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Bram Alferink

Abstract

The duality between color and kinematics have shed new light on the structures of gauge
theories and gravity in the recent decades. Modern amplitude methods involving the am-
plitude bootstrap have made a large impact on this. There are still many open questions
regarding the how and why of the structures which are being studied by considering differ-
ent theories. The aim of this thesis is to study the duality of massive scalars coupled to
gluons, particularly for the large mass limit, utilizing the framework of modern scattering
amplitude methods. The approach is to construct and constrain an ansatz based on physical
principles to derive the scattering amplitudes and learn about the structures of the theories.
In addition, extensions of such theories are studied in the form of higher derivative correc-
tions. This is motivated by the infinite tower derivatives necessary for extended Yang-Mills
theory to be consistent with the color kinematics duality. The thesis successfully showcases
how to construct amplitudes involving massive scalars and their large mass limit up to five
point using the bootstrap approach. Whether the massive scalars coupled to gluons have a
structure such as the infinite tower of derivatives seen for gluons is inconclusive. In a future
work, this could be further investigated by extending the methods used in this thesis to at
least six point amplitudes.
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1. Introduction Bram Alferink

1 Introduction
“Physical science is that department of knowledge which relates to the order of
nature, or, in other words, to the regular succession of events”.

Is the opening sentence of the posthumous (1888) book Matter and Motion by James Clerk
Maxwell [1]. From a modern particle physics perspective, the fundamental laws of nature are
described by interactions of elementary particles ultimately describing any succession of events
in spacetime.

Particularly in quantum field theory (QFT), the interactions are described by scattering
amplitudes. Scattering amplitudes are the elementary building blocks which allow us to predict
probabilities of particle interactions. This forms a crucial connection between theory and ex-
periments. Predictions of the standard model and beyond can be tested in experiments such as
ATLAS and CMS (e.g. the discovery of the Higgs boson [2, 3]) at the Large Hadron Collider
(LHC) at CERN. As will become clear later, this is not only important for quantum field the-
ory but also for the study of gravity and gravitational waves. Since the famous observations
of gravitational waves due to merging black holes by the LIGO and Virgo collaborations [4–7],
confirming more predictions from General Relativity, there has been a huge interest and need for
theoretical computations and prediction to gain understanding of the physics, and to improve
detections [8, 9].

The ‘modern’ S-matrix, of which the scattering amplitudes are the matrix elements, re-
lates asymptotically free states in a scattering process. The elements are usually perturbatively
computed by utilizing Feynman diagrams. These diagrams are graphical representations of the
perturbative expansion of the path integral formulation of quantum field theory. The contri-
bution of each component of these graphs can be derived from the Lagrangian describing the
interactions of the theory which, in case of the standard model, is a non-Abelian gauge theory.

In the 80s, the state-of-the-art computations were five-gluon scattering amplitudes at tree
level (i.e. the leading order in the perturbative expansion) [10], which resulted in page long
expressions. To compute scattering amplitudes with the Feynman approach, one needs to sum
over all possible Feynman diagrams. At five-gluon level, there are ‘only’ 25 diagrams, but at
higher multiplicities, the number of diagrams grows rapidly. For example, at 8 and 9 gluons in
a certain spin configuration, there are 34300 and 559405 diagrams respectively [11].

A significant result which kick-started the modern amplitudes program was the discovery of
the Parke-Taylor formula [12]. This reduced the page long expression to a very simple, single line
result for n-gluon amplitudes. The incredible simplicity of this powerful formula was a major
hint that there are more underlying structures, at least to gauge theories. The reason for this
simplicity that contrasts the initial result is due to cancellations that happen between Feynman
diagrams. In fact, the gauge dependent Feynman diagrams are not the only way, and perhaps
often not the most efficient way to calculate scattering amplitudes.

Besides the standard model, the ‘other’ fundamental component of the universe responsible
for the mutual attraction between masses, is gravity. It is most accurately described by Einstein’s
General Relativity (GR). There have been attempts to unify GR with the standard model by
quantize gravity, and to find possible signatures of such theories [13], however, most approaches
result in incomplete theories. At high energies, (UV) divergences will appear in the perturbative
expansion rendering it non-renormalizable. At low energies, however, a quantum gravity theory
will reduce to GR.

This is not stopping anyone from using a quantum field theory approach to study gravity.
Quantum gravity can be studied as an effective field theory (EFT) at low energies and make
consistent predictions. An important difference between the gauge theory that describes gluons,
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and a (quantum) gravity theory describing ‘gravitons’ is that gluons only have two interaction
terms (three and four point), whilst gravitons have an infinite number of contact terms. The
interaction diagrams are illustrated in equation (1.1).

Gluon interactions :

Graviton interactions : . . .

(1.1)

The structural difference between theories governing gluons and gravitons is accentuated by
these possible interaction types. For gravitons, the infinite number of contact terms would make
the computation of scattering amplitudes with off-shell methods, such as Feynman diagrams,
incredibly cumbersome as the number of diagrams grows even more rapidly than already the case
with gauge theories. Besides this, the graviton vertices are not as simple as the gluon vertices.
The cubic vertex already contains over 100 terms [14]. It should be noted, however, that this is
a gauge dependent vertex, and can be made more compact by removing gauge dependence, for
example, by using on-shell methods.

As part of the modern amplitudes program, a different approach of computing scattering
amplitudes is usually taken. Instead of the off-shell Feynman diagrams, amplitudes are build
from gauge invariant, on-shell, building blocks. Using principles such as unitarity and locality,
and the analytic structures of the amplitudes, one can find recursive relations between the gauge
invariant building blocks [10, 15, 16]. This allows for the computation of scattering amplitudes,
both a tree and loop level, using a so called ‘bootstrap’ approach. The bootstrap approach is a
method to construct amplitudes by first writing down the most general ansatz possible given the
external states, then imposing constraints due properties such as gauge invariance, factorization,
and Jacobi relations, on the amplitudes. This results in fully constrained amplitudes, which,
in principle, can be done without knowledge of the Lagrangian of the theory. One certainly
does not have to deal with the off-shell intricacies of a Feynman approach. Not only does this
approach make the process for certain computations much simpler, it also reveals new properties
that were previously hidden. This provides new insights leading to a deeper understanding of
the underlying structures of the theories.

Despite the structural differences between gauge theories and gravity theories, there are some
remarkable similarities. At the level of the Lagrangian of the theories, this is not immediately
clear. On-shell scattering amplitudes, however, reveal a number of non-trivial connections. In
particular, they both use similar kinematic building blocks [14]. Bern, Carrasco, and Johansson
proved that gauge theory amplitudes can be written as a sum of cubic graphs with distinct color
factors and kinematic numerators,

Atree
n =

∑
i∈cubic

cini

Di
. (1.2)

Here ci are the color factors, ni the kinematic numerators, and Di the propagators of the cubic
graphs. Moreover, there is enough freedom to always write the kinematic numerator in such a
way that they satisfy the same algebraic relations as the color factors (e.g. symmetries and the
Jacobi Identity) [17]. The duality with the color factors that the ‘BCJ’ numerators exhibit is
referred to as the color-kinematics (CK) duality.
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Even more remarkably, the CK duality can be used to replace the color factors of a gauge
theory amplitude with another ‘copy’ of the kinematic numerator. The resulting amplitude turns
out to be equivalent to the on-shell tree level graviton amplitude [18]. This process is referred to
as the double copy, schematically relating Gravity theory to the square of a Yang-Mills theory,

GR ∼ YM2. (1.3)

The relation between gauge and gravity theories is not entirely novel as a similar relation was
found in string theory relating closed and open strings in the form of the KLT relations [19]. The
BCJ double copy however, imply much more general relations that not only holds for Yang-Mills
theory and gravity, but for a whole ‘web’ of theories [14, 20, 21]. It allows us to learn about
the structure of theories through a new lens, paving the way for new insights and geometric
interpretations such as the amplituhedron [22]. There is still much left to understand about the
double copy. For example, the relations (e.g. Jacobi identities) of the color factors are imposed
by the underlying Lie algebra of the gauge group. Even though the kinematic numerators can
be made to satisfy the same algebraic relations, it is highly non-trivial to understand why this
is the case. Is there some underlying kinematic algebra, if so, what does it look like, and why
should it be there?

Another important result of the modern amplitude program and the double copy is the fact
that it greatly simplifies the computation of graviton amplitudes. In essence, the double copy
allows one to perform ‘simple’ gauge theory computations and obtain corresponding gravity
amplitudes by simply isolating the kinematic numerators, removing the color structures, and
‘squaring’ the kinematics. It has been proven to be incredibly useful in the study of gravitational
wave physics [20, 23, 24]. Theoretical modelling of gravitational wave sources is a challenging
task. Typically, in this type of studies one needs to solve the Einstein field equations per-
turbatively. As the Einstein field equations are non-linear and multiscale, the complexity of
such problems quickly spirals out of control. In recent years, there has been a new fruitful
collaboration between the gravitational wave and scattering amplitudes communities [24].

One of the topics of this thesis will be the study of heavy-mass effective field theory (HEFT)
amplitudes. In such a theory, a massive particle is coupled to a gauge or gravity theory, and
the mass is assumed to be much larger than the exchange momenta of a process. This turns
out to be a very suitable theory for the study of black hole scattering processes, as black holes
can be treated as pointlike particles in the adiabatically inspiraling phase of a merger event.
In certain constructions of HEFT amplitudes, the double copy is manifest, making it possible
to study gravitational wave physics efficiently [25, 26]. Moreover, the loop expansion of such
a construction corresponds directly with the post-Minkowskian expansion of the gravitational
wave signal [20, 26, 27]. As future gravitational wave detectors such as LISA require a precise
theoretical understanding of the signals to measure now phenomena [8, 9], this collaboration
will continue to be of great importance.

To push the boundaries of the gauge theories and HEFT, it is possible to add higher derivative
operators. This allows for the study of the high energy behavior of the theories. An interesting
question is how the higher derivative corrections affect the double copy as there have been some
interesting results for the pure gluon case [28].

In this thesis the aim is to answer a number of questions concerning the construction of gauge
fields coupled to massive scalars, the behavior under addition of higher derivative operators, and
the compatibility of the double copy. With this we attempt to answer the following research
questions:

1. Is it possible to (re)produce amplitudes of Yang-Mills coupled to massive scalars using a
bootstrap approach? Both for general mass and the large mass limit?
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2. What would a ‘HEFT bootstrap’ look like?

3. Is it possible to extend the bootstrap approach to higher derivative corrections, and what
would the amplitudes look like?

4. Is the infinite tower of higher derivative corrections of Carrasco, Lewandowski, and Pavao
preserved when the gauge theory is coupled to a massive scalar?

To aid answering these questions, we will first discuss the textbook approach of scattering
amplitudes in Section 2 by first discussing Yang-Mills theory, Massive scalar fields, and HEFT.
In Section 3 we will dive into the color-kinematics duality and the double copy. We will go
into detail of the BCJ relations, and at the end discus a powerful construction of the double
copy specifically for HEFT amplitudes. In Section 4, we will go into the details of on shell
methods and recursion relations for tree level amplitudes. In the second half of the section we
will show how to construct Yang-Mills amplitudes and Yang-Mills coupled to heavy scalars using
the bootstrap, and in the final subsection we discuss what a HEFT bootstrap would look like.
Lastly, in Section 5, the higher derivative corrections will be discussed, including the infinite
tower of higher derivative corrections necessary for the consistency of the double copy. Results
of amplitudes with higher derivative theories will be given using the bootstrap and an outline
is given on how to proceed, with a special focus on HEFT amplitudes.
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2 Gauge Theory, Gravity, Massive Scalars and the Large Mass
Limit

This section will be dedicated to explaining relevant concepts of quantum field theory in the
context of scattering amplitudes. The aim is to provide a foundation for the discussion of
scattering amplitudes, first from the textbook perspective of Feynman Rules and Lagrangians.
Yang-Mills theory and its structures will be discussed as well as scalar QCD (Yang-Mills coupled
to massive scalars). The limit of scalar QCD where the mass of the scalar is taken to be large is
one of the main focuses of this thesis, hence this will also be introduced. In order to make the
discussion as intuitive as possible, we will use several examples involving gluon self interactions
and scalar-gluon interactions. Further details of the standard textbook approach to scattering
amplitudes can be found in books such as Peskin and Schroeder 1995 [29] and Zee 2010 [30].
Some more specific details about theories involving massive scalar fields and HEFT are discussed
in [25, 31, 32].

2.1 Gauge theory and Yang-Mills

Gauge theories are a class of field theories that are invariant under local transformations of
a certain symmetry group. When these gauge fields, Aµ, are quantized, the corresponding
particles are called gauge bosons. The most well-known example of a gauge theory is Quantum
Electrodynamics (QED), which is based on the symmetry group U(1).

A quantum field theory is often formulated utilizing the action. In a gauge theory, the action
(and the Lagrangian) is invariant under the gauge transformations. In this formulation, the
gauge transformations represent redundancies in the description of the theory. This is necessary
to restrict the unphysical degrees of freedom that would otherwise be present in the theory. For
example, in QED, the photon field is invariant under the transformation,

Aµ → Aµ + ∂µΛ, (2.1)

where Λ is an arbitrary function. Such a function, or gauge, can be chosen to make certain
calculations easier, but the physics, the observables, should not depend on this choice.

Gauge theories have a number of properties, one of which is whether the symmetry group is
Abelian or non-Abelian (commutative or non-commutative respectively). QED, for example, is
an Abelian gauge theory. Our focus will be on a non-Abelian Yang-Mills (YM) theory based on
a compact Lie group that can be used to describe gluons. Yang-Mills theories are characterized
by the generators T a of the underlying Lie algebra of the compact Lie group G. The generators
are hermitian and, given a certain normalization, satisfy the following relations,

[T a, T b]ij = ifabcT c
ij , Tr(T aT b) =

1

2
δab. (2.2)

Here a, b, c = 1, . . . , dimG are referred to as color indices, and fabc are the structure constants
which are fully antisymmetric. Although the group G can be a number of different groups, we
will focus on the special unitary group SU(N) which has dimG = N2 − 1. Such a theory is of
great importance in Quantum Chromodynamics (QCD) as it governs the strong nuclear force
described by an SU(3) Yang-Mills theory.

The structure constants, fabc, can be seen as the generators in the adjoint representation.
It is convenient to analogously introduce the antisymmetry for the fundamental generators [33],
(T a

ij),
fabc = −f bac, T a

ij = −T a
ji. (2.3)
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The fundamental generators are a representation of the special unitary group SU(N). If we
combine the commutator in equation (2.2) with the identity,

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0, (2.4)

the relation,
fabefecd = fadefebc − f bdefeac, (2.5)

is obeyed. This is the Jacobi Identity, which is a defining property of a Lie algebra.
With the use of gauge fields that live in the adjoint representation, the field strength tensor

can be constructed as,
F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2.6)

where g is the coupling strength and Aa
µ are the gauge fields that can be contracted with

generators through color indices, Aµ = Aa
µT

a. Note that F a
µν is gauge invariant and the gauge

fields Aa
µ represents the gluon field in QCD.

The Lagrangian of the Yang mills theory can take the form,

LYM = −1

4
F a
µνF

a,µν . (2.7)

This Lagrangian is invariant under gauge transformations, which are given by,

Aa
µ 7→ Aa

µ +
1

g
∂µα

a − fabcαbAc
µ. (2.8)

Here α is an arbitrary function.
Before we can study the interactions in this theory we need to take care of the excess

redundancies in the theory by choosing a gauge. This can be done by introducing a gauge fixing
term to the Lagrangian,

LGF = − 1

2ξ
∂µA

µ,a∂νA
ν,a. (2.9)

A common choice of gauge is the Feynman gauge, ξ = 1. We can now study the possible
interactions of the theory.

2.1.1 Gluon (self) interactions

Now that the Lagrangian is established, consider the kinetic term governing the self interactions
of the gauge fields. Given the field strength tensor in Equation (2.6), there are two types of
interactions possible. The first being a three point interaction involving two contributions of
the gauge field A and one contribution from the derivative of the gauge field. The term in the
Lagrangian corresponding to the three point interaction is of the form,

L3pt. ∼ gfabc(∂µA
a
ν)A

µ,bAν,c. (2.10)

The second is a four point interaction which is product of the last term which involves four
copies of the gauge field and no derivatives,

L4pt. ∼ g2(feabAa
µA

b
ν)(f

ecdAµ,cAν,d). (2.11)

From this, the corresponding Feynman rules can be derived.
In contrast to gravity and higher derivative corrections to Yang-Mills, any higher point

vertices do not exist in this theory. The Lagrangian in equation (2.7) produces terms containing
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2.1 Gauge theory and Yang-Mills Bram Alferink

at most 4 powers of gauge fields. Gravity is treated in Section 2.2 and the higher derivative
corrections will be treated in Section 5.

Traditionally, the way to approach calculating scattering amplitudes of a given theory is
by first calculating the Feynman rules of the vertices and propagators of the theory. Then,
a perturbative expansion in the coupling constant (or equivalently, the number of loops) is
performed. In this process we need to sum over all possible diagrams that contribute to the
amplitude. Even though this is a powerful, fairly intuitive, and a very algorithmic approach,
there are some issues. The immediate problems come from the fact that the “objects”, the
Feynman diagrams, are rather complex objects. Particularly at higher multiplicity and loop
order. As one needs to sum over all possible diagrams, this turns out to be quite a tedious
process. Additionally, most of the intermediate steps of the calculation are dependent on the
choice of gauge. Although the physics, the final amplitude, does not depend on the gauge choice,
there are many ways to get there. The biggest issue of this redundancy is that it can obscure
underlying structures of the theory and make the calculations more complex than they need to
be.

In Section 4, we will discuss another approach which is more in line with the modern am-
plitudes approach. The essence of this approach is to avoid using the action entirely. Instead,
one writes down an ansatz for the on-shell amplitude based on all possible functions that could
satisfy some physical principles. This is then further constrained by fundamental principles such
as, symmetries, the ‘color kinematics’ duality (Section 3), and factorization of the amplitudes
(Section 4). These concepts will be introduced in their respective sections. For now, we will stick
with Feynman/Lagrangian approach and treat some examples to further build our intuition of
the theories that are considered.

Unless specified otherwise, we work with all momenta ingoing. As a result, momentum
conservation for some interaction with n ingoing particles is captured in the relation,

n∑
i=1

pµi = 0. (2.12)

With this in mind, let us consider the Feynman vertices for Yang-Mills theory.
There is a neat way to derive the vertex rules corresponding to these interactions which

we will do explicitly for three point. Due to the commutativity of the Fourier transform with
linear operators we can do the following. Starting from the Lagrangian of the three point self
interaction, we first want to go to momentum space. This results in replacing each derivative
with a momentum vector pi. Secondly, we replace the gauge fields with polarization tensors εi.
The gauge fields can be contracted with the structure constants in 3 different ways, up to a
minus sign. Effectively this means we get 3 different permutations of the first terms.

