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I

Abstract
This thesis investigates the potential of Visually Grounded Large Language Models (VGLLMs) for
few-shot robotic tabletop manipulation tasks. Six models (Kosmos-2, QWEN-VL, Florence-2, Gemini-
1.5-Pro, Gemini-1.5-Flash, and GPT4-o) were evaluated on their zero-shot grounding capabilities on
a subset OCID, HOTS and a novel PyBullet dataset from a simulation environment. Uniquely, this
study examines the ability of five VGLLMs to generate grounded robotic API calls from diverse
natural language instructions referencing objects and target locations, via few-shot prompting of in-
terleaved images, instructions, and expected grounded API calls. A novel robotic pipeline is proposed
that unifies the traditionally separate stages of visual grounding and code generation within a single
VGLLM pass, enabling users to instruct a robot to perform pick-and-place actions using natural lan-
guage. The findings show that while most models can generate visually grounded text consistently,
there is room for improvement on their performance. Zero-shot grounding achieved a maximum Inter-
section over Union (IoU) score of approximately 50% on the datasets. Few-shot performance, while
enabling grounded API call generation, achieved a maximum IoU of around 30%. In the simulated
environment, the best performing model achieved a 30% success rate for grasping the correct object.
Despite current limitations, this work highlights the potential of VGLLMs to unify robotic pipelines
and motivates future research into fine-tuning these models with grounded robotic data.
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1 Introduction

1.1 Overview
The vision of autonomous and intelligent robots seamlessly integrated into everyday life, from han-
dling household chores to transforming industrial processes, is rapidly approaching. Advancements
in computing, algorithms, and large-scale datasets have democratized AI, making complex models
accessible even via smartphones. These models fuel our optimism for the arrival of an Artificial Gen-
eral Intelligence (AGI), by their generalization skills across domains. However, the transition from
theoretical breakthroughs to robust real-world robotic systems presents substantial challenges. These
include the scarcity and lack of diversity in real-world robotic data, the critical need for safety in
robot deployments, the limitations of real-time performance, and the inherent complexity of translat-
ing natural language instructions into robot actions. This thesis addresses some of these challenges
by exploring the potential of foundational visually grounded large language models (VGLLMs) to be
used in robotic pipelines that could unify visual grounding and planning. VGLLMs offer a unique
paradigm: the ability to directly associate text with specific image regions. This approach offers a
pathway to creating more efficient, robust, and adaptable robotic systems. These referring capabilities
are being transferred to more use cases as it enhances the interaction with the models, for example as
in conditional image generation from grounded text bounding boxes in (Y. Li et al., 2023). There is
no surprise such referring capabilities will come in handy on the robotics setting.

1.2 Research Questions
This thesis investigates the potential of VGLLMS for robotic manipulation. By directly grounding
language instructions within visual contexts, VGLLMs offer a pathway toward more unified robotic
pipelines. This work looks to answer the following research questions:

1. How accurate are VGLLMs grounding image regions within expected robotic scenes using
zero-shot prompting across different types of sentences?

2. How effectively are VGLLMs grounding image regions while generating robotic API calls from
user instructions, using few-shot prompting with interleaved multimodal examples?

3. Can VGLLMs effectively replace traditional LLM + external visual grounding pipelines for a
more unified and efficient robotic manipulation approach?

To address these questions, we evaluate the performance of six different models on three datasets:
two real world dataset and a synthetic one. Datasets are used to assess the capabilities of grounding
through zero-shot prompting. To evaluate the performance of grounding while planning with few-shot
prompt strategies, only the synthetic dataset is used. Finally we propose a robotic pipeline, unifying
both grounding and planning based on a natural language instruction to assess the potential of current
VGLLMs in robotics.

1.3 Outline
The remainder of this thesis is organized as follows: Chapter 2 provides a comprehensive overview
of relevant work on LLMs, VLMs, and their use in robotic grounding and planning. Chapter 3 details
the methodology, including the datasets descriptions, model selection, implementation details of the
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benchmarks and robotic pipeline, and the evaluation metrics. Chapter 4 presents the experimental
results obtained from applying VGLLMs to robotic planning tasks. Chapter 5 discusses these results,
considering their implications, limitations, and potential improvements and suggestions for future
work.
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2 Related Work

This chapter reviews some relevant foundational concepts and prior research relevant to this thesis.
First, by discussing recent advancements on Large Language Models (LLMs) and their multimodal
extensions, such as Visual Language Models (VLMs). Then, by discussing a special type of VLMs
we call Visually Grounded LLMs (VGLLMs) and their unique capabilities of referencing text and
image regions. Finally, this chapter provides context on current use cases of LLMs and VLMs in
robotics, highlighting the potential of using VGLLMs to unify external grounding and text generation
for planning within a single model.

2.1 LLMs and Multimodal LLMs

Large Language Models (LLMs) have revolutionized the field of Artificial Intelligence with their im-
pressive capabilities in natural language processing. These novel models are built upon variants of the
transformer architecture(Vaswani et al., 2023), which has allowed to handle long context tasks. LLMs
are trained using massive web-scale datasets, allowing them to achieve remarkable performance on
different tasks such as in summarization, translation, and question answering (QA), among others.
The field continues to advance rapidly, with new models and benchmarks emerging constantly in the
LM arena (Chiang et al., 2024). LLMs are foundation models because of their ability to generalize
to new tasks not available in their training datasets through zero and few-shot prompting strategies.
These abilities makes us wonder the potential for their use in a wide range of applications across a
wide array of domains, including robotics (Kaddour et al., 2023).
Despite the impressive capabilities of LLMs, early models lack the ability to process data other than
text. Failing to ingest different data modalities limit the capabilities of LLMs to solve problems
in different domains. This limitation motivated the development of Multimodal LLMs (MMLLMs),
which can handle diverse input modalities beyond text. LLMs with inputs in addition to text are called
Multi-modal LLMs (MMLLMs). Visual Language Models (VLMs) are a type of MMLLMs trained
on web-scale image-text datasets, integrating visual understanding and semantic knowledge together.
Similar to LLMs, VLMs demonstrate strong generalization and foundation capabilities through zero-
shot and few-shot prompting strategies. VLMs incorporate visual information into the same semantic
embedding space with text, allowing to capture relationships between images and texts as seen in
(H. Liu, Li, Wu, & Lee, 2023) and (Alayrac et al., 2022).
This integration allows to complete tasks that require information from both the visual and text in-
puts, such as in the Visual Question Answering benchmark and image captioning, in which models
are tasked to answer questions about the images, and to generate descriptions about the image, respec-
tively. A Visual Language Model (VLM) consist of a model with visual encoder and text encoder that
are used to transform an input of both text and image modalities into a shared semantic embedding
space. These embeddings are then normally used by a text decoder in an auto-regressive manner to
predict the next token as usual. Sharing the embedding space, allows the completion of tasks such as
visual question answering, image captioning, and classification. LLAVA from (H. Liu et al., 2023)
was one of the first VLMs considering grounding text to image regions. LLAVA incorporated prompt-
ing techniques in one of their test sets, that provided visual context to questions via the description
of bounding boxes of objects present on an image. VLMs trained on grounded image-text paired
datasets (texts with references to an image region) are what this work refers to as Visually Grounding
LLMs (VGLLMs).



4 Chapter 2 RELATED WORK

Figure 1: Ambiguity problem example.

2.2 Visually Grounding LLMs

Visually Grounded Large Language Models (VGLLMs) represent a significant advancement towards
integrating visual grounding and language understanding within a single model. These models are
trained on image-text pairs that are augmented with annotations of regions of interests. VGLLMs can
both interpret and generate text that explicitly refers to specific image regions. In other words, they
are able to take grounded text and images as input and provide grounded text as output. This is an
important improvement to VLMs, since these type of models are capable of understanding explicit
visual references from images to take as context for generating the next token. Additionally, VGLLMs
are able to output the same explicit visual references and make a better interaction with the user or
next prompting techniques. Visual grounding can be used to eliminate ambiguity, particularly when
textual descriptions are insufficient or ambiguous. An example of this problem is shown in Figure 1,
where the text ”The cutest cat” applied to an image with multiple cats is ambiguous, a bounding box
clarifies the specific cat being referenced. Additionally, the VGLLM may respond with a reference to
a region of the image as well, making the response unambiguous and more interactive. An example on
how visual grounding can enhance interactions is from (S. Liu et al., 2024), where the authors use an
open-set object detector that grounds expressions to object regions via bounding boxes. It integrates
the object detector with Stable Diffusion (Rombach, Blattmann, Lorenz, Esser, & Ommer, 2022), by
creating a pipeline with a selection prompt that maps an expression to an image region, then using a
generation prompt to modify the image via the Stable Diffusion model, conditioned on the grounded
bounding box as seen in Figure 12. An example of a VGLLM is (Peng et al., 2023), one of the models
studied. KOSMOS-2 was trained on grounded image-text pairs and is capable of generating text and
referring objects to specific locations of an image through special localization tokens added to the
vocabulary. (Bai et al., 2023) is another model used in our study, that follows a similar approach with
a variability on their region vocabulary. Florence-2 (Xiao et al., 2023) another model used in this
study, is capable of grounding to regions on the image but with the capability of not only grounding
through bounding boxes, but also other types such as polygon representations.

