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Abstract

The sulfur depletion problem describes the fact that only 1% of the theoretical total sulfur abundance
in protoplanetary disks is observed. Using JWST MIRI MRS observations of protoplanetary disks,
SO, could be used as a tracer for the total sulfur abundance. Using local thermal equilibrium slab
models made with ProDiMoPy and an observed debris disk as a template for a typical noise profile,
a cross-correlation method is developed to observe SO; in various scenarios. The technique retrieves
SO, from mock spectra consisting of the aforementioned debris disk, with an SO, spectrum added in
at various signal-to-noise ratios. The estimates have high precision in both temperature and column
density, but lose accuracy when adding other species to the simulated spectra. By comparing the
spectrum with a slab model spectrum of the best estimate of column density and temperature for a
given emitting radius, visual confirmation of SO, detection can be obtained. The method was applied
to GWLup, but no SO, could be detected, meaning any SO, emission will be below a signal-to-noise
ratio of 2. There are few possibilities for temperature and column density combinations that achieve
this value, with a requirement of a large emitting area, meaning there are no likely scenarios for
GWLup to contain SO, detectable with this method. Obtaining the signal strength with a high column
density would require a value around 10'7 cm™2, which is unlikely based on previous estimates in
literature.
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6 Chapter I INTRODUCTION

1 Introduction

Sulfur is a relatively abundant element on Earth, ranking as the 16th most abundant element on the
planet and the 10th most abundant in the galaxy [1]. It is a vital component of various amino acids,
including cysteine (C3H7NO;,S) and methionine (CsH{{NO,S), which are crucial for life and hab-
itability. This suggests that sulfur was present in the protoplanetary disk (PPD) when Earth formed
[2]. However, sulfur is notably absent in observations of the inner 10 AU of PPDs, where terrestrial
planets form. The sulfur-bearing species identified in the outer regions (> 10 AU) account for only
about 0.1% of sulfur’s estimated cosmic abundance (1.23 x 10 ng) [1, 3].

Several theories have been proposed to explain this discrepancy. One hypothesis suggests that sulfur
is sequestered in previously overlooked molecules, such as allotropes [2]. Another posits that sulfur
resides in icy grain mantles or polymeric species formed on dust grains after photodissociation of
sulfur allotropes [3]. This mechanism is believed to address the low sulfur abundances observed in
dense molecular clouds and PPDs.

Approximately 90% of sulfur in PPDs is thought to be locked in refractory materials, which resist
decomposition by heat [2]. In dense molecular clouds, only 0.6-6% of the cosmic sulfur abundance
is found in SO, [4]. In these environments, only five sulfur-bearing species have been identified:
CS, SO, H,S, H,CS, and SO,. Together, these account for only about 1% of the total solar sulfur
abundance, leaving the sulfur-bearing species in the inner regions of PPDs largely unexplained [2].
Thus, a key question arises: In which molecules is sulfur locked? One theory suggests that sulfur
allotropes, which are stable in nature, may form on dust grains through surface chemistry, as their gas-
phase formation is inefficient [2]. Observations by ALMA (Atacama Large Millimeter/submillimeter
Array) have the sensitivity to detect certain sulfur-bearing species such as OCS, but so far, only CS
and SO, have been detected in the protoplanetary disk of DM Tau [5]. The inability to identify sulfur’s
primary reservoirs in PPDs is known as the sulfur depletion problem.

The James Webb Space Telescope (JWST) offers an opportunity to gain further insight into this is-
sue. Using the Mid-Infrared Instrument (MIRI), JWST provides spatially resolved medium-resolution
spectroscopy (MRS) data between 4.9 yum and 27.9 um. In this study, we utilize MRS spectra of PPDs
to search for SO, emission. As a test case, model spectra are generated using ProDiMo and adjusted
to match JWST observation capabilities. The resolving power (A/AL) of this instrument ranges from
approximately 1550 to 3250 [6, 7]. This thesis aims to address two key questions: Can SO, be de-
tected in protoplanetary disks using JWST MIRI spectra? If so, can the temperature and column
density of SO, be determined from these spectra?

This thesis is structured as follows: First, we provide background information on protoplanetary
disks and the rationale for using SO, as a tracer for sulfur abundance. Next, we describe the theo-
retical framework, including the physics of emission lines, the ProDiMoPy modeling software, and
the JWST MIRI MRS instrument. We then detail the methodology for identifying sulfur in spectra,
including the steps taken to refine and validate the approach. Subsequently, we apply the method to
a spectrum of the protoplanetary disk GWLup and discuss how SO, can inform estimates of the total
sulfur abundance. The results section presents our findings, and finally, we outline the limitations and
potential improvements to the method.
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2 Background Literature

2.1 Protoplanetary Disks

Protoplanetary disks (PPDs) are gas-rich disks around young stars. These disks can contain dust and
also can potentially form planets, as well as contain them. The chemical compositions of these disks
can thus dictate the compositions, locations, evolutions, and orbital configurations of planets, as well
as influence many other properties of the disk [8, 9]. Especially in the inner 0.1 to 10 AU region
of a PPD, terrestrial planets can form around low-mass (less than 2 solar masses [10]) stars. This
region has relatively high temperatures of over 100 K and has high densities of over 108 cm™ [11].
However, planets form only in a short time window of less than 10 million years [9].