∼ (p1µε1ν − p1νε1µ)ε
µ
2ε

ν
3 .+ cycl. perm. 1 7→ 2 7→ 3 7→ 1. (2.13)

However, this relation is already contracted with the external polarizations. To recover the
Feynman vertex rule, we have to take a derivative with respect to the external polarizations,

3pt. vertex ∼ gfabc∂
[
(p1µε1ν − p1νε1µ)ε

µ
2ε

ν
3 .+ cycl. perm. 1 7→ 2 7→ 3 7→ 1

]
∂ε1α∂ε2β∂ε3γ

∼ gfabc
[
(pβ1g

αγ − pγ1g
αβ) + (pγ2g

αβ − pα2 g
βγ) + (pα3 g

βγ − pβ3g
αγ)
]
,

(2.14)

where the second line is achieved by using the identity ∂Xµ

∂Xν
= gµν . Rearranging the terms gives
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Bram Alferink 2.1 Gauge theory and Yang-Mills

us the familiar pure gauge Feynman vertex of Yang-Mills,

α, p1

β, p2

γ, p3

= gfabc
[
gαβ(p1 − p2)

γ + gβγ(p2 − p3)
α + gγα(p3 − p1)

β
]
. (2.15)

The gluon propagator and 4pt. amplitude can be derived in a similar vain and yield,

k
µ ν = i

δab

k2 + iε

(
gµν + (ξ − 1)

kµkν

k2 + iε

)
ξ=1
= i

δabgµν
k2 + iε

(Feynman Gauge), (2.16)

δ, p4

β, p2α, p1

γ, p3

= g2

[ fabefecd(gαγgβδ − gαδgβγ)

+ facefebd(gαβgγδ − gαδgγβ)

+ fadefebc(gαβgδγ − gαγgδβ)

]
. (2.17)

Note that at four point, all possible ways to contract the gauge fields with the structure constants
need to be considered. Using the antisymmetry properties of the structure constants this is
reduced to three different contractions which correspond to, clockwise and counterclockwise
planar ordering, and non-planar ordering.

With the use of the interaction vertices and propagators it is possible to build exchange
diagrams. This is done by introducing the external legs with the vertex rules and contracting
the internal vertices to propagators. At four point there are four possible graphs that can be
constructed. One being the contact vertex, the other three are exchange diagrams based on the
ordering of the external legs,

s

p1

p2

p4

p3

t

p1

p3

p4

p2

u

p2 p3

p1 p4

. (2.18)

The three channels are usually referred to as the s, t and u channel which refers to the poles.
The corresponding Mandelstam invariants, which appear due to the propagators, are defined by,

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2. (2.19)

As the gluon propagator scales as 1/k2, the poles of the exchange diagrams are given by the
Mandelstam invariants, 1/s, 1/t, and 1/u. Note that the Mandelstams can be rewritten in
terms of different momenta using momentum conservation (i.e. s = (p1 + p2)

2 = (p3 + p4)
2).

In the rest of this work, sums of momenta will be denoted by pi1i2...ir = pi1 + pi2 + · · · + pir ,
and Mandelstam variables as si1i2...ir = p2i1i2...ir . For example, at four point (Eq. (2.19)), the
t-channel Mandelstam would be denoted by s13 = s24. This notation generalizes to aid the need
of higher point diagrams.
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When three point vertices are contracted, their structure constants contract as well. For
example, if we identify particles 1 to 4 with the color indices a to d, and contract the repeated
indices, we get the following structure constants for each channel,

s−channel = fabefecd, t−channel = facefebd, u−channel = fadefebc. (2.20)

Note that these combinations of structure constants are also present in the four point vertex of
Eq. (2.17).

The four point vertex, however, does not have poles as it is a contact term. The contact
terms can always be written in terms of a sum of the cubic s, t and u pole structures by using
the identity, 1 = s

s = t
t = u

u . As a result, the kinematic contributions of the contact terms
contribute to the kinematic numerators of the cubic diagrams and can be recognized as they
are polynomial in the Mandelstam invariants. Explicitly, the contact term consists of three
terms with the structure constants contracted in different ways multiplied by some kinematic
contributions which we denote by ñi corresponding to the channels of the structure constants.
If each term is multiplied and divided by the corresponding propagator, the quartic vertex can
be absorbed into the cubic graphs [34],

a

cb

d

∼ fabefecdñs + facefebdñt + fadefebcñu

=
fabefecdñss

s
+

facefebdñtt

t
+

fadefebcñuu

u

∼

a

b

d

c

+

a

c

d

b
+

b c

a d

.

(2.21)

There is some freedom on how to exactly distribute the contact terms into the cubic diagrams
as the structure constants are related with the Jacobi identity, Eq. 2.5.

If we now reconsider the relations between the combinations of structure constants in the
form of the adjoint Jacobi identity (Eq. (2.5)), we see that they can be represented as relations
between the color structures of the different channels in terms of the cubic diagrams,

fabefecd = fadefebc − f bdefeac

⇓

c

(
a

b

d

c )
= c

( b c

a d

)
− c

(
a

c

d

b )
.

(2.22)

Note that this is just a schematic representation of the color structures of the cubic diagrams.
This relation is often written as,

ci − cj = ck, (2.23)
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Bram Alferink 2.2 Graviton (self) interactions

where ci are color factors which represent all the structures due to the Lie Algebra, or color.
This will prove to be a key concept in the color kinematics duality, which will be discussed in
Section 3

The tree level1 amplitude of the four point interaction can be written as just a sum of the
cubic diagrams. With the use of Feynman rules this is found to be,

AYM Tree
4 =

csns

s
+

ctnt

t
+

cunu

u
, (2.24)

where cs, ct, and cu are the structure constants corresponding to the respective channels as
defined before, and ns, nt, and nu are the kinematic numerators of the cubic diagrams including
the contact contributions due to Eq. (2.21).

From [14] we take the kinematic numerator which is,

ns =(
(ε1 · ε2)pµ1 + 2(p2 · ε1)εµ2 − (ε1 · ε2)pµ2 + 2(p1 · ε2)εµ1

)(
(ε3 · ε4)pµ3 + 2(p3 · ε4)εµ4 − (ε3 · ε4)pµ4 + 2(p4 · ε3)εµ3

)
+ 2
(
(ε2 · ε3)(ε1 · ε4)− (ε1 · ε3)(ε2 · ε4)

)
(2.25)

where the Lorentz indices can be fully contracted and the on shell conditions, p2i = 0 and
pi · εi = 0, are satisfied. The other numerators, nt and nu, can be found by cyclic permutation
of the external labels (1 7→ 2 7→ 3 7→ 1 and 1 7→ 3 7→ 2 7→ 1 for nt and nu respectively). The
final term of the numerator is linear in the Mandelstam, hence it comes from the contact term.

Earlier we mentioned that the structures of Yang-Mills theory are very different from gravity.
To illustrate this, we will now discuss the self interactions of the graviton.

2.2 Graviton (self) interactions

Although gravity can not be quantized without running into UV divergences, we can still consider
the theory as an effective field theory at low energies and treat it in the context of quantum
field theory. In this construction, general relativity is described by the Einstein-Hilbert action,

SEH =
1

16πG

∫
d4x
√
−gR, (2.26)

here g is the determinant of the metric tensor gµν , R is the Ricci scalar, and G is the gravitational
constant. The coupling is often written as the modified planck mass, which is given by, M2

p =
1

16πG . This is the mass scale of the effective field theory.
The graviton is defined as a small perturbation of the Minkowski metric,

gµν = ηµν +
1

Mp
hµν , (2.27)

where ηµν is the Minkowski metric and hµν is the graviton field. We must remember that such
an approach only makes sense for weak gravity due to the definition of the graviton and the fact
that a ‘QFT’ construction of GR only makes sense for low energy as the theory is UV divergent.

To study the self interactions of the graviton, the action can be expanded in powers of hµν
with the appropriate powers of the planck mass Mp. The Lorentz indices are suppressed for
simplicity leading to the schematic expansion of the action,

SEH =

∫
d4x

(
(∂h)2 +

h(∂h)2

Mp
+

h2(∂h)2

M2
p

+ . . .

)
. (2.28)

1Leading order in a loop expansion, i.e., no loops

15



2.3 Massive scalar fields Bram Alferink

The two derivatives of each term come from the definition of the Ricci scalar. This perturbative
expansion works well for energy scales much lower than Mp.

The expanded action of Eq. (2.28) results in an infinite number of self interactions. Dia-
grammatically this is illustrated in Equation (1.1). In principle, one can derive Feynman rules
for these interactions, but the calculations become increasingly complex. As DeWitt showed,
the three point graviton vertex has “at least” 171 terms [35–37]. Higher point vertices quickly
become even more complex. For more details on this topic see [30, 38–40].

This complexity can be explained by the huge amount of freedom GR has due to the diffeo-
morphism invariance. This is a property of the action describing gravitons and is analogous to
gauge invariance in gauge theory. At linear order it is given by the transformation,

hµν → hµν + ∂µξν + ∂νξµ. (2.29)

Where ξµ is an arbitrary function of spacetime.
The final type of theory we will discuss, and the main focus of this thesis, is the theory of

massive scalar fields coupled to Yang-Mills theory. This can naturally be extended to massive
scalars coupled to gravity as well using the double copy constructions that will be discussed in
Section 3. In turn, this is important for the application to gravitational waves as discussed in
the introduction. However, the details of the applications to gravitational waves and the massive
scalars coupled to gravity in general is beyond the scope of this thesis.

2.3 Massive scalar fields

In this thesis, we are particularly interested in the interactions between massive fields and gauge
fields. Hence, we need to understand all components to calculate amplitudes involving massive
fields. The simplest model that accomplishes this is a theory with massive colorless spin 0
particles, or colorless scalars in other words. Ultimately we are interested in the limit where the
mass of the scalar field is taken to be large compared to the momentum of the gauge fields. It
turns out that at the leading order contribution to the amplitude in an inverse mass expansion
is universal. This means the spin of the massive field does not affect the amplitude [25, 41]. A
heavy quark field can simply be replaced by a heavy scalar. For this reason we focus on massive
scalar fields in contrast to fermions for example. We will first discuss the massive scalar fields
with a general mass. Particularly massive scalar QCD.

The Lagrangian corresponding to such a theory can be constructed as [31],

LsQCD = −1

4
F a
µνF

µν,a − 1

2
(∂µAa

µ)
2 + (Dµϕi)

†(Dµϕi)−m2ϕ†
iϕi. (2.30)

The first term is the familiar Yang-Mills term, the second a gauge fixing term, the third term
contains the interaction between scalar and gauge fields and the fourth is the mass term. In [31]
there are multiple flavors for the massive scalar field which is necessary to describe the coupling
of multiple different scalars with possible different masses in the theory. In our case, however,
we only care for a single instance of a massive scalar and hence flavor indices can be ignored.
Furthermore, a and i denote the color indices. The gauge covariant derivative is given by,

Dµϕi = ∂µϕi − igAa
µT

a
ijϕj , (2.31)

where ϕi is the scalar field, g is a coupling constant, and T a are the generators of the gauge
group.

In addition to the self interactions of the gauge field generated from the first term, which
were described in Subsection 2.1.1, the sQCD Lagrangian gives rise to an interaction between
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Bram Alferink 2.3 Massive scalar fields

the gauge field and the massive scalar generated by the third term. We also have the scalar
propagator and in contrast to QCD with fermions, a contact vertex through Lint ∼ A†

µφ†Aµφ.

pi j =
−iδij

p2 −m2 + iε
, (2.32)

p1, i

µ, p2, a

p3, j

= igT a
ij(p1 + p3)µ. (2.33)

p1, i

ν, p3, bµ, p2, a

p4, j

= ig2(T a
ilT

b
lj + T b

ilT
a
lj)gµν (2.34)

Note that the momentum p1 of the scalar field is ingoing and pn is outgoing. The gluon momenta
are all ingoing.

Now we are ready to start building amplitudes. Note that the external particles of the
amplitude have to be on-shell. Hence, for the external momenta and polarizations we can apply
the on shell conditions, pi · pi = m2

i for the momenta of massive particles and pi · pi = 0 for
massless momenta of massless particles. Additionally, the polarization vectors of the external
gluons are transverse, εi · pi = 0. Unless mentioned otherwise we will only deal with the tree
level amplitudes. In case of amplitudes with massive scalars coupled to gluons, particle ‘1’ and
‘n’ are always the external massive scalars where particle ‘1’ is ingoing and ‘n’ is outgoing, the
other external particles (2,. . . ,n-1) are gluons.

The 3-point amplitude of two massive scalars and one gluon can be found immediately by
contracting the vertex with the polarization vector of the gluon,

A3(1i, 2
a, 3j) = igT a

ijε2 · (p1 + p3). (2.35)

For the 4-point amplitude we have to do a little more work. First consider which diagrams
contribute. The first channel is realized through the exchange diagram and the half of the
contribution of a contact diagram. We call this the s channel,

p1

p2 p3

p4

+
p1

p2

p4

p3

= igT b
kj((p1 + p2) + p4)µε

µ
3 (−i)

δlk
s12 −m2

igT a
il(p1 + (p1 + p2))νε

ν
2 + ig2(T aT b)ijgµνε

µ
2ε

ν
3

= i2g2(T aT b)ij
2(p4 · ε3)(p1 · ε2) + (ε2 · ε3)(p1 · p2)

s12 −m2
.

By using the on-shell conditions and momentum conservation, which, in the case of all particles
ingoing except for ‘4’, results in p1 + p2 + p3 − p4 = 0, we can simplify the expression to the
second line. The contact term trivially has a cubic contribution by multiplying the term by
1 = s12−m2

s12−m2 . Note that s12 −m2 = (p1 + p2)
2 −m2 = 2(p1 · p2). This first contribution to the

amplitude clearly splits up to a contribution comprised of only color factors, a numerator with
only kinematic factors, and a propagator. As before, these are denoted by cs and ns respectively.
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2.3 Massive scalar fields Bram Alferink

The second channel we will consider is the t-channel. This will yield the same kinematic
factor and propagator up to the switching of the indices 2 and 3. The color factor will now be
ct = (T bT a)ij , which corresponds to swapping the legs. There is another “half” of the contact
term which is absorbed in the t-channel.

There is one more channel to consider, the u-channel. The contact term is already fully
accounted for, hence this is just the exchange diagram with a massless propagator,

p1 p4

p2 p3

= igT d
ij(p1 + p4)µi

δdcgµα

s23
(−i)gfabc

[
gαβ(k − p2)γ + gβγ(p2 − p3)α + gγα(p3 − k)β

]
εβ2ε

γ
3

= i2g2fabcT c
ij

2(p1 · ε2)(p4 · ε3)− 2(p4 · ε2)(p1 · ε3) + (ε2 · ε3)[(p1 · p2)− (p1 · p3)]
s23

.

(2.36)

Note that the internal momentum k = −(p2+p3). The result in the second line can be achieved
by using the on-shell conditions and momentum conservation. Similar to the other terms, this
can be recognized as a color factor and a kinematic factor, cu and nu respectively.

The total amplitude is then given by the sum of the contributions of the different channels,

A4 =
csns

s12 −m2
+

ctnt

s13 −m2
+

cunu

s23
. (2.37)

Interestingly, the color factors automatically satisfy the relation of equation (2.2). This can be
depicted analogously to Eq. (2.22) for diagrams that include fundamental particles as,

T a
ijT

b
ij − T b

ijT
a
ij = ifabcT c

ij

⇓

c

(
a

b c

d

)
− c

(
a

cb

d

)
= c

(
a d

b c )
.

(2.38)

This relation is not a surprise as the color factors are a consequence of the underlying Lie algebra.
The observant reader might have noticed that the kinematic numerators written in this way

satisfy a very similar relation,

ns − nt =
(
2(p4 · ε3)(p1 · ε2) + (ε2 · ε3)(p1 · p2)

)
−
(
2↔ 3

)
=
(
2(p4 · ε3)(p1 · ε2) + (ε2 · ε3)(p1 · p2)

)
−
(
2(p4 · ε2)(p1 · ε3) + (ε2 · ε3)(p1 · p3)

)
(2.39)

= 2(p1 · ε2)(p4 · ε3)− 2(p4 · ε2)(p1 · ε3) + (ε2 · ε3)[(p1 · p2)− (p1 · p3)] (2.40)
= nu. (2.41)

In Section 3 we will see that this does not have to be a coincidence, and has some very powerful
consequences. The same also applies to the Yang-Mills color factors and numerators of Eq. (2.24).
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Bram Alferink 2.4 Partial amplitudes and amplitude relations

2.4 Partial amplitudes and amplitude relations

A way to reduce the complexity of calculations involving scattering amplitudes is to consider a
decomposition of the color structures. One way to do this is to structure the amplitude in color
factors such that the color factors are independent of each other, which can be achieved using
the Jacobi identities [42]. This allows us to systematically treat the color degrees of freedom
by separating them from the kinematic components, which are the color ordered, or partial,
amplitudes.

By starting from equation (2.2) and taking the trace over the indices i and j. This way, we
can decompose the structure constants fabc in terms of traces of the generators T a,

ifabc = Tr
([

T a, T b
]
, T c
)
= Tr

(
T aT bT c

)
− Tr

(
T bT aT c

)
. (2.42)

With the Fierz identity, (T a)ji (T
b)lk = δliδ

j
k −

1
N δji δ

l
k, we can simplify products of structure

constants. For example, the product of two structure constants can be written as,

fabefecd = Tr
(
T aT bT cT d

)
− Tr

(
T aT bT dT c

)
− Tr

(
T bT aT cT d

)
+Tr

(
T bT aT dT c

)
. (2.43)

In principle products of any number of structure constants can be written in this form. For
more details, see [14].

When this decomposition is done to the structure constants of a YM amplitude, the coef-
ficients of the independent color factors (now traces of generators) that are left are the partial
amplitudes. As described in [42, 43], an arbitrary cubic graph can be converted to a ‘multi-
peripheral’ form or half-ladder diagram by repeatedly using the Jacobi identity. For some n-point
amplitude of an arbitrary particle this would look like,

1

σ1 σ2 σn−2

n
· · · · · ·

. (2.44)

The intermediate n− 2 particles are denoted by σ which are permutations of the particles.
This decomposition of the color factors can be used both for the purely adjoint particles of

gluon scattering and for interactions with fundamental particles as in the case of massive scalars
coupled to gauge fields. For five point amplitudes of the latter, the full set of diagrams that
could be written in this half-ladder form are the cubic interactions of Eq. (2.67). The diagrams
for the six point amplitude are shown in equation (6.6) in appendix C. We will now give some
more details for both the adjoint and fundamental case.