2.3 Robotics with LLMs and VLMs

LLMs have been trained in all kinds of data sources, in a web-scaled manner. This has raised up the
question to how the world knowledge learned by these models could be transferred to solve differ-
ent tasks in various applications. As seen in (Kaddour et al., 2023), LLMs are used as chat-bots in
various industries, computational biology, computer programming, creative work, law, medicine, rea-
soning, social sciences, synthetic data generation, and robotics. The capacity of LLMs to process and
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understand complex sequences of information, coupled with their potential for generalization from
the world knowledge present in web-scale training data has fueled research into their application in
robotics, specifically in decision-making, planning and control. LLMs opened up the possibility of
humans interacting with robots using natural language expressions, simplifying technical knowledge
for control. In addition of the use cases of LLMS, VLMs add visual understanding which could
further condition the decision-making, planning, and control of the robots using them.
LLMs and VLMs have been used in robotic task planning and control successfully. For example,
(Huang, Abbeel, Pathak, & Mordatch, 2022) investigates if the world knowledge in the training data
in LLMs is useful to act in interactive environments by grounding high level tasks to a set of actionable
action steps.(Singh et al., 2022) with ProgPrompt, utilizes LLMs to decompose a high level task
into sub-tasks by generating code style function calls, from a set of available actions or functions,
use examples, and the set of objects in the environment. SayCan from (Ahn et al., 2022) utilizes
a language model to decompose high-level tasks, by combining the probabilities of a skill being
useful (according to the LLM) and the probabilities of a value function per skill (trained with the
probability of successfully executing the skill) to select the skill to perform, grounding the instruction
to the environment. Code as policies from (Liang et al., 2023) writes robot policies with code from
a natural language instruction, having access to perception functions, control primitives, recursively
generate code for undefined functions to ultimately generalize to new tasks. (Ha, Florence, & Song,
2023) utilizes an LLM to decompose tasks into subtasks, grounding the subtasks into robotic API
code instructions, and create functions to check for success conditions. GraspGPT (Tang, Huang, Ge,
Liu, & Zhang, 2023) uses LLMs to generate novel concepts from a natural language instruction, then
uses this novel concept relating it to concepts from training data, and finally generalizes by grounding
a task oriented grasping skill from the known concept to the novel one (A know concept could be
to pour a cup and the novel could be to dispense a pitcher). PIVOT from (Nasiriany et al., 2024)
utilizes a VLM to choose between a set of proposed robotic actions that are annotated visually to an
image, similar to what SoM prompting from (Yang et al., 2023) does to help the VLM solve tasks
by pointing out annotations added to the input image, but in a robotic environment. PaLM-E from
(Driess et al., 2023) is a VLM, that has been injected with continuous, embodied observations like
images, state estimates, and other sensor data into the language embedding space of a pre-trained
language model. They did this by encoding continuous observations into a sequence of vectors with
the same dimension as the embedding space from the base language model. Built on top of PALM-E,
(Brohan et al., 2023) with RT-2, a vision language action model (VLA), that is like an VLM that
directly outputs robotic actions. The model generates the action in words and an encoded positional
and rotational changes, and gripper position. They fine-tuned a VLM with robotic trajectory data and
vision-language tasks. AffordanceLLM from (Qian et al., 2024) leverages knowledge from LLMs,
they take an image encoder and project its embeddings into the embedding space of a text encoder
(a VLM), and produce a special < mask token >, whose hidden state is then used as prompt to a
decoder to generate a dense affordance map.
(J. Li et al., 2024) propose a new benchmark to evaluate multimodal LLMs in robotics (MMRo),
totaling 14 different metrics in domains as perception, task planning, visual reasoning, and safety
measurement. They found that is no model trustworthy enough to be used as core for all these bench-
marks, each model had its own advantages and disadvantages. This one benchmark already started
to question the effectiveness of visual grounding (part of the perception benchmarks), in robotics.
This thesis contributes to this evolving field by investigating the potential use of VGLLMs to unify
grounding and planning.
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3 Methodology
This chapter describes the methodology used in this thesis. It describes the simulated robotic envi-
ronment, the datasets used for evaluation, the selected VGLLMs and other supporting models, the
implementation of the the proposed robotic pipeline, the prompt engineering strategies, and the eval-
uation metrics. The source code use can be found in this GitHub repository. 1

3.1 Robotic Environment
The robotic environment used for the experiments is a simulated tabletop setup, of a Universal Robot
arm (UR5c) equipped with a two-fingered Robotiq 2F-140 gripper and an RGB-D camera in an
eye-to-hand configuration mounted on top of the table. The simulation is implemented in PyBullet,
adapted from previous work from (Oude Vrielink & Kasaei, 2021). The environment configuration is
shown in Figure 2a. The robot arm is mounted on a side of a table, where objects are randomly placed.
These objects are drawn from a subset of the YCB object dataset (Calli et al., 2015), and are listed on
Table 2. A tray, located next to the robot arm, is used as a target location for placing objects. The base
configuration of this setup was used to accept natural language instructions, which are then translated
into robotic API calls to execute the desired manipulation tasks. Additionally, another environment is
shown in Figure 2b, of a real robot to help with the perspective of the simulated environment.

3.2 Datasets
Three datasets were used to evaluate the performance of the selected VGLLMS:

Object Clutter Indoor Dataset (OCID) (Suchi, Patten, Fischinger, & Vincze, 2019): This dataset
is a subset of the original, consisting of 173 real-world images of cluttered scenes. Each image
is paired with a sentence referencing an object within the scene. Objects are referenced in differ-
ent categories: name, attribute, affordance, spatial relations, visual relations, semantic relations, and
multi-hop relations. Table 1 lists examples to these reference types, the number of samples of each,
and an example sentence. Additionally, each scene includes information about the segmentation mask
and bounding box of the object of interest. Examples of scenes from the OCID dataset are shown in
Figure 14.

1Source code: https://github.com/juanluislopez24/VGLLM based robotic manipulation.

(a) Pybullet environment configuration. (b) Real robot environment configuration.

Figure 2: Environment Configurations

https://github.com/juanluislopez24/VGLLM_based_robotic_manipulation


Chapter 3 METHODOLOGY 7

Table 1: Reference types from the OCID dataset.

Reference Type Number of Samples Example
Semantic relations 13 Something to wipe myself with
Visual relations 19 Marker that has the same color as the stapler
Multi hop 24 First cereal from the left
Spatial relations 33 Bottle next to the binder
Affordance 16 I want to cook some spaghetti
Name 42 Feh package
Attribute 26 Towel with letters on it

PyBullet Simulation Dataset: This dataset was generated using the PyBullet robotic simulation en-
vironment. Objects used in the robotic environment are a subset from the YCB dataset (Calli et al.,
2015). The objects comprised of 16 objects commonly found at home. The list of objects is shown in
Table 2. Scenes contain 2 to 6 randomly selected objects. Ground truth segmentation masks, obtained
from the simulator, were used to derive accurate bounding boxes for each object. A natural language
instruction generator was used to create diverse instructions referencing objects and target locations,
using the corresponding reference types and target types, which used in combination, this thesis refers
to query types. The resulting query types are shown in Table 3. Each generated instruction includes
information about the target object, location, and other relevant details for evaluation. Examples of
scenes from the PyBullet generated dataset are shown in Figure 13.

Table 2: List of YCB objects utilized in the robotic environment for robotic simulation and synthetic
dataset creation.

Scissors Gelatin Box Cracker Box Strawberry
Power Drill Chips Can Foam Brick Potted Meat Can
Tennis Ball Medium Clamp Banana Pear

Master Chef Can Tomato Soup Can Mustard Bottle Hammer

Table 3: List of query type categories used on the PyBullet simulation dataset.

Name Tray Attribute Tray Affordance Tray
Name Table Attribute Table Category Tray

Name Relative Attribute Relative

Household Objects in Tabletop Scenarios (HOTS): This dataset comprises of 118 tabletop scenes
featuring 46 different objects with various attributes associated to them. Scenes include an RGB
image with its corresponding object labels, segmentation masks and bounding boxes. This dataset
was used previously in (Tziafas & Kasaei, 2023) to enhance the interpretability and interactivity in
robot manipulation. This dataset was collected using the real-world robotic environment shown in
Figure 2b. The object attributes include their category, super-category, color, and material. The
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objects attributes are shown in Table 24. To align with the OCID dataset format, a sentence generator
was developed to produce natural language references for objects within the HOTS scenes, using the
provided object attributes and spatial relationships derived from the bounding boxes. These generated
sentences include some of the same reference types as the OCID dataset: name, spatial relations,
visual relations, attribute, and affordance. Details of the reference types present in this dataset are
shown in Table 4.

Table 4: Reference types from the HOTS dataset.

Reference Type Number of Samples Example
Semantic relations 118 A red fruit to keep the doctor away.
Visual relations 118 The pen the same color as the hot pringles
Spatial relations 118 The plastic item on the bottom of the cassis can
Affordance 118 I need something to eat my cereal from
Name 118 Fanta can
Attribute 118 Something black made of metal for eating.