2.1.1 Origin and Composition

PPDs form during star formation, when interstellar cloud material gets distributed in a disk-like struc-
ture to preserve angular momentum. Many volatile molecules from the interstellar medium are con-
tained within stable molecules such as H,, CO, CO,, N», NH3, and H>O. The clouds can also produce
first-generation organic molecules, such as methane (CH4) and methanol (CH30H) [8].

From Spitzer-IRS observations including the molecules H,O, OH, HCN, C,H;, and CO, combined
with Keck-NIRSPEC observations for CO emission of PPDs, some column densities for the gases can
be estimated. It is found that H>O line fluxes correlate with the mid-IR continuum flux and some other
factors. However, local thermal equilibrium (LTE) models suggest that in planet-forming regions, the
column densities cover only a small range, where H,O is estimated around 10'® ¢cm~2 around 450
K. HCN estimates are around 10'* to 10" ¢cm™2 between 600 and 800 K. For C,H,, the column
densities are in the same range, but the emission occurs more between 500 and 1200 K. For CO; the
temperatures are the same, but the number densities range from 10'* to 10'® cm~2. OH best fits a
temperature range of 900 and 1100 K with number densities around 10> cm~2, but other experiments
found number densities of up to 10!7 cm~2. CO was found to be between 10'® and 10!° cm~2 with
typical temperatures of 900-1500 K [12].

For NH3 and SO, the steps to find estimates for the column densities are slightly more elaborate, as
clear results are not available in literature. However, if we assume these to be the only nitrogen and
sulfur-bearing molecules, their column densities will be proportional to those of N and S respectively.
The relative abundances on the scale of logny = 12 are 7.90 for nitrogen, 8.48 for oxygen and 5.27 for
sulfur, which means ny = 10720712 5 = 1034812 and ng = 1072712 relative to hydrogen [13]. We
then have to convert these values to relative to water, which will result in nNp, ~ 10'7 to 10'® cm—2
and nso, ~ 10" to 10! cm~2, assuming nearly all nitrogen and sulfur is locked in these molecules.

2.1.2 Models of PPDs

The models shown are derived from [14, 15] and explained in appendix A.1, where first a radial model
is derived, followed by a model including vertical variations. The purpose of this is to understand
what a protoplanetary disk would look like for given parameters in terms of temperature and surface
densities. Figures 1 and 2 show the disk in two ways when only considering radial variation. Figures
3 and 4 apply the same visualization techniques but using the model that includes both vertical and
radial dependence in its parameters. The graphs visualize each quantity as a function of radius, while
the other figures give a clearer insight into the total shape of the disk. All figures are for a 1 M, star,
with a constant accretion rate of 10~8 M /yr, a viscosity parameter o = 1072, a temperature at 7, of
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280K, a temperature power law exponent g = 0.75, ryin = 1 AU, rmax = 10 AU and a mean molecular
weight u = 2.3, appropriate for a molecular gas.
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Figure 1: The top-left subplot shows the surface density against the distance from the host star in the
radial direction. The top right shows the scale height Hg,s against the radius. The bottom left shows
the midplane density and the bottom right shows the disk temperature.



Chapter 2 BACKGROUND LITERATURE 9

Protoplanetary Disk Shape and Temperature
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Figure 2: A symmetric model of a protoplanetary disk structure around a 1 solar mass star, modeled
based on a steady-state viscous disk approximation. The x-axis shows the radial distance from the
host star in AU, the y-axis shows the vertical height in AU, scaled to the gas scale height, for which the
ideal gas law is assumed. The disk is assumed symmetrical around its midplane. The shaded region
thus visualizes the thickness of the disk, with the color map indicating the temperature of the disk. A
midplane temperature power law, 7, o< r~ 7 is assumed and the temperature is assumed constant along
the vertical direction. The disk is in hydrostatic equilibrium. The viscosity is parametrized by alpha-
prescription, and the accretion rate is assumed constant. The surface density X(r) is derived from the
steady-state solution of angular momentum conservation, assuming a Keplerian rotation profile. The
surface density follows a power law dependent on the midplane temperature and radial distance. The
disk is assumed optically thick and viscous heating dominates the thermal structure of the midplane.
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Protoplanetary Disk Shape and Temperature
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Figure 3: A symmetric model of a protoplanetary disk structure around a 1 solar mass star, modeled
based on a steady-state viscous disk approximation. The x-axis shows the radial distance from the
host star in AU, the y-axis shows the vertical height in AU, scaled to the gas scale height, for which
the ideal gas law is assumed. The shaded region visualizes the thickness of the disk, with the color
map indicating the temperature of the disk. A midplane temperature power law, T, o< r~7 is assumed
and the temperature is evolved in the vertical direction taking into account accretion and irradiation by
the host star. The viscosity is parametrized by alpha-prescription, and the accretion rate is assumed
constant. The surface density X(r) is derived from the steady-state solution of angular momentum
conservation, assuming a Keplerian rotation profile. The surface density follows a power law depen-
dent on the midplane temperature and radial distance, where vertical variations are taken into account
for the density computation. The disk is assumed optically thick and viscous heating dominates the
thermal structure of the midplane.