2.4.1 Tree level adjoint particles and amplitude relations

In a Yang-Mills theory, the particles are entirely constructed in the adjoint representation of
the gauge group and hence the color factors are products of only structure constants fabc. The
tree level n-point amplitude can be written as a sum over all possible cubic diagrams [14]. One
can show by recursively attaching new legs to every possible leg of lower multiplicity diagrams
that there are (2n − 5)!! cubic diagrams at n-point. Note that an ‘independent’ cubic diagram
is uniquely defined by the propagator contribution which is fixed by the order of the external
legs, even when graphs have the same topology2.

2We consider graphs to be of the same topology when the only difference is the order of the external legs.
Hence, the s, t and u channel of YM at four point all have the same topology for example. For the theory including
an adjoint particle, the s and t channel are the same topology but the u channel is different as it has a massless
propagator instead of a massive one.
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2.4 Partial amplitudes and amplitude relations Bram Alferink

Another important property of the color factors is that there are only (2n−5)!!−(n−2)! Jacobi
relations that are independent as the color factors can be mapped to a (n− 2)! basis. For an n-
point Yang-Mills amplitude given some diagram, the color factor can be constructed by following
a path from particle ‘1’ to ‘n’ and appropriately contracting color factors or commutators of color
factors. For a diagram as in,

1

2
3 4 5

6 7

n− 1

n
· · ·

, (2.45)

this results in a contraction of the form,(
fa2 [fa3 , fa4 ][fa5 , [fa6 , fa7 ] · · · ]

)
a1an

, (2.46)

where the ai are the color indices of the external particles. Note that the structure constants
only have one index between the brackets as all the internal indices are contracted.

The color factors can be rewritten using the Jacobi identities This results in the multi-
peripheral form where σ signifies some permutation of the external legs,

c1σn =
∑

σ∈Sn−2

biσ

(
faσ(1)faσ(2) · · · faσ(n−2)

)
a1an

. (2.47)

Here the parameter bi 0 or ±1 depending on the specific color factor. This allows us to write
the gauge-theory amplitude in as a Del Duca-Dexon-Maltoni (DDM) color decomposition [43].
This is a way of writing the full amplitude in terms of partial (color ordered) amplitudes,

An(1, 2, . . . , n− 1, n) =
∑

σ∈Sn−2

An(1σ1 . . . σn−2n)
(
faσ(1)faσ(2) · · · faσ(n−2)

)
a1an

. (2.48)

The partial amplitudes An(1σ1 . . . σn−2n) correspond to some fixed ordering of the color struc-
tures and only consist of kinematic objects themselves. In the trace basis the decomposition has
the form,

An(1, 2, . . . , n− 1, n) =
∑

σ∈Sn−1

An(1σ1 . . . σn−1)Tr(T
aσ1 . . . T aσn−1 ). (2.49)

More details on this are found in [14].
As an example, consider the four point amplitude. If we start from the YM amplitude of

Eq. (2.24), we can expand the color factors in terms of traces of the generators. Using properties
of the traces this can be reduced to,

A4(1, 2, 3, 4) ∼(
ns

s
+

nu

u
)Tr(T a1T a2T a3T a4) + (

nt

t
− nu

u
)Tr(T a1T a3T a2T a4)

+ (
ns

s
− nt

t
)Tr(T a1T a3T a4T a2).

(2.50)

Here the kinematic objects in front of the traces are the partial amplitudes A4(1234), A4(1324),
and A4(1342) respectively. Note that there are only three elements whilst there should be six.
This is due to the fact that half of the six could be written in terms of reversed traces with
identical partial amplitudes.
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Relations between (partial) amplitudes

The partial amplitudes satisfy a number of interesting relations. We will now discuss some of
these, particularly in the context of tree amplitudes in YM theory. Most of the relations will
also hold for theories with field in the fundamental representation, albeit in a slightly different
form. We will roughly follow the enumeration of [14].

In this section we have seen the color decomposition of amplitudes. The partial amplitudes
in a YM theory are functions only of the kinematics, i.e. the momenta and polarizations. The
color dependence of the partial amplitudes is represented only by the ordering of the external
legs, no color factors are included. Additionally, they can only have poles in planar channels. In
a canonically ordered (1234) partial four point amplitude for example, there can only be poles
in the s and u channels. More explicitly, it can have poles in neighboring legs, s12 and s14 = s23
but not in s13.

Due to the trace basis decomposition of the color factors we note that the partial amplitudes
must also be invariant under cyclic permutations of the external legs,

An(1, 2, 3, . . . , n) = An(2, 3, . . . , n, 1), (2.51)

and under order reversal (up to a sign),

An(1, 2, 3, . . . , n) = (−1)nAn(n, . . . , 2, 1). (2.52)

Another relation that must be satisfied is the photon-decoupling identity. Holistically, the idea
is that we could consider a theory where the gauge group is U(N) which would be equivalent
to a theory with U(1)× SU(N) where U(1) is the gauge group of a photon. When considering
the self interaction of the gauge fields which involves the commutator of the generators, the
photon “decouples” as its generator is the identity and hence commutes with any other matrix.
A consequence of this is that the amplitude should be zero when all but one leg are summed
over cyclically,

A(123 . . . n) +A(213 . . . n) + · · ·+A(231 . . . n) = 0. (2.53)

Finally, the partial amplitudes must satisfy the Kleiss-Kuijf (KK) relations [43, 44],

An(1, α, n, β) = (−1)|β|
∑

σ∈α�βT

An(1, σ, n), (2.54)

where α and β are lists of external legs, the ‘transpose’ (i.e. βT ) represents the reverse ordering
of a list, |β| is the number of elements in β, and � is the shuffle product. The shuffle product is
defined as the sum of all possible ways to interleave the elements of two lists while keeping the
order of the elements in each list. For example, the shuffle product of ab and xy is,

ab� xy = abxy + axby + axyb+ xaby + xayb+ xyab. (2.55)

In other words, y is always after x and b after a, but there might be other ‘stuff’ in between.
The KK relations originate from the fact that two decompositions (DDM and trace) utilize a
different number of partial amplitudes in their basis. Therefore, there must exist a relation that
maps one basis to the other which is the role of the KK relations.

We will now make some comments and give some examples for the case of fundamental
particles.
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2.5 Massive fields and the large mass limit Bram Alferink

2.4.2 Tree level fundamental particles

The half-ladder diagram of n − 2 gluons and two fundamentals can also be decomposed into a
basis of partial amplitudes. For this it is more convenient to utilize the fundamental ‘structure
constants’. In a similar approach is before, the full amplitude is then given by [43],

An(1i, 2, . . . , n− 1, nj) =
∑

σ∈Sn−2

(T aσ1 . . . T aσn−2 )ijAn(1σ1 . . . σn−2n). (2.56)

The color indices of the gluons are taken to be implicit on the right-hand side.
As an example we can take the four point amplitude. The symmetric group S2 has only two

elements. Hence, explicitly this would have the form,

A4(1i, 2, 3, 4j) = (T aT b)ijA4(1234) + (T bT a)ijA4(1324). (2.57)

Staying with the four point example, we see that there are only two independent color factors.
Therefore, the third color factor has to be written in terms of the other two. For the four point
amplitude this is very straightforward by using Eq. (2.2). This allows us to decompose the
u-channel as in Eq. (2.37), in terms of the s and t channel diagrams. Explicitly, the two color
ordered amplitudes are,

A4(1234) =
ns − nu

(2p1 · p2)
, A4(1324) =

nt − nu

(2p1 · p3)
, (2.58)

At 5pt. the symmetric group S3 has 6 elements. Explicitly this would lead to,

A(1i, 2, 3, 4, 5j) = (T aT bT c)ijA(12345) + (T aT cT b)ijA(12435) + (T bT aT c)ijA(13245) (2.59)
+ (T bT cT a)ijA(13425) + (T cT aT b)ijA(14235) + (T cT bT a)ijA(14325). (2.60)

In Section 3 we will see that it is possible to check the consistency of the color-kinematics
duality by comparing certain partial amplitudes using the so called (BCJ relations). For this
it will be necessary to decompose certain terms of partial amplitudes in terms of other partial
amplitudes. It is very useful to know what independent color factors correspond to the terms in
the multi-peripheral form.

With this intermezzo on partial amplitudes, we will now return to massive scalar QCD and
discuss the limit when the massive scalars have a large mass compared to the typical energy
scale of the process.

2.5 Massive fields and the large mass limit

A particularly interesting limit of the massive scalar QCD amplitudes is the large mass limit.
This leads to a specific class of effective field theories known as Heavy mass Effective Field
Theory (HEFT). These theories are used to describe the dynamics of heavy particles in the
limit where the mass of the heavy particle is much larger than the typical energy scale of the
process.

The type of effective field theory relevant to our problem is familiar in the context of heavy
quarks in collider/standard model physics as heavy quark effective theory (HQET) [45, 46]. We
are interested in the leading order terms in an expansion in 1/m. The focus in this thesis is on
the scalar version (spin 0) of the theory.

A corresponding effective theory for gravity can be studied with the double copy. This way,
tree-level amplitudes can be constructed for two heavy particles coupled to gravitons in the
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leading order of an inverse mass expansion [25, 47]. This is one of the main motivations in
the form of an application for studying such theories as the double copy of the theory can be
used to study binary black hole systems. In a binary black hole system the masses of the black
holes will certainly be much larger than any momentum exchanged and in addition, the black
holes can be treated as point particles. The tree-level amplitudes can be used to construct loop
diagrams with unitary cuts. The HEFT gravity amplitudes can in turn be used to find classical
observables in binary black hole systems [26]. This is hugely powerful for calculations necessary
to study gravitational wave signals for current and future observations. The details of this are
beyond the scope of this thesis.

The HEFT amplitudes have some major advantages. The leading order terms of the inverse
mass expansion are the only relevant terms for classical physics [26], which is exactly of interest
for black hole scattering. Additionally, it is possible to construct the numerators that can be
used in a double copy such that the HEFT amplitudes are inherently gauge invariant, local w.r.t.
gravitons/gluons, and satisfy Jacobi relations. This later construction is based on a ‘kinematic
algebra’ analogous to the color algebra in gauge theories. More on this in Section 3. We first
take a step back to a scalar version of Heavy Quark Effective Theory.

2.5.1 Heavy mass Effective Field Theory

The momentum of external scalar particles in this theory before an interaction (particle ‘1’ from
before) can be written as,

pµ = mvµ, (2.61)
where m is the mass of the particle and v2 = 1. Then, after an interaction with a ‘soft’ (compared
to the scale of mass m) particle, the momentum of the particle (particle ‘n’) can be written as,

pµ = mvµ + kµ, (2.62)

where kµ is the momentum transfer. The momentum transfer is just the sum over the momentum
of all external massless particles in the interaction. When the heavy particle is on shell, p2 = m2,
we can show using the above equations that,

v · k =
−k2

2m
. (2.63)

This reduces to, v · k = 0, in the large mass limit.
Using the properties above, we can write the propagator for the heavy particle as,

−iδij

p2 −m2 + iε
=

−iδij

2mv · k + iε
. (2.64)

Similarly, we could derive a HEFT Feynman vertex rule for the interaction vertices of the heavy
particle with the massless particles. In principle, we can build an amplitude out of these ‘new’
Feynman rules and get the leading order terms in the inverse mass expansion. Alternatively,
we can use the HEFT expansion to immediately simplify the sQCD amplitudes with a general
mass to the HEFT version. For this, we need to first derive the sQCD amplitudes for a general
mass.

As an example, let us find the HEFT amplitude for the scattering of two scalars with two
gluons as was done for the general mass case in Eq. (2.37). We will use a specific color ordering
for the gluons, A4(1234), hence, we will only consider the s and u channel diagrams.

A4(1234) =
ns

s12 −m2
− nu

s23
, (2.65)
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2.5 Massive fields and the large mass limit Bram Alferink

where ns and nu are the kinematic numerators of the s and u channel as discussed in this section.
Now substituting Eq. (2.61) and Eq. (2.62) for p1 and p4 respectively, and taking the leading
order in the inverse mass expansions, we find that the leading order color ordered amplitude is
given by,

AHEFT
4 (1234) = 2m

((v · ε2)(v · ε3)
(2v · p2)

+
(ε3 · p2)(v · ε2)− (ε2 · p3)(v · ε3)− (ε2 · ε3)(v · p2)

s23

)
.

(2.66)
We used that v · p2 = −v · p3 due to Eq. (2.63).

In the same vain we can construct a five point amplitude consisting of two heavy scalars and
three gluons. The (partial) amplitude can be constructed of 6 different topologies,

p1

p2 p3 p4

p5

+

p1

p2 p3 p4

p5

+

p1

p2 p3 p4

p5

+

p1 p5

p4p3p2

+

p1 p5

p2 p4p3

+

p1 p5

p2 p4
p3 (2.67)

Sparing the details of the calculation, the HEFT amplitude is given by [25],

AHEFT
5 (12345) = 4m

(
(v · e2)(v · e3)(v · e4)

4(v · p2) ((v · p2) + (v · p3))

+
(v · e2)

(
1
2(e3 · e4) (−(v · p3) + (v · p4))− (e3 · p4)(v · e4) + (e4 · p3)(v · e3)

)
2(v · p2)s34

+
(v · e4)

(
1
2(e2 · e3) (−(v · p2) + (v · p3))− (e2 · p3)(v · e3) + (e3 · p2)(v · e2)

)
2s23 ((v · p2) + (v · p3))

+
(e2 · e4)(v · e3)− (e3 · e4)(v · e2)

4s234

+
1

2s34s234

(
− 2(e2 · p3)(e3 · e4)(v · p4) + 2(e2 · p4)(e3 · e4)(v · p3)

+ (v · e2) ((e3 · e4) (−(p2 · p3) + (p2 · p4)) + 2(e3 · p2)(e4 · p3)− 2(e3 · p4)(e4 · p2))
− ((e2 · p3) + (e2 · p4)) (−(e3 · p4)(v · e4) + (e4 · p3)(v · e2))

+ 2 ((v · p3) + (v · p4)) ((e2 · e3)(e4 · p3)− (e2 · e4)(e3 · p4))
)

+
1

2s34s234

(
2(e2 · e3)(e4 · p2)(v · p3)− 2(e2 · e3)(e4 · p3)(v · p2)

+ (v · e4) ((e2 · e3) ((p2 · p4)− (p3 · p4)) + 2(e2 · p3)(e3 · p4)− 2(e2 · p4)(e3 · p2))
− ((e4 · p2) + (e4 · p3)) ((e2 · p3)(v · e3)− (e3 · p2)(v · e2))

+ 2 ((v · p2) + (v · p3)) (−(e2 · e4)(e3 · p2) + (e2 · p3)(e3 · e4))
))

(2.68)

Note that one can directly read off which topology a term is coming from by looking at the propa-
gator. To get to this amplitude, several ‘trivial’ relations related to the momentum conservation,
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on shell conditions, and the heavy mass limit were used. Although this is still manageable for a
five point amplitude, it is clear that this method is not feasible for much higher point amplitudes.
If we ever wish to construct higher point HEFT amplitudes, let alone for general massive fields
or with higher derivative interactions, we need a more efficient method. We will get to this in
Section 4.
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3 Colour-Kinematics Duality and the BCJ Double Copy
Both gauge and gravity theories have an important role in the physical understanding of phe-
nomena in the universe. At first sight, they do not have much in common. The Lagrangians
look wildly different, their ‘strength’ (weak, strong, and the electromagnetic force vs gravity)
are many orders of magnitude different, and they seem to be describing phenomena in the
microscopic and macroscopic world respectively.

Despite this, there are also many features that are shared between the two theories. Some of
these have been discovered before in string theory [19] which has been a large source of inspiration
for the modern amplitude program. The study of ‘observables’ such as the on-shell scattering
amplitudes instead of Lagrangians, helps to uncover deep and often non-trivial connections.
The double copy and generally the color-kinematics duality offers a new perspective on gauge
theory, gravity and their interpretations [14, 17, 24]. This section will be dedicated to the
color-kinematics duality and its consequences.

First the general ideas of the color-kinematics duality and the double copy will be discussed.
After that, we will discuss relations between (partial) amplitudes. Finally, we will discuss a
tangent to this discussion in the form of a different double copy construction which proofs to be
particularly useful for HEFT amplitudes.

3.1 Color kinematic duality

Very generally, the color-kinematics duality states that many theories with some Lie-algebra
symmetry can be organized in such a way that the kinematic components of a set of cubic
diagrams obey the same algebraic relations as the corresponding color components [14]. This
is a non-trivial statement, and it is not immediately clear why this could (or even should) be
the case. An important consequence of the duality is that it can not only constrain kinematics
of certain theories, but also construct theories from other theories by simply replacing the color
factors with kinematic factors and vice versa. This double copy construction alone is a large
motivation to study the duality as it implies a deep connection between gauge and gravity
theories. Given the lack of a consistent theory in the UV-regime for gravity, this could lead to
new insights in the search for a quantum theory of gravity.

There exist proofs of the CK duality at tree level using various methods such as [48]. However,
this is not the most insightful and is beyond the scope of this thesis. At loop level there are no
complete proofs, but there are many examples where the duality holds at loop level as well [14].
We will focus on the construction and consequences of the duality at tree level.

At tree level, the reorganization of the amplitude such that the color contributions and
kinematic components are separated is,

An = gn−2
∑
i∈Γ

cini

Di
. (3.1)

Here each ci is a color factor that corresponds to a unique diagram, Γ is the set of all cubic
diagrams, and ni are the kinematic numerators. Note that this is a sum over only the cubic
pole structures and that any higher point vertices are rewritten in terms of cubic diagrams
as in Eq. (2.21) and their kinematic contributions absorbed into the respective numerators.
Each cubic diagram has a corresponding denominator Di which is the product of all internal
propagators in the diagram.

It needs to be noted that this diagrammatic approach is not quite the same as Feynman
diagrams due to the fact any contact terms are absorbed into the cubic diagrams. From this
point onwards, diagrams will have this property unless stated otherwise. The numerators ni are

26



Bram Alferink 3.1 Color kinematic duality

dependent on all other properties of the theory, most notably, the momenta and polarization
vectors (or tensors in case of gravity) of the external particles. In general the numerators are
gauge-dependent.