3.3 Models and Implementation
This section covers details around the models used and details the implementations around the dataset
evaluation and the proposed robotic pipeline.

3.3.1 VGLLM Models

Six models were selected for evaluation (Table 5). These models were chosen for their potential to
combine visual grounding with text.
KOSMOS-2 (Peng et al., 2023): is a multi modal large language model, that is capable of perceiv-
ing object descriptions, such as bounding boxes, and grounding text to an image. Authors say that
their work is a foundation for the development of Embodiment AI, converging language, multimodal
perception, action, and world modeling. KOSMOS-2 is a transformer-based causal language model,
built upon KOSMOS 1, which incorporates grounding and referring capabilities. They introduce a
new dataset comprised of grounded image-text pairs (GRIT). Bounding boxes are discretized into
location tokens, and then appended to the text spans using a ”hyperlink” format. The output, when
the model’s answers includes a reference to an image region, utilizes the same location tokens. The
models format to encoding text and image regions is shown in Listing 1.They say that grounding
capability enables to get more accurate, informative, and comprehensive responses. The model archi-
tecture includes a vision encoder with 24 layers with 1024 hidden size and 4096 FFN (Feed forward
network) intermediate size. The multimodal LLM is a 24 layer MAgneto Transformer (H. Wang
et al., 2022), 32 attention heads, 8192 FFN intermediate size. The total trainable parameter size is
around 1.6B. Image input dimension is 224× 224 with patch size of 14× 14. The image is divided
into 32 bins consisting of 7× 7 pixels. This means that 32× 32 location tokens where added to the
vocabulary. Kosmos-2 uses Komos-1 weights for initialization, with the new vocabulary randomly
initialized. All parameters were updated during training and instruction tuning.
Qwen-VL (Bai et al., 2023): is a vision-language model combining a large language model (LLM)
with a vision encoder and a position-aware adapter that processses both text and images. The archi-
tecture consists of a Qwen-7B 7.7B language model, a 1.9B ViT based image encoder, and 0.08B a
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Listing 1: Kosmos-2 grounding example verbatim
Th i s i s an image of a <phra se> t e n n i s b a l l </ ph ra se>
<o b j e c t ><p a t c h i n d e x 0 1 2 0 ><p a t c h i n d e x 0 2 0 1 ></ o b j e c t >
n e x t t o a p a i r o f <phra se>s c i s s o r s </ ph ra se>
<o b j e c t ><p a t c h i n d e x 0 3 7 8 ><p a t c h i n d e x 0 4 7 6 ></ o b j e c t >
on t o p of a t a b l e .

Listing 2: QWEN-VL grounding example verbatim
The <r e f >p o t t e d meat can </ r e f ><box > (776 ,245 ) , (928 ,361 ) < / box>
i s p l a c e d n e x t t o a
<r e f >b o n f i r e </ r e f ><box > (202 ,303 ) , (495 ,632 ) < / box>

vision-language adapter that compresses the visual features and adds positional information that helps
for visual understanding. The complete architecture totals 9.6B parameters. The model first was pre-
trained on a general image-text dataset, then trained on a multi-task annotated dataset, and finally
instruction fine-tuned for user interaction. During training the model is capable to learn grounding by
taking in information from region descriptions, questions, and bounding boxes. They normalized and
encoded bounding box coordinates as text strings, and combined with the other text data it is capable
of associating words and sentences with its corresponding regions on the image. An example of this
is shown in Listing 2. This model showed great potential for zero-shot image captioning and VQA
benchmarks.
Florence-2(Xiao et al., 2023): is a multitask model trained with extensive visual annotations. The
model includes n image encoder and a multi-modality encoder-decoder. They introduce a dataset
called FLD-5B with 5.4B annotations on 126M different images, which was created autonomously.
Florence-2 is capable of object detection, captioning, and grounding. They adopt a sequence-to-
sequence framework, treating tasks as a translation problem. Given an image and a task prompt, they
generate the output. Depending on the task, the output is either text or region on the image. Grounding
to regions is possible in three different ways: bounding box, quad box, and polygon representations.
This is shown in Figure 3. As the previous models, they extended the vocabulary to include location
tokens. The vision encoder is from the DaViT architecture (Ding et al., 2022). Images are transformed
into visual token embeddings. The multi-modality encoder decoder uses a standard encoder-decoder
transformer architecture that processes both visual and language token embeddings. The model’s
architecture is shown in Figure 3.
Gemini 1.5 Pro and Gemini 1.5 Flash (Team et al., 2024): are set of multimodal models from
Google capable of handling text, visual, and audio inputs. These models are natively multimodal,
so they can support input mix from different modalities. These models are built to handle long
context windows of up to 10 million tokens. Gemini 1.5 Pro is a sparse mixture-of-expert (MoE)
Transformer-based model. A MoE model has a routing capability to use the inputs on a subset of the
model’s parameters when performing inference. The Flash variant is a transformer decoder model
with multimodal capabilities as well.
GPT4o (OpenAI et al., 2024): is multimodal model from OpenAI, capable of also handling text,
visual, and audio inputs. It is also capable of supporting a mix of the different modalities. GPT4o
128k context window still lacks behind Google’s. There exists a smaller version of the model called
GPT4o-mini, but is not used in this project. GPT-4 model is a mixture-of-experts of around 1.76
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Figure 3: Florence-2 model architecture, input-output examples for different tasks. Image taken from
(Xiao et al., 2023).

trillion parameters, but there is no public information about the parameter size of GPT4o, although
it is also suspected to be a MoE. Additionally, GPT4-o is capable of generating images and audio,
but it is unclear if it is part of the same model architecture, or if they are using connectors behind the
scenes.

3.3.2 Other Models Used

GR-Convnet is a Generative Residual Convolutional Neural Network model that generates antipodal
grasps (Kumra et al., 2021). The network takes as input RGB and Depth images to generate pixel-wise
grasps in the form of three different generated images. The input is processed and then passed through
three convolutional layers, followed by five residual layers, later three transposed convolutional layers
that generate 4 different images. These 4 images correspond to a pixel-wise grasp quality score,
angles in the form of cos2θ and sin2θ, and the width of the end effector. The angle images are then
combined to firm the required angle for the grasp pose. The GR-Convnet architecture is shown in
Figure 4. This network is used in the proposed robotic pipelines, shown in Figure 6 and Figure 7, to
generate the best grasping poses for the objects to be manipulated. In the pipeline, there is a function
called grasp ob ject f rom mask, which takes as parameters the mask and the RGB depth image from
the top of the table and returns grasp pose estimation results. The grasp results are filtered using the
mask and the best grasping poses are chosen according to their quality (outputted by GR-Convnet).
Segment Anything Model (SAM) is a foundation model for segmentation (Kirillov et al., 2023). It
is a promptable model trained on a large dataset, enabling generalization. The model has flexibility
on how it can be prompted, including point, box, mask, and initial results on text prompts. The
model’s architecture consist of an image encoder, a prompt encoder, and a mask decoder as shown in
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Table 5: Overview of the VGLLM Models Selected for Evaluation

Model Architecture Overview Grounding Mecha-
nism

Training Data

Kosmos-2 Vision Encoder, Multi-
modal LLM (1.6B)

Bounding Box through
added vocabulary for lo-
cation tokens

GRIT: grounded image-
text pairs, monomodal
text corpora, image-
caption pairs, and
interleaved image-text
data.

Qwen-VL Vision encoder, vision-
language adapter, LLM
(9.6B)

Bounding box tokens
encoded as strings and
added vocabulary

Large-scale web-
crawled Chinese and
English image-text
pairs, GRIT, and other
grounding datasets

Florence-2 Vision Encoder and a
multi-modality encoder-
decoder (0.77B)

Bounding box, quad
box, polygon from
strings and added vo-
cabulary

FLD-5B: Image-text
pairs, region-text pairs,
text-phrase-region
triplets.

Gemini Pro Multi-modal
transformer-based
Mixture-of-Experts
(MoE)

Via prompting (Bound-
ing box JSON or Tuple
in our case)

Google’s proprietary
multi-modal dataset

Gemini 1.5 Flash Multi-modal
transformer-based
encoder-decoder

Via prompting (Bound-
ing box JSON or Tuple
in our case)

Google’s proprietary
multi-modal dataset

GPT-4o Multi-modal
transformer-based
encoder-decoder

Via prompting (Bound-
ing box JSON or Tuple
in our case)

OpenAI’s proprietary
multi-modal dataset

Figure 5. The output of SAM can include multiple valid masks associated with their corresponding
confidence scores, in the environment and dataset evaluations, we consider only the mask with the
highest score. The image encoder utilizes MAE (Masked Auto-encoders) (He et al., 2021) with ViT
(Vision Transformer) (Dosovitskiy et al., 2021). The resulting image encoding can be re-utilized on
different prompts. The prompt encoder deals with two types of prompts: sparse and dense. Sparse
prompts include points, boxes and text. Dense include the mask prompts. Points and boxes are
represented by positional encodings summed with learned embeddings for each prompt type. Text
prompts are encoded using CLIP’s encoder (Radford et al., 2021). Mask prompts are encoded using
convolutions and then summed element-wise to the image embedding. The mask decoder maps the
image embedding, the prompts, and an output token to a mask. The decoder uses bi-directional cross-
attention to update all embeddings. After two blocks, the image is up-sampled and a MLP is used
to calculate the probability of a position being part of the foreground. The model outputs 3 masks,
additionally the model predicts a confidence score for each.
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Figure 4: GR-Convnet architecture taken from (Kumra et al., 2021)

Figure 5: Segment Anything Model. Image adapted from (Kirillov et al., 2023).

