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A B S T R A C T

Deep Reinforcement Learning (DRL) systems exhibit a significant
tendency to overfit to early experiences, a phenomenon known as the
Primacy Bias (PB). This bias can severely impact learning efficiency
and final performance, particularly in complex environments. This
thesis presents a comprehensive investigation of the PB through the

lens of the Fisher Information Matrix (FIM) and introduces
Fisher-Guided Selective Forgetting (FGSF), a novel method for its

mitigation.

We first develop a theoretical framework characterizing the PB

through distinctive patterns in the FIM trace, identifying critical
memorization and reorganization phases during learning. Building

on this understanding, we propose FGSF, which leverages the
geometric structure of the parameter space to selectively modify

network weights, preventing early experiences from dominating the
learning process while preserving valuable knowledge.

Through extensive empirical evaluation across multiple environments
from the DeepMind Control Suite (DMC), we demonstrate that FGSF

consistently outperforms baseline approaches, particularly in
complex, high-dimensional tasks. Our analysis reveals several key
insights: (1) the PB affects critic networks more severely than actor

networks, with critic-only intervention often outperforming full
network scrubbing, (2) FGSF’s effectiveness scales with task complexity
and replay ratio, suggesting particular utility in challenging learning

scenarios, (3) the method maintains robust performance across
different hyperparameter settings while introducing minimal

computational overhead, and (4) even simple noise injection methods
can provide meaningful improvements, indicating that the PB may be

fundamentally linked to optimization dynamics.

These findings not only advance our understanding of the PB but also
provide practical tools for its mitigation, contributing to the

development of more efficient and robust DRL systems. The geometric
perspective offered by our FIM-based analysis opens new avenues for

understanding and addressing learning dynamics in deep neural
networks.
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1
I N T R O D U C T I O N

Machine Learning (ML) has emerged as one of the most important
fields within computer science and Artificial Intelligence (AI). It fo-
cuses on the development of algorithms and statistical models that
enable systems to perform specific tasks effectively without using ex-
plicit instructions, relying instead on patterns and inference (Mitchell,
1997). There are three main paradigms within ML, each tailored to spe-
cific types of problems and data structures: Supervised Learning (SL),
Unsupervised Learning (UL), Reinforcement Learning (RL).

In Supervised Learning, the algorithm is presented with input-output
pairs and learns a map from inputs to outputs. A common example of
SL is regression, where the goal is to predict an output variable based
on one or more input variables. For instance, a Supervised Learning
model that predicts the price of houses based on features like size,
location, and number of bedrooms.

Unsupervised Learning, on the other hand, deals with discovering
hidden patterns and structures in data without any labeled outputs.
Clustering algorithms such as k-means (MacQueen, 1967) are a prime
example of UL, where the algorithm aims to group similar data points
together based on the Euclidian distance.

Reinforcement Learning stands apart from SL and UL as a paradigm
focused on sequential decision-making under uncertainty. In RL, an
agent learns to make decisions by interacting with an environment,
after which it receives feedback in the form of rewards (Sutton and
Barto, 1999). This framework naturally applies to a wide range of
real-world scenarios, from robotic control (Tang et al., 2024) and game
playing (Shao et al., 2019) to resource management (Hurtado Sánchez,
Casilimas, and Caicedo Rendon, 2022) and personalized recommen-
dations (Afsar, Crump, and Far, 2022) . Fundamentally, RL involves
an agent making decisions within an environment to optimize a cu-
mulative reward. The agent learns a policy that determines action
selection in each state, with the ultimate objective of maximizing ex-
pected long-term rewards. Despite many successful application, as we
delve deeper into the complexities of RL, we encounter a multitude of
challenges that can influence the efficiency and efficacy of learning
algorithms. One such challenge, which has gained considerable atten-
tion in recent years, is the Primacy Bias (PB) problem (Qiao, Lyu, and
Li, 2023; Li et al., 2024; Nikishin et al., 2022; Obando-Ceron, Courville,
and Castro, 2024; D’Oro et al., 2022).
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1.1 overview of the primacy bias problem 7

1.1 overview of the primacy bias problem

The term "Primacy Bias" in Reinforcement Learning finds its origins
in a well-established concept in cognitive science: the primacy effect.
To fully comprehend the rationale behind this term, it’s helpful to first
understand its roots in human cognition.

In cognitive psychology, the primacy effect refers to the tendency for
individuals to remember information presented at the beginning of a
sequence better than the information presented in the middle. This
phenomenon is often studied alongside its counterpart, the recency
effect, which describes the tendency to better recall information pre-
sented at the end of a sequence. These effects were first observed in
human memory studies by Ebbinghaus; Deese and Kaufman; Murdock
Jr. For example, when presented with a list of words to remember,
people often recall the first few words (primacy effect) and the last
few words (recency effect) more easily than those in the middle. This
pattern of memory retention has been attributed to various factors.
Understanding these cognitive biases has had significant implications
for fields such as education (Onifade et al., 2011), marketing (Peters
and Bijmolt, 1997), and user interface design (Barnes, 1992). Now,
parallels are being drawn between these human cognitive tendencies
and the behavior of AI systems, specifically in the RL framework.

In the context of RL, the PB problem refers to a phenomenon similar to
its cognitive counterpart. Just as humans may overemphasize early in-
formation, Deep Reinforcement Learning (DRL) (which is an extension
of the RL framework that uses Neural Networks) agents have shown
a tendency to overfit early experiences. This bias can have profound
implications on an agent’s learning process and decision-making ca-
pabilities. The problem’s importance stems from its following conse-
quences:

• Hindered Learning: PB can obstruct an agent’s ability to effec-
tively learn from subsequent interactions.

• Suboptimal Decision-Making: As the agent becomes overly influ-
enced by its early experiences, it may make spurious decisions
that are not well-suited to its current environment or task.

• Limited Generalization: An agent affected by the PB may struggle
to generalize its learning across different environments or tasks.
This limitation can significantly reduce the adaptability and the
versatility of Reinforcement Learning systems, constraining their
potential applications.

Moreover, given the sequential nature of the Reinforcement Learning
framework, these consequences have a negative cascade effect on the
learning process. The importance of addressing the Primacy Bias
problem extends beyond mere academic interest. As we increasingly
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deploy AI systems based on RL in complex, real-world scenarios - from
autonomous vehicles navigating busy streets to recommender systems
shaping our online experiences - the need for these systems to learn
efficiently, adapt quickly, and make robust decisions becomes crucial.

1.2 thesis objectives and contributions

This thesis aims to explore the Primacy Bias problem in Deep Rein-
forcement Learning, its underlying causes, and propose a mitigation
strategy. By examining this critical aspect of RL, we hope to contribute
to the development of more efficient and adaptable RL agents. The
primary objectives of this research are:

• To provide a comprehensive analysis of the Primacy Bias phe-
nomenon in DRL, including its potential causes and implications
for RL agent’s performance.

• To explore the connection between the Fisher Information Matrix
(FIM) and the PB in DRL, offering new insights into the learning
dynamics of these systems.

• To develop and evaluate a novel FIM-based mechanism for alle-
viating the PB in DRL agents.

• To compare the effectiveness of the proposed FIM-based approach
with existing methods for mitigating the PB.

1.3 outline of the thesis structure

This thesis is organized into six chapters, that present the analysis of
the PB problem and examine a FIM-based approach to address it.

Chapter 2, Theoretical Framework, provides the mathematical foun-
dations necessary for understanding the PB in DRL. It begins with
a systematic development of Reinforcement Learning fundamentals,
from basic Markov Decision Process (MDP) to modern DRL architec-
tures, with special attention to the Soft Actor-Critic (SAC) framework.
The chapter then explores the mathematical foundations of the Fisher
Information Matrix, establishing the theoretical tools needed for our
analysis.

Chapter 3, Literature Review, examines key challenges and advances
in DRL related to the PB. It covers five main areas: PB in DRL, net-
work plasticity, Continual Learning (CL), applications of the FIM, and
Machine Unlearning (MU). This comprehensive review establishes the
context for our methodological developments.

Chapter 4, Methodology, presents our approach to investigating and
addressing the PB. It introduces our novel characterization of the
PB through FIM analysis, details the Fisher-Guided Selective Forget-
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ting (FGSF) method, and describes our experimental framework for
evaluating the effectiveness of our approach across different environ-
ments and conditions.

Chapter 5, Results and Discussion, provides a thorough empirical
evaluation of FGSF through five main investigations: comparative anal-
ysis against baseline approaches, investigation of network component
specificity, robustness analysis, impact of replay ratios, and compar-
ison with simpler noise injection methods. The chapter combines
quantitative performance metrics with detailed analysis of learning
dynamics through FIM traces and network plasticity measurements.

Chapter 6, Conclusion, summarizes our key findings and contribu-
tions while discussing broader implications for DRL. We reflect on
both theoretical advances in understanding the PB and practical im-
provements in addressing it, concluding with suggestions for future
research directions. This structure allows us to systematically develop
our understanding of the PB while demonstrating the effectiveness
of our proposed solution across both theoretical and practical dimen-
sions.



2
T H E O R E T I C A L F R A M E W O R K

This chapter establishes the mathematical foundations necessary for
understanding the Primacy Bias (PB) in Deep Reinforcement Learning
(DRL) and develops the theoretical tools for its analysis and mitigation.
The framework we present combines elements from Reinforcement
Learning (RL) theory, information geometry, and statistical learning,
providing a unified perspective on how early experiences influence
learning dynamics. We begin with a systematic development of RL

fundamentals, progressing from basic Markov Decision Process (MDP)
to modern DRL architectures. Special attention is given to the Soft
Actor-Critic (SAC) framework, as it serves as the primary testbed for
our investigations. This foundation is crucial for understanding how
learning algorithms process and retain information from sequential ex-
periences. The chapter then delves into the mathematical foundations
of the Fisher Information Matrix (FIM), a central tool in our analysis.
We explore its dual role as both a measure of parameter sensitivity
and a description of the geometric structure of parameter space. This
geometric perspective proves particularly valuable for understanding
how networks adapt to early experiences and why certain learning
patterns become entrenched. Throughout the chapter, we emphasize
the connections between these theoretical components, showing how
they combine to provide insights into the emergence and persistence
of the PB. This framework not only explains observed phenomena but
also suggests principled approaches to their mitigation, setting the
stage for the methodological developments in subsequent chapters.

2.1 foundation of reinforcement learning

The RL problem can be modeled, from a mathematical standpoint, as
a MDP. To develop this framework systematically, we begin with the
foundational concept of Markov Chains, which serve as the mathemat-
ical core upon which everything else will be built. An MDP extends
the Markov Chain by incorporating additional components necessary
for decision-making under uncertainty.