The color factors, which we have seen in Section 2, are not fully independent. They are
related by the underlying Lie algebra of the gauge group which in the adjoint corresponds to
Eq. (2.5) and for fundamental fields to Eq. (2.2) as was also noted diagrammatically in Eq. (2.22)
and Eq. (2.38) respectively. In case the kinematic numerators are related by the same algebraic
relations as the color factors, the amplitude (Eq. (3.1)) is said to exhibit the color-kinematics
duality,

ni − nj = nk ⇐⇒ ci − cj = ck. (3.2)

Note that the signs in this equation need to be equal but depend on how the problem is defined.
At four point, the color factors simply relate to the s, t and u channel diagrams. We have

seen in Section 2 that the “kinematic” Jacobi identity holds for kinematic numerators of on-shell
Yang-Mills (and sQCD) amplitudes automatically. However, for higher point amplitudes, this
is generally not true.

For larger multiplicity diagrams, the Jacobi identity is embedded in a larger diagram as in
Figure 1. Any internal propagator is chosen to exhibit the Jacobi identity, the rest of the diagram

Figure 1: Diagrammatic representation of a Jacobi identity embedded in an m-point diagram.
Image taken from Bern et al. [14].

is identical. Note that swapping two external legs attached to one vertex will correspond to the
same color factors up to a minus sign (which is implied due to fabc = −facb). These color factors
are not independent. For the CK duality to hold, this property should also be inherited by the
kinematic numerators, ci = −cj =⇒ ni = −nj .

Beyond four point amplitudes, it is a non-trivial task to actually find numerators that satisfy
the CK duality of equation (3.2). When constructing amplitudes using Feynman rules for
example, the numerators do not, in general3, satisfy these relations.

One way of approaching this is to use the modern approach to on-shell scattering amplitudes
where instead of using the action, one writes down all possible contributions to the amplitudes
as an ansatz and then constrain this using a number of physical principles. We can require the
kinematic Jacobi identity of equation (3.2) to be satisfied for all internal propagators to make
sure the CK duality is manifest. This method will be introduced and thoroughly discussed using
examples in Section 4.

As the algebraic properties of the color factors and the kinematic numerators are the same
due to the duality, it is possible to generate new amplitudes that are consistent with properties

3Again, beyond 4-point.
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such as gauge invariance by simply replacing the color factors with the kinematic factors,

ci → ni. (3.3)

This is the double copy, often dubbed BCJ duality or BCJ double copy after the pioneers,
Bern, Carrasco, and Johansson. By appropriately choosing the coupling constant, the resulting
amplitude gives an amplitude for graviton scattering [49],

Mn =
(κ
2

)n−2∑
i∈Γ

niñi

Di
. (3.4)

The tilde suggests that the numerators do not have to be identical numerators. In fact, they can
have different gauge choices, they do not have to represent the same external state, and they
can be from different gauge theories altogether. One implication of this is that only one of the
numerators needs to exhibit the CK duality. Note that there are some more subtleties to this
as discussed in [14].

3.2 BCJ relations

In addition to the relations between partial amplitudes that are discussed in Section 2.4, there
are additional relations between the partial amplitudes that are a consequence of the color-
kinematics duality. In this subsection we will sketch how these relations can be derived and
what they mean for the double copy with the use of some examples.

We will first do this for an n-gluon amplitude (massless adjoint particles), and then show
that there are similar BCJ relations for amplitudes that contain (n − 2) massless gluons and
two massive particles in the fundamental representation. Provided the color-kinematic duality
is satisfied, this should work similarly for massive fundamentals with any spin. We will be
interested only in the massive scalar case.

3.2.1 BCJ relations for gluons

An n-gluon amplitude can generally be expressed as a sum over (2n − 5)!! terms from cubic
graphs as in Eq. (3.1). If we take one connected line of propagators from external particle 1
to n, all other external lines are either connected directly to this line or connected through
a side branch. Now if all external lines are connected directly to the connected line between
1 and n, the diagrams is considered a half-ladder diagram (as discussed in Section 2.4). Any
generic color factor ci corresponding to graph i can be constructed by gluing cubic (three-gluon)
vertices together which all carry a structure constant fabc. The color factors corresponding to
the half-ladder diagrams form a subset of the full set of color factors, c1σn, which were found in
equation (2.47).

Using the Jacobi identity, we can rewrite any generic color factor ci as a sum of these half-
ladder color factors. This is the DDM decomposition [43] where the half-ladder color factors
form the independent Kleiss-Kuijf basis,

ci =
∑

σ∈Sn−2

Mi,1σnc1σn. (3.5)

Where Mi,1σn are certain coefficients. This can be used to write the n-gluon amplitude as,

An =
∑

σ∈Sn−2

M1σnAn(1, σ(1), . . . , σ(n− 2), n), (3.6)
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An(1, σ(1), . . . , σ(n− 2), n) =
∑
i

Mi,1σnni

di
, (3.7)

similar to the amplitudes shown in Section 2.4.
What exactly are the coefficients Mi,α? They can be read off by decomposing the color factors

ci using fabc = Tr
(
T a[T b, T c]

)
into a linear combination of traces Tr[α] = Tr(T aα(1) · · ·T aα(n)) [50,

51]. Due to the hypothesis of the CK duality that the kinematic numerators obey the same iden-
tities as the color structures, the numerators ni can also be written as a linear combination of
half-ladder numerators,

ni =
∑

σ∈Sn−2

Mi,1σnn1σn. (3.8)

From this, it directly follows that the partial amplitude can be written as,

An(1, σ(1), . . . , σ(n− 2), n) =
∑
i

Mi,1σnMi,1δn

di
n1δn. (3.9)

Here the pre-factor of the kinematic numerators is often defined as the propagator matrix,

m(1σn|1δn) =
∑
i

Mi,1σnMi,1δn

di
. (3.10)

This has some interesting properties and related consequences. Firstly, as there are (n − 2)!
independent numerators, the propagator matrix is a (n−2)!×(n−2)! matrix and as a consequence
of on-shellness and momentum conservation has a rank of (n − 3)! [52]. This results in a set
of constraints to the amplitudes in the Kleiss-Kuijf basis which also fully dictate the form of
the BCJ relations independently of the kinematic numerators given that they obey the CK
duality [50, 52, 53], and lead ultimately to the ‘fundamental’ BCJ relation,

m∑
a=3

( m∑
b=a

s2b

)
Am(1, 3, . . . , a− 1, 2, a, . . . ,m) = 0, (3.11)

where sab are the usual Mandelstam variables.

3.2.2 BCJ relations for amplitudes with two massive scalars and (n− 2) gluons

Gluon amplitudes with two massive scalars can also be expressed as a sum over cubic diagrams.
We choose to fix particle 1 and n to be the massive scalars and 2 up to n − 1 as gluons. The
diagrams of the amplitudes will be identical to that of the n-gluon amplitudes except for one
change. The connected line of gluon propagators from external particle 1 to n will be replaced by
the massive scalar propagator. Any side branch before the diagrams are written as half-ladder
diagrams will contain just external gluons and gluon propagators.

The new color factors associated with the diagrams that include massive particles can be
constructed by gluing together the gluon vertices that carry a structure constant fabc, and the
two scalar one gluon vertices that carry T a

ij . Similar to the n-gluon case, the resulting color
factors can be written as a linear combination of half-ladder color factors,

t1σn = (T aσ1 . . . T aσn−2 )ij . (3.12)

This is achieved by applying,
fabcT c

ij = [T a, T b]ij , (3.13)
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to all gluon vertices emerging as side branches. The color factors can then be written as,

ci =
∑

σ∈Sn−2

Mi,1σnt1σn. (3.14)

Note that the half-ladder color factors are the same factors as previously seen in Eq. (2.56). The
partial amplitudes can now be written as,

An(1, σ(1), . . . , σ(n− 2), n) =
∑
i

Mi,1σnni

di
, (3.15)

in terms of the propagator matrix.
It can be shown that the CK duality continues to hold, and that the propagator matrix has

similar properties when there are massive particles present in the amplitude [50]. The relations
for the kinematic numerators and hence the propagator matrix are the same as for the gluon
case with one slight difference in the latter. The denominator, di, now must include the mass
of the propagator of the massive scalars. If we choose to express the denominators in terms of
the momenta4, the case with gluons and massive scalars will be identical as the masses cancel.
Hence, the propagator matrices have the same form and will lead to the same fundamental BCJ
relation,

m∑
a=3

( m∑
b=a

2p2 · pb
)
An(1, 3, . . . , a− 1, 2, a, . . . ,m) = 0, (3.16)

where particle 1 and n denote the massive scalar. If we want to express the fundamental BCJ
relation in terms of the Mandelstam variables, we just insert the mass again,

m∑
a=3

(
−m2 +

m∑
b=a

s2b

)
An(1, 3, . . . , a− 1, 2, a, . . . , n) = 0. (3.17)

As an example, the BCJ relations at four point is,

(s12 −m2)A4(1234) = (s13 −m2)A4(1324). (3.18)

Before we move on to the modern scattering amplitude approach, we will briefly go into a
tangent to discuss the kinematic algebra of the numerators in the HEFT theory and a slightly
different double copy construction using this perspective.

3.3 A kinematic algebra and HEFT

In this subsection, we would like to briefly discus a tangent in order to address some caveats
and an alternative method of finding a double copy of certain theories. We will not revisit this
subsection in the rest of the thesis.

Remember that we have defined the numerators of the amplitude in such a way that we are
summing only over cubic vertices. This is a very specific choice where, for example, quartic
vertices are also contained in the numerators with a different pole structure. Notably, it is
not the only way to write the numerators. For some theories, there might be different ways of
defining the numerators to make certain properties manifest such as general gauge invariance of
the numerators or compactness. This can be done as long as the total amplitude is not changed.
Note that not all numerators are BCJ numerators, which means that they can not be used to

4E.g. s12 −m2 = 2p1 · p2.
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find the double copy in that form. In the case of the HEFT amplitudes found in Section 2.5 this
is indeed a problem as sub leading terms in the heavy mass expansion are necessary for the CK
duality to be manifest.

It can be approached differently, which is exactly what was done in [25]. This way of
representing the BCJ double copy is based on an underlying kinematic algebra of the numerators
specific to HEFT [54–56] and is shown to be massively useful to simplify loop diagrams and to
calculate classical observables of binary black holes [26].

3.3.1 Gauge-invariant numerators and kinematic algebra

The previously discussed numerators are not the only way to construct amplitudes. There is
a way to generate n-particle numerators from algebraic structures. This method has a few
advantages over the ‘traditional’ double copy construction. For example, the numerators are
manifestly gauge invariant and unique (given the generation mechanism), and they are sum only
over a subset of the cubic diagrams. As a result, the expressions for the amplitudes will turn out
to be much more compact compared to the ‘traditional’ construction. This particularly simplifies
loop diagrams, which is one of the necessary components to study gravitational interactions of
inspiraling binary systems.

This construction of the numerators is based on a fusion product between heavy mass currents
[25]. The currents, inspired by tensor currents from QCD, are denoted by Ja1⊗a2⊗···⊗ar where
ai are either momenta or polarization vectors. For example, in HEFT, Ja = mv · a. The tensor
currents are generators of an underlying kinematic algebra and are required to satisfy a Clifford
algebra and on shell conditions for external particles as in [25, 55]. The currents satisfy a fusion
rule, which has the following form,

JX ? JY =
∑
Z

FZ
XY JZ , (3.19)

where FZ
XY are coefficients that depend on the kinematics. The fusion rule determines the

decomposition of a tensor product of two group representations as a direct sum of irreducible
representations. The coefficients can be found by building a general ansatz based on the dimen-
sionality of the problem. Then, using the color-kinematics duality, the coefficients can be found.
In this way, there is no general description and the amplitudes of the single copy need to be
known to be able to find the coefficients. More recently, after realizing the uniqueness of these
HEFT numerators, it was found that the coefficients of the fusion rule can be fixed completely
by a quasi-shuffle Hopf algebra [56].

The fusion rule generates ‘pre-numerators’ for n-2 massless particles,

Nn(23 · · ·n− 1, v) := Jε2 ? Jε3 ? · · · ? Jεn−1 . (3.20)

To find the full numerators and the resulting single and double copies, it is useful to define the
notion of ordered and unordered nested commutators as in [25]. These are relevant for color
ordered (single copy) and graviton (double copy) amplitudes, respectively. A simple example is
for n = 5, which will have the set {2, 3, 4} as 1 and 5 are fixed. If the ordering is kept, there
are two possibilities to construct nested commutators: [[2, 3], 4] and [2, [3, 4]]. The unordered
commutators have three possibilities at n=5: [[2, 3], 4], [[2, 4], 3], and [[3, 4], 2]. Any other option
would only differ by a minus sign.

With this, we can build the amplitudes by summing over the nested commutators, denoted
by Γ. This corresponds to summing over a subset of all the cubic diagrams which are connected
to the heavy ingoing and outgoing particles by a single vertex. This is in contrast to the previous
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approach, where all diagrams are decomposed in terms of half-ladder diagrams. The amplitudes
are,

AYM HEFT
n (12 · · ·n) =

∑
Γ∈ordered commutators{2,3,...,n−1}

N (Γ, v)

dΓ
, (3.21)

AGR HEFT
n (12 · · ·n) =

∑
Γ∈non-ordered commutators{2,3,...,n−1}

[N (Γ, v)]2

dΓ
. (3.22)

The commutators that are summed over, and hence also the numerators, have the nice property
that they correspond one-to-one with a cubic diagram. The propagators dΓ can also be read of
from the corresponding diagram trivially. For example, for the following BCJ numerator,

N5([[2, 3], 4], v) ←→

1 5

432

, (3.23)

the corresponding propagator would be d[[2,3],4] = s23s234.
One (but not unique) way of generating the ‘real’ numerators from pre-numerators is using

the operator L(2, 3, 4, . . . , n− 1) [25, 57, 58], which is defined as
L(i1, i2, . . . , ir) := [I− P(i2i1)][I− P(i3i2i1)] · · · [I− P(ir...i2i1)], (3.24)

where I is the identity and Pi1i2...im are cyclic permutations. At six point for example, the left
nested commutator can be generated from the pre-numerator as follows:

N6([[[2, 3], 4], 5], v) := L(2, 3, 4, 5) ◦ N6(2345, v), (3.25)
where, for example,

I ◦ N6(2345, v) = N6(2345, v), (3.26)
P(432) ◦ N6(2345, v) = N6(4235, v). (3.27)

With this, the full numerators can be generated.
Finally, as an example of this construction we show the four point amplitude of HEFT using

this novel double copy method as done in [25]. The four point pre-numerator is found to be,

N4(23, v) = 2
(s23v · ε3

4v · p2
Jε2 −

1

2
Jε2⊗ε3⊗p2 + ε3 · p2Jε2

)
. (3.28)

The full numerator is then found to be,

N4([2, 3], v) =

1 4

32

= L(2, 3) ◦ N4(23, v) = 2m
vµF

µν
2 F3,νρv

ρ

v · p3
. (3.29)

Here Fµν
i = pµi ε

ν
i − εµi p

ν
i and some rewriting has been done. Now using equation (3.21) we can

straightforwardly find the four point Yang-Mills and GR amplitude of HEFT,

AYM HEFT
4 =

N4([2, 3], v)

s23
, (3.30)

AGR HEFT
4 =

[N4([2, 3], v)]
2

s23
. (3.31)

This process continuous analogously for higher point amplitudes. A more in depth treatment
and the applications to loop amplitudes for calculations of gravitational wave observables is
found in [25, 26, 59].
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4 Modern Ampliutde Methods and the Amplitude Bootstrap
The methods we have considered thus far follow the “traditional” approach of first writing down
some theory using the action. There are a number of implicit and explicit fundamental physical
principles in this approach. Then using the action, we can ultimately derive the amplitudes
using the perturbative expansion.

Inevitably these methods lead to some trouble. There are several reasons for this, but the
most important issue is that the number of graphs to consider grows factorially with multiplicity.
At 3 or 4 point it is easy to somewhat manageable to write down the amplitudes, at much higher
multiplicities it becomes very difficult and lengthy, even for computers. Another way to derive
amplitudes is through a bootstrap.

The basic idea of bootstrapping amplitudes is to write down the most general ansatz based
on what type of terms could occur in the amplitude. Then, by using a number of physical
principles such as symmetries and other constraints, we can constrain the free parameters in
the ansatz. The most important physical principles that we use in this bootstrap approach are
dimensional analysis, Lorentz invariance, Factorization, Gauge invariance, and the kinematics
of the interaction. We will briefly introduce all of these in this section. It turns out that for
many theories, the amplitudes can be fully determined this way. Additionally, by requiring that
the numerators of the amplitudes satisfy the kinematic Jacobi identities, we can make the CK
duality manifest.

Another important concept in the modern scattering amplitudes approach are on-shell recur-
sion relations. This allows us to systematically build up higher point amplitudes from lower point
amplitudes. Some theories can be entirely constructed recursively from three point amplitudes.

In this section we will first discuss the bootstrap approach and specifically the fundamental
physical principles that underlie it. Then on-shell recursion relations are discussed holistically.
The amplitude bootstrap and to a lesser extent the recursion relations will be put in practice by
deriving the three and four point amplitudes for massless gluons. Ultimately we are interested
in the case of gluons coupled to massive scalars. We will derive the 3, 4, and 5 point amplitude
by roughly following the calculations of [34] for the lowest “mass dimensions”5. We will refer to
the mass dimension as powercounting in this thesis.

As the amplitude ansatz and the algebra becomes lengthy from 4 point gluons and 5 point
amplitudes with heavy scalars onwards, we utilize symbolic algebra software to perform the
calculations, in this case SymPy [60]. We will discuss whether the bootstrap can be used for
HEFT amplitudes specifically, and in Section 5, we will extend this to higher powercounting by
including α′ corrections. This will lead us towards answers to our research questions.

The issues that are posed with the methods from before are even more problematic when
considering loop diagrams. The amplitude bootstrap in combination with unitarity methods
can also be used to solve loop level amplitudes, however, this is beyond the scope of this thesis.

4.1 The amplitude bootstrap

The bootstrap approach is a rather flexible method. This is meant in the sense that we can use
some ‘known’ properties of theories to constrain amplitudes, but we can also start as agnostic
as possible and let the physical principles guide us.

