt’s
bootstrap initialization never finishes due to insufficient
data in a bucket which will never get any data. Note

that KubeWatt does use the data outside of buckets, it
only does not validate that it exists prior to continuing
with the analysis. To show the effect a limited range of
data has on the output of KubeWatt we make cuts of the
dataset obtained by the earlier tests, then run the regres-
sion asKubeWatt would to observe how the output would
change.

To evaluate the estimation mode we repeat some of
the tests that were also performed for Kepler (see Sec-
tion 5.1.2). We repeat the single-stressor test as a base-
line validation. We do not repeat the node component
test, as KubeWatt only measures CPU utilization to de-
termine power attribution ratios. This limitation and its
implications are discussed in Section 7.3. Additionally,
we perform a test with multiple stressors that start and
stop at different times, to investigate how KubeWatt han-
dles a more dynamic environment. Lastly, to validate
that KubeWatt indeed works better than Kepler, we re-
peat the test where we deleted inactive pods with Kepler,
as this is the test where we saw Kepler perform worst.

7.2. Results

7.2.1. Base initialization mode

Figure 7.1 shows the measured power values by iDRAC
during the runtime of the test. Recall that KubeWatt
is able to read these values directly, using the Redfish
API. The figure shows the aggregation of data during six
sequential runs of KubeWatt’s base initialization mode.
Note that this value is lower than what was observed in
Section 6.4.1, as the Kepler deployments have been re-
moved.
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Time
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Figure 7.1: iDRACpowermeasurements during the base
initialization tests
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Figure 7.2: The measured values by KubeWatt bootstrap initialization mode, for each of the three best-case tests

KubeWatt reported a static power of 198.9W,
199.15W, 199.1W, 199.1W, 198.75W, and 199.15W.
Compared to the raw data we collected in Figure 7.1
these observations have a I-score between −0.47 and
0.31. This indicates KubeWatt is able to consistently and
accurate report the static power using base initialization
mode.

7.2.2. Bootstrap initialization mode

To evaluate the bootstrap initialization mode the best-
case test as defined in Section 7.1 is performed three
times sequentially. The three tests resulted in a static
power value for the tested node of 180.8W, 178.2W and
185.2W. While consistent with each other, these results
indicate that the bootstrap initialization mode slightly
underestimates the static power value compared to the
base initialization mode, which we have confirmed to be
accurate. The estimated values deviate from the mean
expected value by at least 6.9% to at most 10.5%.

To explore the data that is collected byKubeWatt, con-
sider Figure 7.2. This figure shows, for each of the three
test runs, the data for CPU utilization and power usage.
Note that each test has a considerably different number of
samples; this is because each test took a different amount
of time to run to completion. Test 1 took ∼3.5 h, test 2
took ∼4 h, and test 3 took ∼11 h to finish. This differ-
ence can likely be attributed to ‘unluckiness’ in the data
distribution when dividing data into the buckets, where
buckets may get filled non-uniformly for a low number
of samples, even if the sample distribution is uniform.

For each of the tests, Figure 7.2 shows a scatter ofmea-
sured values (blue) and the associated third-degree poly-
nomial regression line (orange). KubeWatt evaluates this

regression line at the CPU utilization of the control plane
to find the static power value. The measured CPU uti-
lization values of the control plane were, respectively,
0.0406 s s−¹, 0.0394 s s−¹ and 0.0393 s s−¹¹⁰. According
to the calculated regressions, this indicates the control
plane accounts for 0.43W of power usage.

From the above we can conclude that the bootstrap ini-
tialization mode works moderately well when provided
with good data. We found that it deviates at most ap-
proximately 10% from the expected value in our mea-
surements. Due to this error we recommend using the
base initialization mode over the bootstrap initialization
mode wherever possible.

Influence of minimum CPU-value

As explained in Section 7.1, to evaluate the effect of a
narrower data range on the output of the bootstrap initial-
ization mode, we take cuts of the data that was acquired
for the best-case scenario test, where any data under a
specific amount of CPU-utilization is removed. These
cut datasets represent the data that KubeWatt would have
obtained in such situation where the CPU utilization
range is limited. On these cut datasets, we perform the
regression as KubeWatt would and explore how its co-
efficients change based on how much the data domain is
limited.