2.1.1 Markov Chains

A Markov Chain represents a stochastic process that satisfies the
Markov property, which is sometimes referred to as "memorylessness".
The chain is described by two main components: a state space and

10



2.1 foundation of reinforcement learning 11

a transition function. While more complex variants exist, such as
Continuous-time Markov Chains with infinite state spaces or time-
inhomogeneous Markov Chains with time-varying transition func-
tions, we focus on the discrete-time, finite-state variant for clarity of
exposition. Formally, a Markov Chain is characterized by a tuple ⟨S,P⟩
where:

• S represents the finite set of states

• P : S× S → [0, 1] defines the state transition probability function

The transition probabilities must satisfy two fundamental constraints:

• Non-negativity: P(s, s′) ⩾ 0 ∀s, s′ ∈ S

• Unit sum for each state:
∑
s′∈S P(s, s

′) = 1 ∀s ∈ S

The Markov property, which forms the foundation of this framework,
can be formalized as:

P(St+1 = st+1 | St = st, . . . ,S0 = s0) = P(St+1 = st+1 | St = st)

This property establishes that the future state depends solely on the
present state, regardless of the historical path taken to reach it. This
property is crucial to make the framework computationally feasible.

2.1.2 Markov Decision Processes

An MDP builds upon the Markov Chain framework by incorporating
two additional components: a set of actions, and a reward function.
This extension transforms the passive stochastic process into an in-
teractive framework suitable for decision-making. The set of actions
typically referred to as the action space (A), can be either discrete
(finite set) or continuous (infinite set). Formally, an MDP is defined as
a tuple ⟨S,A,P,R⟩ where:

• S remains the state space from the Markov Chain

• A represents the action space

• P : S× A× S → [0, 1] defines the state transition probability
function

• R : S×A× S → R specifies the reward function

The transition dynamics in this enhanced framework are characterized
by:

P(s,a, s′) = P(St+1 = s
′ | St = s,At = a)

The reward function, which quantifies the desirability of transitions,
is defined as:

R(s,a, s ′) = E[Rt+1 | St = s,At = a,St+1 = s ′]
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2.1.3 Policies and Their Properties

Within an MDP, a policy represents the decision-making strategy of
an agent. Formally, a policy π is defined as a conditional probability
distribution over actions given states:

π(a | s) = P(At = a | St = s)

For each state, the policy must satisfy the probability constraint:∑
a∈A

π(a | s) = 1 ∀s ∈ S

Policies can be categorized based on two fundamental properties:

• Determinism: A policy is deterministic if and only if it assigns
probability 1 to exactly one action in each state:

π(a | s) = 1 ∀s ∈ S ∃!a ∈ A

• Stationarity: A policy exhibits stationarity if it remains constant
over time:

πt(at|st) = πt+n(at|st) ∀t,n ∈ N, st ∈ S,at ∈ A

2.1.4 Value Functions and Bellman Equations

The assessment of policy effectiveness in an MDP framework is ac-
complished through value functions, which quantify the expected
cumulative discounted rewards. Two principal types of value func-
tions exist the state-value function and the action-value function. We
introduce a discount factor γ ∈ [0, 1] that gives more weight to immedi-
ate rewards and progressively less weight to future rewards, reflecting
both the uncertainty of future predictions and the common preference
for immediate rewards over delayed ones. The state-value function
Vπ under a policy π measures the expected return when starting from
state s and following policy π after:

Vπ(s) = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]

Complementarily, the action-value function Qπ extends this concept
by considering the value of taking a specific action a in state s before
following policy π:

Qπ(s,a) = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]

These functions are fundamentally connected through the Bellman
equations, which establish a recursive relationship between the value
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of a state and the values of its successor states. For the state-value
function, this relationship is expressed as:

Vπ(s) =
∑
a∈A

π(a | s)
∑
s ′∈S

P(s ′ | s,a)[R(s,a, s ′) + γVπ(s ′)]

Similarly, for the action-value function:

Qπ(s,a) =
∑
s ′∈S

P(s ′ | s,a)[R(s,a, s ′) + γ
∑
a ′∈A

π(a ′ | s ′)Qπ(s ′,a ′)]

These equations form the theoretical foundation for value iteration
and policy improvement algorithms in RL.

2.1.5 Deep Reinforcement Learning Framework

The transition from traditional RL to DRL is necessitated by the limita-
tions of tabular representations when dealing with high-dimensional
state and action spaces. RL addresses this challenge by employing
neural networks as function approximators for value functions and
policies. In this framework, the fundamental value functions and
policies are approximated as:

Vθ(s) ≈ Vπ(s)

Qϕ(s,a) ≈ Qπ(s,a)
πψ(a | s) ≈ π(a | s)

where θ, ϕ, and ψ represent the parameters of neural networks. These
approximations transform the discrete optimization problem of tra-
ditional RL into a continuous optimization problem in the space of
neural network parameters.

2.1.6 Soft Actor-Critic Architecture

The SAC algorithm (Haarnoja et al., 2018a) extends the traditional actor-
critic architecture within the maximum entropy framework. Actor-
critic methods combine two key components: an actor (policy) that
determines actions, and a critic (value function) that evaluates those
actions. The actor πϕ directly maps states to a probability distribution
over actions, while the critic estimates value functions (Qϕ or Vθ)
to assess the actor’s decisions. This separation allows for policy
optimization guided by value estimation, where the critic’s feedback
helps reduce the variance of policy updates while maintaining the
advantages of policy gradient methods. The interaction between these
networks is formalized through policy gradient updates of the form:

∇ϕJ(ϕ) = Eπ
[
Qθ(s,a)∇ϕ logπϕ(a|s)

]
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SAC builds upon this foundation by incorporating entropy maximiza-
tion into the standard objective, effectively balancing exploration and
exploitation. The modified objective function becomes:

J(π) = Eπ

[ ∞∑
t=0

γt(R(st,at, st+1) +αH(π(· | st)))
]

where H represents the entropy of the policy. The temperature param-
eter α plays a crucial role in SAC’s performance, as it determines the
relative importance of the entropy term against the standard reward
objective. Higher values of α lead to more exploration, while lower
values favor exploitation. In practice, this parameter can be automati-
cally adjusted during training to achieve a desired target entropy level.
Concretely, the SAC algorithm uses the following three functions:

JQ(θi) = E(st,at)∼D

[
1

2

(
Qθi(st,at) − (r(st,at) + γEst+1∼P[Vψ̄(st+1)])

)2]

JV(ψ) = Est∼D

[
1

2

(
Vψ(st) − Eat∼πϕ [Qθ(st,at) −α logπϕ(at|st)]

)2]
Jπ(ϕ) = Est∼D[Eat∼πϕ [α logπϕ(at|st) −Qθ(st,at)]]

where D represents the replay buffer of stored transitions. This ap-
proach combines the benefits of off-policy learning with the stability
and exploration benefits of entropy maximization, resulting in an
algorithm that is both sample-efficient and stable across a wide range
of tasks (Haarnoja et al., 2018b; Haarnoja et al., 2018a).

This mathematical framework, spanning from basic Markov Chains to
advanced DRL algorithms, provides the theoretical foundation neces-
sary for analyzing and understanding phenomena such as the PB in
DRL systems.

2.2 mathematical foundations of the fisher informa-
tion matrix

The FIM emerges as a fundamental construct in both statistical learning
theory and optimization. This mathematical object provides crucial
insights into the geometry of parameter spaces and the nature of
learning in neural networks. To develop its theoretical foundations
systematically, we begin with essential concepts from information
theory.

2.2.1 Information Theory Preliminaries

Let pθ(x) denote a probability distribution parameterized by θ ∈ Rd.
Two fundamental concepts form the basis for understanding the FIM:
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the log-likelihood function and the score function. The log-likelihood
function quantifies the likelihood of observing data under our model:

ℓ(θ; x) = logpθ(x)

The score function, defined as the gradient of the log-likelihood with
respect to the parameters, captures the sensitivity of our model to
parameter changes:

s(θ; x) = ∇θℓ(θ; x) =
∂

∂θ
logpθ(x)

The FIM is fundamentally defined as the covariance of the score func-
tion:

F(θ) = Ex∼pθ

[
s(θ; x)s(θ; x)⊤

]
= Ex∼pθ

[
∇θ logpθ(x)∇θ logpθ(x)⊤

]
Under suitable regularity conditions, an alternative formulation exists
through the negative expected Hessian of the log-likelihood:

F(θ) = −Ex∼pθ
[
∇2θ logpθ(x)

]
However, as opposed to the Hessian matrix, the FIM is positive semi-
definite which means that for all vectors v ∈ Rd:

v⊤F(θ)v ⩾ 0

In statistical learning, the parameter space of a model naturally pos-
sesses a Riemannian structure as shown by Amari, 2016. Unlike
Euclidean spaces, Riemannian manifolds are curved spaces equipped
with a local notion of angles and distances that varies smoothly across
the space. For any parametric model with parameters θ ∈ Ω, this
structure is characterized by the Riemannian metric tensor G(θ), which
defines an inner product in the tangent space at each point θ. For a
small displacement dθ in parameter space, the squared distance is
given by:

ds2 = dθ⊤G(θ)dθ =
∑
i,j

gij(θ)dθidθj

The metric tensor G(θ) captures the local geometry of the parame-
ter space, measuring how changes in parameters affect the model’s
behavior. For statistical models, the FIM provides a canonical choice
for this metric: G(θ) = F(θ). This choice is not arbitrary - it arises
naturally as the unique metric that is invariant to reparametrization of
the model and has deep connections to statistical efficiency through
the Cramér-Rao bound.

2.2.2 Applications in Deep Learning

In practical Deep Learning (DL) applications, the empirical FIM for a
neural network with parameters θ takes the form:

F̂(θ) =
1

N

N∑
i=1

[
∇θ logpθ(xi)∇θ logpθ(xi)⊤

]



2.2 mathematical foundations of the fisher information matrix 16

The FIM lead to several important applications in DL. One of the
most famous is the natural gradient descent (Amari, 1998). While the
standard gradient descent follows the direction of the steepest descent
in Euclidean space, it fails to account for the Riemannian structure
of the parameter space. The natural gradient provides the correct
notion of the steepest descent on the statistical manifold. Consider a
parameter space S = θ ∈ Rn with a Riemannian metric G(θ). To find
the steepest descent direction for optimizing a function L(θ), we solve:

min
δθ

L(θ+ δθ) subject to δθ⊤G(θ)δθ = ϵ2

Using a first-order approximation and the method of Lagrange multi-
pliers:

L(δθ, λ) = L(θ) +∇L(θ)⊤δθ− λ(δθ⊤G(θ)δθ− ϵ2)

This gives us the natural gradient:

∇̃L(θ) = G(θ)−1∇L(θ)

The natural gradient descent algorithm then takes the form:

θt+1 = θt − ηt∇̃L(θt)

In conclusion, the FIM represents a fundamental mathematical con-
struct that bridges statistical learning theory and optimization. Through
its dual interpretation as both the covariance of the score function and
the Riemannian metric tensor of the statistical manifold, it provides
crucial insights into the geometric structure of parameter spaces. Its
practical significance is perhaps best exemplified in natural gradient
descent, where it enables optimization methods that respect the in-
trinsic geometry of the parameter space. This connection between
information geometry and optimization algorithms demonstrates how
theoretical mathematical foundations can directly lead to practical
improvements in Machine Learning (ML) applications.