To illustrate this, we will consider the first principle, dimensional analysis. We can consider
the powercounting of an amplitude by thinking of the Lagrangian and simply count the number
of derivatives per vertex and divide it by the powers of momentum due to the propagators. For

5Note that with mass dimension in this context we mean the power of momentum regardless whether we
consider massive or massless momenta.
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the four point YM amplitude, there is a single derivative for each three point vertex and a single
propagator. Hence, the total powercounting of the amplitude is 0. Alternatively, we can just
try a number of different options for the powercounting (i.e. different amount of momenta) and
see if anything recognizable comes out. At three point amplitude, there are three polarization
vectors hence we need an odd number of momenta and at least one. It would be interesting to
simply try to construct amplitudes of a powercounting of 1, 3, 5, etc. and see what we get. In
this section we will consider only the lowest powercounting and in Section 5 we will consider
higher powercounting as they turn out to correspond to theories with extra derivatives.

This brings us to the second principle, Lorentz invariance. As we would like our amplitudes
to be independent of the reference frame, the amplitudes need to be Lorentz invariant. This is
easily done by using only Lorentz scalars in the ansatz for the amplitude. Hence, the amplitude
will consist of three different types of building blocks,

εi · εj , pi · εj , pi · pj . (4.1)

This explains why the three point example in the previous paragraph was required to have an
odd number of momenta, as otherwise there would be no way to contract all the Lorentz indices.

A key ingredient to physical amplitudes is locality. Tree level four point amplitudes, for
example, have poles that look like 1

p2
(i.e. 1

s for the s-channel), which indicates the propagation
of some intermediate particle [61]. Double poles such as 1

s2
are not allowed. A fundamental

property of quantum theories is that amplitudes should factorize. This means that if we tune
the external momenta such that the internal momentum goes on-shell, the amplitude factorizes
into two lower point amplitudes that look like two distinct processes. As an example, consider
a four point amplitude in case of a massless propagator. Assume we take a specific channel,
this can be chosen as the s-channel which has the pole 1

s . Then, in the limit where s → 0, the
amplitude factorizes into two three point amplitudes,

lim
s→0

sA4 = A3A3. (4.2)

If there would be a double pole, the amplitude would diverge at the factorization limit which is
not allowed. This kind of factorization can be extended to higher point amplitudes and to other
poles.

Lastly, we need the on-shell amplitude to be both gauge invariant, conserve momentum, and
obey the on-shell conditions. With this, we can construct a minimal kinematic basis for the
amplitude ansatz. This is a basis of Lorentz invariant objects that is reduced to an independent
basis. Although this may sound obvious, it is very important to stay in this basis. If the basis
is overcomplete, we “leave” the on-shell “surface” and we would no longer be able to sensibly
constrain the ansatz.

Before we start applying the bootstrap approach, we will first discuss the on-shell recursion
relations.

4.2 On-shell recursion relations

There are sophisticated methods that can be used to “automate” the factorizations called on-
shell methods [61]. These are recursion relations that are used to build higher-point on shell
amplitudes from lower point on shell amplitudes [42]. If all tree-level amplitudes can be defined
recursively in terms of a finite number of lower-point ‘seed’ amplitudes, the theory is said to
be ‘on-shell constructible’ [62]. This subsection contains the general formulation of the on-shell
recursion relations.
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In contrast to off-shell recursion, on-shell recursion relations are formulated only in terms
of gauge-invariant objects. The basic idea is to apply a complex deformation to the external
momenta in the on-shell amplitudes. Then, using methods from complex analysis, we can
derive the relations between higher and lower point amplitudes. The most famous construction
of recursion relations are the Britto, Cachazo, Feng, and Witten (BCFW) [63, 64] recursion
relations. This, however, restricts to d=4 dimensions and restricts to a specific kinematic basis.
We will discuss a slightly more general construction as in [42]. This will be done for the massless
case, however, the massive case will be similar with appropriately modified propagators and
sums over states [65].

To begin, we first consider the basic conditions for the kinematics, p2i = 0 and momentum
conservation. We will now introduce a complex vector rµi with the following properties,

n∑
i=1

rµi = 0, ri · rj = 0 ∀ i, j, ri · pi = 0. (4.3)

With this we can define n shifted momenta,

p̃µi = pµi + zrµi , z ∈ C, (4.4)

where z parameterizes the shift of the kinematic configuration. Note that some external legs
can be unshifted in case rµi is vanishing for a particular leg.

The momentum shifts imply a deformation of the amplitude,

A→ Ã(z). (4.5)

The unshifted amplitude is obtained by setting z = 0, A = Ã(z = 0). Due to Eq. (4.3),
momentum conservation holds for the shifted momenta. Additionally, the shifted momenta are
also on shell. This implies that the deformed amplitude, Ã(z), is also on-shell for all z, and
hence, completely physical.

The recursion relations are derived by considering the analytic properties of the deformed
amplitude. To study this, we consider a subset, I, consisting of at least two (unshifted) momenta
and at most n− 2 momenta, {pi}i∈I . If we define Pµ

I =
∑

i∈I p
µ
i , we can write the square of the

shifted version as,
P̃ 2
I = P 2

I + 2zPI ·RI , (4.6)
where RI =

∑
i∈I ri. Eq. (4.6) is linear in z as r2i = 0. We can note that P̃ 2

I is on shell (vanishes)
when, z = zI =

−P 2
I

2PI ·RI
. Hence, we can write,

P̃ 2
I =

−P 2
I

zI
(z − zI). (4.7)

The analytic structures of Ã(z) is fairly simple. Poles can only come from the poles of the
shifted propagators, 1

P̃ 2
I

, which has a simple pole at z = zI . Note that generally zI 6= 0 as P 2
I is

a sum of a subset of all momentum and can not vanish off-shell. Due to locality we can not have
propagators with higher powers. There could be different poles, but they will not be located at
the same z in the complex plane and neither at the origin.

Now let us consider Ã(z)
z . Trivially, if we integrate a contour around the pole at z = 0, we get

the original amplitude A(z = 0). Using Cauchy’s residue theorem and deforming the contour
such that all other poles are included gives us the amplitude in terms of residues,

A =
1

2πi

∮
z=0

Ã(z)

z
dz = −

∑
I

Res
(Ã(z)

z
, z = zI

)
+B∞. (4.8)
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Here B∞ is a boundary contribution at infinity. Only for very special theories which have specific
symmetries this term will vanish, we are interested in the theories that have this property.
Therefore, we will assume it vanishes for the amplitudes we consider and not go into further
detail of this term in this thesis. We know that the shifted amplitude, and particularly P̃ 2(zI),
is on shell. Hence, we can write the amplitude as a factorization of two lower point amplitudes,

lim
z→zI

P̃I
2
(z)Ã(z) = ÃL(zI)ÃR(zI). (4.9)

Where L and R stand for the left and right side of the factorization. With the definition of the
residue of a simple pole we have,

Res(Ã(z)

z
, z = zI) = lim

z→zI
(z − zI)

Ã(z)

z
. (4.10)

Substituting Eq. (4.7) & (4.9) and solving the limit we get,

Res(Ã(z)

z
, z = zI) = −ÃL(zI)

1

P 2
I

ÃR(zI), (4.11)

where 1
P 2
I

is the unshifted propagator.
The final recursion relation is then,

A =
∑
I

∑
states

ÃL(zI)
1

P 2
I

ÃR(zI), (4.12)

where the first sum is over all factorization channels and the second sum is over all states that
can be exchanged in the propagator (e.g. polarization states of gluons). Remember that this is
only valid when the boundary term vanishes.

To conclude this section, we note that recursion relations offer a sophisticated method for
constructing complex amplitudes leveraging analytic properties, factorization, and symmetry.
Conceptually, we explore the structures of the amplitude through momentum shifts and use the
resulting insights to recursively build up the full scattering amplitude. This approach simplifies
calculations in a way that aligns with modern scattering amplitude methods that emphasize
physical principles and symmetries.

4.3 Color-kinematic bootstrap for massless gluons

The focus of this and the following section is to derive amplitudes for various different interac-
tions. We choose to do this using the bootstrap approach and to a lesser extent the recursion
relations of the last subsection.

The basis of a bootstrap method lies in finding a suitable ansatz for the kinematics of the
amplitude. This ansatz is then constrained by symmetries, factorization, and additional relations
from the CK duality if applicable. As discussed in Subsection 4.1, the ansatz must satisfy a
number of properties to successfully bootstrap the amplitude. Each term in the ansatz must
contain each external polarization vector exactly once. The powercounting of the numerator
must be correct, e.g. for pure Yang-Mills amplitudes, the numerator has one momentum for
each 3 point vertex, thus, it has a powercounting of n − 2 as the F 2 term in the Lagrangian
has a single derivative for the self interaction. Lastly, we want to express the ansatz in terms
of a minimal basis of Mandelstam variables to be able to constrain the free parameters. The
minimal basis will have 1

2n(n− 3) independent Mandelstam variables for an n-point amplitude.
This basis can be constructed by using on shell conditions and momentum conservation.
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The bootstrap starts with the three point contribution as this is the simplest amplitude. The
three point amplitudes are also required to constrain higher point amplitudes with Factorization.
For gluon amplitudes, the three point amplitude is, up to the coupling constant, completely fixed
by the powercounting and the antisymmetry property. Note that, unless stated otherwise, we
will only consider the color ordered amplitudes in this section.

4.3.1 Three point tree level amplitudes

We start with the pure gluon amplitude. It is required to have each external polarization vector
appear exactly once in each term if we want the amplitude to be gauge invariant. Additionally,
we consider a powercounting of one and hence, each term contains one momentum pi. The
structure of terms in the amplitude at three point is (ε · ε)(p · ε) where (ε · ε) has three different
possibilities, and (p · ε) has only one possibility due to momentum conservation and on-shell
conditions. Hence, the most general ansatz should have three terms,

A3,YM(123) = a1(ε1 · ε2)(p2 · ε3) + a2(ε2 · ε3)(p3 · ε1) + a3(ε1 · ε3)(p3 · ε2), (4.13)

where ai are free parameters that we assign to each term. We can constrain the free parameters
by first considering the antisymmetry of the amplitude under the exchange of the two gluons,
A(123) = −A(132) and A(123) = −A(213). This fixes the coefficients to be a1 = a2 = −a3.

There is one overall free parameter left, which can be taken to be the coupling constant,g,
with some normalization. We can choose to absorb the coupling constant in the definition of
the amplitude, which is taken to be implicit.

The final amplitude is,

AYM(123) = (ε1 · ε2)(p2 · ε3) + (ε2 · ε3)(p3 · ε1)− (ε1 · ε3)(p3 · ε2). (4.14)

Note that this is indeed an antisymmetric object. In case we would use the full amplitude instead
of the color ordered amplitude, we would have to multiply it with the structure constant, fabc,
to make it consistent. With this, it is identical to an on shell Yang-Mills amplitude.

An alternative approach to constraining the three point amplitude is to use gauge invariance.
Interestingly, the property that the full amplitude needs to have an antisymmetric factor (the
structure constant) then becomes a consequence. As this is the only non-zero amplitude possible
using this setup, this actually proves that Yang-Mills is the only consistent theory that can be
constructed for vectors with this powercounting.

4.3.2 Four point tree level amplitudes

The ansatz for a four point vector amplitude is constructed similarly as the three point amplitude.
A slight difference for amplitudes beyond three point is that instead of writing down the ansatz
for the amplitude, we write down the ansatz for a numerator of the amplitude. This can in turn
be related to the other numerators and together with the corresponding propagators, to the color
ordered amplitudes. Another consequence of this is that the powercounting of the numerators
will be larger than the powercounting of the amplitude by the number of propagators times two.
At four point, there are two momenta in each term for the correct powercounting. This allows
for terms which include Mandelstam variables, this is to be expected as the numerator terms
with Mandelstams correspond to contributions from contact terms which are absorbed into the
cubic numerators.

There are two different types of terms to consider, (ε · ε)(p · ε)2 and (ε · ε)2(p · p). Which
contribute to 6× 22 = 24 and 3× 2 = 6 terms, respectively. Hence, the most general ansatz we
can write down consists of 30 terms.
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There exist a number of isomorphisms of a single topology that can be used to constrain the
free parameters. One such isomorphisms, which we choose to utilize, is one where we exchange
gluon 1 and 2. As a result, the ansatz for this numerator will be for the s-channel (s12), the
relation is,

ns(1234) = −ns(2134). (4.15)

Solving this, results in 16 constraints to the free parameters.
By permuting the legs we can construct the two other channels. If the numerators are

compatible with the double copy, they should satisfy the kinematic Jacobi relations. Hence, this
constraint has to be considered. As we saw before, at four point this should be automatically
satisfied by the numerators, but we can use it as a constraint nonetheless.

Next up, the color ordered amplitudes that can be constructed need to be gauge invariant.
This can be used to further constrain the ansatz. The color ordered amplitudes can be written
as,

A(1234) =
ns

s12
+

nu

s23
. (4.16)

Where the color-kinematic duality can be used to relate the s-channel and u-channel numerators
as nu = ns − nt. Here nt is simply ns with the gluon 2 and 3 exchanged.

From gauge invariance we know that when we replace one of the external polarizations with
itself plus the corresponding momentum, the amplitude should be invariant. In other words,

εi → εi + pi, (4.17)

hence, applying the transformation εi → pi to the amplitude, the result should vanish. Solving
the free parameters for A(1234)|ε3→p3 = 0, leaves us with an ansatz that is proportional to a
single free parameter.

If this is the correct amplitude, it should factorize to two 3 point amplitudes in the limit
where any of the Mandelstams are taken to be on shell. We will check this using the s-channel
(s12) on shell. Note that when factorization of two gluon amplitudes is done, one needs to sum
over the gluon polarization states. The sum over states is given by the physical state projector
which in our case can be simplified to [34, 66],∑

states
εµ(−p)εν(p) = −ηµν . (4.18)

Using this in combination with the two relevant three point amplitudes we can find the last free
parameter.

The final ansatz for the s-channel numerator of the four point amplitude is,

ns(1234) =−
(e1 · e2)(e3 · e4)(p1 · p2)

2
− (e1 · e2)(e3 · e4)(p2 · p3) + (e1 · e2)(p1 · e3)(p2 · e4)

− (e1 · e2)(p1 · e4)(p2 · e3) +
(e1 · e3)(e2 · e4)(p1 · p2)

2
− (e1 · e3)(p1 · e2)(p1 · e4)

− (e1 · e3)(p1 · e2)(p2 · e4)−
(e1 · e4)(e2 · e3)(p1 · p2)

2
+ (e1 · e4)(p1 · e2)(p1 · e3)

+ (e1 · e4)(p1 · e2)(p2 · e3) + (e2 · e3)(p1 · e4)(p2 · e1) + (e2 · e3)(p2 · e1)(p2 · e4)
− (e2 · e4)(p1 · e3)(p2 · e1)− (e2 · e4)(p2 · e1)(p2 · e3)− (e3 · e4)(p1 · e2)(p3 · e1)
+ (e3 · e4)(p2 · e1)(p3 · e2).

(4.19)
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The amplitude factorizes correctly, and the last free parameter is fixed by the factorization limit.
We now start to see the power of this method. Although the algebra and final answer is still
somewhat lengthy, using these Lorentz invariant objects and physical constraints is much more
straightforward than using the off-shell Feynman rules.

This process fully generalizes to higher point amplitudes, however, we stop here. Our next
goal is to do the same for the theory of massive scalars coupled to gluons and ultimately the
HEFT expansion of such a theory.

4.4 Color-kinematic bootstrap with a massive scalar

In this section, We consider the bootstrap method for amplitudes with massive scalars coupled
to Yang-Mills gluons. Just like before, we start building up from the three point amplitude,
which is also fixed by the powercounting and antisymmetry. After doing the four and five point
amplitudes, we will discuss the leading order expansion of the amplitude in the heavy scalar
mass in the next subsection.

4.4.1 Three point tree level amplitudes with a massive scalar

The three point amplitude that includes a pair of massive scalars, which corresponds to the vertex
from Eq. (2.33), is the only amplitude we need to consider. This time, we have one polarization
as there is only a single gluon. The powercounting we consider is 1, which corresponds to the
single derivative in the vertex. This results in one single possible term,

A3(123) = (p1 · ε2), (4.20)

where particle 1 and 3 are the massive scalars and particle 2 is the gluon. As before, the coupling
constant is implicit. Note that this amplitude is manifestly antisymmetric due to conservation
of momentum as p1 · ε2 = −p3 · ε2. This is all there is to consider at three point with this
powercounting.

4.4.2 Four point tree level amplitudes with a massive scalar

There are three different amplitudes to consider at four point. One pure gluon amplitude, which
was done in the previous section, one with a single pair of external massive scalars, and one with
two pairs of external massive scalars. All of these can be constructed using similar methods, we
are now interested in the amplitude with a single pair of massive scalars.

For this amplitude we have to consider two topologies. Previously, in Section 2.3, we dis-
cussed them as the s-channel and u-channel graphs. They differ by the fact that the former has a
massive scalar propagator, which we note by m, and the latter has a massless gluon propagator,
which we note by ml. We have also seen that the two topologies can be related to each other
by color identities. The kinematic Jacobi identities dictate a similar relation of the numerators,

nml(1234) = nm(1234)− nm(1324), (4.21)

where the ordering 1234 corresponds to the canonical ordering where 1 and 4 are the massive
scalars. As the two topologies are related, we can focus on a single ansatz for the numerator
of a massive topology. Using the relation of Eq. (4.21) to construct the amplitude makes the
amplitude manifestly color dual.

As the graphs have two external gluon legs, each term in the ansatz will consist of two
polarization vectors and products of the momenta. Note that again, each polarization vector
must appear once in each term and the powercounting is 2. Hence, the structure of each term
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in the ansatz can be written either as (ε · ε)(p · p) or (p · ε)2. This has 1 × 3 = 3 and 22 = 4
terms, respectively. This results in a total of 7 terms in the ansatz,

nm(1234) =
(
a1(p1 · p2) + a2(p2 · p3) + a3m

2
)
(ε2 · ε3) + a4(p1 · ε2)(p2 · ε3)

+ a5(p1 · ε2)(p1 · ε3) + a6(p1 · ε3)(p3 · ε2) + a7(p2 · ε3)(p3 · ε2).
(4.22)

We can further constrain the free parameters by considering symmetries in the form of isomor-
phisms of the graphs. Isomorphisms of graphs are transformations of the external legs that
leave the amplitude invariant, up to a minus sign. For this particular graph, there are four
isomorphisms that could be considered,

nml(1234) = −nml(1324), nml(1234) = −nml(4231)

nml(1234) = nml(4321), nm(1234) = nm(4321)
(4.23)

As it turns out, we need only one of these for the first constraints to the free parameters. Plugging
in the ansatz into the last isomorphism as it is suitable for the numerator of the massive channel
and performing some straightforward algebra gives us the following relations,

a4 = a5 − a6. (4.24)

The other parameters are still entirely unconstrained.
Other physical constraints that can be used are gauge invariance and factorization. We

consider gauge invariance first. To do this we construct the color ordered amplitude and require
that the amplitude is invariant under the transformation ε3 → p3, as before with the gluons.
One of the color ordered amplitudes can be constructed as,

A(1234) =
nm(1234)

s12 −m2
+

nml(1234)

s23
. (4.25)

Applying gauge invariance, A(1234)|ε3→p3 = 0, to this amplitude gives us the following con-
straint, {

a1 = 0, a2 = −
a5
2
, a3 = −a7, a6 = 0

}
, (4.26)

which leaves the numerator with two undetermined parameters,

nm(1234) = −(e2 · e3)(p1 · p2)a5
2

− (e2 · e3)(p2 · p3)a7

+ (p1 · e2)(p1 · e3)a5 + (p1 · e2)(p2 · e3)a5 + (p2 · e3)(p3 · e2)a7.
(4.27)

Finally, the four point amplitude should factorize properly into two three point amplitudes.
This can also be used to constrain the ansatz. We will consider the factorization limit in the s12
channel,

lim
s12→m2

(s12 −m2)A4 = A3A3. (4.28)

Note that there are different factorization channels that can be considered, but it turns out just
one is needed to constrain this ansatz fully at this point.