3.3.3 Base and Proposed Environment

The base environment was provided by the supervisors, being modified from (Oude Vrielink &
Kasaei, 2021). The environment was modified so that it was capable of receiving open text instruc-
tions from a user, generate robotic API instructions and execute them. As soon as the environment is
instantiated with all the corresponding objects and elements, the following happens: First, the ground
truth segmentation is used to classify each object according to a list of categories, all used by CLIP
(Radford et al., 2021). CLIP takes an image of the object and matches it to the category which resem-
bles the most from the list. Then for each object classified, a number grasp poses are calculated using
GR-Convnet (Kumra et al., 2021). After having mapped categories and possible grasps to objects in
the environment, the interface asks the user for a natural language instruction. The natural instruction
is processed by a BLOOM (Workshop et al., 2023), an LLM that is used to generate robotic API calls
from the user’s input. These API calls are then executed accordingly. One important thing to mention
is that the labels used to classify the objects with CLIP, are already grounded to grasp poses, which are
what BLOOM passes as parameters when generating the robotic API calls. The robotic API includes
trajectory planning and execution routines. The overview of the base pipeline is shown in Figure 6.
The proposed pipeline leverages VGLLMs to unify the external object grounding from CLIP and the
generation of robotic API calls from BLOOM in a single pass of the model. The pipeline works in the
following steps: First, when the objects are instantiated, the user is prompted for an instruction. Then,
the image and the instruction are interleaved on a prompt and passed to the corresponding VGLLM as
input. The VGLLM outputs a sequence of move API calls, alongside the respective object references
as bounding boxes (In the same API call as part of the parameters). The object references are used
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Figure 6: Base robotic pipeline provided, using modular approach for object grounding.

Figure 7: Proposed robotic pipeline using VGLLMs for object grounding and robotic manipulation.

to get the appropriate mask by utilizing the box prompting method with SAM (Kirillov et al., 2023).
The obtained mask is then used to calculate the possible grasping poses. Finally, robotic API calls for
trajectory planning and execution routines are used. The overview of the proposed robotic pipeline is
shown in Figure 7.

3.4 Prompt Engineering

Model-specific prompt engineering was crucial for obtaining proper inference results on both ground-
ing, grounding with robotic API calls, and generating the robotic API calls on the simulation. Manual
testing through trial and error of multiple prompting strategies was used per model. The prompts for
grounding focused on guiding the models to ground the entire input sentence. The zero-shot prompt
templates per model for grounding on all three different datasets are listed on Table 6. These templates
replace the word sentence with the appropriate text referencing an object or instruction.
For grounding while generating robotic API calls, a few-shot prompting strategy was utilized. Using
the PyBullet dataset, a function was used to create an expected generated response for each of the
models, using each model’s unique way to ground image regions. The PyBullet dataset provides
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Table 6: Prompts used for grounding sentences per model.

Model Prompt
QWEN-VL <ref>sentence</ref>
KOSMOS-2 <phrase>sentence</phrase>
Florence-2 <OPEN VOCABULARY DETECTION>sentence
Gemini 1.5 pro, Gemini 1.5 Flash, GPT4o Provide the bounding box coordinates of the object in

the image the following expression refers to: sentence
Coordinates must be in the range between 0 and 1000.
Do not round up the coordinates. Answer using this
JSON schema: {

”x min”: int,
”y min”: int,
”x max”: int,
”y max”: int

}

Table 7: Examples of expected responses generated for the few-shot prompting.

Model Expected Response
GPT4o robot.move((45, 21, 91, 100), "left side")

Gemini Models robot.move((816, 321, 968, 424), "tray")

KOSMOS-2 robot.move("tomato soup can", "tray")

QWEN-VL robot.move("<ref>tomato soup can</ref><box>

(789,318),(971,434)</box>", "center")

the necessary ground truth information to do this for each type of instruction. An example of the
generated expected responses for each model can be seen in Table 7. These expected responses were
used in the few-shot prompting strategy, that allowed the models to generate consistent robotic API
calls. The few-shot prompt consists of interleaved images, natural language robotic instructions, and
expected grounded robotic API calls. Additionally, some examples of the expected QWEN-VL model
responses are shown in Table 8 for each query type. In order to make the models robust to the different
query type instructions, a mixed prompt was used in both the grounding evaluations and on the robotic
simulation. The mixed prompt consisted on two samples of each query type, totaling 14 examples.
Additionally, a specialized prompt was used for the grounding evaluations, comprised of 14 examples
of the same query type. An example of a mixed interleaved prompt for the Gemini models is shown
in Listing 3.

3.5 Evaluation Metrics
The metric for evaluating grounding performance, both zero-shot and few-shot, is the Intersection
over Union (IoU) between predicted and ground truth bounding boxes and segmentation masks (Equa-
tion 1). One important thing to mention is that the segmentation masks are generated with SAM
(Kirillov et al., 2023) using the generated bounding boxes from the VGLLMs. IoU is a metric that
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allows to quantify the overlap between the ground truth regions of an image and the predicted segmen-
tation masks or bounding boxes. For the PyBullet dataset’s few-shot experiments, IoU was calculated
for both the object the instruction refers to and the relative target object (when applicable). For robotic
simulation experiments, the success rate of grasping the correct object was measured. Additionally,
a precision metric, defined as the number of correctly grasping the desired object divided by the total
number of times an object was grasped. This measure is used assess the certainty of correctly grasping
an object when an object is grasped.

IoU =
area of overlap
area of union

=

Ground Truth

Prediction

Intersection

Ground Truth

Prediction

(1)
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Table 8: Expected responses from query instructions using QWEN-VL for robotic planning.

Query and Query Type Qwen-VL Expected Response
Query: Carry the potted meat can to the tray
Type: name tray

robot.move("<ref>potted meat
can<ref> <box>(776,245),
(928,361)<box>", "tray")

Query: Carry the gelatin box to the upper left
corner
Type: name table

robot.move("<ref>gelatin
box</ref><box>(254,758),
(379,821)</box>", "upper left
corner")

Query: Put the tennis ball to the right of the scis-
sors
Type: name relative

robot.move("<ref>tennis
ball</ref><box>(812,366),
(897,450)</box>",
"<ref>scissors</ref><box>(258,285),
(495,486)</box>", "right")

Query: Move the fruit that is often eaten raw to
the tray
Type: attribute tray

robot.move("<ref>pear</ref><box>
(281,491), (366,616)</box>", "tray")

Query: Relocate the container for potato chips
to the left side
Type: attribute table

robot.move("<ref>chips
can</ref><box>(522,0),
(736,312)</box>", "left side")

Query: Relocate the packaging for a food item
to the right of the banana
Type: attribute relative

robot.move("<ref>chips
can</ref><box>(566,312),
(888,437)</box>",
"<ref>banana</ref><box>(611,781),
(857,875)</box>", "right")

Query: I need to make a quick and easy meal
Type: affordance tray

robot.move("<ref>potted meat
can</ref><box>(566,727),
(660,875)</box>", "tray")

Query: Carry all the food in the tray
Type: category tray

robot.move("<ref>pear</ref><box>
(250,303),(370,388)</box>",
"tray") robot.move("<ref>chips
can</ref><box>(651,406),
(982,526)</box>", "tray")
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4 Experiments and Results
This section presents the results of the experiments evaluating the performance of the chosen models:
KOSMOS-2, QWEN-VL, FLORENCE-2, Gemini-1.5-pro-002, Gemini-1.5-flash, and GPT4-o.
Grounding capabilities of the models were measured on three datasets: The Object Clutter Indoor
Dataset (OCID) and the robotic PyBullet simulation dataset, and the Household Objects in Tabletop
Scenarios (HOTS). Both zero-shot grounding capabilities (OCID, PyBullet, HOTS) and few-shot
grounding during robotic API Call generation (PyBullet) are assessed. The evaluation metrics for the
experiments are Intersection over Union (IoU) for bounding boxes and segmentation masks (Using
SAM with the bounding box as prompt input). Finally, we analyze the performance of our proposed
unified robotic pipeline, utilizing the few-shot prompting generating grounded robotic instructions
measuring success rates for grasping.

4.1 Zero-Shot Grounding Performance
These experiments evaluate the models’ ability to ground objects in images without any explicit ex-
amples or training in the provided prompts.