Chapter 2 BACKGROUND LITERATURE 11

Surface Density (Z) Gas Scale Height (Hgas)
0.4 1
50
5
S 40 031
2 =)
£ <
S ?
© - o
bt 30 T 0.2
o
©
€
=}
(%] 20
0.1 1
10
2 4 6 8 10 2 4 6 8 10
Radius [AU] Radius [AU]
le—11 Midplane Density (o) Disk Temperature (Tgjsk)
180 1
4 -
160 -
=37 140 -
g )
) %120
o 2] IE
Q
100 1
1 -
80
0 60
2 4 6 8 10 2 4 6 8 10
Radius [AU] Radius [AU]

Figure 4: The top-left subplot shows the surface density against the distance from the host star in the
radial direction. The top right shows the scale height Hg,s against the radius. The bottom left shows
the midplane density and the bottom right shows the disk temperature. This model assumes vertical
variations for all quantities.

2.2 GW Lup

One example of such a protoplanetary disk is the disk around GW Lup. GW Lup is a young M1.5-type
star with an effective temperature Teif = 3630K, a luminosity of 0.33 L., and a mass of 0.46 M., lo-
cated in the Lupus I cloud, approximately 155 pc away from Earth. Its disk spectrum shows detections
of 12C0O,, 13CO,, H,0, HCN, C,H,, and OH [16].

The authors employ Local Thermal Equilibrium (LTE) slab models to determine the temperature, col-
umn density, and emitting radius of the species under investigation. These parameters are obtained
through y2-fitting of Gaussian line profiles. The models explore a parameter grid with column den-
sities ranging from 10'* to 10?2 cm™~? in logarithmic steps of 0.166, temperatures spanning from 100
to 1500 K in 25 K increments, and emitting radii varying from 0.01 to 10 AU in logarithmic steps
of 0.03. To minimize contamination from other species, spectral windows are applied, where only a
small wavelength range is used for each fit.

An iterative procedure refines the measurements: once an estimate for a species is obtained, its contri-
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bution is subtracted, and the process repeats until no further detections can be made. The final results
are summarized in Table 1.

Molecule | Column density (cm~2) Temperature (K) | Emitting radius (AU)
12Co, 2.2x10'8 400 0.11
13Co, 1.0 x 107 325 0.11
C,H, 4.6 x 107 500 0.05
HCN 4.6 x 107 875 0.06
H,0 3.2x10'8 625 0.15
OH 1.0x 10'8 1075 0.06

Table 1: Best estimates for column density, temperature, and emitting radius for the molecules in the
disk around GW Lup. Data obtained using an LTE slab model grid and y? fitting assuming Gaussian
line profiles, adapted from [16].

2.3 Emission lines

Emission lines occur due to the energy transitions of molecules. During these transitions, photons are
emitted at wavelengths corresponding to the energy differences between the two states, given by the

relation: h
c
E=— 1
w (D

where E is the energy difference, 4 is the Planck constant, c is the speed of light in a vacuum, and A
is the emitted wavelength [17].

Molecules can undergo energy transitions through their three primary degrees of freedom: rotation,
vibration, and bending. These transitions result in emission lines spanning the near-infrared (near-
IR) to millimeter wavelengths. Although molecules also exhibit electronic transitions, these require
higher energy levels and result in lines in the ultraviolet (UV) range, which lies outside the scope of
this thesis [2].

2.3.1 Ro-vibrational lines

Vibrational transitions generally require higher energy than rotational transitions, and thus purely vi-
brational emission lines are rarely observed. Instead, **ro-vibrational transitions**—which combine
both vibrational and rotational energy changes—are commonly detected. Each vibrational transition
is associated with multiple rotational energy levels, described by changes in the rotational quantum
number J.

For a symmetric molecule such as sulfur dioxide (SO,), there are three fundamental vibrational
modes:

1. The symmetric stretch (vy),
2. The asymmetric stretch (v3),

3. The bending or scissoring mode (V3),
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as described in [2, 18]. These vibrational modes produce complex spectra characterized by overlap-
ping rotational substructures within each vibrational band.

For linear molecules like SO, the vibrational behavior can be approximated by a harmonic oscillator,
neglecting anharmonicity. Anharmonicity refers to the deviation from harmonic behavior, occurring
when the restoring force is no longer proportional to displacement [19]. Under the harmonic oscillator
approximation, the energy of a vibrational mode is:

E, = hv (v+%), 2)

where E, is the energy of the vibrational mode, Vv is the vibration frequency, v is the vibrational
quantum number (an integer > 0), and 4 is the Planck constant. The vibrational frequency v is given
by:

1 [k

=/ 3
V= 3)

where k is the force constant of the bond, and u is the reduced mass of the molecule [18].
Rotational transitions can be modeled as those of a rigid rotor, neglecting centrifugal distortion effects.
The rotational energy levels are quantized as:
hZ
E,=—-J(J+1 4
= g U+ 1), @

where E, is the rotational energy, J is the rotational quantum number (an integer > 0), and [ is the
moment of inertia, defined as [ = ,urz, where r is the bond length [18].

