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Abstract

The present paper provides an alternative proof of an Extreme Value Law for
a stochastic process obtained by iterating the tent map, originally established by
George Haiman (2003). The proof closely follows the methodology employed by
N.B. Boer and A.E. Sterk (2021) in their work on a similar result for the Rényi
map. This approach not only gives an alternative proof of the original theorem
but also extends the understanding of connections between extreme value laws and
recursive sequences in dynamical systems.
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1 Introduction and aim of the paper

Chaotic iterative maps on an interval form a significant subclass of examples within the
broader study of chaotic dynamical systems. The trajectories they produce, despite being
entirely deterministic when given an initial value, exhibit behavior that closely resembles
that of a classical random process. Only a few chaotic iterative maps are mathemat-
ically tractable, among which an important subclass consists of functions defined by
fv(x) = 1 − |2x − 1|v, where x ∈ [0, 1] and v > 0. These maps have been extensively
studied, particularly in relation to their invariant distribution—specifically, the distribu-
tion of a random variable X0 with values in [0, 1] such that X1 = fv(X0) has the same
distribution [3].

In the present paper, we are concerned with the particular case v = 1, also called the
“tent map”, where

f(x) = 1− |2x− 1|, x ∈ [0, 1].

Let X0 ∼ U(0, 1) and define the tent map process by

Xm+1 = 1− |2Xm − 1|, m ≥ 0. (1)

Moreover, let
Mn := max(X0, . . . , Xn−1).

Extreme value theory for a sequence of i.i.d. random variables (Xi)
∞
i=0 examines the

asymptotic behavior of the partial maximum Mn as n → ∞. Since the distribution of
Mn becomes degenerate in the limit, it is necessary to apply a rescaling. Under suitable
conditions, there exist sequences an > 0 and bn ∈ R such that the rescaled maximum,
an(Mn − bn), has a non-degenerate limiting distribution [1, 4].

Consider a simple example where the random variables Xi ∼ U(0, 1) are independent.
Let an = n and bn = 1. For any λ ≥ 0, we have:

lim
n→∞

P(an(Mn − bn) ≤ −λ) = lim
n→∞

P
(
Mn ≤ 1− λ

n

)
= lim

n→∞

(
1− λ

n

)n

= e−λ. (2)

For completion, we show how the uniform density on [0, 1] is invariant with respect to
the Lebesegue measure under the transformation f :

Lemma 1.1. If X is a random variable such that X ∼ U(0, 1), then f(X) ∼ U(0, 1).

Proof. For u ∈ [0, 1], we have P(X ∈ [0, u]) = u. The tent map function f can be
rewritten as

f(x) =

{
2x if 0 ≤ x ≤ 1

2
,

2(1− x) if 1
2
< x ≤ 1.

We tackle both cases separately: for 0 ≤ x ≤ 1
2
, f(X) ≤ u implies x ≤ u

2
. For 1

2
< x ≤

1, f(X) ≤ u implies x ≥ 1− u
2
. Hence,

P(f(X) ∈ [0, u]) = P
(
X ∈

[
0,

u

2

]
∪
[
1− u

2
, 1
])

= u,

which implies that f(X) ∼ U(0, 1).
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Consider the stochastic process (Xi)
∞
i=0 defined by (1). Lemma 1 implies that the

variables Xi are identically distributed, although they are no longer independent. Let
Mn be defined as above. In [3], Haiman proves the following result:

Theorem 1.2. For any λ > 0, define nk := ⌊2kλ⌋. We have

lim
k→∞

P
(
Mnk

≤ 1− 2−k
)
= e−λ.

See how, for λ ∈ N, we have P(Mnk
≤ 1 − 2−k) = P(2kλ(M2kλ − 1) ≤ −λ). Thus,

the result of Theorem 1.2 aligns in essence with the example in (2), although this time a
subsequence of Mn is being considered.

Haiman’s proof follows from studying the asymptotic behavior of a previously proven
result, mainly that for any integers n, k ≥ 1 we have

P
(
Mn ≤ 1− 2−k

)
= 1−

⌊n/k⌋∑
i=0

(−1)i
(
n− i(k − 1)

i+ 1

)(
2−k
)i+1

,

where ⌊.⌋ denotes the floor function †. For an alternative approach to this result that
does not consider a subsequence of n, the reader is referred to [2].