Figure 7.2 shows the original data. This data has a
full CPU utilization range. We combine the three tests
into a single dataset for these tests. For the lower bound
cuts, the data is cut at 10%, 20%, 30%, and 40%. This
is illustrated in Figure 7.3a. For the upper bound, the

¹⁰The unit s s−¹ indicates a unitless measure of CPU utilization that
is not dependent on the amount of cores in a system. A 1 s s−¹ uti-
lization means a single core of the machine is working at 100%
of its capacity (or two cores at 50%, etc).
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(a) Combined dataset of bootstrap initialization (best case) cut at a lower bound of 10%, 20%, 30%, and 40%CPU utilization.
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(b) Combined dataset of bootstrap initialization (best case) cut at an upper bound of 90%, 80%, 70% and 60% CPU utiliza-
tion.

Figure 7.3: Different domain cuts of the bootstrap initialization test. Orange shows the third-degree polynomial
regressions, SP shows the associated static-power value.

data is cut at 90%, 80%, 70% and 60%; illustrated in
Figure 7.3b.

From these figures as well as the resulting static power
values as indicated in the figures, we see that the lower
bound of the collected data has a significant influence
on the outcome of the bootstrap initialization. At a min-
imum of 10% CPU-utilization we see that the static
power value drops to 158W. For 20% this is 60W.
Both are sufficiently far from the expected value that they
cannot be considered accurate. For the 30% and 40%
lower-bound cuts we see that the expected static power
value becomes negative. This is obviously not possible.
By considering the shape of the data in this figure as well
as in Figure 7.2 we see that these results do make in-
tuitive sense. Above ∼32 s s−¹ CPU-utilization, utiliza-
tion does increase while power usage does not. When
we consider more of this non-changing data in our re-
gression, it cannot properly quantify the relation between
CPU-utilization and power usage in the lower domain. A
cut in the upper bound does not have such a significant
influence on the result as did cutting the lower bound.
This is illustrated in Figure 7.3b. We see that the more
aggressive the cut, the higher the intercept value tends to
be.

The knee in data that we have observed in Figures 7.2,

7.3a and 7.3b might be caused by simultaneous multi-
threading (SMT), a CPU feature where one physical core
is presented as two logical cores to the operating system.
It is more commonly known by its Intel implementation
named Hyper-Threading [50]. Since this feature allows
32 threads to saturate all cores if one thread runs on each
CPU, we could expect to see a knee such as the one ob-
served, if the processor optimizes performance when not
all 64 threads are in use. To confirm that this is indeed
why we observe the knee, the tests above are repeated
with Intel’s Hyper-Threading turned off on SUT. These
results are presented in Figure 7.4.

As predicted, the knee in the data disappears, and we
observe a result more in-line with what was expected
based on [4]. A linear regression of the combined data
of the three tests gives an '2-value of 0.94, indicating
a very good fit of the linear regression. The three boot-
strap initialization tests resulted in outputs of 201.7W,
200.0W and 199.9W which have an error to the ex-
pected value of 199.1W of between 0.4% and 1.3%;
much closer than the polynomial approach used with
SMT enabled and the full range of values considered.

A repeat of the ‘cut’ tests are shown in Figures 7.5a
and 7.5b. The predicted power usage values now stay
much more consistent as the data range is limited. In
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Figure 7.4: The measured values by KubeWatt bootstrap initialization mode with SMT disabled, for each of the
three best-case tests
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(a) Combined dataset of bootstrap initialization (best case without simultaneous multithreading) cut at a lower bound of 10%,
20%, 30%, and 40% CPU utilization.
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(b) Combined dataset of bootstrap initialization (best case without simultaneous multithreading) cut at an upper bound of
90%, 80%, 70% and 60% CPU utilization.

Figure 7.5: Different domain cuts of the bootstrap initialization test, with SMT disabled. Orange shows the third-
degree polynomial regressions, SP shows the associated static-power value.

Figure 7.5a we see that the lower-bound cuts do result
in a deviation in the static power value as the data range
decreases. A 10% cut yields a 1.83% deviation from
the expected value, a 20% cut yields a 3.60% devia-
tion, a 30% cut yields a 5.01% deviation and a 40%
cut yields a 6.67% deviation. Notably, each of these
is much better than even a 10% lower-bound cut was
for the third-degree polynomial regression without con-
sidering SMT. As before, we observe very little change
in the static power value when changing only the upper
bound, as illustrated in Figure 7.5b. The most aggres-
sive upper bound cut of 60% resulted in a value 1.06%
higher than expected.