The total energy for a ro-vibrational transition is the sum of the vibrational and rotational contribu-
tions:

1 h?

The HITRAN database [20] provides line data for various molecules, including ro-vibrational transi-
tions, as illustrated in Figures 6 and 5.

2.3.2 Line broadening

Emission lines observed in real-world spectra are broadened by three primary mechanisms:

1. Natural broadening: A consequence of the uncertainty principle, particularly prominent in tran-
sitions involving excited states with short lifetimes.

2. Pressure broadening: Caused by molecular collisions in a gas, which perturb energy levels.

3. Thermal (Doppler) broadening: Due to the relative motion of molecules, resulting in slight
Doppler shifts in wavelength [2].

When Doppler and turbulent broadening dominate, the emission line profile can be approximated by

a Gaussian: 5
1 V—Vi2
= ——— - 6
g AvDﬁeXp[ ( AVp ) ] ©

where v1; is the central frequency of the line, Avp is the Doppler width, which depends on the gas
temperature 7g,s and the turbulent velocity vy, [21].
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2.3.3 Optical depth effects

The intensity of emitted photons depends on the number of molecules along the line of sight. As
molecular column density increases, photon absorption by the medium (self-absorption) becomes
significant, reducing the escape fraction. This effect is quantified by the optical depth T. For N
molecules per cm~2, the optical depth for a transition is:

NAZ A
Ty = 12712 (g—lpz —pl) , %
81 g2

where A3 is the transition wavelength, A}, is the Einstein coefficient for spontancous emission, g;
and g, are statistical weights, and p; and p, are level populations.
At a frequency v, the optical depth profile is given by:

T2 ol (veve) )
Y AVpVT P Avp '

The radiative transfer equation, %V = jv — Kyly, relates the intensity /, path length s, emission coef-

ficient jy, and absorption coefficient k. Integrating this equation yields the total line intensity:

I=By(T) [ (1-)av, )

where By,,(7T') is the Planck function at temperature 7.

24 Why SO,

Understanding sulfur depletion in protoplanetary disks requires the identification of molecules that
can effectively trace sulfur abundance. As previously mentioned, ALMA observations have detected
only two sulfur-bearing species in the disk of DM Tau: carbon monosulfide (CS) and sulfur dioxide
(SOy) [5]. Of these, SO, is particularly well-suited for this study due to its extensive and detectable
ro-vibrational spectrum within the observation range of the James Webb Space Telescope (JWST)
Mid-Infrared Instrument (MIRI).

We used molecular data from the HITRAN Online database [20] for the most abundant isotope of SO,
(94% abundance). All lines within the JWST MIRI observing range were selected, and the resulting
spectrum is shown in Figure 5. This figure highlights two regions of high-intensity emission lines:
from 5 to 10 um and from 15 to 25 um. These regions correspond to distinct ro-vibrational bands of
SO,, as described below:

- 5-10 um range: This region includes strong ro-vibrational bands arising from transitions within
asymmetric stretch (v3) and bending (v2) vibrational modes. These modes produce dense clusters
of emission lines with high intensities, making them prominent and easier to distinguish from the
background.

- 15-25 ym range: In this region, ro-vibrational transitions primarily involve the bending (v2) vi-
brational mode. The lines are more widely spaced compared to the 5-10 um range, which reduces
blending and enhances their distinguishability despite their somewhat lower intensities.

Outside these regions, the spectral intensity remains relatively low, forming a continuum. The dense
clustering of lines in the 5—10 um range and the well-separated lines in the 15-25 ym range provide
complementary advantages for sulfur detection in protoplanetary disks.
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Emission lines for SO, in MIRI range
T= 296 K

le—20

" 5] @
v oy
Q 3
a 4 L
@ i
:
- ;
~ 1
"3 s
5 :
Y K
= ;
e

n 21

C

@

=t

£

a

£ 1

©

|-

-

8]

o

n 01

Wavelength [um]

Figure 5: Emission lines of the most abundant SO, isotope, based on data from the HITRAN Online
database [20]. The x-axis shows the wavelength in um, and the y-axis represents the intensity for a
single molecule per unit volume. Each point represents the peak of an emission line. Note that line
broadening effects are not included in this figure. A total of 345,642 emission lines are shown.

In contrast, the spectrum of CS (Figure 6) contains significantly fewer emission lines within the JWST
MIRI wavelength range. Although the peak intensity of CS emission lines is higher than that of SO,
the limited number of lines makes it less favorable as a sulfur tracer. Given the expected similar
column densities of CS and SO;, CS lines are more likely to be masked by overlapping spectral
features from other species.

Therefore, SO, is the more advantageous choice as a tracer for sulfur detection, combining a dense
and distinguishable line spectrum with favorable coverage in the JWST MIRI range.
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Emission lines for CS in MIRI range
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Figure 6: Emission lines of CS in the JWST MIRI MRS wavelength range, based on data from [20].