The one we consider factorizes on the massive scalar propagator,

p1

p2 p3

p4
, (4.29)
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where the dashed line represents the cut on which we are considering the factorization. The
limit where s12 → m2 is equivalent to p1 · p2 → 0 as s12 −m2 = 2p1 · p2. This means that the
first term with a5 vanishes, luckily a5 occurs in other terms too. As our cut is on the massive
scalar, we do not have to sum over gluon states and can simply multiply the two relevant 3 point
amplitudes together to find two terms which lead to a5 = 1, and a7 = 0.

The final numerator is given by,

nm(1234) = −1

2
(p1 · p2)(ε2 · ε3) + (p1 · ε2)

(
(p2 · ε3) + (p1 · ε3)

)
(4.30)

This can be written as a color ordered amplitude as,

A(1234) =
nm(1234)

s12 −m2
+

nml(1234)

s23

=
(p1 · e2) ((p1 · e3) + (p2 · e3))− 1

2(s12 −m2)(e2 · e3)
s12 −m2

− (e2 · e3)(p1 · p2)− (p1 · e2)(p2 · e3) + (p1 · e3)(p3 · e2)
s23

.

(4.31)

The terms proportional to the Mandelstams of the corresponding channels are the contact terms.
If we rewrite this to be in terms of only the momenta p1 and p4, we find that it agrees with
Eq. (2.58). The factorization channel on s23 can still be done as a check to see if the resulting
amplitude correctly factorizes, which it turns out it does.

4.4.3 Five point tree level amplitudes with a massive scalar

The five point amplitude with three external gluons starts to become a bit more complicated but
follows a very similar procedure as before. There are now three completely unique topologies
to consider as shown in equation (4.32). They are distinguished by the types of propagators
that are present in the graph. The first graph has two massive propagators denoted by (mm),
the second has one massive and one massless propagator denoted by (mml) (or (mlm) if the
ordering is reversed), and the third has two massless propagators denoted by (mlml). The three
unique topologies are,

p1

p2 p3 p4

p5 p1

p2 p3 p4

p5 p1 p5

p2 p4p3

. (4.32)

A color ordered amplitude can be build from this by considering each numerator corresponding
to a topology and the corresponding propagator in the form of Mandelstams. Note that the
topology with massless propagators both have two different variations which both need to be
accounted for separately, hence, the amplitude has five terms.

From kinematic Jacobi relations we can relate the different topologies to each other,

nmlml(12345) = nmml(12345)− nmlm(13425),

nmml(12345) = nmm(12345)− nmm(12435).
(4.33)

This means that, analogously to the four point case, we only need to consider the numerator of
the topology corresponding to two massive propagators, nmm, as the others can be related by
permuting legs.
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As there will be three external gluons and a powercounting of 3, which totals to (ε3p3). The
structure of the terms in the numerator ansatz can be written as either (ε · ε)(ε · p)(p · p) or
(p · ε)3. The former has 3 × 3 × 6 = 54 possibilities (including p21 = m2) and the later 33 = 27
terms. Hence, the ansatz will consist of 81 terms.

As before we use an isomorphism of the graph, nmm(12345) = −nmm(54321), and gauge
invariance to constrain the ansatz. For factorization there are a number of different channels
to consider, both with a single and double cut. We consider the channel corresponding to the
second topology in equation (4.32), with two cuts, on s12 and s34,

p1

p2 p3 p4

p5

. (4.34)

A double cut means that our factorization looks slightly different. It is a logical extension from
a single cut. In this case,

lim
s12→m2

lim
s34→0

(s12 −m2)(s34)A5 =
∑
states

A3(12k)A3(kl
s5)A3,Y M (ls̄34), (4.35)

where the sum is over the gluon polarization states.
After imposing this factorization channel, there are three free parameters left in the numer-

ator. However, if we build the color ordered amplitude, the three parameters do not appear
in the amplitude. This means the remaining free parameters are gauge parameters and do not
affect any physical observables.

The final numerator for the five point amplitude with one massive scalar can be found
equation (6.1) of appendix A. The free gauge parameters are all set to 0 for readability. Finally,
the partial amplitude can be constructed by using the kinematic Jacobi relations in Eq. (4.33),

A(12345) =
nmm(12345)

(s12 −m2)(s123 −m2)
+

nmml(12345)

(s12 −m2)s34

+
nmlml(12345)

s234s34
+

nmlm(12345)

s23(s123 −m2)
+

nmlml(14325)

s23s234
.

(4.36)

The actual expression for this is too long for this work, but can be found in the IPython notebook
on the GitHub repository of the author (https://github.com/Messier104/Bootstrap_MSc_
Thesis.git).

To check whether the resulting amplitude is correct, other factorization channels can be
considered to see if the amplitude factorizes correctly. This is done for some other topologies,
explicitly so in the notebook for the channel on the pole s12 → m2. The single cut factorization
channel is diagrammatically a sum over two channels,

p1

p2 p3 p4

p5

=
p1

p2 p3 p4

p5

+

p1

p2 p3 p4

p5

. (4.37)

The amplitude factorizes correctly.
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This approach can be continued to higher point amplitudes, but in this work we stop at
five point. For six point, the computational costs should still be manageable, from seven point
onwards we suspect the shear number of equations to solve starts to become more troublesome.
In addition, higher point computations might require some extra bookkeeping to include the
right topologies and their factorization channels. The topologies necessary for the six point
amplitude are shown in Eq. (6.6) of appendix C.

Now that we have all the amplitudes for a general mass we can start to consider the leading
order in a HEFT expansion. It would also be interesting to consider whether we could bootstrap
the HEFT amplitudes directly using the methods of this section instead of first finding the
amplitudes for general mass and then expanding in the mass. The later might be not as efficient
as all the sub-leading terms will not be needed in the expanded amplitude.

4.5 HEFT amplitudes and HEFT bootstrap

In Section 2.5, we introduced the HEFT expansion of the massive scalar theory. Now that we
have the amplitudes for the massive scalar theory, we can start to consider the leading order in
the HEFT expansion. In the minimal basis used in this section we have eliminated pn from each
amplitude, which means that only p1 is a massive scalar. This means the mass scaling6 can be
directly read off from the numerators and propagators of the amplitudes.

We can be very brief about the three point amplitude. There is only one term which scales
as m. Hence, the given amplitude is also the HEFT amplitude and this is all there is to consider.

In case of the four point amplitude of Eq. (4.31), there are two topologies. The s12 channel
has a massive channel of which the propagator scales as 1/m whilst the s23 (u) channel has a
massless channel which scales as m0. The leading order numerator of the former scales as m2

and the latter as m, hence, the partial amplitudes scales as m. The result is given by,

AHEFT(1234) =
(p1 · e2)(p1 · e3)
−m2 + s12

+
−(e2 · e3)(p1 · p2) + (p1 · e2)(p2 · e3)− (p1 · e3)(p3 · e2)

s23
.

(4.38)
This agrees with the literature [25]. Note that this seems to be inconsistent with the color
kinematics duality, as the numerator should satisfy Eq. (4.21). If we take the numerator of the
s12 channel and the s13 channel, we find that difference vanishes. This is not surprising as the
mass scalings of the numerators are different. This can be resolved by including the next to
leading order terms for the numerator of the massive channels. With that, the CK duality is
satisfied.

The same approach can be taken for the five point amplitude. We are able to show the leading
order in the inverse scalar mass expansion of the amplitude in equation (6.2) of appendix A.
Checking this with the five point amplitude in [25] we find that the two results agree. This
concludes the 5pt amplitude with a massive scalar.

4.6 What about a direct HEFT bootstrap?

A question that could be asked is whether the bootstrap process could be made more efficient for
the calculation of HEFT amplitudes directly as many terms can be neglected when expanding
for large masses. There is an issue, however, as the massive propagators affect the mass scaling,
the numerators of the different topologies will scale differently. In other words, different mass
scaling in numerators will be dominant for different topologies. The setup of this BCJ bootstrap

6With mass scaling we mean the number of massive momenta (p1 or pn) in the amplitude
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is to start with the numerator with the most massive propagators as the other numerators can
be related to this one through the BCJ relations by permuting the gluons.

The leading order of each term in the amplitude corresponding to the different topologies
will have the same mass scaling. Though, as mentioned, the numerators will scale differently,
and as we try to expand each numerator, we see that if we were to keep only the first term of
the numerator with the most massive propagators (nmm for five point), we cannot construct the
other numerators (nmml and beyond) any longer. In fact, the leading order of the most massive
numerator will cancel entirely when constructing the next numerator. This pattern continuous
for the nmlml numerators if the next to leading order is included. As a result, we will have to
keep all terms with in the initial numerator up to the scaling necessary to generate the leading
order numerator corresponding to the topology with only massless propagators.

This means that we can very slightly simplify the bootstrap by eliminating any terms with
a lower mass scaling than the leading order term of the ‘least massive’ numerator. In the list
below we enumerate what we need to consider by looking at the mass scaling of the numerators.

• The ‘strongest’ potential mass scaling is equal to the powercounting (this might change
when including higher derivative theories, we will come back to this in Section 5).

• The ‘weakest’ potential mass scaling is always equal to the actual strongest mass scaling
minus the maximum number of massive propagators. For pure Yang-Mills this mass scaling
is always equal to 1 (again, this can change for higher derivative theories).

• For a HEFT amplitude, any term below the ‘weakest’ potential mass scaling can be re-
moved from the ansatz. At low multiplicity, this does not really simplify much, but at
higher multiplicity and powercounting, this can be a significant simplification in computa-
tion time and simplicity. However, one needs to be very careful to use all the new relations
that arise from HEFT amplitudes to ensure a minimal basis.

All in all, a HEFT bootstrap using this double copy construction should be possible, but the
gains are minimal. Essentially, we have answered our first two research questions with varying
degrees of success in this section. To move on to the other two questions, we need to consider
higher derivative corrections to the theories considered so far. This will be done at the end of the
next section, as we will first further introduce higher derivative corrections and its implications.
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5 The UV and Higher Derivative Corrections to Yang-Mills

In Section 3, we discussed the BCJ double copy construction. The introduction very briefly
mentioned there is another formulation of the KLT relations. The KLT relations were derived
in string theory relating tree level amplitudes of open and closed strings [19] which are used
to describe forces of gauge theory and gravity respectively. These relations from string theory
explicitly depend on the only parameter of string theory [67], α′, or the inverse string tension.
The low energy limit of string theory is the field theory limit, where α′ → 0. If one would like to
improve the UV behavior of a quantum field theory without fully committing to string theory,
one can consider a perturbative low energy expansion of string theory in this parameter α′.

A particular interest in the context of the low energy string expansion is whether this ex-
pansion also preserve the structures of the double copy. Additionally, would this hold for just
for an extended Yang-Mills theory or can other particles such as the massive scalars we have
considered so far also be added. Later in this section we will come back to this question, first
we will briefly discuss the higher derivative additions in the context of the Lagrangian and the
Feynman perspective.

5.1 Higher-derivative corrections to Yang-Mills and the Lagrangian

If we desire to add terms with more derivative to the Yang-Mills Lagrangian (F 2), we must still
require that properties such as locality and gauge invariance are preserved. The lowest order
higher-derivative term that can consistently be added to the Yang-Mills Lagrangian is the F 3

operator [68]. The Lagrangian that includes this term and the next order of the perterubative
expansion, F 4, can be represented by,

LYM+α′F 3+α′2F 4 =
1

4
F a
µνF

µν,a + α′ 2

3
fabcF ν,a

µ F λ,b
ν Fµ,c

λ + α′2 1

4
[Fµν , Fλρ][F

µν , F λρ]. (5.1)

Note that α′ is necessarily a dimensionfull parameter as the action should be dimensionless. As
there are now three field strength tensors in the Lagrangian, the three point amplitude will have
three derivatives and hence a mass dimension of 3. Hence, the mass dimension of α′ is −2.

To get more of a feeling for the higher-derivative terms, we will first discuss the Feynman
rules for the vertices of such a theory. After that we will go back to the on shell methods we have
been considering, the relation to the color kinematics duality, and some interesting properties
that arise from this. Finally, we will discuss the amplitudes of the theory and how they can be
derived using the bootstrap, and how this fits together with HEFT amplitudes.

5.1.1 Vertex rules from Feynman rules

In principle, the Feynman rules can be derived directly from the modified Lagrangian with the
use of textbook methods. This can be a tedious process, but it is a good way to understand
the theory. In the Lagrangian of Eq. (5.1), the vertices involving the adjoint particles are now
modified with extra terms. Where the three point vertices for just Yang-Mills (F 2) have a single
derivate and hence scale as p1, the new vertex at order α′ has 3 derivatives and hence scale as
p3. The four point vertices at order α′2 have four derivatives and hence scale as p4.

It is possible to construct other interactions with extra derivatives of the field strength [69,
70], these will lead to contact terms which can carry additional derivatives leading to yet higher
powers of p. Note that for scalar QCD, the vertices coupling scalars to gluons are not modified
by either of these types of higher-derivative terms as they are independent of the Field strength
tensor.
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The Feynman rule of the three point gluon vertex at α′ order can be derived similarly as we
previously derived the Feynman rule for the three point vertex in Yang-Mills. The terms in the
Lagrangian responsible for the three point vertex at α′ order is given by,

L3pt ∼ gα′fabc(∂µAa
ν)(∂

νAb
ρ)(∂

ρAc
µ) (5.2)

Now going to momentum space gives,

∼ (pµ1ε1ν − p1νε
µ
1 )(p

ν
2ε2ρ − p2ρε

ν
2)(p

ρ
3ε3µ − p3µε

ρ
3). (5.3)

As before, to recover the Feynman vertex rule, we have to take a derivative with respect to the
external polarizations.

3pt. vertex ∼ gα′fabc∂
[
(pµ1ε1ν − p1νε

µ
1 )(p

ν
2ε2ρ − p2ρε

ν
2)(p

ρ
3ε3µ − p3µε

ρ
3)
]

∂ε1α∂ε2β∂ε3γ
, (5.4)

which results in,

α, p1

β, p2

γ, p3

= gα′fabc
[
pγ1p

α
2 p

β
3 − pγ1p2 · p3g

αβ − p1 · p2pβ3g
αγ + pβ1p2 · p3g

αγ

− p1 · p3pα2 gβγ + p1 · p3pγ2g
αβ + p1 · p2pα3 gβγ − pβ1p

γ
2p

α
3

]
.

(5.5)

This vertex can be used to calculate amplitudes of higher point amplitudes.
One of the higher point vertices we could consider is that of the massive scalars coupled to

gluons. The vertices coupling scalars to gluons are not modified as they are not derived from
the field strength tensor7. Hence, there is only a single diagram contributing to the partial
amplitude at O(α′). Only the u-channel of this amplitude will be present as this includes a
three point gluon vertex. If the same calculation as in Eq. (2.36) is done, but with our new
Feynman rule, we find that,

A(1i, 2, 3, 4j)u-channel =

ig2α′fabcT c
ij

(
p2 · p3ε2 · ε3(p2 − p3) · (p1 + p4)− p2 · ε3p3 · ε2(p2 − p3) · (p1 + p4)

)
s23

.
(5.6)

After some algebra, the result agrees with the O(α′) contribution in equation 2.4 of Chen et
al. [71].

For the α′ corrections to the five point amplitude, the contributions from the four point
vertex at O(α′) need to be calculated. This can be derived similarly to the three point vertex.
As there are more graphs to be considered in the 5 point amplitude, we will need to take more
correction terms into account. An easy way to figure out which term we need to take into
account is to look at the powercounting of the amplitude. This comes down to simply counting
the number of derivatives in the vertices of the graphs and subtracting p2 for each propagator.
However, at this point the number of graphs and contact terms quickly increase, and we will
resort to using the bootstrap again in the following sections.

7In the Section 5.4 we will show that without knowing about the theory, interaction vertices with a power-
counting larger than 1 can not exist for massive scalars coupled to a gluon.
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5.2 Color kinematic duality and higher derivatives corrections

As discussed in [28], an open question of the double copy construction is whether it should
be viewed as a technical trick or a fundamental principle of some mechanism. To study this,
so-called double copy consistency is used to constrain an ansatz in the bootstrap approach,
essentially what we have been doing in the previous sections. Consistency with the double
copy can be required by demanding that the color-kinematics duality is satisfied and that the
amplitudes correctly factorize.

At O
(
α′0), or pure Yang-Mills, the theory is, as we have seen in the last chapter, double

copy consistent. However, once we start adding higher-derivative terms, we can not say the same
for amplitudes of arbitrary multiplicity. Adding the Tr(F 3) theory to the Yang-Mills theory, is
consistent at three point [28, 68].

At four point, the theory is consistent at O(α′), diagrammatically speaking this corresponds
to one of the vertices being a Yang-Mills vertex and the other being a Tr(F 3) vertex. Inevitably,
at four point specifically, we can have the situation where both vertices are Tr(F 3) vertices. This
term must be considered at four point and corresponds to O

(
α′2). However, this term is not

compatible with the color-kinematics duality on its own. To make this order consistent, a
‘contact term’ must be added to the amplitude coming from Tr(F 4) theory which is also at
O
(
α′2) [68]. Carrasco, Lewandowski, and Pavao [28] postulated that this pattern continues and

that there is no finite number of local operators that can be added to YM+Tr(F 3) to make it
double copy consistent.