This paper aims to provide yet another proof of Theorem 1.2, focusing on Fibonacci-
like sequences arising from the tent map process. A similar approach was previously used
by N. B. Boer and A. E. Sterk in [1] to establish an analogous result for the Rényi map‡.
The present work closely follows their methodology.

2 The relation with Fibonacci-like sequences

In this section, we fix the numbers k ∈ N and u = 2−k. For any integer m ≥ 0 we define
the set

Em = {Xm > 1− u}, (3)

where Xm+1 = f(Xm) and the dependence on k is omitted in the notation for simplicity.
Then

P(Mn ≤ 1− u) = P

(
n−1⋂
m=0

(Xm ≤ 1− u)

)

= 1− P

(
n−1⋃
m=0

(Xm > 1− u)

)

= 1− Leb

(
n−1⋃
m=0

Em

)
,

where Leb denotes the Lebesgue measure on [0, 1]. Put

Bn := Leb

(
n−1⋃
m=0

Em

)
, n ≥ 1,

†In [3], Mn is defined as the maximum of X1, . . . , Xn.
‡The Rényi map is defined as f : [0, 1) −→ [0, 1), f(x) = βx mod 1.
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and thus P(Mn ≤ 1− u) = 1− Bn in short. Based on self-similarity arguments Haiman
derives the following formulas in [3], which hold for each fixed k ≥ 1:

Bn = n · u if n ≤ k, (4)

Bn+1 = Bn + u(1−Bn−k+1) if n ≥ k. (5)

Now, analogous to [1], where the Fn’s are first presented in order to tackle the recursive
properties of the coverage layers arising from the Rényi map, for n ∈ Z we define the
following numbers:

Fn =


0 if n < 1,

1 if n = 1,

(Bn −Bn−1) · 2n+k−1 if n > 1.

(6)

These numbers have the following geometric meaning. Observe that if we put E0 =
(1− u, 1], the sets Em can be written as a union of 2m−1 intervals:

Em =
2m−1−1⋃

s=0

(
1 + 2s

2m
− u

2m
,
1 + 2s

2m
+

u

2m

)
, m ≥ 1.

It is essential to note how, for n ≥ 1, the number Fn equals the number of sub-intervals
of the set En which need to be added to E0 ∪ · · · ∪En−1 in order to obtain E0 ∪ · · · ∪En.
Figure 1 illustrates this for the case k = 3.

Lemma 2.1. For any k, n ∈ N it follows that

P(Mn ≤ 1− 2−k) = 21−n−kFn+k.

Proof. For n ≥ k + 1 equation (5) gives

Fn = (Bn −Bn−1) · 2n+k−1 = (1−Bn−k) · 2n−1,

or, equivalently,

Bn−k = 1− Fn

2n−1
.

Replacing n− k with n yields

Bn = 1− Fn+k

2n+k−1
.

Substituting P(Mn ≤ 1−2−k) = 1−Bn in the above equation proves the desired result.

The following result provides the connection between the sequence (Bn) and the
Fibonacci-like sequence (Fn) for each k observed in Table 1.

Lemma 2.2. The following statements are equivalent:

(i) Eqs. (4) and (5) hold;

(ii) For fixed k ∈ N, the sequence (Fn), where n ∈ Z, defined in (6) satisfies

Fn =


0 if n < 1,

1 if n = 1,∑k−1
i=1 Fn−i + 1 if n ≥ 2.

(7)

In particular, Fn = 2n−1 for 1 ≤ n ≤ k.
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Figure 1: Illustration of the sets E0, . . . , E6 for k = 3. Each set En is a union of 2n−1

intervals, n ≥ 1. Intervals within En that are not fully contained within the intervals
forming E0, . . . , En−1 are shown in blue, while intervals contained within the intervals
forming E0, . . . , En−1 are shown in red. By definition F0 = 0 and F1 = 1; and the figure
clearly illustrates how F2 = 2, F3 = 4, F4 = 7, F5 = 12, F6 = 20 and F7 = 33. It appears
to be that Fn = Fn−1 + Fn−2 + 1 (n ≥ 2), which corresponds to the Fibonacci sequence
with an additional increment of one.