4.1.1 OCID Dataset

The zero-shot grounding results on the OCID dataset are shown in Tables 9 and 10 for segmentation
masks and bounding boxes, respectively. The results are broken down by the type of object reference
used in the sentence (Affordance, Attribute, Multi-hop, Name, Semantic Relations, Spatial Relations,
and Visual Relations). This breakdown reveals how model performance varies with different ways
of referring to objects. The results show that the IoU scores for the bounding box and segmentation
masks produced by SAM (Kirillov et al., 2023), appear to be consistent to one another. The exact same
models share the highest scores on both IoU measures across the different referral types of sentences.
QWEN-VL models are consistent on their grounding performance, being the best performing models
on six out of the seven different types of sentences on the OCID dataset with an average score of 47%
and 45% (QWEN-VL and QWEN-VL Q). Followed by FLORENCE-2 with 37%, Gemini-1.5-flash
with 31%, KOSMOS-2 with 27%, Gemini-1.5-pro with 22%, and finally GPT4-o with 9% scores.
GPT4o was behind the other models in all the cases. The average scores per model on the bounding
box and segmentation mask IoUs can be seen in Figure 8a. Qualitative results are shown in Figure 15
and Figure 16.
For the Affordance type of sentence, the quantized version of QWEN-VL excelled, with 40% IoU,
compared to the 26% achieved by the full precision model. The Attribute type of sentence received
one of the highest IoU score measures with FLORENCE-2 achieving an average IoU score close to
69%, followed by the two QWEN-VL and QWEN-VL quantized with an IoU score of 61% and 57%,
respectively. On the multi-hop, name, semantic relations, and visual relations types of sentences,
QWEN-VL variants outperformed the rest. The performance of FLORENCE-2 on the name type of
sentences was very close, with an average IoU score of 61%.

4.1.2 Pybullet Robotic Simulation Dataset

Table 11 and Table 12 show the IoU results for segmentation masks and bounding boxes, respectively,
for each query type on the synthetic dataset. Here we are measuring the performance of grounding
based on different query types or expressions that could be given to a robot. The query types include
a combination of a way to refer the object to (similar to what was done with the OCID dataset) and
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(a) OCID dataset (b) PyBullet dataset

(c) HOTS dataset

Figure 8: Average IoU scores for grounding per model.
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Table 9: Segmentation mask IoU for grounding a sentence from the OCID dataset.

Affor-
dance

Attribute Multi
Hop

Name Semantic
Rela-
tions

Spatial
Rela-
tions

Visual
Rela-
tions

FLORENCE-2 0.111639 0.671126 0.196845 0.593188 0.271794 0.265697 0.364090
GPT4o 0.140137 0.031564 0.151037 0.077607 0.077607 0.095448 0.044111
Gemini-1.5-flash 0.203507 0.396500 0.267592 0.437188 0.336308 0.301147 0.294352
Gemini-1.5-pro-002 0.318785 0.264089 0.157720 0.327945 0.162620 0.157604 0.247936
KOSMOS-2 0.312743 0.316129 0.128383 0.401764 0.274944 0.285859 0.269241
QWEN-VL 0.269836 0.626821 0.422539 0.667331 0.454686 0.532095 0.427783
QWEN-VL Q 0.406320 0.589831 0.372122 0.629653 0.387211 0.535048 0.389365

Table 10: Bounding box IoU for grounding a sentence from the OCID dataset.

Affor-
dance

Attribute Multi
Hop

Name Semantic
Rela-
tions

Spatial
Rela-
tions

Visual
Rela-
tions

FLORENCE-2 0.148479 0.707124 0.230261 0.634691 0.298831 0.305047 0.382490
GPT4o 0.139036 0.081969 0.094159 0.121245 0.119203 0.117818 0.066584
Gemini-1.5-flash 0.198703 0.369197 0.247035 0.374125 0.308639 0.305087 0.302775
Gemini-1.5-pro-002 0.276387 0.238015 0.145813 0.285311 0.156388 0.150366 0.219212
KOSMOS-2 0.287478 0.311535 0.123244 0.375885 0.259591 0.264009 0.248137
QWEN-VL 0.181505 0.609935 0.405175 0.645662 0.428542 0.512704 0.430601
QWEN-VL Q 0.328141 0.556802 0.357474 0.595979 0.326211 0.524050 0.410353
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Table 11: Segmentation mask IoU for grounding robotic instructions to an object from the PyBullet
dataset per model.

Affor-
dance
Tray

Attribute
Relative

Attribute
Table

Attribute
Tray

Name
Relative

Name
Table

Name
Tray

FLORENCE-2 0.195985 0.343201 0.566884 0.550471 0.516010 0.723365 0.670068
GPT4o 0.169561 0.135780 0.145501 0.150403 0.108205 0.124894 0.192031
Gemini-1.5-flash 0.403804 0.367072 0.388034 0.472061 0.475603 0.465725 0.461623
Gemini-1.5-pro-002 0.425946 0.532825 0.528381 0.586545 0.547549 0.594905 0.654741
KOSMOS-2 0.339714 0.574507 0.553300 0.583257 0.685791 0.628356 0.564683
QWEN-VL 0.172149 0.492496 0.528467 0.613879 0.622361 0.623481 0.638810
QWEN-VL Q 0.158056 0.457138 0.513950 0.557816 0.628087 0.620496 0.637425

the target location type. The query types are listed in Table 3. The performance of the models to
ground objects under different query types will allow us to identify further strengths and biases of
the models capability of grounding under different types of robotic natural instructions. The results
appear to be consistent to what happen with grounding the OCID dataset, the models having the
highest scores on the bounding box IoU also have the highest scores on the segmentation masks IoU.
This time, the model performing the best on average was KOSMOS-2 with a score of 50% overall,
achieving the highest score on two out of the seven different query types (Table 3), having relative
target positions. FLORENCE-2 achieved the highest scores on three of the different query types,
Attribute Table, Name Table, and Name Tray. Despite QWEN-VL dominating the OCID dataset, on
this experiment it only achieved the highest score on the Attribute Tray query type. Finally, Gemini
variants performed the best for the Affordance Tray query type, with the pro variant achieving the best
score. The average scores per model on the bounding box and segmentation mask IoUs can be seen
in Figure 8b. On the figure mentioned, one can appreciate that FLORENCE-2, QWEN-VL variants,
KOSMOS-2 and Gemini-1.5-pro had similar performances overall, and that again GPT4-o achieved
the worst one. One important variation from the previous section is that in this case, the results show
a better IoU score for segmentation masks, rather than on the bounding box, averaging over all query
types per model. Qualitative results are shown in Figure 17 and Figure 18.

4.1.3 HOTS Dataset

The the IoU results for the zero-shot grounding on the HOTS datasets are shown in Table 13 and Ta-
ble 14. These correspond to the IoU scores of the segmentation masks and bounding box, respectively.
We notice that QWEN-VL showed the best performance again, with an average IoU score of around
0.44. The results follow the same pattern shown from the OCID dataset in subsubsection 4.1.1. These
resemblance on the results may be because of the similarities of both the OCID dataset and the HOTS
datasets, having real world images and tabletop settings. The average scores can be seen on Figure 8c.
In this case, IoU scores from the segmentation masks are higher for all the models, meaning that given
the predicted bounding boxes, the object segmentation performed with SAM helped achieve a higher
object coverage. QWEN-VL models showed better performance, achieving the maximum IoU score
across the different reference types, except on the name reference type which max score was achieved
by the Florence-2 model. QWEN-VL model achieved an average score of 48.5%, while on the other



Chapter 4 EXPERIMENTS AND RESULTS 21

Table 12: Bounding box IoU for grounding robotic instructions to an object from the PyBullet dataset
per model.

Affor-
dance
Tray

Attribute
Relative

Attribute
Table

Attribute
Tray

Name
Relative

Name
Table

Name
Tray

FLORENCE-2 0.190912 0.311566 0.508603 0.493671 0.480548 0.651691 0.605650
GPT4o 0.111722 0.100661 0.103202 0.106398 0.086323 0.099485 0.145302
Gemini-1.5-flash 0.290995 0.283847 0.291155 0.347395 0.365129 0.325416 0.356305
Gemini-1.5-pro-002 0.320934 0.399274 0.421304 0.453038 0.389245 0.457071 0.512282
KOSMOS-2 0.225148 0.463717 0.452809 0.473122 0.556634 0.496989 0.450913
QWEN-VL 0.146964 0.414956 0.444724 0.527675 0.526600 0.504144 0.513156
QWEN-VL Q 0.129350 0.385298 0.426121 0.455782 0.512520 0.467531 0.500564

Table 13: Segmentation IoU for grounding sentences to an object from the HOTS dataset per model.

Model Affordance Attribute Name Semantic
Relations

Spatial
Relations

Visual
Relations

FLORENCE-2 0.202726 0.518143 0.569380 0.255050 0.165573 0.444319
GPT4o 0.107603 0.079613 0.116497 0.068004 0.068912 0.119341
Gemini-1.5-flash 0.445052 0.408787 0.311481 0.387878 0.293700 0.277125
Gemini-1.5-pro-002 0.254626 0.253692 0.216772 0.192504 0.174172 0.129592
KOSMOS-2 0.189882 0.299865 0.281282 0.174694 0.209664 0.373482
QWEN-VL 0.505766 0.628947 0.503549 0.504378 0.451169 0.506606
QWEN-VL Q 0.537401 0.638695 0.508424 0.487208 0.403080 0.518964

end GPT4-o achieved 9%. Gemini-flash performed better than the pro version, with an average score
of 31% compared to 18%. This again follows a similar pattern found on the OCID dataset. Qualitative
results are shown in Figure 20 and Figure 20.