As the no-SMT test has a much better result than be-
fore, a simple change is introduced in KubeWatt: when
SMT is enabled on a node, the bootstrap initialization
ignores the top 50% of CPU utilization data. When it
is disabled, all data is used. KubeWatt then runs a lin-
ear regression as opposed to a third-degree polynomial
regression as we now expect the relation between CPU-
utilization and power-usage to be linearly quantifiable.

7.2.3. Estimator mode

For the estimator-mode tests, Hyper-Threading has been
re-enabled on SUT. This should result in a more realistic
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Figure 7.6: Sum of container+static power for KubeWatt
(blue) and iDRAC node power (orange),
combined for the three performed single-
stressor tests.

evaluation sincewe expectmost servers to use some form
of SMT. Hyper-Threading is enabled by default on the
Intel CPU that SUT uses [50].

Single-stressor tests

Results of the single-stressor tests are shown in Fig-
ures 7.6 and 7.7. The first figure shows the total power
that KubeWatt thinks our node SUT is using as well as the
direct iDRAC measurements. The second figure shows
the dynamic power usage of each namespace according
to KubeWatt. Both figures are the aggregate results of
three repeated tests.

In Figure 7.6 we see that the total power reported by
KubeWatt is very similar to what iDRAC reports our
server to be using. The total power usage has an RSME
of 10.56%, where the error is biggest when a load is
just starting up. In this case this error occurs as there is
a delay in CPU utilization and Kubernetes metrics API
reporting this utilization. As KubeWatt measures only
a single container, the total CPU utilization is reported
at zero while waiting for metrics, leading to KubeWatt
not attributing the dynamic power to any container for
a short period. If we instead consider the area under the
curve which indicates the total power used, the total error
is less than 1%.

The observed error during this test is smaller than the
error we have seen for Kepler’s best-case scenario, where
an RSME of 18.70%wasmeasured, though here too, the
error was influenced by measurement latencies.
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Figure 7.7: Sum of container power per namespace for
KubeWatt, combined for the three performed
single-stressor tests.

Figure 7.7 contains some noteworthy differences com-
pared to the same test performed for Kepler in Figure 5.3:
only the dynamic power is shown for each container by
KubeWatt; this is, as explained above, by design. Static
power is not attributed to specific pods and is reported
separately (not shown). Moreover, not all namespaces
are shown. KubeWatt does not indicate power usage by
control plane pods, as their power usage is (partially) in-
cluded in the static power value when this is measured or
estimated. Higher control plane power usage is instead
attributed to workload containers that are not part of the
control plane.

Multi-stressor tests

In addition to the simple single-stressor test which veri-
fies the basic functionalities of KubeWatt, we also con-
sider a test with multiple stressors. This will be partic-
ularly interesting considering the SMT results that we
have seen for the bootstrap initialization mode in Sec-
tion 7.2.2.

This test runs four stressors, each taxing sixteen
CPUs. In total this will stress the whole system at 100%
CPU-utilization. We run this in four phases, where each
phase has one more stressor than the previous thereby
ramping up the CPU utilization.

The results of this test are presented in Figure 7.8. In
the figure we see the four phases of the test. The left
figure indicates the power that KubeWatt attributed to
each of the 1–4 containers running stressors during the
test. As each of the containers should have exactly the
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same amount of CPU utilization, we expect KubeWatt
to report the same power value for each of the contain-
ers. This is indeed confirmed. We see that the power per
container goes down from before when stressing 48 or
64 CPU cores.
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Figure 7.9: Total benchmark throughput per phase of the
three repeated multiple-stressors tests.

Figure 7.9 shows the total throughput per stressor per
phase in ‘bogus operations’ for each of the five-minute
stressors as reported by stress-ng. We observe a similar
trend in throughput as we do in power consumption per
container. This explains why we see the power decrease,
as the throughput per container also decreases when run-
ning above 32 CPU threads in total. This finding is in-
line with the SMT-findings in Section 7.2.2, where we
also observed that 32 threads are able to fully utilize the
32 CPU cores even though 64 threads can also run si-
multaneously. Note that cAdvisor, the source for Kuber-
netes container metrics, does not report this difference in
throughput. Since it only reports the higher-level metric
of CPU seconds, it cannot report whether a thread is us-

ing a full core or is sharing a core with another thread
when SMT is enabled. The reported CPU seconds per
container are shown in Figure 7.10, for reference.
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Figure 7.10: The reported CPU utilization in CPU sec-
onds for each of the four stressors the
multiple-stressors test.