Proof. (i) ⇒ (ii): Assume that statement (i) holds. By definition F1 = 1 and for 1 ≤
n ≤ k equation (4) implies that

Fn = (Bn −Bn−1) · 2n+k−1 = (nu− (n− 1)u) · 2n+k−1 = u · 2n+k−1 = 2n−1.

We proceed with induction on n. For any n ≥ k equation (5) gives

Fn+1 = (Bn+1 −Bn) · 2n+k = (u(1−Bn−k+1)) · 2n+k = (1−Bn−k+1) · 2n. (8)

In particular, for n = k we have

Fk+1 = (1−B1) · 2k

= 2k − 1

= (2− 1)
k∑

i=1

2k−i

=
k∑

i=1

Fk+1−i

=
k−1∑
i=1

Fk+1−i + 1.
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

k = 2 1 2 3 4 5 6 7 8 9 10
k = 3 1 2 4 7 12 20 33 54 88 143
k = 4 1 2 4 8 15 28 52 96 177 326
k = 5 1 2 4 8 16 31 60 116 224 432
k = 6 1 2 4 8 16 32 63 124 244 480

Table 1: Table of values containing the first 10 nonzero numbers of the sequence Fn for
k ∈ {2, . . . , 6}.

Assume that for some n ≥ k it follows that

Fn+1 =
k−1∑
i=1

Fn+1−i + 1.

First using (8), then (5), and finally (8) again yields:

Fn+2 = (1−Bn−k+2) · 2n+1

= (1− (Bn−k+1 + u(1−Bn−2k+2))) · 2n+1

= (1−Bn−k+1) · 2n+1 − u(1−Bn−2k+2) · 2n+1

= 2Fn+1 − Fn−k+2.

Using the induction hypothesis we get:

Fn+2 = Fn+1 + Fn+1 − Fn−k+2

= Fn+1 +
k−1∑
i=1

Fn+1−i + 1− Fn−k+2

=
k−1∑
i=1

Fn+2−i + 1.

Hence, statement (ii) follows.

(ii) ⇒ (i): Assume that statement (ii) holds. In particular, Fn = 2n−1 for 2 ≤ n ≤ k
so that by (6) it follows that

Bn = Bn−1 + 21−n−k · Fn = Bn−1 + u.

Thus, Bn −Bn−1 = u and since B1 = u then Bn = n · u for 2 ≤ n ≤ k.
Recalling that B1 = u = 2−k, equation (6) implies that

Bk+1 = Bk + 2−2k · Fk+1

= Bk + 2−2k(2k − 1)

= Bk + 2−k − 2−2k

= Bk + u(1− 2−k)

= Bk + u(1−B1),
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which shows that (5) holds for n = k. Assume that there exists m ∈ N such that (5)
holds for all k ≤ n ≤ m. Observe that

Fm+1 =
k−1∑
i=1

Fm+1−i + 1 = Fm − Fm+2−k +
k−1∑
i=1

Fm−i + 1 = 2Fm − Fm+1−k.

Therefore,

Bm+1 −Bm = 2−m−k · Fm+1

= 2−m−k(2Fm − Fm+1−k)

= 21−m−kFm − 2−m−kFm+1−k

= Bm −Bm−1 − 2−m−k(2m(Bm+1−k −Bm−k))

= Bm −Bm−1 − 2−k(Bm+1−k −Bm−k).

The induction hypothesis gives

Bm+1 −Bm = u(1−Bm−k)− 2−k(u(1−Bm+1−2k))

= u(1− (Bm−k + u(1−Bm−2k+1)))

= u(1−Bm+1−k).

Hence, statement (i) follows. This concludes the proof.

3 The Binet formula: deriving a closed form

In this section we derive a closed-form expression for Fn as a function of n. The charac-
teristic polynomial corresponding to the recursion relation is given by

pk−1(x) = xk−1 −
k−2∑
i=0

xi. (9)

The following lemma concerns properties of the roots of this polynomial. The importance
of this result will become evident later.

Lemma 3.1. Let k ∈ Z≥3. Then,

(i) the polynomial pk−1 has a real root 1 < rk−1,1 < 2;

(ii) the remaining roots rk−1,2 . . . rk−1,k−1 of pk−1 lie within the unit circle of the complex
plane;

(iii) the roots of pk−1 are simple.