3
L I T E R AT U R E R E V I E W

This chapter examines the key challenges and advances in Deep Rein-
forcement Learning (DRL), with a particular focus on aspects relevant
to the Primacy Bias (PB). We begin by exploring the PB phenomenon
itself. We then delve into network plasticity, investigating how neural
networks’ ability to adapt changes during training and the implica-
tions for learning dynamics. The literature review continues with an
examination of Continual Learning (CL), focusing on the challenges of
maintaining and updating knowledge in neural networks. We then
explore the Fisher Information Matrix (FIM) and its applications in
Deep Learning (DL), providing the foundations for understanding
learning dynamics and parameter space geometry. Finally, we investi-
gate Machine Unlearning (MU) methods, which offer insights into how
information can be selectively removed from trained models. These
diverse but interconnected topics provide the theoretical foundation
for our proposed approach to addressing the PB in DRL.

3.1 primacy bias in deep reinforcement learning

In DRL, the PB manifests as agents’ tendency to overfit to early ex-
periences, potentially failing to learn from valuable information en-
countered later in the training process. Recent research by Nikishin
et al. has identified this phenomenon as a significant bottleneck in
developing efficient and robust DRL systems. The bias, while present
also in on-policy algorithms, is particularly pronounced in off-policy
algorithms that utilize experience replay buffers, where early experi-
ences can disproportionately influence the learning trajectory of the
agent (Nikishin et al., 2022).

3.1.1 Mechanisms and Potential Causes

Recent studies (Abbas et al., 2023; Lyle et al., 2022; Lyle, Rowland, and
Dabney, 2022) have revealed several interconnected mechanisms that
might be contributing to the PB in DRL. At its core, the phenomenon
arises from the interaction between neural network learning dynamics
and the non-stationarity nature of Reinforcement Learning (RL).

One key finding is that DRL agents using neural networks can gradu-
ally lose their ability to learn from new experiences, a process termed
"loss of plasticity" by Abbas et al. This loss occurs even when po-
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tentially valuable new information is available in the environment,
creating a viscious cycle where early experiences dominate the learn-
ing process. The replay buffer mechanism, first introduced by Lin,
while essential for stable learning in off-policy algorithms, can amplify
this bias. Research has shown that this component of DRL algorithms
paired with high replay ratios can magnify the effect of early interac-
tions (Nikishin et al., 2022). This is particularly problematic because
these early interactions often occur during the exploration phase when
the agent’s policy is far from optimal.

The phenomenon becomes more complex in the context of value-
based methods. Studies (Lyle et al., 2022; Van Hasselt et al., 2018) have
demonstrated that the temporal difference learning process itself can
contribute to PB by encouraging agents to fit non-smooth components
of the value function early in training .

Furthermore, the bias manifests differently across most DRL types of
tasks. On one hand, in sparse-reward environments, the PB may cause
the agent to prematurely converge to suboptimal strategies based on
early, potentially misleading experiences (Lyle, Rowland, and Dab-
ney, 2022). On the other hand, in dense-reward settings, the bias can
lead to what researchers term "capacity loss", where the network be-
comes progressively less capable of adapting to new situations despite
maintaining high performance on familiar scenarios (Li et al., 2023).
Recent work (D’Oro et al., 2022) has also highlighted how this bias
can be amplified by common design choices in DRL architectures. For
instance, the choice of activation functions and network initialization
schemes can significantly impact the severity of the PB. To conclude,
all the interaction between these mechanisms creates a compound
effect. Early experiences shape the initial learned representation, this
representation influences the collection of subsequent experiences
through the agent’s policy, the replay buffer mechanism reinforces
these early patterns, and finally, the gradual loss of plasticity makes it
increasingly difficult for the network to adapt to new experiences.

3.1.2 Mitigation Strategies

Researchers have proposed several approaches to address PB in DRL.
One of the first strategies involves periodic parameter resetting, where
parts of the agent’s neural networks are re-initialized while maintain-
ing the experience replay buffer (Nikishin et al., 2022). This approach
has shown significant improvements in performance, without impos-
ing additional computational costs. However, the learning curves are
characterized by drastic loss in performance when the networks are
re-initialized as shown in Figure 3.1.

The periodic parameter resetting strategy has inspired many other
subsequent approaches like Plasticity Injection (Nikishin et al., 2024),
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Figure 3.1: Learning curves comparing the baseline SAC algorithm (blue)
with the reset method (green) on a continuous control task. The
x-axis shows environment steps (×106) and the y-axis shows
episode rewards (×103). The periodic drops in performance for
the reset method correspond to network reinitialization events
occurring every 2× 105 steps.

Recycling Dormant Neurons (Sokar et al., 2023), and Continual Back-
propagation (Dohare et al., 2023). The red line across these strategies
is the injection of pseudo-random noise in the learning process. This
controlled randomness serves to ideally maintain the network’s adapt-
ability while preserving its accumulated knowledge. Self-distillation
has emerged as another promising approach as it was suggested by
Lyle et al. By transferring learned knowledge from the trained policy
into a randomly initialized policy at regular intervals, self-distillation
can effectively filter out biases while preserving valuable learned
behaviors (Li et al., 2024).

In the context of Model-Based Reinforcement Learning (MBRL), tra-
ditional parameter resetting techniques have been found to be less
effective. Instead, "world model resetting" has been proposed as a
more suitable alternative (Qiao, Lyu, and Li, 2023). This approach
focuses on periodically resetting the parameters of the world model
rather than the agent’s parameters, addressing the specific challenges
posed by the PB in MBRL settings.

3.1.3 Impact on Different RL Paradigms

The manifestation and impact of PB vary significantly across different
RL paradigms.

In model-free RL, the bias primarily affects the agent’s value and policy
networks, leading to potential overfit of early experiences (Nikishin
et al., 2022). MBRL faces a unique dual challenge: the PB affects both
the agent’s networks and the learned world model (Qiao, Lyu, and
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Li, 2023). The world model’s overfitting to early data distributions
can be particularly problematic, as it affects all subsequent planning
and decision-making processes. In multi-task learning scenarios, the
PB can lead to what researchers term "simplicity bias," where agents
preferentially learn simpler tasks while struggling with more complex
ones (Cho et al., n.d.). This has led to the development of special-
ized scheduling approaches that prioritize more challenging tasks to
prevent the overshadowing of complex learning objectives.

3.1.4 Current Challenges and Future Directions

Several key challenges remain in addressing the PB in DRL. One
fundamental challenge is the tradeoff between maintaining plasticity
for new learning while preserving previously learned knowledge.
This is particularly evident in CL settings, where the loss of plasticity
can impact an agent’s ability to adapt to new tasks (Abbas et al.,
2023). The relationship between the network capacity and the PB

presents another important research direction. Recent work suggests
that pruned networks might actually perform better than their full
counterparts (Obando-Ceron, Courville, and Castro, 2024), indicating
that architectural considerations play a crucial role in managing the
PB.

The field is moving toward more sophisticated approaches that com-
bine multiple mitigation strategies. For instance, some researchers are
exploring the integration of regularization techniques from Supervised
Learning (SL) with online model selection methods (Li et al., 2023).
This suggests a promising direction for developing more robust solu-
tions to the PB problem. Future research directions include:

• Developing theoretical frameworks to better understand the
interaction between PB and other learning phenomena

• Creating more sophisticated architectural solutions that inher-
ently prevent the PB

• Investigating the role of optimization algorithms in mitigating
or exacerbating the bias (Asadi, Fakoor, and Sabach, 2024)

The ongoing research in this area has revealed the deep connections
between the PB and the fundamental aspects of neural network learn-
ing dynamics, suggesting that solutions to this challenge may have
broader implications for the field of DL as a whole.

3.2 network plasticity

Recent research (Achille, Rovere, and Soatto, 2018) has revealed in-
teresting parallels between biological and artificial neural networks,
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particularly in their capacity for plasticity (i.e. the ability to adapt and
learn from new experiences). This section examines the current under-
standing of plasticity in deep neural networks and its implications for
RL systems.

3.2.1 Critical Periods and Early Learning

A significant advancement in understanding neural network plasticity
came with the discovery that artificial neural networks exhibit crit-
ical periods during training, similar phenomena were observed in
biological systems (Achille, Rovere, and Soatto, 2018). These critical
periods represent time windows during which temporary learning
deficits can lead to permanent impairment of network capabilities.
The researchers demonstrated this by training convolutional neural
networks on CIFAR-10 with simulated visual deficits, finding that if
these deficits weren’t corrected within the first 40-60 epochs of the
training, the network’s final performance was severely compromised.

The mechanism underlying these critical periods has been linked
to the evolution of the FIM during training. Rather than increasing
monotonically, the FIM shows two distinct phases: an initial rapid
increase followed by a decrease, even as task performance continues
to improve (Achille, Rovere, and Soatto, 2018).

3.2.2 Plasticity Loss

As neural networks are trained over time, they typically experience a
gradual loss of plasticity, which manifests as a reduced ability to learn
new information effectively (Dohare et al., 2023). This loss of plasticity
is characterized by several key phenomena:

• An increase in the fraction of "dead" units in the network (i.e.
the activation of these units is 0)

• Growth in the average magnitude of network weights

• Decrease in the effective rank of the network’s representation

These changes suggest that the initial benefits provided by random
initialization are gradually lost as the network specializes (Dohare
et al., 2023). The loss of plasticity is particularly pronounced when the
relationship between inputs and prediction targets changes over time
(Lyle et al., 2023).

Several approaches have been proposed to maintain plasticity during
training. Traditional methods like L2-regularization and weight per-
turbation have shown some success in reducing plasticity loss, while
other common techniques like Adam optimization and dropout can
actually exacerbate the problem (Dohare et al., 2023). More recent



3.3 continual learning 22

research has identified that architectural choices which smooth out
the loss landscape, such as categorical output representations and nor-
malization layers, provide significant improvements to plasticity (Lyle
et al., 2023). Layer normalization, in particular, has been shown to
robustly improve performance across benchmarks without requiring
additional hyperparameter tuning.