Note that in Figure 7.8, KubeWatt reports power usage
when the containers are all created for containers 1, 2 and
3 even though these are idle. As per KubeWatt debug in-
formation, this is caused by the power collector reporting
power usage because of container 0, while the Kuber-
netes metrics pipeline is not yet reporting container 0.
As containers 1, 2 and 3 are the only containers Kube-
Watt knows about, they are attributed all the dynamic
power that is reported, even though they have very little
CPU-utilization. This problem corrects itself as soon as
Kubernetes metrics includes all newly created contain-
ers.

Deleting inactive pods, repeated

To validate that KubeWatt does not suffer from some of
the more severe limitations we saw in Kepler, we repeat
the inactive pods deletion test (Kepler result depicted in
Figure 5.5). The result of this test for KubeWatt is shown
in Figure 7.11.

In this figure, we see results exactly as expected.
In Figure 7.11a the total system power as reported by
iDRAC is reported, for reference. In Figure 7.11b
the power per namespace according to KubeWatt is
shown. Note that ‘static’ is not a namespace, but is the
namespace-less static power. All other namespaces in
this figure are dynamic power. Some namespaces here
are missing compared to Figure 5.5b; this is because all
containers in those namespaces are part of the control
plane and are not reported by KubeWatt. Note also that
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Figure 7.11: The result of deleting inactive pods. The blue markers indicate the times at which (1) the stressing
load was started; (2) the inactive pods were deleted; (3) the stressing load was stopped, respectively.
The tests were repeated four times.

the idle containers are not reported. This is the case be-
cause they are not using power: they are not running.
Figures 7.11c and 7.11d show the CPU utilization for
each namespace. We observe the same measurements as
in Figures 7.11c and 7.11d, indicating the test was per-
formed equally.

The main result is depicted in Figure 7.11b. We see
that the power usage of the stressor pod goes up with
CPU utilization, stays consistent throughout the test and
goes down when the stressor is stopped. Conclusively,
we see from these figures that KubeWatt can accurately
report the power usage of the stress pod, even when a
large number of idle pods are created and deleted during
the test.

7.3. Discussion

With the results and amendments to KubeWatt that have
been discussed, we can now turn again to the questions
posed at the beginning of this section.

kwRQ1: How accurate are KubeWatt’s total node
measurements compared to a ground truth?

In Sections 7.2.1 and 7.2.2we have seen that KubeWatt is
able to use an external source of power to gather accurate
readings of node power. For the initializationmodes, this
works well.

KubeWatt has one limitation in regard to total node
power as it pertains to the estimator mode. The issue oc-
curs when KubeWatt does report dynamic power usage,
but has no containers with CPU utilization. Since the
total utilization is zero, KubeWatt cannot attribute the
dynamic power, which is therefore not reported. This
issue occurs when a container is newly created and im-
mediately generates high load, as we have seen in Sec-
tion 7.2.3. In other situations, the total node power mea-
surement is sufficient for the estimator mode.
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kwRQ2:How (well) does KubeWatt attribute power
usage to containers on the node?

We have considered container power attribution in Sec-
tion 7.2.3. In general, we see that KubeWatt is able to
accurately portray the power used by a container based
on CPU load, in line with what is expected based on CPU
utilization, throughput values and the observed power
curve in Section 7.2.2 for the SMT-enabled case.

KubeWatt does incorrectly attribute power when con-
tainers are newly created and immediately generating
load when other containers already exist. Since the Ku-
bernetes metrics API does not immediately report this
container and has a delay in metrics in general, its power
is misattributed to other containers. However, this only
causes a short peak in container power usage values and
is resolved as soon as the new container is known by
cAdvisor. The delay in metrics of the Kubernetes met-
rics API that does not align well with the power metrics
may lead to more noisy or incorrect power attribution
when containers are very turbulent in their power usage.
Since data is collected every 15 s, KubeWatt only works
well for clusters with sufficiently stable CPU-utilization
among containers.