Proof. (i) Descartes’s rule of signs implies that pk−1 has exactly one positive root rk−1,1.
Note how

pk−1(1) = 1− (k − 1) < 0 and pk−1(2) = 1

since 2k−1 −
∑k−2

i=0 2
i = 2k−1 − 1−2k+1

1−2
= 1. Now, the Intermediate Value Theorem

implies the existence of a root 1 < rk−1,1 < 2.

(ii) Define the polynomial

qk(x) = (x− 1)pk−1(x) = xk − 2xk−1 + 1.

We establish two auxiliary claims:
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Claim 1. If x > rk−1,1, then pk−1(x) > 0, and if 0 < x < rk−1,1, then pk−1(x) < 0.

Proof Claim 1. First, assume x > rk−1,1. Since pk−1(2) = 1 and we showed in (i) that
rk−1,1 ∈ (1, 2) is the only positive root of pk−1, we can conclude that pk−1(x) > 0 for
all x > rk−1,1. Second, assume now 0 < x < rk−1,1. See how pk−1 cannot be positive
anywhere in this open interval since otherwise we would have a second positive root.
Thus, pk−1(x) < 0 for all 0 < x < rk−1,1. ■

Claim 2. If x > rk−1,1, then qk(x) > 0, and if 1 < x < rk−1,1, then qk(x) < 0.

Proof Claim 2. The polynomial qk has the same roots as pk plus the extra root x = 1.
An analogous reasoning to the above proves our claim. ■

Note that pk−1 has no root r such that |r| > rk−1,1. Indeed, if such a root ex-

ists, then pk−1(r) = 0, or, equivalently, rk−1 =
∑k−2

i=0 r
i. The triangle inequality gives

|r|k−1 ≤
∑k−2

i=0 |r|i. Hence, pk(|r|) ≤ 0, which contradicts Claim 1.

In addition, pk−1 has no root r with 1 < |r| < rk−1,1. Indeed, if such a root exists,
then qk(r) = (r − 1)pk−1(r) = 0 so that 2rk−1 = rk + 1. The triangle inequality implies
that 2|r|k−1 ≤ |r|k + 1. Hence, qk(|r|) ≥ 0, which contradicts Claim 2.

Finally, pk−1 has no root r with either |r| = 1 or |r| = rk−1,1 but r ̸= rk−1,1. Indeed,
if such a root exists, then qk(r) = (r − 1)pk−1(r) = 0, and just as before, the triangle
inequality implies

2|r|k−1 ≤ |r|k + 1. (10)

If the inequality in (10) is strict, then qk(|r|) > 0. Since qk(1) = 0 and qk(rk−1,1) = 0 it
then follows that |r| ≠ 1 and |r| ≠ rk−1,1. If the inequality in (10) is an equality, then

|r|k must be real. Since qk(r) = 0, it follows that rk−1 = rk+1
2

is real as well and hence
rk

rk−1 = r ∈ R too. An application of Descartes’ rule of signs to qk implies that when k is
odd pk−1 has one negative root, and when k is even pk−1 has no negative root. If k is odd,
then pk−1(0) = −1 and pk−1(−1) = 1. By the Intermediate Value Theorem it follows that
−1 < r < 0. We conclude that no root of pk−1, except rk−1,1 itself, has absolute value 1
or rk−1,1.

(iii) Assume for contradiction that pk−1 has a multiple root. As a consequence, so
has qk. In that case, there exists r such that qk(r) = q′k(r) = 0. Note that q′k(r) =

rk−2 (kr − 2k + 2), meaning either r = 0 or r = 2(k−1)
k

. Firstly, it is obvious that r = 0

cannot be a root of qk. Secondly, r = 2(k−1)
k

̸= ±1 and by the Rational Root Theorem
cannot be a root either. We conclude that qk, and thus pk−1, cannot have multiple roots.
This finishes the proof.
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In what follows, we derive a closed form expression for the generating function of the
sequence (Fn):

G(x) =
∞∑
n=0

Fn+1x
n.