In the context of DRL, plasticity loss presents unique challenges due to
the non-stationary nature of the framework. Plasticity loss can lead
to decreased sample efficiency and reduced asymptotic performance
(Juliani and Ash, 2024). Recent work has introduced "regenerative" reg-
ularization methods that have shown promise in mitigating plasticity
loss across various RL environments. These methods maintain net-
work parameters close to their initial distribution, rather than applying
intermittent interventions (Juliani and Ash, 2024).

A novel approach called Plasticity-Driven Sparsity Training (PlaD)
has emerged as a potential solution, particularly for sparse networks
in DRL contexts (Jiang et al., n.d.). PlaD incorporates memory reset
mechanisms and dynamic weight rescaling to maintain plasticity while
achieving performance comparable to dense models, even at sparsity
levels exceeding 90%.

3.3 continual learning

CL represents a crucial capability for Artificial Intelligence (AI) systems,
enabling them to acquire new knowledge while retaining previously
learned skills. This ability is particularly relevant for DRL systems
that must adapt to changing environments while maintaining their
existing capabilities.

One of the primary challenges in CL is catastrophic forgetting, where
neural networks abruptly lose knowledge of previously learned tasks
as they incorporate new information (Kirkpatrick et al., 2017). This
phenomenon presents a significant barrier to developing Artificial
General Intelligence (AGI), as the ability to learn tasks in succession
without forgetting is fundamental to adaptive behavior.

Taking inspiration from biological systems, specifically brain mech-
anisms of synaptic consolidation, researchers have developed ap-
proaches based on the FIM to address this challenge. In biological
systems, strengthened synapses can persist despite subsequent learn-
ing, allowing for long-term retention of task performance (Kirkpatrick
et al., 2017).

Several innovative solutions have emerged to address the CL chal-
lenges. Elastic Weight Consolidation (EWC) represents a significant
advancement, selectively reducing the plasticity of weights crucial for
previously learned tasks while enabling rapid learning of new tasks.
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This approach effectively prevents catastrophic forgetting by anchor-
ing parameters to previous solutions using a quadratic penalty, with
varying stiffness for weights important to different tasks (Kirkpatrick
et al., 2017).

Recent research has also explored weight-ensemble approaches, in-
troducing methods like Continual Model Averaging and Continual
Fisher-weighted Model Averaging . These techniques leverage both
plasticity and stability to maintain high performance across tasks
(Marouf et al., 2023). The emergence of large pre-trained models has
further enhanced these approaches, as good initial representations
facilitate learning with fewer training steps.

In the context of DRL, CL faces additional challenges beyond catas-
trophic forgetting. For example, negative transfer is a known issue,
where the learnability of a new task is significantly impacted by pre-
viously learned tasks (Sabatelli and Geurts, 2021; Ahn et al., n.d.) .
This issue is more drastic than conventional plasticity or capacity loss
problems and can result in complete failure to learn new tasks, even
when those tasks would be easily learnable from scratch.

To address these challenges, researchers have developed specialized
solutions like the Reset & Distill method. This approach maintains
separate online and offline actor networks, with the online actor
learning new tasks through environment interaction while the offline
actor distills knowledge from both the online actor and previous
expert policies (Ahn et al., n.d.). The method has shown impressive
results, achieving nearly 100% success rates across task sequences and
significantly outperforming traditional approaches like EWC.

The field of CL continues to evolve, with new solutions emerging to
address the complex interplay between retaining existing knowledge
and acquiring new skills. The development of these approaches is
crucial for creating more robust and adaptable AI systems, particularly
in DRL contexts.

3.4 the fisher information matrix

The FIM has emerged as a powerful tool in DL, providing crucial in-
sights into the geometry of the parameter space and serving as a
foundation for various optimization and analysis techniques. Under-
standing the FIM’s properties and applications is essential for develop-
ing methods to address learning biases and improve neural network
performance.

Research has revealed that the FIM exhibits universal statistics across
deep neural networks. Studies have shown that in the asymptotic case,
most FIM eigenvalues are close to zero, while the maximum eigenvalue
takes a significant value (Karakida, Akaho, and Amari, 2019). This
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characteristic implies that the parameter space landscape is locally flat
in most dimensions but significantly distorted in others, providing
crucial insights into the geometric structure of neural networks.

The early training phase of neural networks has been found to be par-
ticularly critical, with the trace of the FIM (Tr(F)) strongly correlating
with the final generalization performance. Research has demonstrated
that models with lower Tr(F)in the early training phase tend to achieve
better test accuracy (Jastrzebski et al., 2021). This finding suggests that
the local curvature of the loss surface during early training is predic-
tive of final generalization performance (Hochreiter and Schmidhuber,
1997).

3.4.1 Computational Approaches and Implementations

Given the computational challenges of working with the FIM in large
neural networks, various approximation methods have been devel-
oped. The Kronecker-factored Approximate Curvature approach pro-
vides an efficiently invertible approximation of the neural network’s
FIM (Martens and Grosse, 2015). This method approximates large
blocks of the FIM as the Kronecker product of two smaller matrices,
enabling practical implementation in modern DL systems.

Further developments have led to the Eigenvalue-corrected Kronecker-
Factored Eigenbasis , which introduces a diagonal variance approxi-
mation in a Kronecker-factored eigenbasis (George et al., 2018). This
approach has been shown to provide better approximations of the
FIM while maintaining computational efficiency. To make FIM compu-
tations more accessible in practice, tools like NNGeometry have been
developed, providing a unified interface for various linear algebra op-
erations involving FIM (George, 2021). These tools enable researchers
to implement FIM-based methods without the burden of complex
mathematical implementations.

3.4.2 Applications

The FIM has found significant applications in optimization through
natural gradient methods, which leverage the geometric structure of
the parameter space to improve learning dynamics. In DRL, natural
gradient methods have shown particular promise, demonstrating im-
proved performance by moving towards greedy optimal actions rather
than just better actions (Kakade, 2001).

Natural gradient descent has also been applied to improve generaliza-
tion in deep networks, with research showing that incorporating unla-
beled data can enhance generalization performance (Pascanu, 2013).
Recent work has extended these ideas to address out-of-distribution
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generalization through methods like Fishr, which enforces domain
invariance in gradient variances (Rame, Dancette, and Cord, 2022).
The FIM has also proven valuable in enhancing model interpretability.
Structural Neural Additive Models use the FIM to provide confidence
intervals and measure model uncertainty, demonstrating how FIM can
be leveraged to create more interpretable and reliable neural networks
(Luber, Thielmann, and Säfken, 2023).

These developments in FIM theory and applications provide a strong
foundation for developing new methods to address learning biases in
neural networks, particularly the PB in DRL. The deep understanding
of FIM’s properties and its successful applications in various aspects
of DL suggest its potential utility in developing targeted solutions for
bias mitigation.

3.5 machine unlearning

MU has emerged as a critical area of research in response to growing
privacy concerns and regulatory requirements such as the "right to
be forgotten." This field focuses on developing methods to selectively
remove the influence of specific training samples from trained models
without the need for complete retraining.

MU techniques can be broadly categorized into two main approaches:
data reorganization and model manipulation (Xu et al., 2023). Data
reorganization techniques focus on restructuring the training dataset
through methods such as data obfuscation, pruning, and replacement.
These approaches typically provide strong unlearning guarantees but
may suffer from accuracy degradation over repeated unlearning oper-
ations. In contrast, model manipulation techniques directly modify
model parameters to counteract the impact of specific training samples,
offering potentially more efficient solutions but often with limitations
on model complexity.

3.5.1 Selective Forgetting Approaches

Recent advances in MU have focused on developing methods that
can "scrub" network weights clean of information about specific train-
ing data (Golatkar, Achille, and Soatto, 2020b; Golatkar, Achille, and
Soatto, 2020a). These approaches incorporate information-theoretic
principles to provide stronger guarantees about forgotten informa-
tion, often utilizing the Neural Tangent Kernel to compute optimal
forgetting functions. The goal is to ensure that the forgetting process
extends beyond the model’s weights to include the final activations,
making it more robust against potential attacks. Such methods not
only provide theoretical guarantees on the amount of information that
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can be extracted per query about the forgotten data but also offer
practical implementations for secure and verifiable forgetting.

Interestingly, forgetting mechanisms have shown promise not only
for privacy concerns but also for improving model generalization.
The "Forget to Mitigate Overfitting" framework demonstrates that
incorporating random forgetting phases during training can help ad-
dress robust overfitting in deep neural networks (Ramkumar, Zonooz,
and Arani, 2024). This approach alternates between forgetting and
relearning phases, drawing inspiration from biological learning pro-
cesses. The development of MU techniques continues to evolve, with
newer methods focusing on balancing the trade-off between forgetting
effectiveness and maintaining model performance. The field faces on-
going challenges in developing universal unlearning schemes that can
scale to complex models while providing strong theoretical guarantees
about forgotten information (Xu et al., 2023).

This growing body of research in MU provides crucial insights and
methodologies for developing targeted approaches to address various
learning biases in neural networks.
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M E T H O D O L O G Y

This chapter presents the methodological framework for investigating
and addressing the Primacy Bias (PB) in Deep Reinforcement Learn-
ing (DRL). Our approach combines theoretical analysis with practical
implementation strategies, structured around three main components.
We begin by introducing a novel characterization of the PB through the
lens of the Fisher Information Matrix (FIM). This framework provides
quantitative metrics for identifying and measuring the phenomenon,
offering insights into how early experiences disproportionately influ-
ence learning trajectories. By tracking the evolution of FIM traces and
their derivatives, we establish clear indicators of the PB manifestation
across different learning phases. Building on this characterization,
we introduce Fisher-Guided Selective Forgetting (FGSF), a principled
approach to mitigating the PB. The method adapts techniques from
Machine Unlearning (MU) to the Reinforcement Learning (RL) context,
using FIM-based noise injection to selectively modify network weights.
We detail both the theoretical foundations of this approach and its
practical implementation within modern DRL architectures. The chap-
ter concludes with a comprehensive description of our experimental
framework. We outline our choice of environments, detailing their
varying complexities and challenges, and describe the implementation
details of both FGSF and baseline methods. This experimental design
enables systematic evaluation of the PB mitigation strategies across
different conditions and algorithmic configurations.

4.1 characterizing the primacy bias

Building upon the mathematical framework established in Chapter 2,
we employ the FIM as a diagnostic tool to characterize and analyze the
PB phenomenon. Our approach reveals that the PB manifests through
distinctive patterns in the information geometry of the learning pro-
cess, providing crucial insights into its underlying mechanisms. The
core of our characterization relies on tracking the trace of the FIM,
Tr(F), throughout the training process. Following Achille, Rovere,
and Soatto; Jastrzebski et al. , we identify a characteristic two-phase
pattern in Tr(F)that serves as a signature of the PB:

1. Memorization Phase: An initial rapid increase in Tr(F)during
early training. This phase is characterized by an exponential

27
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growth in Tr(F)values, high sensitivity to parameter updates,
intensive information acquisition from early experiences.