2.5 Radiative Transfer and ProDiMoPy

ProDiMo is a versatile modeling code designed for studying protoplanetary disks [22]. Its reliability
has been demonstrated in applications such as modeling a typical T Tauri star’s disk and a molecular
cloud with properties resembling TMC-1, the Taurus Molecular Cloud, a region known to be a nursery
for protoplanetary disks [2]. T Tauri stars themselves are young stars similar in mass to the Sun,
making them ideal for exploring early disk chemistry.

The Python implementation, ProDiMoPy, allows for the generation of simplified models, including
0D slab models. These models assume uniform properties across the slab, providing an efficient way
to study radiative transfer and molecular line emission. Key input parameters for such a model include
the gas column density of the molecule under consideration, the gas temperature, turbulent velocity,
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molecular mass, isotopic ratios, and the wavelength range for computation. Additionally, line data,
including molecular transitions, statistical weights, and energy levels, is retrieved from the HITRAN
database [20].
In ProDiMoPy, line broadening is a crucial aspect that accounts for the combined effects of turbulence
and thermal motion within the gas. The broadening velocity, v, combines these contributions and is
expressed as:

2kpT,

Ve = [V2 + p— (10)

where vy is the turbulent velocity, Ty is the gas temperature, and ) is the molecular mass.
The level populations of the molecule are determined using the Boltzmann distribution, which de-
scribes the ratio between the populations of two energy levels based on their energies, degeneracies,
and the gas temperature:
Pu_ug o BBy
P&l kpT,
where E, and E; are the energies of the upper and lower levels, respectively, and g, and g; are their
degeneracies. These populations are normalized across all possible energy levels using the partition
function, Q(Ty), a temperature-dependent quantity precomputed from HITRAN data.
The interaction of radiation with the slab is characterized by the optical depth Ty, which quantifies the
absorption at a given frequency Vv:

Ay A N, (g
Ty = §ﬂ7~ﬁ<lm—m)- (12)
8T/ = Vi, Vg \ &I

(1)

Here, A,; is the Einstein coefficient for spontaneous emission, V17 is the frequency of the transition,
and N, is the gas column density.
Radiative transfer is then computed using the intensity of emitted radiation at a given frequency, /.
This is derived from the radiative transfer equation, assuming blackbody radiation from the source,
and is given by:

L =By(Ty) (1—-e™), (13)

where By (T;) represents the Planck function for a gas at temperature 7y:

2hv3 1
c2 ehv/kBTg -1 :

By(Ty) = (14)
This framework enables ProDiMoPy to produce synthetic spectra by summing the contributions of
individual lines over the specified wavelength range. The resulting spectra reflect the physical condi-
tions of the gas and the specific molecular transitions involved.

By utilizing the uniform conditions of the 0D slab, ProDiMoPy provides a computationally efficient
yet accurate means to study molecular line emission and the underlying radiative transfer processes.
These models offer valuable insights into the physical and chemical properties of molecular gas in
protoplanetary environments.

2.6 JWST MIRI MRS data

The MRS instrument has four different channels, each observing in different wavelength ranges. Each
channel consists of three bands and can observe one band at a time. The flight-measured properties
for each of these channels is given in table 2 [7].
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FOV name FOV Number Sub-band A-range Resolving power
A-range (um) | (arcsec) | of slices name (um) (A/AL)

SHORT (A) 4.90-5.74 3,320-3,710

Channel 1
407 65 3.2x%x3.7 21 MEDIUM (B) | 5.66-6.63 3,190-3,750
o LONG (C) 6.53-7.65 3,100-3,610
SHORT (A) 7.51-8.77 2,990-3,110

Channel 2
7 51-117 4.0x4.8 17 MEDIUM (B) | 8.67-10.13 2,750-3,170
’ ’ LONG (C) 10.01-11.70 2,860-3,300
SHORT (A) | 11.55-13.47 2,530-2,880

Channel 3
11.55_17.98 52x%x6.2 16 MEDIUM (B) | 13.34-15.57 1,790-2,640
' ' LONG (C) 15.41-17.98 1,980-2,790
SHORT (A) | 17.70-20.95 1,460-1,930

Channel 4
177979 6.6 x 7.7 12 MEDIUM (B) | 20.69-24.48 1,680-1,770
’ ' LONG (C) 24.40-27.90 1,330-1,630

Table 2: Properties of each channel used for medium-resolution spectroscopy using MIRI. Table from

[7]

2.6.1 Preprocessing JWST data

The raw data obtained from JWST undergoes a data reduction routine outside the scope of this the-
sis. The data reduction for the spectrum of the disk around GW Lup is described in [16] and used
throughout this thesis. The reduced data provides a spectrum stitched together containing data from
all the channels. Subtracting the continuum results in a spectrum showing only the emission lines
of an actual observation, which is comparable to the mock spectra obtained from ProDiMoPy. An
example of this can be seen in figure 7, which is the T Tauri star disk around GW Lup[21].
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Spectrum of GWLup measured by JWST
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Figure 7: Full spectrum of the disk around GWLup, with lines showing the full spectrum, the contin-
uum, and the continuum subtracted line emission spectrum. Data obtained from [21].