A limitation of KubeWatt’s power attribution is that
it can only attribute power based on CPU-utilization. In
a general purpose computer, this is likely not much of a
problem since the CPU is the biggest user of power; how-
ever, when we consider a system that uses accelerators
such as a GPU or FPGA then power for containers using
these will be misrepresented. KubeWatt similarly does
not measure RAM power usage and utilization; however,
we have seen with RAPL that RAM itself is likely of lit-
tle influence to total power usage.

kwRQ3:How accurately can KubeWatt’s base
initialization mode report the static power value?

The base initialization mode is able to very accurately
read the static power value, and does so very quickly, in
five minutes. In our test we have seen the base initializa-
tion mode get very consistent measurements over time,
with the largest internal difference being 0.4W out of a
199.1W mean over six KubeWatt runs.

kwRQ4:How accurately can KubeWatt’s bootstrap
initialization mode estimate the static power value?

We have seen that the bootstrap initialization mode can
quite accurately estimate the static power value, given
that we account for simultaneous multithreading. In
this case, KubeWatt can estimate the static power value
within 0.4–1.3% of the expected value with perfect data,
and can estimate the static power value within 5% of the
expected value with data only above 40% CPU utiliza-
tion.

While not tested, the SMT-enabled version of Kube-
Watt’s bootstrap initialization mode would need more
data for similar results. As it cuts away the top 50% of
data to obtain data similar to the non-SMT case, a lower
bound cut of 40% CPU utilization would in fact be re-
moving 80% of data. As such, when SMT is enabled
a lower bound of 20% would yield a static power value
within 5% of the expected value.

8. Conclusion

So far we have seen an experimental evaluation of Ke-
pler in Section 5 and the introduction and experimen-
tal evaluation of our own tool, KubeWatt, in Sections 6
and 7. In this section, we reflect on the questions posed
in the introduction and provide answers to them based
on the previous two parts. As all Kepler and KubeWatt
specific research questions have already been discussed
in Sections 5.3 and 7.3, respectively, we only reflect on
our main research goal here. Furthermore, we discuss
some threats to validity that hold for both the Kepler and
KubeWatt part, and discuss potential avenues for related
work.

In the introduction we asked the following question:

How can we accurately measure or estimate
the power usage of a Kubernetes containers
based on external measurements?

To answer this question we have evaluated the state-
of-the-art tool Kepler, where we have found several lim-
itations: Kepler improperly attributes static power to
non-running containers, and Kepler cannot properly at-
tribute dynamic power to the responsible container in
some cases. In order to address some of these limita-
tions we have also built a proof-of-concept tool named
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KubeWatt. During this project we have found several
important aspects to consider and some inherent limita-
tions when building such an energy-measuring tool. For
instance, the total power of a system cannot be taken at
face value but must be divided into static and dynamic
parts for a fair container attribution. Moreover, a tool
such as KubeWatt or Kepler that uses external sources
for metrics must consider that these metrics may not al-
ways be up-to-date. In the case of KubeWatt we saw that
this had an effect on power attribution when creating new
containers. Kepler will suffer from the same issue to a
lesser extent. Since Kepler uses eBPF to obtain resource
utilization directly from the Linux kernel, it has more
control over how these metrics are obtained. Addition-
ally, Kepler uses the regular pods API to obtain the list
of pods. Both of these have lower latency than the Ku-
bernetes metrics pipeline.

We have evaluated that KubeWatt can accurately di-
vide total power into static and dynamic power based on
one of two initialization modes. We have furthermore
evaluated its capacity to attribute power usage to run-
ning containers and have seen that it can produce accu-
rate metrics for containers. Lastly, we have shown that
KubeWatt performs better than Kepler in specific situa-
tions where we have seen Kepler’s limitations.

One of the main limitations in KubeWatt is that it con-
siders CPU-utilization to be the sole source of power us-
age. This may hold (approximately) for general-purpose
computers, but does not hold as soon as an accelerator
such as a GPU or FPGA is introduced into the system.

8.1. Threats to Validity

Some aspects of our research have not been perfect. It is
therefore important to consider areas of improvement in
context of the research that has been performed.

Our first Kepler-specific research question, kpRQ1,
asks how accurate Kepler can be in terms of node power
measurements. While we investigated RAPL and Red-
fish power sources, we did not investigate the other
power sources that Kepler can read information from;
these being NVML for GPU power and ACPI or IPMI
for platform power [16]. Since iDRAC was able to pro-
vide very accurate readings, we have been able to accu-
rate survey Kepler’s performance nonetheless, as far as
container metrics are concerned.