See how

G(x) =
∞∑
n=0

Fn+1x
n

=
k−2∑
n=0

Fn+1x
n +

∞∑
n=k−1

(
k−1∑
i=1

Fn−i+1 + 1

)
xn

=
k−2∑
n=0

Fn+1x
n +

k−1∑
i=1

xi

(
∞∑

n=k−1

Fn+1−ix
n−i

)
+

∞∑
n=k−1

xn

=
k−2∑
n=0

Fn+1x
n + xk−1

(
∞∑

n=k−1

Fn+1−(k−1)x
n−(k−1)

)
+

k−2∑
i=1

xi

(
∞∑

n=k−1

Fn+1−ix
n−i

)
+

∞∑
n=k−1

xn

=
k−2∑
n=0

Fn+1x
n + xk−1G(x) +

k−2∑
i=1

xi

(
G(x)−

k−i−2∑
m=0

Fm+1x
m

)
+

∞∑
n=k−1

xn

=
k−2∑
n=0

Fn+1x
n +

k−1∑
i=1

xiG(x)−
k−2∑
i=1

xi

k−i−2∑
m=0

Fm+1x
m +

∞∑
n=k−1

xn

=
k−2∑
n=0

Fn+1x
n +

k−1∑
i=1

xiG(x)−
k−2∑
n=1

n∑
i=1

Fix
n +

∞∑
n=k−1

xn

= 1 +
k−2∑
n=1

Fn+1x
n +

k−1∑
i=1

xiG(x)−
k−2∑
n=1

n∑
i=1

Fix
n +

∞∑
n=k−1

xn

=
k−2∑
n=1

[
Fn+1 −

(
n∑

i=1

Fi + 1

)]
xn +

k−1∑
i=1

xiG(x) +
∞∑
n=0

xn.

Recall that Fn = 2n−1 for 1 ≤ n ≤ k, meaning:

Fn+1 −

(
n∑

i=1

Fi + 1

)
= 2n −

(
n∑

i=1

2i−1 + 1

)
= 0.

Putting it all together,

G(x) =
k−1∑
i=1

xiG(x) +
1

1− x
,

and finally,

G(x) =
1

(1− x)
(
1−

∑k−1
i=1 x

i
) (11)

where (11) is our desired closed form.
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Let dk−1(x) :=
(
1−

∑k−1
i=1 x

i
)
. The following Lemma relates the roots of pk−1(x) with

the ones from dk−1(x).

Lemma 3.2. Let pk−1(x) and dk−1(x) be defined as above. Then, 1
r
is a root of dk−1(x)

if and only if r is a root of pk−1(x).

Proof. See how

d

(
1

r

)
= 0 ⇐⇒ 1−

k−1∑
i=1

1

ri
= 0 ⇐⇒ 1 =

rk − r

rk(r − 1)

⇐⇒ rk−1 =
r − rk

r − r2
⇐⇒ rk−1 −

k−2∑
i=0

ri = 0

⇐⇒ pk−1(r) = 0

Lemma 3.3. The sequence (Fn) as defined in (7) is given by the following Binet formula:

Fn =
k−1∑
j=0

rnk−1,j

2 + k(rk−1,j − 2)
,

where rk−1,0 = 1 and rk−1,1, . . . , rk−1,k−1 are the roots of the polynomial pk−1 defined
in (9).

Proof. By Lemma 3.1 part (iii) and Lemma 3.2 we can factor out the denominator of the
generating function as follows:

G(x) =
1

1− x
· 1∏k−1

j=1 (x− 1/rk−1,j)

= − 1

x− 1
· 1∏k−1

j=1 (x− 1/rk−1,j)

= − 1∏k−1
j=0 (x− 1/rk−1,j)

.

where rk−1,0 := 1. Then, using partial fraction decomposition we obtain

G(x) =
k−1∑
j=0

cj
x− 1/rk−1,j

. (12)
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The coefficients cj are given by

cj = lim
x→1/rk−1,j

cj +
k−1∑
t=0
t̸=j

ct (x− 1/rk−1,j)

x− 1/rk−1,t


= lim

x→1/rk−1,j

(
(x− 1/rk−1,j)

(
k−1∑
j=0

cj
x− 1/rk−1,j

))

= lim
x→1/rk−1,j

(x− 1/rk−1,j)

 1

(1− x)
(
1−

∑k−1
i=1 x

i
)


= lim
x→1/rk−1,j

(
x− 1/rk−1,j

xk − 2x+ 1

)
.