4.1.4 Prompting experiments

We wondered how much the prompt could affect a model’s ability to ground. And in order to perform
the experiments with the best grounding prompt, we conducted a series of experiments with QWEN-
VL. Table 15 presents a detailed breakdown of QWEN-VL’s performance under different prompt
variations on the Full precision and the quantized models, on the different OCID sentence types. The
quantized version shows no apparent overall decline in performance, but in the implementation it
showed an increase in inference time of 2.5 times compared to the full precision model.

4.1.5 Few-Shot Grounding for Robotic Planning on Pybullet

This experiment is a variation of the previous one, incorporating few-shot prompting with examples of
interleaved robotic instructions, images, and the expected robotic API code result. In this experiment



22 Chapter 4 EXPERIMENTS AND RESULTS

Table 14: Bounding box IoU for grounding sentences to an object from the HOTS dataset per model.

Model Affordance Attribute Name Semantic
Relations

Spatial
Relations

Visual
Relations

FLORENCE-2 0.216006 0.498736 0.536432 0.261656 0.165891 0.426838
GPT4o 0.107313 0.089148 0.102691 0.061439 0.065309 0.103083
Gemini-1.5-flash 0.337305 0.316628 0.218036 0.291993 0.242072 0.208769
Gemini-1.5-pro-002 0.213327 0.191517 0.168856 0.159646 0.127636 0.088991
KOSMOS-2 0.165988 0.231368 0.212000 0.146389 0.178258 0.296600
QWEN-VL 0.446867 0.549830 0.410138 0.452726 0.409425 0.451344
QWEN-VL Q 0.462671 0.551000 0.405387 0.431576 0.355660 0.449872

Table 15: Segmentation mask IoU using QWEN-VL model with different prompts on the OCID
dataset.

Prompt Precision Semantic
relations

Visual
relations

Multi hop

sentence Full 0.328437 0.307952 0.418007
Int-4 0.399084 0.264625 0.376359

Ground the following expression: sentence Full 0.333003 0.375285 0.426658
Int-4 0.330987 0.427970 0.389476

<ref>sentence </ref> Full 0.450087 0.329063 0.423292
Int-4 0.439668 0.377151 0.386263

Grounding of <ref>sentence </ref> Full 0.436341 0.427960 0.408340
Int-4 0.456386 0.378951 0.432370

Prompt Precision Spatial
rela-
tions

Affor-
dance

Name Attribute

sentence Full 0.510406 0.000000 0.663005 0.516673
Int-4 0.588936 0.000000 0.592813 0.613375

Ground the following expression: sentence Full 0.548465 0.000000 0.606584 0.584493
Int-4 0.557988 0.110653 0.631831 0.571872

<ref>sentence </ref> Full 0.555681 0.069773 0.635003 0.587053
Int-4 0.589378 0.147213 0.593287 0.520467

Grounding of <ref>sentence </ref> Full 0.525373 0.270752 0.643970 0.646636
Int-4 0.549216 0.402852 0.618426 0.603021
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only the grounding capabilities are measured while performing the robotic planning from robotic
natural language instructions. Table 16 and Table 17 provide the IoU results for the segmentation
masks and bounding boxes, respectively, on the synthetic dataset with few-shot prompting producing
robotic API calls. The performance on the different query types is analyzed. The query types are
the same as the ones from section 4.1.2 and are listed on Table 3. Another aspect studied here is
the inclusion of ”Mixed” and ”Specialized” prompt types, which allows a comparison between the
mode’s adaptability from using mixed examples from the different query types in the the prompt or
using the same query type examples in the prompt for each query type experiment. It is important
to note that the consistency of the generated API calls is not measured yet, but will be discussed
in the next section 4.2. Finally, we include an additional measure in query types having a relative
target, in which we expect two objects being grounded per API call. The overall performance per
model for each prompt type, averaged over the segmentation masks and bounding box IoU scores
over all query types is shown in Figure 9. To our surprise, comparing to the previous experiments,
the grounding performance of all the models when using few-shot prompting to produce a robotic
planning through API calls code generation is degraded. QWEN-VL and KOSMOS-2 show the best
performance average IoU scores of around 30% and 27%, respectively. The other three models,
suffered the most degradation, compared to the grounding results from the PyBullet without few-shot
examples. Gemini-1.5-flash, Gemini-1.5-pro, and GPT4o had an average IoU score of 7%, 13%, and
15%, respectively. Although these models had the worst scores, they were the most consistent across
all the query types and target groundings.
Target IoU scores exhibit different interesting points. The first, KOSMOS-2 has an IoU score of 0%
for both relative target cases, it appears to be unable to ground a second object from the instruc-
tion. The second one, is that all the proprietary models show consistency across their scores, and
outperform the QWEN-VL model on the mixed scenarios. QWEN-VL outperforms when using the
specialized prompts. Overall, mixed or specialized prompts show a varied behavior on the IoU scores
as seen on Figure 9. Specialized prompting only increases the IoU scores in a few target types for
some models, and sometimes it even decreases the performance.

4.2 Unified Robotic Pipeline Performance
4.2.1 Grasp Success Rate

Figure 10, Figure 11 and Table 18 present the success rates on the proposed unified robotic pipeline.
Table 18 shows the success rates for grasping the correct object given a robotic instruction from
different query types per model, on different object instances (120 instances per query type). The
figures provide a more visual representation of the overall success rates. In Figure 10, QWEN-VL
shows the best performance averaged over all the query types with a success rate of 30%, followed
by Gemini-1.5-pro with a rate of 24%, GPT4o with a rate of 23%, Gemini-1.5-flash with a rate of
15% and lastly KOSMOS-2 with rate of 13%. QWEN-VL achieved not only the highest average rate,
but also the highest rate on all the different query types as seen on Table 18. KOSMOS-2 showed
the worst scores on every query type, except on the Attribute Relative one, being underperformed
only by Gemini-1.5-flash. If we were to extrapolate the results from section 4.1.5, one would have
expected KOSMOS-2 to perform better. The results from the other models follow some kind of
correlation, QWEN-VL performing the best, GPT4-o and Gemini-1.5-pro show similar scores on
both experiments and Gemini-1.5-flash continued having the worst results among them. Gemini-1.5-
pro shows similar performance to QWEN-VL in query types that reference the object to be picked by
attributes, but this needs to be further studied.
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Figure 9: Averaged IoU scores over bounding box and segmentation masks for each model per prompt
type on the PyBullet Dataset.

Figure 10: Average success rates for grasping the correct object over all the query scenarios on the
simulation experiment.
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Table 16: Masks IoU on grounding different query instruction types on the PyBullet Dataset. When
the query type includes targets, then the IoU is calculated for the relative object target position.

Query Type Prompt Type Gemini-1.5 Gemini-1.5 GPT4o KOSMOS-2 QWEN-VL
flash pro-002

Affordance Tray Mixed 0.051623 0.172131 0.144398 0.287585 0.236973
Specialized 0.060114 0.144180 0.109295 0.219196 0.276851

Attribute Relative Mixed 0.108381 0.192551 0.156625 0.403313 0.375721
Specialized 0.120337 0.141535 0.216968 0.226795 0.268869

Target Mixed 0.070102 0.130562 0.164428 0.000000 0.107091
Specialized 0.109708 0.141310 0.194501 0.000000 0.152761

Attribute Table Mixed 0.089497 0.129176 0.179090 0.370393 0.387000
Specialized 0.098590 0.128313 0.173282 0.396966 0.347491

Attribute Tray Mixed 0.091190 0.127346 0.168999 0.490268 0.399132
Specialized 0.057545 0.144665 0.243847 0.500812 0.418654

Name Relative Mixed 0.066159 0.178118 0.155518 0.388500 0.401556
Specialized 0.061654 0.161117 0.209690 0.289828 0.412664

Target Mixed 0.102100 0.182349 0.180869 0.000000 0.104501
Specialized 0.097552 0.123354 0.177841 0.000000 0.290771

Name Table Mixed 0.063733 0.204889 0.200875 0.428640 0.495665
Specialized 0.073529 0.122353 0.195286 0.478497 0.416093

Name Tray Mixed 0.095077 0.197602 0.244169 0.428712 0.384092
Specialized 0.078963 0.207768 0.254386 0.531280 0.413270

Average 0.083103 0.157184 0.187226 0.302266 0.327175
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Table 17: Bounding Box IoU on grounding different query instruction types on the PyBullet Dataset.
When the query type includes targets, then the IoU is calculated for the relative object target position.