The main server that was used for running tests was
not fully functional. Specifically, one of the twelvemem-
ory sticks raised bit errors occasionally. The iDRAC
monitoring reported that “the system memory has faced
an uncorrectable multi-bit memory errors in the non-
execution path of a memory device”. While test results
were discarded when an error occurred during the test,
the overhead of performing error correction on a defec-
tive memory device may cause more noisy CPU load
and/or power-usage during tests and thus influence re-
sults and test repeatability.

The system under test comprised a single server.
While this is fine for testing purposes, results would have
been more significant by combining a number of servers
and distributing multiple workloads to more closely re-
semble a real-world cloud environment. This would
also allow for testing, for instance, the difference in Ke-
pler’s/KubeWatt’s behavior on master and worker nodes.
The use of a single server was decided simply due to
availability.

Furthermore, the server in question was not deployed
in an ideal scenario. A real-world cloud environment
would be a datacenter with proper cooling and a sta-
ble fan inlet temperature. Our server was not deployed
in a real datacenter due to the need for management
port (iDRAC) access which the University of Groningen
would not allow in their datacenters. The room where
the server was installed had a temperature which fluctu-
ated between 25 °C and 28 °C during testing which may
cause fluctuation in total power-usage and influence re-
peatability of tests.

During testing, we only ran artificial workloads us-
ing stress-ng. While these stress the CPU and memory,
they do so in a very specific way which may not always
be equal to a real-world workload. Nonetheless, both
tools that were considered should be able to accurately
account for their power usage, and the use of such con-
trollable stressors is important for consistent and repeat-
able tests with results that are low noise and easy to in-
terpret.

8.2. Future Work

Several parts and findings within this research project
call for future research. First, KubeWatt is currently im-
plemented as a proof-of-concept tool that is not feature-
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complete for many scenarios. It supports only a single
type of power collector, and it cannot attribute power
properly for systems that, for instance, also use GPUs.
KubeWatt should be extended to include such features.
Moreover, KubeWatt has not been tested on realistic or
even real-world cluster workloads. Deploying KubeWatt
alongside an actual workload and by doing realistic tests
could provide useful insights in where KubeWatt can im-
prove.

During the KubeWatt evaluation we found interesting
findings with respect to SMT, which had not before been
observed in this manner. Future research should repro-
duce these findings using a similar setup and should in-
vestigate why we observe the described ‘knee’ so clearly.
The authoritative paper on the matter, the SPEC power
benchmark [4] also has SMT enabled and does not ob-
serve a similar result. It may be a result of the way that
Kubernetes/cAdvisor measure CPU utilization, or it may
be a result of the specific architecture of the Intel Xeon
Gold 6226R that SUT uses. It would be very useful to
learn more about this behavior.
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A. Metrics

Table 2 shows all metrics and their explanation as they appear in Prometheus.

Table 2:

Source Metric Explanation

Plugwise power_consumption Measured power by the wallplug

iDRAC power_control_avg_consumed_watts Average consumption of power control
system

power_control_capacity_watts Capacity of power control system

power_control_consumed_watts Consumption of power control system

power_control_interval_in_minutes Interval for measurements of power con-
trol system

power_control_max_consumed_watts Maximum consumption of power control
system

power_control_min_consumed_watts Minimum consumption of power control
system

power_supply_capacity_watts Power supply capacity

power_supply_efficiency_percent Power supply efficiency

power_supply_health Power supply health status

power_supply_input_voltage Power supply input voltage

power_supply_input_watts Power supply input

power_supply_output_watts Power supply output

sensors_fan_health Health status for fans

sensors_fan_speed Sensors reporting fan speed measure-
ments

sensors_temperature Sensors reporting temperature measure-
ments

system_bios_info Information about the BIOS

system_cpu_count Total number of CPUs in the system

system_health Health status of the system

system_indicator_led_on Indicator LED state of the system

system_machine_info Information about the machine

system_memory_size_bytes Total memory size of the system in bytes

system_power_on Power state of the system

RAPL powercap_energy_uj_total Total energy used by package and DRAM
components

Continued on next page
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Table 2: (Continued)