2. Reorganization Phase: A subsequent sharp decrease in Tr(F),
despite continued improvement in task performance. This phase
exhibits a gradual decline in Tr(F)values, reduced sensitivity to
new information, and a consolidation of learned patterns.

We quantify this pattern by tracking both the trace Tr(F)and its dif-
ferential throughout training. To compute the differential from the
inherently noisy FIM trace measurements, we employ the Savitzky-
Golay filter (Candan and Inan, 2014), which fits a polynomial of
degree k to a sliding window of size w to compute smooth derivatives.
Specifically, for a time series xt, the filter computes:

∆Tr(F)t =
m∑

i=−m

ciTr(F)t+i

where ci are the pre-computed Savitzky-Golay coefficients, and m =

(w− 1)/2 is the half-width of the window. This approach provides
robust derivative estimates even in the presence of measurement noise,
allowing us to reliably identify the transition between the memoriza-
tion and reorganization phases when the derivative changes sign from
positive to negative. A clear example of this characterization of the PB

can be seen in Figure 4.1

To complement the FIM analysis we also keep track of measurements
of network plasticity. Following Sokar et al.; Dohare et al. , for each
neuron i in layer ℓ, we compute its score:

sℓi =
Ex∈D|hℓi(x)|

1
Hℓ

∑
k∈hEx∈D|hℓk(x)|

where hℓi(x) denotes the activation of neuron i in layer ℓ under input
x, and Hℓ is the number of neurons in layer ℓ. A neuron is considered
τ-dormant if sℓi ⩽ τ. This metric provides insights into how network
capacity is utilized during learning and complements the FIM-based
analysis.

The characteristic FIM pattern has significant implications for learning
dynamics. During the memorization phase, high Tr(F)values indicate
that the network is highly sensitive to parameter updates, potentially
leading to rapid adaptation to early experiences. However, this same
sensitivity may cause the network to overfit to early experiences,
contributing to the PB. The subsequent decrease in Tr(F)during the
reorganization phase suggests a form of implicit regularization, where
the network consolidates learned information while becoming less
sensitive to new experiences. This reduced plasticity, while potentially
beneficial for stability, may hinder the network’s ability to adapt to new
information, thereby reinforcing the PB. This characterization through
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Figure 4.1: Example of the Primacy Bias characterization using the Tr(F)(blue)
and ∆Tr(F) (black). The shown curve represent the learning dy-
namics for the Soft Actor-Critic (SAC) algorithm on the Quadruped

and Swimmer environment respectively. From our definition the PB

is present in the Quadruped while it is not present in the Swimmer
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FIM analysis reveals that the PB is fundamentally connected to how
DRL networks process and store information during training. The clear
signature in the FIM trace provides a quantitative tool for identifying
and studying the phenomenon across different environments and
architectures.

4.2 fisher-guided selective forgetting (fgsf)

Our proposed method adapts the MU framework introduced in Go-
latkar, Achille, and Soatto; Golatkar, Achille, and Soatto to address
the PB in DRL. The core idea is to develop a principled approach to se-
lectively "scrub" information from neural networks while maintaining
performance on desired tasks.

Consider our dataset D = Dr ∪Df, where Dr represents the data we
want to retain and Df the data we want to forget. The challenge lies in
finding a scrubbing procedure S(w) that prevents an "attacker" from
extracting information about Df from the model parameters while
maintaining performance on Dr. This objective can be formalized
through the Forgetting Lagrangian:

L = ES(w)[LDr(w)] + λKL(P(S(w)|D)∥P(w|Dr))
Note that P(w|D) represent the distribution of possible weights ob-
tained after training on D using an optimization algorithm. In the
same fashion, P(S(w)|D) denotes the result of appling S on such distri-
bution. The first term ensures performance on retained data, while the
second term measures the information retained about the forgotten
data through the Kullback-Leibler divergence between the scrubbed
weight distribution and the distribution we would obtain by training
only on Dr. The hyperparameter λ controls this trade-off. Under a
quadratic approximation of the loss function and assuming gradient
flow optimization, we can derive the optimal scrubbing procedure
(Golatkar, Achille, and Soatto, 2020a):

S(w) = w−B−1∇LDr(w) + (λσ2)1/4B−1/4e

where B is the Hessian of the loss on retained data, e is standard Gaus-
sian noise, and σ2 represents the uncertainty in our approximation.
This formulation provides a theoretically grounded way to inject noise
that effectively removes information while minimizing performance
degradation. Computing the Hessian B for deep neural networks is
computationally intractable in practice. Therefore, we approximate it
using the empirical FIM, defined as:

FIM = Ex∼D,y∼p(y|x)[∇w logpw(y|x)∇w logpw(y|x)T ]
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This approximation is particularly suitable as it provides a series of
important guarantees described in Chapter 2. Moreover, it paves the
way for information-theoretic interpretation.

Our final algorithm, named FGSF, adapts this theoretical framework
to the DRL setting. Here, Dr represents the current batch of expe-
riences sampled from the replay buffer, while Df correspond to all
previously encountered trajectories. This interpretation aligns with
our goal of preventing early experiences from dominating the learning
process. The scrubbing procedure is applied periodically after the stan-
dard optimization step, making it compatible with any DRL algorithm
that uses experience replay. Specifically, after updating the network
parameters using the algorithm’s standard learning procedure, we
apply:

S(w) = w+ (λσ2)1/4FIM−1/4e, where e ∼ N(0, I)

Note that we omit the term B−1∇LDr
(w) from the original scrubbing

procedure for two key reasons. First, the standard optimization step
already performs a similar parameter update (without the Hessian
scaling which can be added trasforming the standard gradient descent
in a natural gradient descent). Second, unlike the original MU frame-
work where scrubbing is applied once post-training, our procedure
is applied periodically during training, due to RL dynamic nature,
making this correction term redundant. This modification makes the
procedure significantly more efficient while maintaining its core func-
tionality of selectively removing information through Fisher-guided
noise injection. The procedure can be seamlessly integrated into any
DRL algorithm that uses experience replay through the following steps:

1. Perform the standard optimization step using the algorithm’s
native update rule

2. Compute the empirical FIM using the current batch

3. Apply the scrubbing procedure to inject Fisher-guided noise

4. Continue with the next optimization step

For algorithms with multiple networks (e.g., actor-critic methods), the
procedure is applied independently to each network. The frequency
of scrubbing and the magnitude of forgetting (λ) provide tunable
parameters to balance between mitigating the PB and maintaining
learning stability. The scrubbing frequency and λ exhibit a fundamen-
tal interdependence: more frequent scrubbing necessitates smaller λ
values to maintain stability. This relationship is critical as it directly
impacts the balance between effective information removal and preser-
vation of learning dynamics. This approach preserves the theoretical
guarantees of the original framework while adapting it to the unique
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challenges of DRL, where the influence of early experiences needs to
be managed throughout the training process rather than removed in a
single post-training step. In the context of our SAC implementation,
we apply this procedure to both the value network Vθ(s) and policy
network πϕ(a|s). The scrubbing is performed every 10 optimization
steps, with the FIM computed using batches of trajectories from the
current policy.

To conclude, the FGSF algorithm provides both theoretical guaran-
tees through its connection to information geometry and practical
applicability through its efficient implementation in modern Deep
Learning (DL) architectures. The approach directly addresses the PB by
systematically removing the oversized influence of early training data,
while maintaining the network’s ability to learn from new experiences.

4.3 experimental setup

Our experimental investigation of the PB phenomenon builds upon
the foundational work of Nikishin et al., who first identified and
characterized this bias using the DeepMind Control Suite (DMC) envi-
ronments (Tassa et al., 2018). This choice of environments provides
several advantages for studying learning dynamics in DRL. First, the
environments span a wide range of complexity, from low-dimensional
control problems to high-dimensional locomotion tasks. Second, they
feature continuous state and action spaces, making them particularly
suitable for studying the nuanced effects of early learning on long-
term performance. Third, the standardized reward structure across
all environments, bounded in the interval [0, 1], facilitates meaningful
cross-task comparisons. The selected environments can be broadly
categorized into three groups based on their primary control chal-
lenges: basic control problems, locomotion tasks, and manipulation
tasks. Each environment is characterized by its state space S ∈ Rn,
action space A ∈ [−1, 1]m, and observation space O ∈ Rk. Table 4.1
summarizes these dimensions for each environment.

The state space S for each environment describes the complete physi-
cal state of the system. For the basic control tasks (Pendulum, Acrobot),
this includes joint angles θ and angular velocities θ̇. In locomotion
tasks, the state vector contains joint angles, angular velocities, center of
mass positions, and velocities. The action space A represents the con-
trol inputs, typically joint torques or forces, normalized to the interval
[−1, 1]. The observation space O provides the agent’s perception of the
environment, which may include additional derived quantities from
the raw state, such as end-effector positions or relative coordinates.
Let us examine each category in detail:
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Table 4.1: Environment Specifications

Environment dim(S) dim(A) dim(O) Category

Humanoid 54 21 67 Locomotion

Quadruped 48 12 64 Locomotion

Fish 26 5 24 Locomotion

Walker 18 6 24 Locomotion

Cheetah 18 6 17 Locomotion

Swimmer6 16 5 25 Locomotion

Hopper 14 4 15 Locomotion

Finger 6 2 12 Manipulation

Reacher 4 2 7 Manipulation

Acrobot 4 1 6 Basic Control

Pendulum 2 1 3 Basic Control

Figure 4.2: An example state from the Pendulum environment

Basic Control Tasks: The Pendulum and Acrobot environments rep-
resent fundamental nonlinear control problems. The Pendulum task,
with S ∈ R2, involves swinging up and stabilizing a pendulum using
only limited torque (specifically, 16 th of the torque required for static
lifting). The Acrobot, with S ∈ R4, extends this challenge to a double
pendulum system where only the second joint is actuated, requiring
non-trivial use of dynamic coupling for control.

Manipulation Tasks: The Reacher and Finger environments focus
on precise control for target reaching and object manipulation. The
Reacher task (S ∈ R4, A ∈ R2) involves controlling a two-link planar
arm to reach randomly placed targets, while the Finger task (S ∈ R6,
A ∈ R2) requires to control an object through contact dynamics.

Locomotion Tasks: This category includes a spectrum of complexity
in movement control. The Humanoid environment (S ∈ R54, A ∈ R21)
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Figure 4.3: An example state from the Finger environment

Figure 4.4: An example state from the Humanoid environment

represents the most complex system, requiring coordination of 21
joints to achieve stable bipedal locomotion. The state space includes
joint angles θi, velocities θ̇i, and center of mass information, while
actions correspond to joint torques τi. The Walker and Cheetah envi-
ronments provide intermediate complexity with planar bipedal sys-
tems. The Swimmer6 environment (S ∈ R16) offers a unique challenge
in fluid dynamics, where the agent must coordinate multiple joints in
a simulated fluid environment.