Using L’Hôpital’s rule we get

cj =
1

k
(

1
rk−1,j

)k−1

− 2
,

where the denominator does not vanish since all roots of xk−2x+1 are simple. Moreover,
since rkk−1,j−2rk−1

k−1,j+1 = (rk−1,j−1)pk−1(rk−1,j) = 0 it follows that rk−1,j−2 = −1/rk−1
k−1,j

so that

cj = − 1

2 + k(rk−1,j − 2)
. (13)

Finally, we have that

G(x) =
k−1∑
j=0

cj

(
1

x− 1/rk−1,j

)

=
k−1∑
j=0

cj

(
−rk−1,j ·

1

1− rk−1,jx

)

=
k−1∑
j=0

cj

(
−rk−1,j

∞∑
n=0

rnk−1,jx
n

)

=
∞∑
n=0

(
−

k−1∑
j=0

cjr
n+1
k−1,j

)
xn.

Comparing coefficients gives us

Fn =
k−1∑
j=0

rnk−1,j

2 + k(rk−1,j − 2)
.
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4 Exponentially growing sequences

The following results and their corresponding proofs are directly taken from [1] and are
included here for the reader’s convenience, as well as for completeness.

Lemma 4.1. If (ak) is a sequence such that limk→∞ kak = c, then

lim
k→∞

(1− ak)
k = e−c.

Proof. Let ε > 0 be arbitrary. Then there exists N ∈ N such that |kak − c| ≤ ε, or,
equivalently, (

1− c+ ε

k

)k

≤ (1− ak)
k ≤

(
1− c− ε

k

)k

for all k ≥ N . Hence, we obtain

e−(c+ε) ≤ lim inf
k→∞

(1− ak)
k ≤ lim sup

k→∞
(1− ak)

k ≤ e−(c−ε).

Since ε > 0 is arbitrary, the result follows.

Lemma 4.2. If a > 1 and (bk) is a positive sequence such that limk→∞ akbk = c, then

lim
k→∞

ak − (a− bk)
k

k
=

c

a
.

Proof. The algebraic identity

xk − yk = (x− y)
k−1∑
i=0

xk−1−iyi

leads to
ak − (a− bk)

k

k
=

akbk
a

· Sk where Sk =
1

k

k−1∑
i=0

(
1− bk

a

)i

.

It suffices to show that limk→∞ Sk = 1. To that end, note that the assumption implies
that limk→∞ bk = 0 so that −1 < −bk/a < 0 for k sufficiently large. Bernoulli’s inequality
gives

1− i
bk
a

≤
(
1− bk

a

)i

< 1,

which implies that

1− k − 1

2
· bk
a

< Sk < 1

for k sufficiently large. Moreover, the assumption implies that limk→∞ kbk = 0. An
application of the Squeeze Theorem completes the proof.
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5 Proof of the extreme value law (Theorem 1.2)

Let λ > 0 and recall nk := ⌊λ2k⌋. Using both Lemmas 2.1 and 3.2 gives

P(Mnk
≤ 1− 2−k) = 21−nk−kFnk+k

= 2
k−1∑
j=0

[
1

2 + k(rk−1,j − 2)

(rk−1,j

2

)nk+k
]

= 2
k−1∑
j=0

aj(k),

where

aj(k) :=
1

2 + k(rk−1,j − 2)

(rk−1,j

2

)nk+k

.

As defined previously, rk−1,0 = 1 and rk−1,j are the roots of pk−1 for 1 ≤ j ≤ k − 1.
Recall that rk−1,1 is the unique root in the interval (1, 2), and that |rk−1,j| ≤ 1 for
i ∈ {0} ∪ {2, . . . , k − 1}. In the remainder of this section, Theorem 1.2 will be proved
through a detailed analysis of the asymptotic behavior of the dominant root rk−1,1.

We define the following values:

rk−1,max = 2− 1

2k−1 − 1
and rk−1,min = 2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

)
,

where

rk−1,max = 2− pk−1(2)

p′k−1(2)
= 2− 2k−1 −

∑k−2
i=0 2

i

(k − 1)2k−2 −
∑k−2

i=1 i2
i−1

= 2− 1

2k−1 − 1
.