5.2.1 Infinite tower of higher-derivative terms

To explain this, we will discuss the example of the factorization of the five point amplitude into
a product of a three and four point amplitude at O

(
α′n+1

)
as in [28]. The five point amplitude

is factorized as,
lim

s45→0
s45A(12345) =

∑
s

A4(123l
s)A3(−ls̄45) (5.7)

The three point amplitude is fully described by the sum of the 3 point amplitudes of the Yang-
Mills theory and the Tr(F 3) theory, A3 = AYM

3 +α′AF 3

3 . This implies that, when performing the
factorization with a 4 point amplitude at O(α′n), there is a non-vanishing five point contribution
at O

(
α′n+1

)
. Carrasco, Lewandowski, and Pavao argued that this term can not be double copy

consistent and requires the addition of an additional operator at O
(
α′n+1

)
. Inevitably, this term

must also be combined with the TrF 3 contribution to the three point amplitude leading to a
non-vanishing five point amplitude at O

(
α′n+2

)
. This pattern continuous with an infinite tower

of higher-derivative operators that must be included to make the theory double copy consistent.
It has been proven up to O

(
α′5).

The numerators compatible with the double copy construction can be found using the boot-
strap approach for arbitrary order α′. At four point, Carrasco, Lewandowski, and Pavao con-
structed the double copy compatible (dcc) s-channel numerator up to α′4 as follows,

ndcc
s = nYM

s + α′nYM+F 3

s + α′2n(F 3)2+F 4

s + α′3
[
a3
(
nD2F 4

s + σ2n
YM+F 3

s

)
+ a3,YMσ3n

YM
s

]
+ α′4

[
a4,1
(
n
(DF )41
s + σ2n

(F 3)2+F 4

s

)
+ a4,2n

(DF )42
s + a4,F 3σ3n

YM+F 3

s

]
+O(α′5).

(5.8)

Here ai are unconstrained ansatz parameters. σ2 = (s2 + t2 + u2)/8 and σ3 = (stu)/8 are
kinematic building blocks that are invariant under permutations. Factorization of the four point
amplitude into two three point amplitudes is required. As the only possible contribution to the
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three point amplitude comes from Yang-Mills and Tr(F 3), all contributions beyond O(α′2) must
be from local terms (e.g. contact terms with additional derivatives of the field strength tensor).

Imposing factorization constrains from the five point amplitude, the authors found that the
parameters ai can be fixed or non-trivially related to each other spanning different orders of α′.
Additionally, when utilizing the freedom to set a3,YM = 0, it was illustrated that the four and five
point amplitudes match the expansion of ‘B-Amplitudes’ at O(α′4) [28, 72]. These amplitudes
are described by a (DF )2 + YM theory deformed by a massive gauge theory where the mass
scale is determined by 1

α′ [69, 73]. This resummation into a known theory are suggestive enough
to postulate that this infinite tower of higher-derivative operators can teach us something about
the double copy compatibility of the UV.

In the rest of this chapter we will investigate the behavior of the higher-derivative corrections
when a Yang-Mills theory is coupled to massive scalars. The bootstrap methods used so far can
be used to derive the numerators and amplitudes by simply increasing the powercounting of the
terms in the ansatz. We will also investigate the leading order HEFT terms and the double
copy compatibility of the theory. Lastly we will address the research questions and discuss the
outlook of this thesis.

5.3 Gluon amplitudes from on-shell bootstrap

Approaching the higher derivative corrections with the bootstrap method is again a two-way
street. Either we look at the Lagrangian, find how many derivatives we need to add, and then
use the same principles applied in Section 4, but with a larger powercounting. Alternatively, we
can just start to add extra derivatives (increase powercounting) and see what kinds of theories
we can construct.

We need the same properties of gauge invariance, Jacobi identities, factorization, etc. to
hold. Only now we have more derivatives and hence a higher powercounting. Consequently,
there are additional factorization channels to consider. We will start by considering the three
point amplitude and go from there.

5.3.1 Three point tree level amplitudes with higher derivative corrections

At three point we need to contract the three gluon polarization vectors. As discussed in Section 4,
we need an odd number of momenta to be able to build Lorentz invariant structures.

The next powercounting of the three gluon amplitude beyond YM is at O(α′) and has three
momenta. Due to momentum conservation, any contraction of the momenta will vanish at three
point, pi · pj = 0. Hence, the structure must be of the form (p · ε)3. There can be only one term
of this form in a minimal basis, and it is given by,

A3,α′(123) = α′(p1 · e2)(p1 · e3)(p2 · e1) (5.9)

This is already fully constrained up to an overall factor which is set to the coupling.
Next we consider a powercounting of 5, which is at O(α′2). However, as we only have three

polarizations, we would need to contract two momenta. As shown in the last paragraph, this
will vanish. Hence, the three point amplitude at O(α′2) is,

A3,α′2(123) = 0. (5.10)

The same will be true for any powercounting beyond this. This agrees with what was expected
from the Lagrangian as beyond O(α′), there are no three point vertices, only contact terms of
four point and up.
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5.3.2 Four point tree level amplitudes with higher derivative corrections

At O(α′), the structure of a numerator ansatz has a powercounting of 4 and hence has three
different possible structures. (ε · ε)2(p · p)2, (ε · ε)(p · p)(p · ε)2, and (p · ε)4. These have 3× 3 = 9,
6×2×22 = 48, and 24 = 16 terms, respectively, bringing us to a total of 73 terms in the ansatz.

This can then be constrained similarly to the 4 point Yang-Mills amplitude, where we first
consider isomorphisms, reversal symmetry, the kinematic Jacobi relations, and gauge invariance
of the amplitude. To fully constrain this amplitude, we need to consider a factorization channel.
This can be done properly by considering all the possible ‘channels’ within the s-channel. To
illustrate this, the factorization of the s-channels looks as follows,

lim
s12→0

s12A(1234) =
∑

s
(A3L,YM (12ks)A3R,α′(ks̄34) +A3L,α′(12ks)A3R,YM (ks̄34)). (5.11)

This fully constrains the numerator up to two gauge parameters that are not present in any
physical observables (and hence, the partial amplitude). It is still somewhat lengthy to write in
full glory and can be found in equation (6.3) of Appendix B.

For the O(α′2), the powercounting is p6 and has similar structures as the O(α′). Namely,
(ε · ε)2(p · p)3, (ε · ε)(p · p)2(p · ε)2, and (p · ε)4(p · p). These have 3 × 4 = 12, 6 × 3 × 22 = 72,
and 24 × 2 = 32 terms, respectively, bringing us toe a total of 116 terms in the ansatz.

The result of the bootstrap is that the O(α′2) amplitude is fully constrained up to 4 gauge
parameters. An interesting pattern to note is that with increasing powercounting, the number
of contract terms increases rapidly. This can be explained by the fact that when increasing the
number of higher derivative terms, we add more possible contact interactions that contribute to
these contact terms. The color ordered amplitude can be found in equation (6.4) of Appendix
B.

5.4 Gluons coupled to massive scalars with higher derivate corrections

As our goal is to find HEFT amplitudes with higher-derivative corrections, their double copy
compatibility, and the relation to the pure adjoint theory of Section 5.2, we need to consider
the amplitudes of gluons coupled to massive scalars. Let us first consider just general massive
scalars before we consider the HEFT expansion amplitudes. The process is a combination of the
last subsection and Section 4.

It was noted before that vertices involving the massive scalars are not modified by the higher-
derivative terms. This can be shown very straightforwardly by considering the next powercount-
ing possibility of the three point vertex. The three point vertex would have a powercounting of
3, and hence the only possible structure is (p · ε)(p · p). At three point we know what due to
momentum conservation we have, pi · pj = 0. Hence, the amplitude vanishes and such a theory
can not exist. Consequently, only some topologies contribute to the perturbative expansion of
the amplitude in α′ beyond leading order.

For O(α′), only the contributions that involve at least one massless propagator are modified.
Similarly, at order O(α′2), only the contributions that involve at least two massless propagators
are modified. For O(α′3) and beyond, we get additional terms coming from terms involving
derivatives of the field strength tensor that need to be considered for double copy consistency.
As we have already shown there is nothing left to do at three point, we will start at four point.

5.4.1 Four point tree level amplitudes with higher derivative corrections

At four point, the amplitude at O(α′) with one massive scalar corresponds to the channel with
a single massless propagator, the u-channel. The powercounting of the numerator is 4. Hence,
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the possible structures are (ε · ε)(p · p)2 and (p · ε)2(p · p). These have 1× 6 = 6 and 22 × 3 = 12
terms, respectively, bringing us to a total of 18 terms in the ansatz,

nml(1234) = α′
(
(e2 · e3)(p1 · p1)2a1 + (e2 · e3)(p1 · p1)(p1 · p2)a2 + (e2 · e3)(p1 · p1)(p2 · p3)a3

+ (e2 · e3)(p1 · p2)2a4 + (e2 · e3)(p1 · p2)(p2 · p3)a5 + (e2 · e3)(p2 · p3)2a6
+ (p1 · e2)(p1 · e3)(p1 · p1)a7 + (p1 · e2)(p1 · e3)(p1 · p2)a8 + (p1 · e2)(p1 · e3)(p2 · p3)a9
+ (p1 · e2)(p1 · p1)(p2 · e3)a10 + (p1 · e2)(p1 · p2)(p2 · e3)a11 + (p1 · e2)(p2 · e3)(p2 · p3)a12
+ (p1 · e3)(p1 · p1)(p3 · e2)a13 + (p1 · e3)(p1 · p2)(p3 · e2)a14 + (p1 · e3)(p2 · p3)(p3 · e2)a15

+ (p1 · p1)(p2 · e3)(p3 · e2)a16 + (p1 · p2)(p2 · e3)(p3 · e2)a17 + (p2 · e3)(p2 · p3)(p3 · e2)a18
)
(5.12)

As before, symmetry, gauge invariance, and factorization constrain this ansatz fully leading to
the following amplitude,

A(1234) = α′( 1
2(e2 · e3)(p1 · p2)s23 +

1
8(e2 · e3)s

2
23 − 1

4(p2 · e3)(p3 · e2)s23 − (p1 · p2)(p2 · e3)(p3 · e2)
s23

)
.

(5.13)
This amplitude only consists of the u-channel and contact contributions. Note that any prod-
ucts of momenta which do not have a massive particle (i.e. p1) are written in terms of their
corresponding Mandelstam variable.

If we write the color ordered amplitudes A(1234) and A(1324) in multi-peripheral form we
find the following,

A(1234) =
−nml(1234)

s12 −m2
, A(1324) =

+nml(1324)

s13 −m2
. (5.14)

Low and behold, permuting gluon 2 and 3 in nml(1234) in combination with the relation p1 ·p3 =
−p1 ·p2− 1

2s23 tells us that nml(1324) = −nml(1234). These amplitudes satisfy the BCJ relation
for four point amplitudes with a massive scalars (Eq. (3.18)). Hence, the four point amplitudes
at O(α′) are double copy consistent.

It might be quite unsurprising as the pure gluon three point amplitude also is double copy
consistent at O(α′). At four point, the only gluon only vertices that can occur are three point.
It is suspected that this pattern continuous to higher orders of α′, but this is yet to be proven.
Generally, to show relations that were done at n-point in [28] for the gluon amplitudes, we need
to consider n+ 1 point when including massive scalars.

The leading order in the HEFT expansion is found to be,

AHEFT(1234) = α′( 1
2(e2 · e3)(p1 · p2)s23 − (p1 · p2)(p2 · e3)(p3 · e2)

s23

)
. (5.15)

After some algebra, it can be shown to agree with the leading order of the HEFT expansion
in [71]. Similar to the amplitude for general mass, it can be easily shown that this amplitude
satisfies the BCJ relation for four point amplitudes. Remember that for HEFT, the relation,
p1 · p3 = −p1 · p2, can be used.

5.4.2 Five point tree level amplitudes with higher derivative corrections

The five point amplitudes can be derived similarly to the four point version with higher derivative
corrections. However, the number of ansatz terms increases drastically. At O(α′) it can be shown
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there are 351 terms in the ansatz, and at O(α′2) 1071 terms. In this subsection we will just
show the result of O(α′) case, though their approach is identical.

After constraining the ansatz, it turns out that there are 12 different gauge parameters in
the numerator. The amplitude will not dependent on this as they will all cancel out. We set
all of these gauge parameters to zero such that we can observe what types of terms are present.
The resulting numerator for the single massless propagator case is rather manageable,

nmml(12345) = α′
(
− 1

2
(e3 · e4)(p1 · e2)(p1 · p2)(p3 · p4)− (e3 · e4)(p1 · e2)(p1 · p3)(p3 · p4)

− (e3 · e4)(p1 · e2)(p2 · p3)(p3 · p4)−
1

2
(e3 · e4)(p1 · e2)(p3 · p4)2

+
1

2
(p1 · e2)(p1 · p2)(p3 · e4)(p4 · e3) + (p1 · e2)(p1 · p3)(p3 · e4)(p4 · e3)

+ (p1 · e2)(p2 · p3)(p3 · e4)(p4 · e3) +
1

2
(p1 · e2)(p3 · e4)(p3 · p4)(p4 · e3)

)
.

(5.16)

From this, the partial amplitude can be build analogously to the five point amplitude of two
massive scalars and three gluons. Only the term with two massive propagators does not appear
as there are no three point gluon vertices present and hence no O(α′) contributions. The partial
amplitude is too long to show here. The leading order HEFT amplitude is more manageable
and is show in equation (6.5) of appendix B.

It is not easy to see whether the BCJ relations are satisfied for the five point amplitudes.
More calculations are need to show this. We suspect that the same patterns of [28] will follow
for the theory coupled to massive scalars. Or in other words, we suspect that at five point, the
theory is only consistent once O(α′2) terms are included and from there on, an infinite tower of
higher derivative corrections is build.

5.5 Discussion and future work

The results thus far show that the theory of gluons coupled to massive scalars with higher-
derivative corrections is double copy consistent at four point. At five point, amplitudes can
be found at O(α′) and O(α′2) that are consistent in the sense that the amplitudes are gauge
invariant and satisfy the color kinematics duality. Although we have not managed to explicitly
check the BCJ relations for the five point amplitudes, we suspect that they will be satisfied and
hence, be double copy consistent.

The bootstrap approach has been a powerful tool to derive the amplitudes of the theo-
ries. Extending this to include numerators with a larger powercounting is a natural and fairly
straightforward process. This partly answers our third research question. To fully answer this
question, we would like to know what the resulting amplitudes would generally look like. With
the limited number of amplitudes we have generated it is rather difficult to spot any patterns
common through increasing multiplicity in the amplitude. Though one very clear trend is that
with an increasing powercounting, the number of contact terms in the resulting numerators
grows quickly. This can likely be explained by the range of possible contact terms that are
added when higher derivative corrections are included.

An interesting pattern we did notice in the resulting numerators is the following. Even though
the number of massive momenta in each term, p1 in our case, is in principle only restricted by the
powercounting of the numerator, the number of massive momenta in the numerators is always
n−2 for n-point amplitudes. Hence, the maximum number of massive momenta is identical with
or without higher-derivative corrections. This seems to be due to the possible ways to contract
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the momentum contributions from the massive vertices. If this can be shown to be always true,
the property can be used to simplify the ansatz for the numerators. Which is desirable as fewer
terms in the ansatz directly translates to a decrease in computation time.

Another consequence is that the ‘weakest’ potential mass scaling discussed in Section 4.5 is
identical for any higher derivative order. Some attempts to run a HEFT bootstrap with higher
derivative corrections have been made. Although this was not fully explored, it was noticed
that the ansatz term could be reduced by a few hundred terms in case of the five point O(α′2)
amplitude. As a result the computation time could be reduced by about a factor of two at this
order. Though not a huge improvement, the computational cost do not scale linearly with the
number of terms in the ansatz, and hence any reduction becomes more and more beneficial with
increasing powercounting and multiplicity.

To answer our last question. Do we observe the infinite tower of higher-derivative corrections
as discussed in [28] for the theory of gluons coupled to massive scalars? The short answer is
that for our results it is inconclusive. As the properties of the n-point gluon amplitudes tend to
show up at (n + 1)-point when we consider gluons coupled to massive scalars, we suspect that
the results of Carrasco et al. can be seen only when we consider the six point amplitudes. In
principle, we have all the tools to do this, hence we suggest that this is a natural next step in
a future study. For the six point amplitude it would also be necessary to consider many more
diagrams. The set of cubic diagrams consists of 13 diagrams and is shown in equation(6.6) of
appendix C. This concludes the discussion of our final research question.

Another interesting direction to consider is the relation to a kinematic algebra. It turns
out that the framework discussed in Section 3.3 fits in with higher-derivative corrections [71].
The structures from the DF 2 + YM theory can also be cast in this framework [74]. The α′

dependencies are contained in the mapping between the generators and kinematic functions. It
must be noted that the Hopf algebra construction is purely for HEFT amplitudes.
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6 Conclusion
In this work, we have explored various aspects of scattering amplitudes first introducting the
fundamental concepts of gauge theories and theories involving massive scalars in the Section 2.
The large mass limit (HEFT) of these theories was also introduced which is a central theme in
this thesis.

An extensive introduction to the color kinematics duality and the double copy followed
in Section 3 explaining how gauge and gravity theories can be related. We have seen that
a number of important relations between partial amplitudes can be derived from the color-
kinematics duality. The double copy has many intriguing applications in physics as, for example,
it allows us to study gravity from a new perspective. Though the fundamental relations and
novel perspectives on scattering amplitudes themselves already make this a fascinating topic
that ought to be studied and could lead to a further understanding of the most fundamental
components of the universe. It was also discussed that there can be different double copy
constructions such as the construction for HEFT amplitudes based on the Hopf algebra of [25].

In Section 4 we discussed on-shell approach of calculating scattering amplitudes. With this
the important concept of recursion relations and Factorization. This allows to construct am-
plitudes recursively through the bootstrap method, which, if the kinematic Jacobi relations are
imposed, can make the resulting numerators manifestly color-dual.

With this we could address the first research question:

Is it possible to (re)produce amplitudes of Yang-Mills coupled to massive scalars using
a bootstrap approach? Both for general mass and the large mass limit?

To clarify, this is not a novel question but more of an exercise to get familiar with the bootstrap
method. We reproduced four point gluon amplitudes and five point gluon amplitudes coupled to
massive scalars, including the large mass limit. The machinery of this bootstrap could then be
extended to study higher derivative corrections necessary to answer the other research question.

The second research question was:

What would a ‘HEFT bootstrap’ look like?