All environments are implemented using the MuJoCo physics engine,
ensuring consistent physical simulation across tasks. Episodes are
structured with a fixed length of 1000 time steps, and no terminal
states are defined (infinite-horizon formulation). The reward functions
are designed to promote the desired behavior while maintaining in-
terpretability across tasks. This standardization facilitates meaningful
comparison of learning dynamics across different environments.
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For our algorithm implementation, we employ the SAC framework.
This choice was driven by SAC’s effectiveness in continuous control
tasks and its off-policy nature. Moreover, this is the algorithm of
choice of previous work (Nikishin et al., 2024; Sokar et al., 2023;
Haarnoja et al., 2018a; Haarnoja et al., 2018b; Jiang et al., n.d.). To
ensure reproducibility and facilitate fair comparison with baseline
approaches, we maintain the default hyperparameters as specified
in the original SAC paper, only modifying specific parameters when
explicitly studying their effects on the PB.

We conduct a comprehensive empirical evaluation of FGSF across mul-
tiple experimental settings. Here, we detail the experimental configu-
rations, hyperparameters, and motivations for each set of experiments.
All experiments were performed using the aforementioned environ-
ments. Each experiment was conducted on a subset of environments,
selected based on two criteria: (1) phenomenon relevance, as simpler
environments may not exhibit significant PB effects, and (2) computa-
tional feasibility, as some experiments require extensive resources for
multiple runs and configurations. This selective approach allows for a
focused analysis of the method’s effectiveness where the phenomenon
is most pronounced while maintaining computational tractability.

4.3.1 Baseline Comparison

Our first investigation aims to establish the effectiveness of FGSF

against both standard implementations and current state-of-the-art
solutions for addressing PB. We implement three configurations: a
baseline SAC implementation (Haarnoja et al., 2018a), SAC with peri-
odic network reset following (Nikishin et al., 2022), and SAC with our
proposed FGSF method. The baseline SAC implementation follows the
hyperparameters selected by Haarnoja et al., using a learning rate of
3× 10−4, discount factor γ of 0.99, and target smoothing coefficient
τ of 0.005. The replay buffer size is set to 106 with a batch size of
256. For the reset method, we follow Nikishin et al. in resetting the
networks every 2× 105 environment steps. Our FGSF implementation
performs scrubbing every 10 optimization steps with a coefficient λ of
5× 10−7.

4.3.2 Network Component Analysis

To better understand the mechanisms underlying PB, we investigate the
different impact of applying FGSF to different network components.
This analysis compares the effectiveness of applying scrubbing to
the critic network alone versus applying it to both actor and critic
networks. The experiment maintains identical SAC hyperparameters
to the baseline comparison.
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4.3.3 Hyperparameter Sensitivity

The practical viability of FGSF depends significantly on its robustness
to hyperparameter choices. We conduct a systematic evaluation of
FGSF across different scrubbing coefficients, ranging from 5× 10−6 to
5× 10−9 in order-of-magnitude steps. The experiment maintains all
other parameters constant from the baseline comparison to isolate the
effect of the scrubbing coefficient.

4.3.4 Replay Ratio Impact

The investigation of replay ratio effects represents a crucial element
of our experimental framework, as it directly addresses one of the
most significant practical implications of PB identified in the original
work by Nikishin et al. Replay ratio, the number of gradient updates
performed per environment step, has been shown to be a critical
factor in the manifestation and severity of PB. Higher replay ratios,
while theoretically beneficial for sample efficiency, can dramatically
amplify the impact of early experiences, potentially leading to severely
suboptimal learning outcomes. To examine this critical aspect, we
evaluate FGSF’s effectiveness under increasingly challenging conditions
by testing with replay ratios of 2 and 4. The experiment compares
FGSF against both the reset method and baseline approach, with target
network update frequency adjusted proportionally to the replay ratio
to maintain consistent learning dynamics.

4.3.5 Noise Type Analysis

To isolate the specific contribution of FIM in guiding the noise injection
process, we conduct a comparative analysis between FGSF and simple
Gaussian noise injection. The Gaussian noise variant uses zero mean
and variance equal to the mean of the network parameters, with
injection frequency matched to FGSF. This comparison maintains
all other parameters identical to the baseline comparison, allowing
us to directly assess the value of Fisher-guided noise over simpler
alternatives.

All experiments are evaluated over 5 random seeds, with performance
tracked through both final return and learning curves. Moreover,
for all the experiments we monitor the FIM trace and differential to
characterize the PB phenomenon as well as the number of dormant
neuron. For study 4.3.1,4.3.5 all the environments were tested while for
study 4.3.2,4.3.3,4.3.4 only the Humanoid and Quadruped environments
were tested since they have the strongest PB. This comprehensive
evaluation provides insights into both the effectiveness of FGSF and
the nature of PB itself.
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R E S U LT S A N D D I S C U S S I O N

This chapter presents a comprehensive empirical evaluation of the
Fisher-Guided Selective Forgetting (FGSF) method and its effectiveness
in addressing the Primacy Bias (PB) in Deep Reinforcement Learning
(DRL). Our analysis is structured around five main investigations,
each providing distinct insights into the method’s capabilities and
limitations.

We begin with a comparative analysis of FGSF against baseline ap-
proaches, examining both performance metrics and underlying learn-
ing dynamics through the lens of Fisher Information Matrix (FIM).
This is followed by an investigation of network component specificity,
revealing the different impact of selective forgetting on actor and critic
networks. We then present a detailed robustness analysis, exploring
the method’s sensitivity to key hyperparameters and its behavior un-
der varying replay ratios. The chapter concludes with two crucial
practical considerations: an ablation study comparing FGSF against
simpler noise injection approaches, and an analysis of computational
overhead. Throughout these investigations, we maintain focus on
three key aspects: performance improvement, learning stability, and
theoretical consistency with the framework developed in Chapter 2.

Each section combines quantitative performance metrics with detailed
analysis of learning dynamics through FIM traces, network plasticity
measurements, and parameter update characteristics. This multi-
faceted evaluation provides insights into not just how well FGSF works,
but why it works, offering both practical guidance for implementation
and theoretical understanding of the PB mitigation.

5.1 comparative analysis of fisher-guided selective for-
getting

5.1.1 Performance Comparison

The empirical evaluation of FGSF against baseline Soft Actor-Critic
(SAC) and the reset method reveals distinct performance patterns
across different environment complexities. The results demonstrate
that the effectiveness of the PB mitigation techniques varies consider-
ably with task complexity and dimensionality.

37
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In high-dimensional locomotion tasks, particularly the Humanoid and
Quadruped environments, FGSF demonstrates substantial improvements
in both final performance and learning stability. For the Humanoid envi-
ronment, FGSF achieves a mean return of 150± 15, representing a 50%
improvement over baseline SAC (95± 10) and a 25% improvement over
the reset method (120± 20). Similarly, in the Quadruped environment,
FGSF reaches a final performance of 850± 30, compared to 650± 25
for baseline and 780± 35 for the reset method.

For medium-complexity environments such as Walker and Cheetah,
the performance gap narrows but remains present. FGSF and baseline
SAC achieve comparable final performance (approximately 830± 20 for
Cheetah), but FGSF demonstrates superior sample efficiency, reaching
90% of maximum performance approximately 2× 105 steps earlier
than the baseline.

Interestingly, in simpler environments like Pendulum and Reacher, all
methods achieve similar final performance. However, FGSF maintains
more consistent learning progress without the characteristic perfor-
mance drops observed in the reset method. This suggests that even
in less complex tasks, FGSF’s continuous adaptation approach offers
advantages over periodic reset strategies. Lastly, for the Acrobot en-
vironment, both reset and FGSF do not learn. This might be due to
the relative high values of the hyperparameters which disrupts the
learning process such simple environment.

The Swimmer environment presents a unique case where performance
differences between methods are minimal, with all approaches achiev-
ing similar final returns (350± 30). This exception might be attributed
to the environment’s specific dynamics, where the PB appears to have
less impact on learning outcomes.

A notable observation across all environments is the trade-off between
stability and performance in the reset method. While periodic resets
eventually achieve competitive performance, they introduce significant
temporary degradation in policy performance, visible as sharp drops
in the learning curves every 2× 105 steps. FGSF, in contrast, main-
tains more stable learning trajectories while achieving comparable or
superior final performance.

Sample efficiency analysis reveals that FGSF consistently requires fewer
environment interactions to reach performance thresholds. Defining
the learning speed as the number of steps required to reach 90% of
final performance, FGSF demonstrates a 20− 30% reduction in required
samples compared to baseline SAC across complex environments. This
improvement is particularly pronounced in the early learning phase
(first 2× 105 steps), where FGSF’s guided exploration appears to be
more effective at identifying promising policies.
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Figure 5.1: Learning curves showing episode returns across different envi-
ronments for baseline SAC (gold), reset method (teal), and FGSF
(red). Shaded regions represent the minimum and maximum over
5 random seeds. The x-axis shows environment steps (×105) and
the y-axis shows normalized returns.
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5.1.2 Primacy Bias Characterization

Analysis of the FIM traces reveals distinct patterns that characterize the
PB phenomenon and its mitigation across different methods and envi-
ronments. The evolution of Tr(F)throughout training provides crucial
insights into how information is accumulated and processed in both
actor and critic networks. In the baseline SAC implementation, both
actor and critic networks exhibit a characteristic two-phase pattern the-
oretically predicted in Section 4.1. The memorization phase manifests
as a sharp initial increase in Tr(F), reaching peak values of approxi-
mately 106 for critics and 105 for actors in complex environments like
Humanoid and Quadruped. This is followed by a reorganization phase
marked by a gradual decline in Tr(F), settling at values roughly an
order of magnitude lower than the peak. This distinctive behavior
represent the PB as highlighted in Section 4.1. FGSF demonstrates a
clear impact on the FIM evolution:

• For critic networks, it maintains substantially lower Tr(F)values
(typically 104-105) compared to baseline (105-106)

• Actor network traces under FGSF show reduced peak magnitudes
and faster stabilization.

• The ratio between critic and actor FIM traces (Tr(Fcritic)/Tr(Factor))
remains more consistent throughout training, averaging 2-3
times lower than in baseline SAC. This highlights the close
relationships between the two networks during training.

The FGSF’s regulation of these learning phases leads to enhanced
performance, aligning with Jastrzebski et al.’s findings that reduced
Tr(F)values during early training correlates with improved generaliza-
tion capability. This relationship between FIM trace magnitude and
generalization performance supports Hochreiter and Schmidhuber
seminal work on flat minima, suggesting that FGSF guides the network
toward more robust solutions in parameter space.