Noise originates for example from, detector gain variations, thus pixel-to-pixel gain variations, typ-
ically up to a couple percent. These are usually calibrated for using a detector flat-field. There are
also intra-pixel gain variations, which is the variation in gain within a pixel itself. This is due to pixel
responsivity or quantum efficiency within the pixel area. There are methods for mitigating this effect,
which makes JWST less affected than previous IR missions by this effect. The way JWST pixels
are read also generates noise, mostly called the 1/f noise, which has a stochastic nature, meaning
each frame will have its own unique signature. Part of this effect can be removed by using reference
pixels, but some fraction will always remain. It is also noteworthy that the mid infrared range is less
affected by this effect than the near infrared observations when using the MIRI instrument. There is
also persistence, which is a sort of memory effect, resulting in an afterglow that decays over time.
There are several other noise sources within an observation, some of them can be accounted for, but
there will always be a resulting noise level [23]. To be able to test and evaluate the methods developed
in this thesis, we require to have a realistic realisation of the instrument noise. For this, the debris disk
spectrum HD172555 is used. This spectrum is known to contain no molecular emission and atomic
emission lines will be masked out. This leaves continuum emission with a realistic noise profile.
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3 Methods

3.1 Slab models

ProdimoPy is used to generate LTE slab models of various species. This means we do not consider
any gradient in temperature throughout the entire disk. This is quite common for 1D slab models
[14]. Our main variables are temperature and column density. We consider for simplicity only the
most abundant isotope, which is about 94% for SO, [20]. The width parameter or turbulent velocity is
kept constant for all models we consider in this thesis, with its value kept at 2.0 km s~!. The partition
sums used for calculating the energy level populations are precomputed and We then use the HITRAN
database [20] to get the emission lines of the given isotopes for the molecule in a given wavelength
range. This data includes the quantum numbers characterizing the transition, as well as the expected
line intensity. This module encapsulates line broadening and determines the total line intensity using
equation 9.

3.1.1 Convolving to MIRI MRS resolution and sampling

To compare the generated slab models with the JWST data, the models must be convolved to match
the resolving power of the MIRI MRS, as shown in Table 2. This process relies on the resolving power
and the upper and lower wavelength bounds for each channel. Since these values are not fixed, we
have incorporated several options within the framework to define the resolving power. The choices
include using the average of the upper and lower bounds, selecting the maximum value, or using the
minimum value for the resolving power within the channel.

Additionally, to handle wavelength overlap between adjacent channels, I investigated four distinct
methods: (i) setting the upper bound of the lower channel as the lower bound for the next channel,
(i1) taking the lower bound of the higher channel as the upper bound for the lower channel, (iii)
using the maximum wavelength range for the channel with the highest resolving power, and (iv)
using the maximum wavelength range for the channel with the lowest resolving power. These options
are applied separately for the short, medium, and long wavelength channels, as detailed in Table 2.
The different settings and the corresponding resolutions per channel in the convolved spectrum are
visualized in Figure 8. This figure thus shows to which the small overlapping wavelength ranges
are attributed and assigns a single value for the resolving power to each channel. This way, each
wavelength value will correspond to only one channel and each channel has one fixed resolving power,
which allows us to convolve the spectrum to match MIRI MRS.
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Resolving power versus wavelength for JWST MIRI MRS
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Figure 8: Varying settings of the convolver, showing options for choosing a resolving power and re-
moving wavelength overlap. The continuous line shows an approximate functional fit of the resolving
power from [24]. The dashed line shows a linear fit through the center of each of the marked lines.

A functional fit for the resolving power is given by R(A) = 4603 — 128A(um) + 10~ 74Mem) [24],
which is also shown in Figure 8. This fit closely matches the resolving power settings used in our
implementation, though with notable differences, which is especially apparent if we compare the
linear fit through the channel centers. For this work, we use the channel-specific resolving power
provided in Table 2 to maintain consistency and accuracy in model generation. The minimum is
mostly used to represent a worst-case scenario, so we can expect real observations to have at least
equal sampling of the wavelength range.

The convolving process results in a list of frequencies in GHz, with corresponding specific intensities
in erg s~! cm™2 sr~! Hz~!. To convert these frequencies into wavelengths in microns, we use the

relation:
Aum] =

The specific intensity is then converted into mJy by multiplying by 10? and the solid angle AQ,

C
v[GHz] x 103"

(15)
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which is defined as:
emitting area nR?

AQ = T =g

16
distance (16)

where R is the radius of the emitting region (assumed circular on the sky), and d is the distance from
the observer to the source. While R is often unknown and d varies depending on the observation, the
normalization of both models and observations effectively balances out these uncertainties, allowing
for meaningful comparisons.

Once the convolving process is complete, the model loops over each molecule in the spectrum, adjust-
ing the data for each channel based on the wavelength bounds determined earlier. For each channel,
the relevant molecular data is extracted and convolved according to the selected settings. After the
data from all channels is convolved, it is concatenated, resulting in a complete spectrum for each
molecule across the MIRI MRS wavelength range. This process is repeated for each molecule in-
cluded in the model. Finally, all of the individual spectra are summed to produce the total modeled
emission spectrum. This ensures that the generated slab models are compatible with the JWST obser-
vations, allowing for a direct comparison between the two.