In words, rk−1,max is obtained by applying a single iteration of Newton’s method to pk−1

using the starting point x0 = 2. The value rk−1,min is a correction of rk−1,max with an
exponential decreasing factor. Both numbers will aid in proving partial results needed
for the proof of Theorem 1.2.

Lemma 5.1. For k ∈ N sufficiently large:

(i) pk−1(rk−1,max) > 0;

(ii) pk−1(rk−1,min) < 0;

(iii) rk−1,min < rk−1,1 < rk−1,max.

Proof. (i) For x ̸= 1 we have

pk−1(x) = xk−1 −
k−2∑
i=0

xi

= xk−1 − x− xk

x− x2

=
1

x(1− x)

(
xk−1(x− x2) + xk − x

)
=

1

1− x

(
(2− x)xk−1 − 1

)
.

13



In particular, for k ≥ 3 it follows that

pk−1(rk−1,max) =
1

2k−1 − 2

[
2k−1 −

(
2− 1

2k−1 − 1

)k−1

− 1

]
.

All is left now is to show that the expression between brackets is positive for k sufficiently
large. See how, for a = 2 and (bk) =

1
2k−1−1

, Lemma 4.2 gives

lim
k→∞

1

k

(
2k−1 −

(
2− 1

2k−1 − 1

)k−1
)

=
1

2
.

Hence, for k sufficiently large it follows that

2k−1 −
(
2− 1

2k−1 − 1

)k−1

− 1 ≥ 1

4
k − 1

and the right-hand side is positive for k ≥ 5.

(ii) Similar to the proof of part (i), it follows that, through some algebraic manipulations,

pk−1(rk−1,min) =
1

2 + 2(−k+1)/2 − 2k−1

[(
2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

))k−1 (
1 + 2(−k+1)/2

)
− 2k−1 + 1

]
.

It suffices to show that the expression between brackets is positive for k sufficiently large.
Again, for a = 2 and (bk) =

1
2k−1−1

(
1 + 2(−k+1)/2

)
, Lemma 4.2 gives

lim
k→∞

1

k

(
2k−1 −

(
2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

))k−1
)

=
1

2
.

Hence, for k sufficiently large it follows that

2k−1 −
(
2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

))k−1

≤ k.

This gives(
2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

))k−1 (
1 + 2(−k+1)/2

)
− 2k−1 + 1

= 2(k−1)/2 + 1−
(
1 + 2(−k+1)/2

)(
2k−1 −

(
2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

))k−1
)

≥ 2(k−1)/2 + 1−
(
1 + 2(−k+1)/2

)
k

and the right-hand side is positive for k ≥ 7.

(iii) By the Intermediate Value Theorem there exists a point c ∈ (rk−1,min, rk−1,max) such
that pk−1(c) = 0. Note that c > 1 already for k ≥ 3. Since rk−1,1 is the only zero of pk−1

that lies outside the unit circle, it follows that c = rk−1,1.
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Lemma 5.2. We have that

lim
k→∞

a1(k) =
1

2
e−λ.

Proof. From Lemma 5.1 it follows for sufficiently large k that

2− 1

2k−1 − 1

(
1 + 2(−k+1)/2

)
< rk−1,1 < 2− 1

2k−1 − 1
. (14)

The Squeeze Theorem implies that

lim
k→∞

rk−1,1 = 2,

and together with (14),
lim
k→∞

k(rk−1,1 − 2) = 0.

Hence, we can conclude that

lim
k→∞

1

2 + k(rk−1,1 − 2)
=

1

2
. (15)

Now, the inequality 2kλ− 1 ≤ nk ≤ 2kλ combined with (14) implies that(
1− 1

2k − 2

(
1 + 2(−k+1)/2

))2kλ−1+k

<
(rk−1,1

2

)nk+k

<

(
1− 1

2k − 2

)2kλ+k

, (16)

where we first divided by 2 everywhere. We tackle both bounds for
( rk−1,1

2

)nk+k
separately.