The reset method produces characteristic discontinuities in both actor
and critic FIM traces every 2× 105 steps. Post-reset recovery patterns
differ notably between networks. The critic networks show rapid
recovery with sharp initial slopes, often overshooting pre-reset trace
values. The actor networks exhibit more gradual recovery, typically re-
turning to pre-reset levels. This asymmetric recovery pattern suggests
that critic networks exhibit greater susceptibility to the PB compared
to actor networks. The critic’s rapid post-reset dynamics, character-
ized by sharp overshooting of pre-reset values, indicates a stronger
tendency to overfit to early experiences. This observation aligns with
Lyle et al. findings on the impact of early training phases on value
estimation.
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Environment complexity significantly influences FIM dynamics and
therefore the PB. In the Humanoid environment, baseline critic Tr(F)peaks
at 2.1× 106, while FGSF maintains values below 5× 105. Conversely,
in simpler environments where the PB is less present or absent, like
Pendulum, the difference between methods is less pronounced.

These FIM patterns provide quantitative evidence that FGSF success-
fully moderates the information accumulation process, preventing
the early-stage overemphasis characteristic of the PB. The controlled
growth in FIM traces correlates with improved learning outcomes,
particularly in complex environments where the PB effects are most
pronounced. This analysis supports the theoretical framework devel-
oped in Chapter 2, demonstrating how information geometry metrics
can effectively characterize and guide bias mitigation strategies.

5.1.3 Update Magnitude Analysis

Further insight into FGSF’s superior stability comes from analyzing
the local parameter changes during training. By measuring the KL
divergence between the network weight distributions before and after
weight updates (local delta), we observe distinctive patterns across en-
vironments. In complex environments like Humanoid and Quadruped,
FGSF maintains consistently lower update magnitudes throughout
training, with notably smoother trajectories compared to baseline ap-
proaches. The local delta for FGSF typically stabilizes around 0.5-0.7,
while baseline methods show higher values and more pronounced
spikes, particularly during critical learning phases. The Walker envi-
ronment demonstrates similar patterns, though with smaller absolute
differences. Interestingly, the Cheetah and Swimmer environments
show periodic spikes in local delta that correspond to significant pol-
icy updates, but FGSF maintains better stability between these events.
In simpler environments like Reacher and Acrobot, the difference
in update magnitudes is less pronounced, though FGSF still exhibits
more consistent behavior. This analysis suggests that FGSF’s improved
performance stems partly from its ability to maintain more controlled
parameter updates throughout training, preventing the destabiliz-
ing effects of large policy changes while still allowing for effective
learning.

5.1.4 Neural Plasticity Analysis

Analysis of dormant neuron dynamics reveals clear differences in
network utilization across methods and environments. In baseline SAC,
critic networks exhibit a consistent increase in dormant neuron fraction
over time, particularly pronounced in complex environments. The
Quadruped environment shows a steady rise from 2% to approximately
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Figure 5.2: Evolution of FIM trace (Tr(F)) for actor networks across environ-
ments. Results compare baseline SAC (gold), reset method (teal),
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6% dormant neurons, while the Humanoid critic reaches peaks of 8%
before stabilizing around 4%. This progressive loss of active neurons
correlates strongly with the stabilization of the Tr(F)values observed in
Section 5.1.1, suggesting a connection between the indentified learning
phases and network plasticity.

During the memorization phase, the fraction of dormant neurons
maintains relatively low and stable values across all environments.
The reorganization phase, however, exhibits environment-dependent
behavior: high-performing environments show a linear increase in
dormant neurons, while environments with low to medium returns
maintain stable fractions. Notably, our analysis reveals no consistent
correlation between task performance and dormant neuron fraction
across different environments. The reset method consistently main-
tains the lowest fraction of dormant neurons, an expected outcome
given its periodic reinitialization of network parameters. FGSF either
matches or exceeds the baseline SAC in terms of dormant neuron
fraction, despite achieving superior performance.

These findings challenge the ideas presented in Sokar et al.’s work on
recycling dormant neurons , suggesting that the fraction of dormant
neurons may not serve as a reliable indicator of performance in DRL

systems. This disconnect between neural utilization and task perfor-
mance highlights the complex relationship between network capacity
and learning effectiveness.

5.2 impact of network component scrubbing

5.2.1 Performance Analysis

Our investigation into the differential effects of selective scrubbing
demonstrates that the PB affects actor and critic networks asymmet-
rically. In higher-dimensional locomotion tasks like Humanoid and
Quadruped, critic-only scrubbing shows comparable or slightly bet-
ter performance compared to full network scrubbing. This suggests
that the critic network may be more susceptible to the PB in these
complex environments. For instance, in the Humanoid environment,
critic-only scrubbing achieves more stable learning with fewer per-
formance drops compared to full network scrubbing, which exhibits
occasional instability.

In simpler environments like Pendulum and Reacher, the difference
between critic-only and full network scrubbing is minimal, confirm-
ing that the PB is less pronounced in these lower-dimensional tasks.
However, in more complex environments like Walker and Cheetah,
critic-only scrubbing shows improved stability in the later stages of
training.
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Overall, Critic-only scrubbing generally results in smoother learn-
ing curves with fewer oscillations, while full network scrubbing can
sometimes lead to increased variance in performance, as seen in the
Humanoid environment.

These findings suggest that the critic network plays a crucial role in the
manifestation of the PB, aligning with the theoretical understanding
that value estimation errors early in training can disproportionately
affect subsequent policy updates (Lyle et al., 2022). The reduced perfor-
mance variability with critic-only scrubbing indicates that maintaining
the actor network’s stability while selectively addressing bias in the
critic might be an optimal strategy for complex continuous control
tasks. This analysis provides strong evidence that the PB affects differ-
ent components of the actor-critic architecture asymmetrically, with
the critic network being particularly susceptible to early experience
bias in complex environments. This insight has important implica-
tions for the design of future DRL algorithms, suggesting that targeted
interventions focused on the critic network might be more effective
than uniform approaches across all network components.

5.2.2 Mechanistic Understanding

The FIM trace analysis provides compelling evidence for the superior
effectiveness of critic-only scrubbing compared to full network inter-
vention. This analysis strengthens our understanding of how the PB

manifests asymmetrically across different network components, as
initially observed in our performance studies.

Examining Tr(F)patterns across environments reveals that critic-only
scrubbing achieves more effective regularization of information flow
during early training phases. The resulting stabilized Tr(F)values are
consistently lower for both critic and actor networks compared to full
network scrubbing, suggesting enhanced generalization capabilities as
theorized by Jastrzebski et al. A particularly noteworthy finding is that
critic-only scrubbing achieves comparable, and in some cases supe-
rior, regularization of Tr(Factor) compared to full network scrubbing,
despite not directly manipulating actor parameters. This observation
underscores the critic network’s central role in the PB development
and its influence on overall learning dynamics.

The relationship between FIM patterns and network behavior provides
strong empirical support for our theoretical framework developed
in Chapter 2. The FIM proves particularly valuable as a diagnostic
tool for understanding the different impact of the PB across network
components. A striking observation is the order-of-magnitude dif-
ference in Tr(F)values between critic and actor networks, revealing
fundamentally different operating regimes in parameter space. This
asymmetry can be attributed to the critic’s role in value estimation,
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Figure 5.6: Comparison of learning curves between critic-only scrubbing (red)
and full network scrubbing (teal) for the different environments.
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which requires capturing complex state-value relationships early in
training with only few examples. The higher Tr(F)values observed
in critic networks indicate operation in more curved regions of the
parameter space during early learning phases, making them particu-
larly susceptible to the PB, as predicted by our theoretical analysis in
Section 2.2.

This geometric interpretation of learning dynamics through FIM analy-
sis not only explains the effectiveness of critic-only scrubbing but also
provides insights into the fundamental nature of the PB in actor-critic
architectures. The critic network’s operation in high-curvature regions
of parameter space during critical early learning phases makes it par-
ticularly vulnerable to premature specialization, thereby acting as a
primary conduit for the PB in the overall learning system.

5.3 robustness analysis

5.3.1 Hyperparameter Sensitivity

The analysis of FGSF’s hyperparameter sensitivity demonstrates that
while the method’s effectiveness depends on the scrubbing coefficient
λ, it maintains robust performance across a substantial range of val-
ues. The analysis centers on the scrubbing coefficient λ, examining
its impact across multiple orders of magnitude (5× 10−6 to 5× 10−8).
This systematic evaluation demonstrates that while FGSF’s effective-
ness depends on λ, the method exhibits robust performance across a
substantial range of values.

The relationship between λ and learning dynamics follows a clear
pattern. Larger coefficients (5× 10−6) induce aggressive forgetting,
manifesting as increased trajectory variability and, in some cases,
learning disruption. Smaller coefficients (5× 10−8), while promoting
stability, may inadequately address the PB. Intermediate values, par-
ticularly 5× 10−7, consistently achieve an optimal balance between
learning stability and bias mitigation.

FIM trace analysis provides deeper mechanistic insights into these
effects. While larger coefficients achieve stronger trace regulariza-
tion, this doesn’t necessarily correlate with improved performance.
This observation highlights a crucial principle: excessive reduction
in Tr(F)can disrupt the natural progression between learning phases.
Specifically, if traces are suppressed too strongly during the memo-
rization phase, networks struggle to transition into the reorganization
phase, compromising learning effectiveness.

Surprisingly, environment complexity exhibits minimal influence on
optimal λ values, likely because the FIM inherently captures task-
specific information in the scrubbing procedure. However, simpler
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Figure 5.7: Actor network FIM trace evolution comparing critic-only scrub-
bing (red) versus full network scrubbing (teal) for different envi-
ronments. Results demonstrate that critic-only scrubbing achieves
effective regularization of actor network dynamics even without
direct intervention.
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Figure 5.8: Critic network FIM trace evolution under critic-only scrubbing
(red) versus full network scrubbing (teal) for different environ-
ments. The traces show stronger regularization effects in critic-
only scrubbing.
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environments show slightly better performance with lower λ values,
suggesting potential for refinement in the scrubbing procedure to
achieve more uniform effectiveness across environment complexities.

The FIM trace patterns serve as practical indicators for hyperparameter
tuning. Rapid Tr(F)oscillations indicate the need for coefficient re-
duction, while inadequate post-memorization phase decline suggests
insufficient λ values. Optimal settings typically maintain smooth tran-
sitions between learning phases while preserving the characteristic
two-phase pattern identified in Section 4.1.

For practical implementation, we recommend:

1. Initial λ value of 5× 10−7

2. Monitoring both actor and critic FIM traces during early training

3. Adjusting λ based on observed learning stability and task char-
acteristics

4. Using trace patterns as diagnostic tools for parameter refinement

These findings demonstrate that while FGSF exhibits sensitivity to the
scrubbing coefficient, it maintains stability across a practical range
of values. The clear relationship between FIM traces and learning
outcomes provides a principled framework for parameter tuning,
enhancing the method’s applicability across diverse reinforcement
learning tasks. This robustness to hyperparameter selection, combined
with clear optimization guidelines, makes FGSF a practical tool for
addressing the PB in real-world applications.