3.2 Generating a noise model

The spectrum of a debris disk, which is characterized by the absence of molecular emission lines
but exhibits the typical noise profile observed in JWST MIRI data [25], serves as a baseline for the
analysis. To simulate the presence of molecular emission, such as SO;, simulated slab spectra are
overlaid on the debris disk spectrum. These simulated slab spectra are normalized to 1 and then
scaled by a factor, denoted as k, which is defined as:

k = SNR x Ghoise > (17)

where SNR represents the desired signal-to-noise ratio (in terms of standard deviations) for the sim-
ulated peaks, and Gpjse 1S the standard deviation of the noise in the original debris disk spectrum.
Prior to the addition of the simulated molecular emission, the continuum of the debris disk spectrum
is removed using a simple moving average with a window size of 100 data points. This method,
while effective in continuum subtraction, introduces edge effects at the boundaries of the spectrum,
which are discarded to preserve the integrity of the data. To ensure that the residual noise profile
remains consistent with observational characteristics, the moving average is shifted downward before
subtraction based on the median of the differences between the continuum and the spectrum. This
ensures the noise profile introduces no bias [25]. Furthermore, any peaks in the debris spectrum
that exceed a defined signal-to-noise threshold are capped to prevent unrealistic signal enhancements
before the molecular spectra are incorporated. The continuum is shown in figure 9. An example of a
capped spectrum with SO, added in will be shown later in figure 10.
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Debris disk and estimated continuum
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Figure 9: Debris disk spectrum with the continuum highlighted. The continuum is computed using
a simple moving average with a window size of 100, accounting for the broad features in the noise.
Edge effects caused by the moving average are evident near the spectrum boundaries.

3.3 Cross correlation technique
3.3.1 Detecting the presence of SO, using cross-correlation

We are dealing with spectra that must be normalized since we do not know every detail of the object
and want to correlate the slab models with actual observations. If we want a quantitative measurement
of abundance, we need to scale with the emitting area to match the slab models with the actual
observations, which is too complicated to be a first step. Better would be to see if we can detect the
presence of SO, without any quantitative measurement, for which we can use normalized spectra.
There is also the possibility that this leads to a first temperature estimate of the SO,. To detect SO,
we want to estimate the best-fitting slab model and overlay it to see if the peaks in the spectrum match
up.

The best-correlating spectrum is determined via cross-correlation by computing the Pearson Corre-
lation Coefficient (r) between the observed spectrum and a grid of normalized SO»-only slab model
spectra with varying temperatures and column densities. The coefficient  is given by

o IE-m)h-m)
\/Z(X - mx)z Y- my)2

) (18)
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where x represents the intensity values of the observed spectrum at each wavelength, y represents the
intensity values of the slab model spectrum at the corresponding wavelengths, and m, and m, are the
mean intensity values of x and y, respectively. This metric quantifies the similarity between the ob-
served and model spectra, allowing identification of the best-correlating slab model parameters. This
returns a cross-correlation coefficient and a p-value. This p-value denotes the statistical significance,
thus the effect of randomness on the cross-correlations, where a low p-value suggests the correla-
tion to be unlikely caused by noise, thus indicating SO, presence. In other words, the p-value is a
measurement of the probability of an uncorrelated dataset to produce a similar correlation coefficient
[26]. This means the correlation coefficient is affected by the relative peak heights. The dataset used
for cross-correlation consists of SO, column densities in units of cm™2 varying between 1 and 17.5
in step sizes of half integers in logjo base. The temperature varies between 100 and 1100 K in step
sizes of a hundred Kelvin.

To analyze how well the method performs, we will add SO; at a given temperature and column density
to the debris disk given a predefined signal-to-noise ratio. We will investigate whether we can retrieve
the SO, using the cross-correlation method described above. An example of such a spectrum of SO,
with the debris disk is shown in figure 10. We exclude models with column densities below 10* cm™2,

as those mock spectra do not contain any signal.

—— Total spectrum
—— S0, emission
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Figure 10: Mock spectrum using a slab model with SO, at a temperature of 900K and a column
density of 10'* cm~2, added at a signal-to-noise ratio of 3 to the debris disk spectrum.

For this spectrum, the correlation matrix with the aforementioned grid of mock spectra with accompa-
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nying p-values is computed. This matrix is shown in figure 11. We observe an outlier at a temperature
of 100K and a column density of 10*3, which needs to be investigated further as to the origin of this
phenomenon, as we observe it quite often. We call it an outlier as it has a reasonably consistent cor-
relation regardless of the input, and has seemingly no relation to the other values in the grid. Ata
signal-to-noise of 3 it is almost always the best correlating mock spectrum for the chosen grid, where
we define the best match as the mock spectrum with the highest correlation coefficient while having
a corresponding p-value below a threshold, which is arbitrarily chosen to be 0.05. When moving to
a signal-to-noise of 6, this phenomenon occurs less frequent, but still is there. We do see that often
the second best correlating mock spectrum has parameters that are far closer to the actual values of
the parameters of the slab model used, a fact that we will use when trying to calibrate the result to
maximize performance in estimating the temperature and column density in an observation. If we
solely look at the best-correlating slab model and the actual model with debris disk, we get for each
signal-to-noise value a grid such as in figure 12, where the result for a mock spectrum with SO, at a
signal-to-noise ratio of 3 is shown.
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Figure 11: Cross-correlations with the SO, slab model grid for a mock spectrum at a temperature of
900K and a column density of 10'* cm~2, added at a signal-to-noise ratio of 3.
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True Temperature vs Column density with Prediction Errors and Confidence
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Figure 12: Visualization of the behavior of the best estimations for different true values corresponding
to the used slab models at signal-to-noise of 3. The first subplot shows the correlation coefficient we
got at that point, the second the difference in temperature between the true slab model and the highest
correlating fit, the third the difference in column density for the true spectrum and best correlating fit.