First, see how

Uk :=

(
1− 1

2k − 2

)2kλ+k

=

((
1− 1

2k − 2

)2k
)λ

·
(
1− 1

2k − 2

)k

and thus

lim
k→∞

Uk =

(
lim
k→∞

[(
1− 1

2k − 2

)2k
])λ

· lim
k→∞

[(
1− 1

2k − 2

)k
]
.

Let f(k) :=
(
1− 1

2k−2

)2k
. We seek to find limk→∞ f(k). Rewrite the expression by

setting y := 2k, so that as k → ∞, y → ∞. Then

f(y) =

(
1− 1

y − 2

)y

and we are interested in evaluating limy→∞

(
1− 1

y−2

)y
. Taking the logarithm of f(y)

and expanding ln
(
1− 1

y−2

)
using the Mclaurin series for ln(1− t):

ln f(y) = y ln

(
1− 1

y − 2

)
= − y

y − 2
− y

2(y − 2)2
− · · · .
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Now consider the term − y
y−2

:

y

y − 2
=

y

y
(
1− 2

y

) =
1

1− 2
y

.

As y → ∞, 2
y
→ 0, so y

y−2
→ 1, which implies

− y

y − 2
→ −1 as y → ∞.

The remaining terms, such as − y
2(y−2)2

, approach zero as y → ∞ because they contain

higher powers of 1
y
. Therefore, we have

y ln

(
1− 1

y − 2

)
→ −1 as y → ∞.

Note we can treat the Mclaurin series term-wise since it is absolutely convergent for
|t| < 1. Exponentiating both sides, we find that f(k) → e−1 as k → ∞.

Dealing now with
(
1− 1

2k−2

)k
, setting (ak) =

1
2k−2

and using Lemma 4.1 yields

lim
k→∞

(1− ak)
k = 1.

Combining both sub-results we get that limk→∞ Uk = e−λ.

Second, as done for Uk, we define Lk as follows:

Lk :=

((
1− 1

2k − 2

(
1 + 2(−k+1)/2

))2k
)λ

·
(
1− 1

2k − 2

(
1 + 2(−k+1)/2

))k−1

.

Letting g(k) =
(
1− 1

2k−2

(
1 + 2(−k+1)/2

))2k
and proceeding in a similar matter as above,

we get that limk→∞ g(k) = e−1 too. The second limit is dealt with by letting (ak) =
1

2k+1−2

(
1 + 2(−k)/2

)
and using Lemma 4.1.

Again, combining both sub-results we get that limk→∞ Lk = e−λ.

Finally, (15) together with the Squeeze Theorem applied to (16) completes the proof.

Lemma 5.3. Let J := {0} ∪ {2, . . . , k − 1}. For k sufficiently large we have that

|aj(k)| <
2

|2− k|
· 1

2nk+k
for all j ∈ J

Proof. Using that |rk−1,j| ≤ 1 for j ∈ J gives

|aj(k)| =
1

|2 + k(rk−1,j − 2)|

(
|rk−1,j|

2

)nk+k

<
2

|2 + k(rk−1,j − 2)|
· 1

2nk+k
.
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For z ∈ C, let f(z) := 2 + k(z − 2). Writing z = x+ iy yields

|f(z)|2 =
((

(2 + k(x− 2))2 + (ky)2
)1/2)2

= (2 + k(x− 2))2 + k2y2

≥ (2 + k(x− 2))2 .

The latter quadratic function attains its minimum value at xk = 2 − 2
k
, and already for

k ≥ 3 it follows that xk > 1. Using that Re(rk−1,j) ∈ [−1, 1] for j ∈ J gives

|f(rk−1,j)| ≥ |2− k|.

This completes the proof.

From Lemma 5.3 it follows for k sufficiently large that∣∣∣∣∣∑
j∈J

aj(k)

∣∣∣∣∣ ≤∑
j∈J

|aj(k)| ≤
2(k − 1)

|2− k|
· 1

2nk+k
,

so that Lemma 5.2 implies that

lim
k→∞

P(Mnk
≤ 1− 2−k) = lim

k→∞
2

k−1∑
j=0

aj(k)

= lim
k→∞

2

(
a1(k) +

∑
j∈J

aj(k)

)
= lim

k→∞
2 · a1(k)

= e−λ,

whereby Theorem 1.2 has been proven.
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