Query Type Prompt Type Gemini-1.5 Gemini-1.5 GPT4o KOSMOS-2 QWEN-VL
flash pro-002

Affordance Tray Mixed 0.045986 0.109782 0.084938 0.217479 0.188066
Specialized 0.049565 0.110600 0.080651 0.154092 0.233201

Attribute Relative Mixed 0.071300 0.122913 0.103460 0.320188 0.313321
Specialized 0.065269 0.098453 0.136705 0.165105 0.224148

Target Mixed 0.051682 0.098714 0.098385 0.000000 0.085160
Specialized 0.076652 0.118776 0.116871 0.000000 0.124862

Attribute Table Mixed 0.067658 0.111528 0.122728 0.304277 0.316645
Specialized 0.085120 0.102139 0.116258 0.324745 0.300577

Attribute Tray Mixed 0.056105 0.098016 0.123175 0.395314 0.334281
Specialized 0.055210 0.114128 0.146927 0.413812 0.342545

Name Relative Mixed 0.040964 0.108050 0.125952 0.314303 0.333708
Specialized 0.046987 0.108853 0.140785 0.215114 0.335854

Target Mixed 0.061833 0.109062 0.099236 0.000000 0.071866
Specialized 0.065759 0.095968 0.117791 0.000000 0.235146

Name Table Mixed 0.042507 0.123239 0.123330 0.340432 0.395987
Specialized 0.056645 0.103292 0.131340 0.377525 0.348985

Name Tray Mixed 0.071809 0.123995 0.147854 0.343578 0.314808
Specialized 0.067316 0.141754 0.162157 0.425601 0.328353

Average 0.059909 0.111070 0.121030 0.239531 0.268195

Table 18: Success rates for grasping the correct object given a robotic instruction from different query
types per model.

Ref Type Target Type GPT4o Gemini-1.5 Gemini-1.5 KOSMOS-2 QWEN-VL
flash pro-002

Affordance Tray 0.166667 0.075000 0.191667 0.150000 0.266667
Attribute Relative 0.258333 0.133333 0.225000 0.175000 0.266667

Table 0.208333 0.166667 0.283333 0.175000 0.300000
Tray 0.250000 0.158333 0.266667 0.091667 0.300000

Name Relative 0.241667 0.183333 0.250000 0.116667 0.275000
Table 0.233333 0.158333 0.250000 0.141667 0.383333
Tray 0.291667 0.150000 0.258333 0.083333 0.333333

Average 0.235714 0.146429 0.246429 0.133333 0.303571
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Figure 11: Rates of grasping the correct object, grasping an object, and the certainty of grasping the
correct object over grasped ones on the simulation experiment.
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5 Discussion
The experimental results demonstrate both the promise and limitations of VGLLMs for robotic plan-
ning. While these models exhibit a capacity for visual grounding, their performance in generating
accurate and consistent robotic API calls from natural language instructions requires further investi-
gation. In this section, results are discussed first by analyzing aspects about the grounding, in both
zero and few-shot scenarios. Later, the aspects from the robotic simulation with the proposed pipeline.

5.1 Grounding Capabilities
Our zero-shot grounding experiments revealed that while all models demonstrated some ability to
ground text to image regions, their performance varied significantly. Florence-2 achieved the best
precision scores, particularly for sentences with object attributes and names on the OCID dataset and
on names on the HOTS dataset. We believe that multi-task training for grounding could be beneficial
for the model’s performance. As you recall, Florence-2 is able to ground text through bounding
boxes, polygons, and quad-boxes as discussed in 3.3.1. The QWEN-VL models outperformed other
models on the OCID dataset, but did fairly similar to KOSMOS-2, FLORENCE-2, and Gemini-1.5-
pro models on the PyBullet dataset. The performance in grounding between the OCID and HOTS
datasets is very similar, we think this is due to the similarities of the scenes and images.
The sample size of the OCID dataset used is too small to draw statistically significant conclusions
about the model’s performance. In order to achieve grounding results from GPT4o and Gemini mod-
els, a zero-shot prompt was produced specifying the structure of the expected output in json format
as seen in Table 6. Further study of the best prompt for grounding still requires further investigation,
for example when using a naively formed prompt to simply ground through bounding box upper left
corner and bottom right corner, GPT4o was using ranges between 0 and 1, but Gemini was using in-
tegers. We believe that these models were trained with some grounded text-image pairs, and that they
are more capable of grounding with a specific format and value ranges. We can see that in (H. Liu
et al., 2023), the VLM was prompted to understand grounded input in a specific format, testing for
different grounding formats from training data and prompting from other studies could be fruitful.

5.2 Grounding and Planning with Few-Shot prompting
The generation of grounded robotic API calls via few-shot prompting was a success, but some chal-
lenges where revealed. For starters, the grounding IoU scores for the best performing models dropped
from an average of around 50% on the grounding experiment, to 29% on the grounding while planning
experiment. Another limitation we encountered was that FLORENCE-2, despite its strong zero-shot
grounding performance from previous experiments, failed to output robotic API calls with few-shot
examples through our best efforts on different prompts and was not included on this experiment. This
is due to the fact that FLORENCE-2 is a small model and cannot be considered with the general-
ization capabilities of an LLM. KOSMOS-2 and QWEN-VL fell short on the grounding for relative
object target positions. KOSMOS-2 was not able to generate a single API call with a bounding box
on the target parameter on the robot.move function out of the 240 instances with relative object tar-
get positions. This was likely due to its difficulty on generating consistent robotic API instructions
because it is also a model with small parameter sized decoder. Different prompts with intertwin-
ing the images, query instructions, and expected grounding text were tested, but despite our efforts,
we were left using examples with no grounding tokens as seen in Table 7. QWEN-VL failed to
generate a bounding box for target positions in only 8 out of the 240 instances. Grounding results
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samples for the ”Name Relative” query type are shown in Figure 22. Generated texts never include
an encoded bounding box on the second parameter of the move function. In contrast GPT4o and
Gemini-1.5-flash correctly generated a target bounding box for all the 240 instances with query type
with relative target positions, while Gemini-1.5-pro did for 237 instances. Grounding results samples
for the ”Name Relative” query type for these three models are shown in Figure 21, where all sam-
ples include a blue bounding box, representing the target bounding box generated. Number of target
bounding boxes generated per model are shown in Table 22. Further investigation is warranted to
find a few-shot prompting strategy for the KOSMOS-2 and QWEN-VL models to properly generate
consistent API calls with relative target positions. The performance for the GPT4-o model improved
significantly with few-shot examples, suggesting that these models can benefit from prior knowledge
provided through prompting. The proprietary Gemini models displayed higher consistency across
all tasks, particularly for relative object target grounding, demonstrating their potential for handling
complex instructions. QWEN-VL and KOSMOS-2 achieved better performance than other models
despite having significantly fewer parameters. This highlights the potential of efficient architectures,
specifically trained on grounded image-text pairs, even in the context of few-shot learning. Mixed vs
Specialized prompting did not show an overall difference on the performance, having a specialized
prompt even decreased the model’s grounding in some scenarios, meaning that the mixed prompt is
more convenient for a more generalizable robotic behavior and grounding.

5.3 Robotic Simulation

QWEN-VL consistently achieved the highest success rates for grasping objects correctly, underscor-
ing its better grounding and planning capabilities. GPT4-o and Gemini-Pro models exhibited around
6% lower success rates to QWEN-VL, but show that these models models have significant potential.
Both Gemini-Flash and KOSMOS-2 struggled in the simulation, emphasizing the need for further
improvement in their grounding and API call generation accuracy. One of the reasons KOSMOS-2 is
having such a bad grasping success rate is because it is failing to generate consistent robotic API calls.
Despite of our efforts into different prompting strategies, we could not achieve consistent generation
of correct API calls. Prompt options tested for KOSMOS-2 are described in Table 19. KOSMOS-2
failed to output proper API calls on 49% of the instances, if we were to fix this issue we could have
achieved a performance of around 26% of correctly grasping objects. QWEN-VL was another model
that failed producing robotic API calls, but only at 4.6% of the times. Details about the counts on
exceptions to robotic instructions generated per model and query type are shown in Table 20. Some
examples on the generated text that caused exceptions are shown in Table 21. Examples in the ta-
ble show that most exceptions occurred because the function call was not properly closed. On the
QWEN-VL example, the model specially struggles with the Name Relative query type, as seen in
Table 20. GPT4-o and Gemini models did not suffer from generating a malformed robotic API call,
showcasing consistency their text generation capabilities from larger models. Our certainty measure,
Counts of correctly grasping an object divided by the counts of grasping an object, show that GPT4-o
and Gemini models have a highest scores. As seen in Figure 11, the green bar is the highest for GPT4-
o with a certainty of 0.66 and Gemini-pro with 0.6. This may be an indication that these models show
a better precision in their grounding abilities. When an object is grasped there is more certainty that
the correct object was grasped. QWEN-VL achieved the most number of objects grasped, grasping an
object 62% of the times, but with certainty of correctly grasping the object of around 0.5. QWEN-VL
is consistent enough to ground objects, but only did so correctly on 30% of the times.
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Table 19: Prompting styles tested with KOSMOS-2 for few-shot grounding.