cAdvisor container_blkio_device_usage_total Blkio Device bytes usage

container_cpu_load_average_10s Value of container cpu load average over
the last 10 seconds

container_cpu_system_seconds_total Cumulative system cpu time consumed in
seconds

container_cpu_usage_seconds_total Cumulative cpu time consumed in sec-
onds

container_cpu_user_seconds_total Cumulative user cpu time consumed in
seconds

... Filesystem and network metrics omitted
for brevity

container_memory_cache Number of bytes of page cache memory

container_memory_failcnt Number of memory usage hits limits

container_memory_failures_total Cumulative count of memory allocation
failures

container_memory_mapped_file Size of memory mapped files in bytes

container_memory_max_usage_bytes Maximum memory usage recorded in
bytes

container_memory_rss Size of RSS in bytes

container_memory_swap Container swap usage in bytes

container_memory_usage_bytes Current memory usage in bytes, including
all memory regardless of when it was ac-
cessed

container_memory_working_set_bytes Current working set in bytes

container_oom_events_total Count of out of memory events observed
for the container

container_processes Number of processes running inside the
container

container_spec_cpu_period CPU period of the container

container_spec_cpu_shares CPU share of the container

container_spec_memory_limit_bytes Memory limit for the container

container_spec_memory_reservation_limit_bytes Memory reservation limit for the con-
tainer

container_spec_memory_swap_limit_bytes Memory swap limit for the container

container_start_time_seconds Start time of the container since unix
epoch in seconds

Continued on next page
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Table 2: (Continued)

container_threads Number of threads running inside the con-
tainer

container_threads_max Maximum number of threads allowed in-
side the container, infinity if value is zero

container_ulimits_soft Soft ulimit values for the container root
process. Unlimited if -1, except priority
and nice

container_cpu_cfs_periods_total Number of elapsed enforcement period in-
tervals

container_cpu_cfs_throttled_periods_total Number of throttled period intervals

container_cpu_cfs_throttled_seconds_total Total time duration the container has been
throttled

container_spec_cpu_quota CPU quota of the container

machine_cpu_cores Number of logical CPU cores

machine_cpu_physical_cores Number of physical CPU cores

machine_cpu_sockets Number of CPU sockets

machine_dimm_capacity_bytes Total RAM DIMM capacity

machine_dimm_count Number of RAM DIMM

machine_memory_bytes Amount of memory installed on the ma-
chine

machine_nvm_avg_power_budget_watts NVM power budget

machine_nvm_capacity NVM capacity value labeled by NVM
mode

Kepler container_bpf_block_irq_total Aggregated block irq value obtained from
BPF

container_bpf_cpu_time_us_total Aggregated CPU time obtained from BPF

container_bpf_net_rx_irq_total Aggregated network rx irq value obtained
from BPF

container_bpf_net_tx_irq_total Aggregated network tx irq value obtained
from BPF

container_bpf_page_cache_hit_total Aggregated Page CacheHit obtained from
BPF

container_cache_miss_total Aggregated cache miss value

container_core_joules_total Aggregated RAPL value in core in joules

container_cpu_cycles_total Aggregated CPU cycle value

container_cpu_instructions_total Aggregated CPU instruction value

Continued on next page
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Table 2: (Continued)

container_dram_joules_total Aggregated RAPL value in dram in joules

container_joules_total Aggregated RAPL Package + Uncore +
DRAM + GPU + other host components
(platform - package - dram) in joules

container_other_joules_total Aggregated value in other host compo-
nents (platform - package - dram) in joules

container_package_joules_total Aggregated RAPL value in package
(socket) in joules

container_uncore_joules_total Aggregated RAPL value in uncore in
joules

node_core_joules_total Aggregated RAPL value in core in joules

node_cpu_scaling_frequency_hertz Current average cpu frequency in hertz

node_dram_joules_total Aggregated RAPL value in dram in joules

node_other_joules_total Aggregated RAPL value in other compo-
nents (platform - package - dram) in joules

node_package_joules_total Aggregated RAPL value in package
(socket) in joules

node_platform_joules_total Aggregated platform (entire node) in
joules

node_uncore_joules_total Aggregated RAPL value in uncore in
joules

KubeWatt kubewatt_container_power_watts Power attributed per container. Labelled
by namespace, node, container name, pod
name and type.
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