The BCJ bootstrap we have considered in this thesis actually benefits very little from a ‘direct’
HEFT bootstrap. It turns out that, at least for the double copy construction we consider, the
HEFT amplitudes are already very similar to the amplitudes for a general mass. The numerators
that are generated and constraint need to contain (almost) all mass orders to not miss any of
the crucial terms. Only if many terms would be able to be eliminated a priori, there would be
a large benefit for a HEFT bootstrap. However, the BCJ bootstrap is already very efficient in
the case for a relatively low multiplicity. When going to large multiplicities, and in particular
when higher derivative corrections are considered, a HEFT bootstrap is worth pursuing.

The first part of the third research question has more or less been answered in the previous
paragraphs.

Is it possible to extend the bootstrap approach to higher derivative corrections, and
what would the amplitudes look like?

The methods we have discussed are perfectly capable of handling higher derivative corrections.
A difference is that the number of terms in the ansatz will increase quite significantly, and
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certain graph topologies which would usually need to be considered in order to come up with
constraints, can be ignored.

To answer the questions about higher derivate corrections, we have introduced the topic in-
cluding a remarkable result from [28] which form another key part of this thesis. For Yang-Mills
extended with higher derivative corrections, it was found that an infinite tower of higher order
terms is needed to satisfy the color-kinematics duality at arbitrary multiplicity as soon as we go
beyond pure YM.

The final research question wishes to address the implications of this infinite tower when gluons
couple to massive scalars.

Is the infinite tower of higher derivative corrections of Carrasco, Lewandowski, and
Pavao preserved when the gauge theory is coupled to a massive scalar?

We were not able to conclusively answer this question. We suspect that due to the multiplicity
of the gluon vertices in the theory where gluons couple to scalars, we need at least six point
amplitudes in order to conclusively constrain the higher derivative corrections. As in [28], five
point amplitudes for gluon only amplitudes were required to show this. We have discussed what
steps are needed to fully answer this question at the end of Section 5.

To zoom out a bit, the main goal of this thesis was to explore the color-kinematics duality
and the double copy in the context of HEFT and higher derivative corrections. Particularly
the HEFT amplitudes have an important role in the calculation of graviton amplitudes through
the double copy with large implications for the field of gravitational wave predictions of binary
black holes.

Ultimately, studying the color-kinematics duality has shed a lot of light on the underlying
structures of the theories of the standard model and beyond. As there are still large open
question in the fundamental theories of physics, the novel perspective offered by the modern
amplitude program provides just that to tackle these questions.
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A: F 2 numerators and amplitudes

Two massive scalar three gluon numerator

nmm(12345) =
(e2 · e3)(p1 · e4)(p1 · p3)

2
+

(e2 · e3)(p1 · e4)(p2 · p3)
2

− 3(e2 · e3)(p1 · p2)(p3 · e4)
4

+
(e2 · e3)(p1 · p3)(p3 · e4)

4
+

(e2 · e3)(p2 · p3)(p3 · e4)
4

− (e2 · e4)(p1 · e3)(p1 · p2)

− (e2 · e4)(p1 · e3)(p1 · p3)
2

− (e2 · e4)(p1 · e3)(p2 · p3)
2

− (e2 · e4)(p1 · p2)(p2 · e3)
4

− 3(e2 · e4)(p1 · p2)(p4 · e3)
4

− (e2 · e4)(p1 · p3)(p4 · e3)
4

− (e2 · e4)(p2 · p3)(p4 · e3)
4

− (e3 · e4)(p1 · e2)(p1 · p3)
2

− (e3 · e4)(p1 · e2)(p2 · p3)
2

+
3(e3 · e4)(p1 · p2)(p3 · e2)

4

+
(e3 · e4)(p1 · p3)(p3 · e2)

2
− (e3 · e4)(p1 · p3)(p4 · e2)

2
+

(e3 · e4)(p2 · p3)(p3 · e2)
2

− (e3 · e4)(p2 · p3)(p4 · e2)
2

+ (p1 · e2)(p1 · e3)(p1 · e4) + (p1 · e2)(p1 · e3)(p2 · e4)

+ (p1 · e2)(p1 · e3)(p3 · e4) + (p1 · e2)(p1 · e4)(p2 · e3) + (p1 · e2)(p2 · e3)(p2 · e4)
+ (p1 · e2)(p2 · e3)(p3 · e4)

(6.1)
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Two massive scalar three gluon leading order HEFT amplitude

AHEFT(12345) = −
(e2 · e3)(p1 · e4)(p1 · p2)

2s23 (−m2 + s123)
+

(e2 · e3)(p1 · e4)(p1 · p3)
2s23 (−m2 + s123)

− (e2 · e3)(p1 · e4)s24
4s234s34

+
(e2 · e3)(p1 · e4)s24

4s23s234
− (e2 · e3)(p1 · e4)s23

4s234s34

+
(e2 · e3)(p1 · e4)

4s34
− (e2 · e3)(p1 · e4)

2s234
− (e2 · e3)(p1 · e4)s34

4s23s234

− (e2 · e3)(p1 · p2)(p3 · e4)
s234s34

− (e2 · e3)(p1 · p2)(p3 · e4)
s23s234

+
(e2 · e3)(p1 · p3)(p2 · e4)

s23s234

− (e2 · e4)(p1 · e3)(p1 · p2)
2s23 (−m2 + s123)

− (e2 · e4)(p1 · e3)(p1 · p3)
2s23 (−m2 + s123)

+
(e2 · e4)(p1 · e3)s24

4s234s34

+
(e2 · e4)(p1 · e3)s24

4s23s234
+

(e2 · e4)(p1 · e3)s23
4s234s34

− (e2 · e4)(p1 · e3)
4s34

+
(e2 · e4)(p1 · e3)

s234
+

(e2 · e4)(p1 · e3)s34
4s23s234

− (e2 · e4)(p1 · p2)(p2 · e3)
s23s234

+
(e2 · e4)(p1 · p2)(p4 · e3)

s234s34
− (e2 · e4)(p1 · p3)(p2 · e3)

s23s234
+

(e3 · e4)(p1 · e2)(p1 · p2)
2s23 (−m2 + s123)

− (e3 · e4)(p1 · e2)(p1 · p3)
s34 (−m2 + s12)

+
(e3 · e4)(p1 · e2)(p1 · p3)

2s23 (−m2 + s123)
+

(e3 · e4)(p1 · e2)s24
4s234s34

− (e3 · e4)(p1 · e2)s24
4s23s234

− (e3 · e4)(p1 · e2)s23
4s234s34

− (e3 · e4)(p1 · e2)
4s34

− (e3 · e4)(p1 · e2)
2s234

− (e3 · e4)(p1 · e2)s34
4s23s234

+
(e3 · e4)(p1 · p2)(p3 · e2)

s234s34

+
(e3 · e4)(p1 · p2)(p3 · e2)

s23s234
+

(e3 · e4)(p1 · p3)(p3 · e2)
s234s34

+
(e3 · e4)(p1 · p3)(p3 · e2)

s23s234

+
(e3 · e4)(p1 · p3)(p4 · e2)

s234s34
+

(p1 · e2)(p1 · e3)(p1 · e4)
(−m2 + s12) (−m2 + s123)

+
(p1 · e2)(p1 · e3)(p3 · e4)

s34 (−m2 + s12)

+
(p1 · e2)(p1 · e4)(p2 · e3)

s23 (−m2 + s123)
− (p1 · e2)(p1 · e4)(p4 · e3)

s34 (−m2 + s12)
+

(p1 · e2)(p2 · e3)(p2 · e4)
s23s234

+
(p1 · e2)(p2 · e3)(p3 · e4)

s234s34
+

(p1 · e2)(p2 · e3)(p3 · e4)
s23s234

− (p1 · e2)(p2 · e4)(p4 · e3)
s234s34

− (p1 · e3)(p1 · e4)(p3 · e2)
s23 (−m2 + s123)

− (p1 · e3)(p2 · e4)(p3 · e2)
s23s234

− (p1 · e3)(p3 · e2)(p3 · e4)
s234s34

− (p1 · e3)(p3 · e2)(p3 · e4)
s23s234

− (p1 · e3)(p3 · e4)(p4 · e2)
s234s34

− (p1 · e4)(p2 · e3)(p4 · e2)
s23s234

+
(p1 · e4)(p3 · e2)(p4 · e3)

s234s34
+

(p1 · e4)(p3 · e2)(p4 · e3)
s23s234

+
(p1 · e4)(p4 · e2)(p4 · e3)

s234s34

(6.2)
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B: Higher derivate corrections

Four point gluon α′

Agluon(1234) = α′
((e1 · e2)(e3 · e4)s12

4
+

(e1 · e2)(e3 · e4)s23
4

− (e1 · e2)(p1 · e3)(p1 · e4)
2

− (e1 · e2)(p1 · e3)(p1 · e4)s23
2s12

− (e1 · e2)(p1 · e3)(p2 · e4)
2

− (e1 · e2)(p1 · e3)(p2 · e4)s23
2s12

− (e1 · e2)(p1 · e4)(p2 · e3)
2

− (e1 · e2)(p1 · e4)(p2 · e3)s23
2s12

− (e1 · e2)(p2 · e3)(p2 · e4)
2

− (e1 · e2)(p2 · e3)(p2 · e4)s23
2s12

+
(e1 · e3)(e2 · e4)s12

4
+

(e1 · e3)(e2 · e4)s23
4

− (e1 · e3)(p1 · e2)(p2 · e4)
2

− (e1 · e3)(p2 · e4)(p3 · e2)
2

+
(e1 · e4)(e2 · e3)s12

4

+
(e1 · e4)(e2 · e3)s23

4
− (e1 · e4)(p2 · e3)(p3 · e2)s12

2s23
− (e1 · e4)(p2 · e3)(p3 · e2)

2

+
(e2 · e3)(p1 · e4)(p2 · e1)s12

2s23
+

(e2 · e3)(p1 · e4)(p2 · e1)
2

+
(e2 · e3)(p1 · e4)(p3 · e1)s12

2s23

+
(e2 · e3)(p1 · e4)(p3 · e1)

2
+

(e2 · e4)(p1 · e3)(p3 · e1)
2

− (e3 · e4)(p1 · e2)(p2 · e1)
2

− (e3 · e4)(p1 · e2)(p2 · e1)s23
2s12

− (p1 · e2)(p1 · e3)(p1 · e4)(p3 · e1)
s12

+
(p1 · e2)(p1 · e3)(p2 · e1)(p2 · e4)

s12

− (p1 · e2)(p1 · e3)(p2 · e4)(p3 · e1)
s12

− (p1 · e2)(p1 · e4)(p2 · e1)(p2 · e3)
s23

− (p1 · e2)(p1 · e4)(p2 · e1)(p2 · e3)
s12

− (p1 · e2)(p1 · e4)(p2 · e3)(p3 · e1)
s23

− (p1 · e2)(p1 · e4)(p2 · e3)(p3 · e1)
s12

− (p1 · e2)(p2 · e3)(p2 · e4)(p3 · e1)
s12

+
(p1 · e3)(p1 · e4)(p2 · e1)(p3 · e2)

s23
+

(p1 · e3)(p1 · e4)(p2 · e1)(p3 · e2)
s12

+
(p1 · e3)(p1 · e4)(p3 · e1)(p3 · e2)

s23

+
(p1 · e3)(p2 · e1)(p2 · e4)(p3 · e2)

s12
+

(p1 · e4)(p2 · e1)(p2 · e3)(p3 · e2)
s23

+
(p1 · e4)(p2 · e1)(p2 · e3)(p3 · e2)

s12

+
(p2 · e1)(p2 · e3)(p2 · e4)(p3 · e2)

s23
+

(p2 · e1)(p2 · e3)(p2 · e4)(p3 · e2)
s12

+
(p2 · e3)(p2 · e4)(p3 · e1)(p3 · e2)

s23

)
(6.3)
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Four point gluon O(α′2)

Agluon(1234) = α′2
(
− (e1 · e2)(e3 · e4)s212

8
− (e1 · e2)(e3 · e4)s12s23

8
+

(e1 · e2)(p1 · e3)(p1 · e4)s12
4

+
(e1 · e2)(p1 · e3)(p1 · e4)s23

4
+

(e1 · e2)(p1 · e3)(p2 · e4)s12
4

+
(e1 · e2)(p1 · e3)(p2 · e4)s23

4

+
(e1 · e2)(p1 · e4)(p2 · e3)s12

4
+

(e1 · e2)(p1 · e4)(p2 · e3)s23
4

+
(e1 · e2)(p2 · e3)(p2 · e4)s12

4

+
(e1 · e3)(e2 · e4)s12s23

4
+

(e1 · e3)(e2 · e4)s223
8

− (e1 · e3)(p1 · e2)(p2 · e4)s12
4

− (e1 · e3)(p1 · e2)(p2 · e4)s23
4

− (e1 · e3)(p2 · e4)(p3 · e2)s12
4

− (e1 · e3)(p2 · e4)(p3 · e2)s23
4

− (e1 · e4)(e2 · e3)s12s23
8

− (e1 · e4)(e2 · e3)s223
8

+
(e1 · e4)(p2 · e3)(p3 · e2)s12

4

+
(e1 · e4)(p2 · e3)(p3 · e2)s23

4
− (e2 · e3)(p1 · e4)(p2 · e1)s12

4
− (e2 · e3)(p1 · e4)(p2 · e1)s23

4

− (e2 · e3)(p1 · e4)(p3 · e1)s12
4

− (e2 · e3)(p1 · e4)(p3 · e1)s23
4

+
(e2 · e4)(p1 · e3)(p3 · e1)s12

4

+
(e2 · e4)(p1 · e3)(p3 · e1)s23

4
+

(e3 · e4)(p1 · e2)(p2 · e1)s12
4

+
(e3 · e4)(p1 · e2)(p2 · e1)s23

4

− (p1 · e2)(p1 · e3)(p1 · e4)(p2 · e1)
2

− (p1 · e2)(p1 · e3)(p1 · e4)(p2 · e1)s23
2s12

− (p1 · e2)(p1 · e3)(p2 · e1)(p2 · e4)
2

− (p1 · e2)(p1 · e3)(p2 · e1)(p2 · e4)s23
2s12

− (p1 · e2)(p1 · e3)(p2 · e4)(p3 · e1)
2

− (p1 · e2)(p1 · e4)(p2 · e1)(p2 · e3)
2

− (p1 · e2)(p1 · e4)(p2 · e1)(p2 · e3)s23
2s12

− (p1 · e2)(p2 · e1)(p2 · e3)(p2 · e4)
2

− (p1 · e2)(p2 · e1)(p2 · e3)(p2 · e4)s23
2s12

− (p1 · e3)(p2 · e4)(p3 · e1)(p3 · e2)
2

+
(p1 · e4)(p2 · e1)(p2 · e3)(p3 · e2)s12

2s23
+

(p1 · e4)(p2 · e1)(p2 · e3)(p3 · e2)
2

+
(p1 · e4)(p2 · e3)(p3 · e1)(p3 · e2)s12

2s23
+

(p1 · e4)(p2 · e3)(p3 · e1)(p3 · e2)
2

+
(e1 · e2)(p2 · e3)(p2 · e4)s23

4

+
(e1 · e3)(e2 · e4)s212

8

)
(6.4)

63



REFERENCES Bram Alferink

Five point two scalar three gluon HEFT amplitude O(α′)

AHEFT(12345) = α′
((e2 · e3)(p1 · e4)(p1 · p2)

4 (m2 − s123)
− (e2 · e3)(p1 · e4)(p1 · p3)

4 (m2 − s123)
− (e2 · e3)(p1 · e4)s34

8s234

+
(e2 · e3)(p1 · e4)s24

8s234
− (e2 · e3)(p1 · p2)(p2 · e4)

4s234
− (e2 · e3)(p1 · p2)(p3 · e4)

4s234

+
(e2 · e3)(p1 · p3)(p2 · e4)

4s234
+

(e2 · e3)(p1 · p3)(p3 · e4)
4s234

+
(e3 · e4)(p1 · e2)(p1 · p3)

2 (m2 − s12)

− (e3 · e4)(p1 · e2)s23
8s234

− (e3 · e4)(p1 · e2)
8

+
(e3 · e4)(p1 · e2)s24

8s234

+
(e3 · e4)(p1 · p2)(p3 · e2)

4s234
+

(e3 · e4)(p1 · p2)(p4 · e2)
4s234

+
(e3 · e4)(p1 · p3)(p3 · e2)

2s234

+
(e3 · e4)(p1 · p3)(p4 · e2)

2s234
− (p1 · e2)(p1 · p3)(p3 · e4)(p4 · e3)

s34 (m2 − s12)
+

(p1 · e2)(p3 · e4)(p4 · e3)s23
4s234s34

+
(p1 · e2)(p3 · e4)(p4 · e3)

4s34
− (p1 · e2)(p3 · e4)(p4 · e3)s24

4s234s34
− (p1 · e4)(p1 · p2)(p2 · e3)(p3 · e2)

2s23 (m2 − s123)

+
(p1 · e4)(p1 · p3)(p2 · e3)(p3 · e2)

2s23 (m2 − s123)
+

(p1 · e4)(p2 · e3)(p3 · e2)s34
4s23s234

− (p1 · e4)(p2 · e3)(p3 · e2)s24
4s23s234

+
(p1 · p2)(p2 · e3)(p2 · e4)(p3 · e2)

2s23s234
+

(p1 · p2)(p2 · e3)(p3 · e2)(p3 · e4)
2s23s234

− (p1 · p2)(p3 · e2)(p3 · e4)(p4 · e3)
2s234s34

− (p1 · p2)(p3 · e4)(p4 · e2)(p4 · e3)
2s234s34

− (p1 · p3)(p2 · e3)(p2 · e4)(p3 · e2)
2s23s234

− (p1 · p3)(p2 · e3)(p3 · e2)(p3 · e4)
2s23s234

− (p1 · p3)(p3 · e2)(p3 · e4)(p4 · e3)
s234s34

− (p1 · p3)(p3 · e4)(p4 · e2)(p4 · e3)
s234s34

)
(6.5)
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c: Six point amplitudes

Required cubic diagrams

p1

p2 p3 p4 p5

p6

+

p1

p2 p3 p4 p5

p6

+

p1

p2 p3 p4 p5

p6

+

p1

p2 p3 p4 p5

p6

+

p1

p5

p6

p4p3p2

+

p1

p5

p6

p2 p4p3

+

p1

p2

p6

p5p4p3

+

p1

p2

p6

p3 p5p4

+

p1 p6

p4 p5p3p2

+

p1 p6

p5p4p2 p3

+

p1 p6

p5p3 p4p2

+

p1 p6

p2 p5p3 p4

+

p1 p6

p2 p4 p5p3

(6.6)
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