3.3.2 Calibrating predictions

To investigate whether our predictions of temperature and column density from cross-correlation
with simulated spectra can be improved, we aim to estimate the true values while accounting for
systematic offsets in different regions of the parameter space. This approach is essential because
initial predictions from cross-correlation can exhibit consistent biases depending on the local structure
of the parameter space and the density of available spectra with which we correlate, as this is a
discrete grid in practice. Each such a spectrum is a point in the grid, which we will refer to as training
points. To address this, we developed a method that calculates a weighted average of the top cross-
correlation matches while excluding outliers, thereby providing more accurate and robust estimates
of temperature, column density, and their associated uncertainties.

We begin by identifying the five best-correlating slab model spectra for a given observation. For each
parameter (temperature and column density), we calculate a weighted average, where the weights are
proportional to the cross-correlation coefficients of the matches. Outliers are excluded based on user-
defined thresholds to mitigate the influence of aberrant matches. For instance, anomalous matches
such as (100 K, 10*> cm™2) can be excluded if the majority of other matches suggest significantly
different values. The weighted averages yield preliminary predictions of temperature, column density,
and correlation coefficients. These predictions form the basis for further refinement.

To estimate the true values and their uncertainties, we leverage the systematic behavior of cross-
correlation offsets across the parameter space, visualized in Figure 12. We calculate the Euclidean
distance between our predictions and all known training points, selecting the k-nearest neighbors
(where k is a user-defined parameter). A weighted average of the k-nearest neighbors is then com-
puted, incorporating both the distances and their respective cross-correlation coefficients as weights.
Closer neighbors with higher correlation coefficients contribute more to the final estimate. This pro-
cess ensures that predictions are informed by the local structure of the parameter space, improving
accuracy in regions with consistent systematic offsets.

Uncertainty estimates are derived by applying the same methodology to the errors of the selected
neighbors. These errors are defined as the difference between the predicted values (from cross-
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correlation) and the true values in the set of training points. A minimum of three neighbors is required
within the predicted uncertainty bounds. If fewer neighbors are found, the bounds are iteratively ex-
panded until this condition is met. The final uncertainty is computed as a weighted average of the
selected neighbors’ errors. Using these neighbors, we also determine the minimal correlation coeffi-
cient, which serves as a confidence threshold for predictions in that part of the parameter space.

To evaluate the performance of this method, we compute the mean absolute error (MAE) and root-
mean-square error (RMSE) for both temperature and column density predictions. A composite score
is calculated by averaging the MAE and RMSE for each parameter, providing a singular performance
metric for comparison. We optimize the choice of k by varying it and evaluating its impact on the
performance metrics. For temperature estimation, the optimal value of  is found to be 19; for column
density estimation, k = 16 is optimal. Considering overall performance, the best value is k = 18. For
this k, we achieve a temperature MAE of 40.64, RMSE of 51.14, and correlation coefficient of 0.99,
while for column density the corresponding values are 3.88, 4.61, and 0.36.

The results indicate that temperature predictions are highly reliable, as evidenced by the high corre-
lation coefficient and low error values, with an average mismatch of approximately half a grid step.
In contrast, column density predictions exhibit larger errors, with deviations spanning multiple grid
steps and a lower correlation coefficient, suggesting greater uncertainty. This method is sensitive to
the density of training points in the parameter space and depends on the signal-to-noise ratio (SNR)
assumed for observations. As the SNR changes, the calibration of the method and resulting predic-
tions may also vary. To investigate these effects, we apply the calibration method across the entire
grid of spectra for different SNR values, visualized in Figure 13. For an SNR of 3, the calibration
significantly reduces average errors, as shown in Figure 13. Similar improvements are observed for
other SNR values. Additionally, Figures 14 and 16 illustrate how the performance evolves with vary-
ing SNR, showing strong fluctuations in temperature offsets at low SNR, while column density offsets
remain relatively stable. However, the discrete nature of the model grid introduces limitations, as all
slab models are sampled on the same grid, which differs from the true parameter space.
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Figure 13: The impact of the calibration method on the parameter space with a signal-to-noise value
of 3, where the first column of plots shows the results from always assuming the highest correlating
model, the second from taking the weighted average while excluding outliers in the best matches, and
the third the estimation of the true best values using the calibration method.
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