Style Example
Image sentence patches {image_embedding} {sentence} robot.move("

without instruction/answer <phrase>{obj}</phrase><object><patch_index_{ul}>

<patch_index_{br}></object>, "{location}")

Image sentence patches {image_embedding} Instruction: {sentence}

Answer: robot.move("<phrase>{obj}</phrase><object>

<patch_index_{ul}><patch_index_{br}></object>",

"{location}")

Sentence and patches Instruction: {sentence}

Answer: robot.move("<phrase>{obj}</phrase><object>

<patch_index_{ul}><patch_index_{br}></object>",

"{location}")

Sentence and fake patches Instruction: {sentence}

Answer: robot.move("<phrase>{obj}</phrase><object>

<patch_index_ul><patch_index_br></object>",

"{location}")

Sentence Instruction: {sentence}

Answer: robot.move("{obj}", "{location}")

Table 20: Exception counts of malformed robotic API calls on the simulation per model and per query
type.

Query Type KOSMOS-2 QWEN-VL

Affordance Tray 34 2
Attribute Relative 66 12
Attribute Table 56 1
Attribute Tray 65 1
Name Relative 70 23
Name Table 49 0
Name Tray 75 0

Percentage 49.4% 4.6%
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Table 21: Samples of Generated API calls that produced an exception.

Model Generated API call
KOSMOS-2 robot.move("<phrase>bananas</phrase><object>

<patch_index_0211><patch_index_0311></object>", tray)

KOSMOS-2 robot.move("<phrase>pear</phrase><object>

<patch_index_0823><patch_index_0958></object>", tray)

KOSMOS-2 robot.move("<phrase>tomato can</phrase></delimiter_of_multi_objects/>

<patch_index_0258><patch_index_0357></object>", shelf life)

KOSMOS-2 robot.move("<phrase>ball that is for entertainment</phrase>

<object><patch_index_0761><patch_index_0860></object>", banana )

QWEN-VL robot.move("<ref>potted meat can</ref><box>(129,462),(421,570)</box>",

"left of<ref>master chef can</ref><box>(100,469),(451,570)</box>

Table 22: Number of target bounding boxes generated on relative query types per model on the
PyBullet simulation experiments.

Model Query Type # Target Bounding Boxes

GPT4o Attribute Relative 120
Name Relative 120

Gemini-1.5-flash Attribute Relative 120
Name Relative 120

Gemini-1.5-pro-002 Attribute Relative 117
Name Relative 120

KOSMOS-2 Attribute Relative 0
Name Relative 0

QWEN-VL Attribute Relative 5
Name Relative 3
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Table 23: Number of target positions not mapped in the simulation per query type per model from the
generated VGLLM responses.

Query Type GPT4o Gemini-1.5 Gemini-1.5 KOSMOS-2 QWEN-VL
flash pro-002

Affordance Tray 0 2 0 86 7
Attribute Relative 0 0 3 54 65
Attribute Table 46 54 54 59 59
Attribute Tray 0 0 0 55 0
Name Relative 0 0 0 50 66
Name Table 43 50 48 62 61
Name Tray 0 0 0 45 0

5.4 Future Work
These types of models are not grounding objects robustly enough to be used in robotic applications,
where different pipelines achieve much better results. These models require significant improve-
ments in grounding capabilities and better techniques to generate robust robotic API calls need to be
explored for each model, particularly when using few-shot prompting. Future research could focus on
different prompting techniques such as chain-of-thought prompting and task decomposition to solve
long horizon tasks. VGLLMs could be trained or fine-tuned on large-scale, grounded robotic datasets
to improve their grounding accuracy and task-specific generalization. This could help achieve bet-
ter results for few-shot prompting techniques, having the models trained on varied robotic data API
calls from different embodiments and environments. The capabilities of VGLLMs were tested on
this specific robotic environment and pipeline, but further experiments could be tested on other envi-
ronments and tasks to comprehensively assess the capabilities of VGLLMs in more robotic settings.
Finally, some new model versions were released while working on this thesis, SAM-2, KOSMOS-2.5
(Lv et al., 2024), (Ravi et al., 2024) and QWEN-VL 2 (P. Wang et al., 2024) which show significant
improvements over the current models, can be used to replace the older versions used in this thesis.
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Appendices

A Figures

Figure 12: GroundingDINO example use with Stable Diffussion.

Figure 13: PyBullet Dataset samples.
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Table 24: Object attributes from the HOTS dataset

ID Supercategory Category Color Material Name

1 fruit apple red organic apple
2 fruit banana yellow organic banana
3 stationery book blue paper blue book
4 stationery book white paper white book
5 stationery book yellow paper yellow book
6 kitchenware bowl white ceramic bowl
7 edible soda can purple aluminium cassis can
8 edible soda can red aluminium coke can
9 edible soda can yellow aluminium fanta can
10 edible soda can green aluminium jumbo can
11 edible soda can blue aluminium pepsi can
12 kitchenware cup black paper black cup
13 kitchenware cup transparent glass glass cup
14 kitchenware cup red paper red cup
15 kitchenware fork black metal black fork
16 kitchenware fork silver metal silver fork
17 edible juice box green plastic green juice box
18 edible juice box orange plastic orange juice box
19 edible juice box pink plastic pink juice box
20 electronic keyboard black plastic keyboard
21 kitchenware knife silver metal knife
22 electronic laptop silver metal laptop
23 fruit lemon green organic lemon
24 stationery marker blue plastic blue marker
25 stationery marker red plastic red marker
26 edible milk white paper big milk
27 edible milk white paper small milk
28 electronic monitor black metal monitor
29 electronic mouse black plastic black mouse
30 electronic mouse silver plastic silver mouse
31 fruit orange orange organic orange
32 fruit peach yellow organic peach
33 fruit pear green organic pear
34 stationery pen black plastic black pen
35 stationery pen blue plastic blue pen
36 stationery pen red plastic red pen
37 kitchenware plate white ceramic big plate
38 kitchenware plate white ceramic wide plate
39 edible pringles black plastic hot pringles
40 edible pringles red plastic red pringles
41 edible pringles purple plastic purple pringles
42 stationery scissors black metal black scissors
43 stationery scissors silver metal silver scissors
44 kitchenware spoon blue ceramic blue spoon
45 kitchenware spoon silver ceramic silver spoon
46 stationery stapler black metal stapler
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Listing 3: Interleaved example of a few-shot prompt used for the Gemini models
[{ ’ r o l e ’ : ’ u se r ’ , ’ p a r t s ’ :
[<PIL . Image . Image image mode=RGB s i z e =224 x224 a t 0x242931B0BB0> ,
’ p u t t h e mus ta rd b o t t l e t o t h e t r a y ’ ] } ,
{ ’ r o l e ’ : ’ model ’ , ’ p a r t s ’ : [ ’ r o b o t . move ( ( 3 7 9 , 459 ,
549 , 7 0 5 ) , ” t r a y ” ) ’ ] } , { ’ r o l e ’ : ’ u se r ’ ,
’ p a r t s ’ : [<PIL . Image . Image image mode=RGB
s i z e =224 x224 a t 0x242A0E7D810> ,
’ r e l o c a t e t h e c h i p s can t o t h e t o p l e f t c o r n e r ’ ] } ,
{ ’ r o l e ’ : ’ model ’ , ’ p a r t s ’ : [ ’ r o b o t . move ( ( 5 4 4 , 611 , 866 , 7 9 4 ) ,
” t o p l e f t c o r n e r ” ) ’ ] } , { ’ r o l e ’ : ’ u se r ’ , ’ p a r t s ’ :
[<PIL . Image . Image image mode=RGB s i z e =224 x224
a t 0x242A0F049D0> , ’ p u t t h e t e n n i s b a l l i n f r o n t
o f t h e s c i s s o r s ’ ] } , { ’ r o l e ’ : ’ model ’ , ’ p a r t s ’ :
[ ’ r o b o t . move ( ( 8 1 2 , 366 , 897 , 4 5 0 ) ,
( 2 5 8 , 285 , 495 , 4 8 6 ) , ” f r o n t ” ) ’ ] }
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Figure 14: Examples of instances from the OCID dataset with the bounding box and segmentation
mask of the object highlighted in red.
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Figure 15: Grounding predictions samples for all models on the OCID dataset (Zoom in).
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Figure 16: Random Grounding predictions samples for all models on the OCID dataset (Zoom in).
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Figure 17: Grounding predictions samples for all models on the PyBullet dataset (Zoom in).
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Figure 18: Random Grounding predictions samples for all models on the PyBullet dataset (Zoom in).
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Figure 19: Grounding predictions samples for all models on the HOTS dataset (Zoom in).

Figure 20: Random Grounding predictions samples for all models on the HOTS dataset (Zoom in).
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Figure 21: Grounding predictions for GPT4o, Gemini-1.5-flash and Gemini-1.5-pro-002 models on
the Name Relative query type on the PyBullet Simulation (Zoom in).
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Figure 22: Grounding predictions for KOSMOS-2 and QWEN-VL models on the Name Relative
query type on the PyBullet Simulation (Zoom in).
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Figure 23: Grounding predictions samples for all models per query type on the PyBullet Simulation
(Zoom in).
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Figure 24: Random Grounding predictions for all models per query type on the PyBullet Simulation
(Zoom in).
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