5.3.2 Replay Ratio Impact

The interaction between replay ratio and the PB provides a critical test
of FGSF’s robustness. Our investigation examines FGSF’s effectiveness
under elevated replay ratios (2 and 4), comparing against baseline
SAC and the reset method to understand how different approaches
handle the challenges of increased experience reuse. At replay ra-
tio of 4, the performance differences between methods become stark.
Baseline SAC shows significant performance deterioration, achieving
only ≈ 600 reward points with substantial variance. The reset method,
while showing better average performance, exhibits characteristic in-
stability coinciding with reset events. FGSF, in contrast, maintains
consistent performance around ≈ 800 reward points with markedly
lower variance, demonstrating both superior initial learning rates and
better asymptotic performance. A replay ratios of 2.0 yield improved
stability across all methods, though FGSF retains its performance ad-
vantage with a narrower margin. The performance disparity between
ratios 2.0 and 4.0 in baseline implementations reveals how increased
replay amplifies the PB effects. While the reset method shows reduced
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performance drops at lower ratios, it retains the periodic instabilities
inherent to discrete intervention strategies.

FIM trace analysis reveals an unexpected pattern: despite FGSF’s su-
perior performance in terms of returns, it achieves less effective trace
regularization compared to previous experiments. This observation,
combined with our hyperparameter sensitivity findings, suggests that
higher λ values might further improve performance under elevated
replay ratios. This aligns with the intuition that increased replay
frequencies amplify the PB, potentially requiring stronger forgetting
mechanisms for optimal performance.

The interaction between replay ratio and forgetting mechanisms illu-
minates several key patterns: First, FGSF’s selective forgetting becomes
increasingly vital at higher replay ratios, effectively preventing the
cascade of early experience amplification. Second, the continuous
nature of FGSF provides fundamental advantages over discrete reset
approaches, particularly in managing the accelerated memorization
phase characteristic of high replay ratios. Lastly, the method’s effec-
tiveness scales proportionally with replay ratio, providing stronger
mitigation precisely when needed most.

These findings have significant practical implications. FGSF enables
the use of higher replay ratios without the typical performance degra-
dation, enhancing sample efficiency in DRL applications. The method
effectively decouples the traditional trade-off between replay ratio
and stability, with its effectiveness automatically scaling to match in-
creased replay frequencies. The relationship between replay ratio and
FIM patterns provides strong support for our theoretical framework
developed in Chapter 2. Higher replay ratios distinctly increase FIM

magnitude during the memorization phase, making effective man-
agement of early learning dynamics crucial for performance. The
Tr(F)patterns observed under different replay configurations validate
our theoretical model while providing practical guidance for FGSF

implementation across various learning scenarios.

5.4 ablation study : fisher vs . gaussian noise

To evaluate the importance of Fisher-guided noise injection, we con-
duct a comparative analysis between FGSF and a simpler Gaussian
noise approach. The Gaussian noise variant samples perturbations
from ϵ ∼ N(0, 0.001µ), where µ represents the mean of network pa-
rameter values. While multiple noise formulations were possible, this
simple implementation provides a clear baseline for assessing whether
structured, Fisher-guided noise offers substantial advantages over
basic stochastic perturbation.
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Figure 5.11: Performance comparison and FIM trace evolution under different
replay ratios (2 left column and 4 right column) for baseline
SAC , reset method, and FGSF. Higher replay ratios amplify the
differences between methods.

In complex environments like Humanoid and Quadruped, FGSF demon-
strates modest performance improvements over Gaussian noise while
achieving significantly more stable learning trajectories. The Gaus-
sian approach, though effective, exhibits higher performance variance,
particularly in the Humanoid environment. This stability gap widens
with increasing task dimensionality, suggesting that Fisher-guided
structure becomes more valuable in complex parameter spaces. The
performance difference narrows in simpler environments such as
Reacher and Pendulum, where both methods achieve similar final re-
turns. However, FGSF maintains advantages in learning speed and
stability, though these benefits appear less critical in low-dimensional
tasks.

Stability analysis reveals consistent patterns across environments: FGSF

produces smoother learning curves, while Gaussian noise injection
leads to higher episode return variance, more frequent performance
degradation, and less predictable learning trajectories. This stability
advantage becomes more pronounced with increasing task complexity,
indicating that Fisher-guided noise enables more efficient parameter
space exploration.

Learning dynamics show similar patterns, with FGSF achieving more
consistent progress compared to the Gaussian approach’s variable
learning rates and convergence patterns. FGSF exhibits superior ro-
bustness across different random seeds and better handles challeng-
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ing dynamics, particularly evident in the Humanoid’s coordination
requirements, Quadruped’s balance constraints, and Hopper’s discon-
tinuous state spaces. FIM trace analysis reveals minimal distinctions
between approaches, reflecting their comparable performance in most
environments. The notable exception is the Quadruped environment,
where FGSF achieves superior performance. In this case, the Gaussian
method’s over-regularization of the trace corresponds with reduced
performance, consistent with our previous hyperparameter sensitivity
findings. These results yield two significant insights. First, while the
geometric information captured by the FIM provides advantages for the
PB mitigation, particularly in complex environments, simpler noise in-
jection methods can still offer meaningful improvements over baseline
approaches. Second, and perhaps more importantly, the effectiveness
of both methods suggests that the PB phenomenon may be funda-
mentally linked to optimization dynamics, as proposed in Dohare
et al.’s work on continual backpropagation. While FGSF provides an
effective mitigation strategy, future work targeting core optimization
algorithms might yield even more substantial improvements.

5.5 computational considerations

While FGSF demonstrates clear benefits for addressing the PB, it’s
important to consider its computational overhead across different en-
vironments. Analysis of training time reveals environment-specific
patterns in computational requirements. In high-dimensional envi-
ronments like Humanoid and Quadruped, FGSF shows an approximately
15− 20% increase in cumulative update time compared to baseline
SAC. This overhead remains relatively consistent throughout train-
ing, as evidenced by the parallel slopes in the timing curves. The
Walker environment show similar patterns, with FGSF requiring about
15% additional computation time. Interestingly, the computational
overhead appears more pronounced in complex locomotion tasks
compared to simpler environments. For instance, in the Reacher and
Pendulum environments, the additional computational cost is reduced
to approximately 10− 12%. This suggests that the FIM computation
overhead scales reasonably well with environment complexity. The
cumulative training times show linear growth across all environments,
indicating that the computational overhead remains stable throughout
the training process. This predictable scaling makes it easier to budget
computational resources for FGSF implementation. Notably, while the
reset method shows minimal computational overhead (≈ 2− 3%), its
periodic performance disruptions often require longer training times
to achieve comparable results. This moderate increase in computa-
tional cost should be weighed against FGSF’s significant improvements
in learning stability and final performance. For many applications,
particularly in complex environments where FGSF shows the great-
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Figure 5.12: Performance comparison between FGSF and Gaussian noise
injection across different environments. Both methods show
improved performance over baseline.
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est benefits, the enhanced sample efficiency and improved learning
outcomes likely justify the additional computational investment.
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6
C O N C L U S I O N

This thesis has achieved its primary objectives of analyzing the Primacy
Bias (PB) phenomenon in Deep Reinforcement Learning (DRL), explor-
ing its relationship with the Fisher Information Matrix (FIM), and
developing an effective mitigation strategy. Through our investigation,
we have demonstrated that the FIM provides both a theoretical frame-
work for understanding the PB and a practical tool for its mitigation
through our novel Fisher-Guided Selective Forgetting (FGSF) approach.
Our comprehensive analysis has fulfilled our initial aims by: char-
acterizing the PB through FIM patterns, establishing the connection
between information geometry and learning dynamics, developing an
FIM-based mitigation mechanism, and demonstrating its effectiveness
compared to existing methods.

Our analysis reveals that the PB manifests through distinctive patterns
in the information geometry of the learning process, characterized by
a two-phase evolution in the FIM trace. The initial memorization phase,
marked by rapid growth in Tr(F), creates a critical period where early
experiences disproportionately influence the learning trajectory. The
subsequent reorganization phase, identified by declining Tr(F)values,
often locks in these early biases while reducing the network’s plasticity.

FGSF addresses this challenge by leveraging the geometric structure
of the parameter space to selectively modify network weights. Our
results demonstrate that this approach successfully maintains the
beneficial aspects of early learning while preventing the oversized
influence of initial experiences. The method’s effectiveness scales
with task complexity, showing particular promise in high-dimensional
environments where the PB is most pronounced.

Several key findings emerge from our investigation:

1. The asymmetric impact of the PB on actor and critic networks,
with critic-only scrubbing often outperforming full network in-
tervention

2. The robust performance of FGSF across different replay ratios,
suggesting its utility in improving sample efficiency

3. The surprising effectiveness of even simple noise injection meth-
ods, indicating that the underlying optimization dynamics play
a crucial role in the PB

63
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These results suggest broader implications for DRL algorithm design.
The success of geometric approaches in addressing learning biases
points toward the importance of considering information flow and
parameter space structure in algorithm development. The clear rela-
tionship between FIM patterns and learning outcomes provides new
tools for analyzing and improving DRL systems.

However, our work also reveals important limitations and areas for
future research. The computational overhead of FIM computation re-
mains a practical concern, particularly for large-scale applications. The
relationship between network capacity, as measured through dormant
neurons, and the PB requires further investigation. Additionally, the
effectiveness of simpler noise injection methods suggests that alter-
native approaches targeting core optimization dynamics might yield
complementary benefits.

Based on our extensive empirical evaluation, we provide concrete
recommendations for implementing FGSF in practice. We recommend
initializing λ at 5× 10−7, monitoring both actor and critic FIM traces
during early training phases, and adjusting λ based on observed learn-
ing stability and specific task requirements. The FIM trace patterns
serve as valuable diagnostic tools for parameter refinement, with rapid
oscillations indicating the need for coefficient reduction and inade-
quate post-memorization decline suggesting insufficient λ values.

Future work might explore adaptive scrubbing strategies that dynam-
ically adjust based on FIM patterns, integration with other bias miti-
gation techniques, and extension to more complex architectures and
multi-agent systems. The theoretical framework developed here may
also provide insights into related challenges in Deep Learning (DL),
such as catastrophic forgetting and curriculum learning.

In conclusion, this thesis advances our understanding of the PB while
providing practical tools for its mitigation. The geometric perspective
offered by the FIM opens new avenues for analyzing and improving
DRL systems, contributing to the development of more robust and
efficient learning algorithms.
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