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Abstract

One of the characteristics that distinguishes humans from other species is our advanced aware-
ness that other people have goals, intentions, and beliefs: our theory of mind. We can apply
this theory of mind recursively, which is known as higher-order theory of mind. There exist
various hypotheses as to why humans developed this skill, while other species do not show ev-
idence of this. One of these hypotheses, the Mixed-motive interaction hypothesis, suggests that
mixed-motive social situations like negotiations drove the evolution of theory of mind in hu-
mans. Simulations of pairwise interactions have shown that indeed, agents with (higher-order)
theory of mind performed better than agents without theory of mind. However, pairwise inter-
actions alone do not capture the complexity of social group settings. Whether the use of theory
of mind also provides advantages on a population level has not been studied yet.

To further test the validity of the Mixed-motive interaction hypothesis, we constructed a
simulated evolutionary process where agents with various orders of theory of mind (zero, one,
or two) trade resources to survive. The negotiations needed for a successful trade form the
mixed-motive aspect of the environment. We adapted an existing model of theory of mind to
fit this new setting. Two experiments were conducted, one where agents did not distinguish
between trading partners, and one where agents remembered partner-specific information. In
the latter, agents rejected negotiations with incompatible partners and remembered what they
learned from previous negotiations with this partner. In both experiments, the number of agents
per theory of mind order was tracked to see which species survived in this environment.

The results of the experiments show that agents benefited from their theory of mind in the
pairwise negotiations, but that the agents without theory of mind outlasted these species in the
evolutionary process. This was the case for both experiments. The time it took agents to find
a consensus in a negotiation when using theory of mind took significantly longer than it took
agents with no theory of mind. As a consequence, the former more often failed to reach their
resource threshold. In the long run, this caused the skill to go extinct.

These findings shed new light on the possible evolutionary advantages of higher-order the-
ory of mind in mixed-motive settings.
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Chapter 1

Introduction

One of the characteristics that distinguishes humans from other animals is our advanced aware-
ness that other people have goals, intentions, and beliefs. We may not always know or under-
stand them, but we are able to reason with them while making decisions. This Theory of Mind
(ToM; Premack and Woodruff, [1978)) can help us choose a desirable action in social settings.
It is also useful in games, where we can use ToM to try to predict what the other person will
do to decide our own action. Take for example the ‘rock-paper-scissors’ game: in order to win
the game, you try to predict which of the three items your opponent will pick, and choose the
item that beats him. Without ToM, we might simply choose the action that would have worked
best in the last game(s). As an example, consider getting your favorite snack from an unlabeled
vending machine: you do not even consider there to be a competitive situation because you
cannot reason about the goals of others (the ‘other’ being the vending machine in this analogy).
With theory of mind, however, we try to predict what the opponent will do as a reaction to our
own previous actions. Thus, considering other’s intentions (i.e., using ToM) can impact our
own decisions.

Humans are not only capable of the described ToM, which is known as first-order ToM. We
are also capable of second-order Theory of Mind (ToM2). This means that we are aware that
others can reason about our own goals, intentions, and beliefs. We can thus consider that their
actions may be impacted by them considering what our intentions are. This kind of reasoning
is recursive, going back and forth between agents: an agent models the model that another
has of this agent (Verbrugge, 2009). The level of recursion is the order of the ToM. When
an agent has no ToM, it only concerns observable facts. This is known as zero-order ToM
(ToMO0). Orders of ToM above ToM1 are considered higher-order ToM (Verbrugge, 2009).
ToM2 agents, for example, model others as ToM1 agents, which they think model them as
ToMO agents. Adults can generally understand higher-order ToM up to ToM4 (Kinderman et
al., [1998). ToM4 allows us to (vaguely) understand sentences like “Andrew knows that Bob
thinks that Andrew believes that Chris intends to go to the party”. In practice, ToM4 may not

1



2 CHAPTER 1. INTRODUCTION

necessarily provide an additional social benefit compared to ToM3. Instead, it depends on the
setting: the use of ToM4 is more commonly seen in story tasks than in strategic game settings,
where increasingly higher orders of ToM typically exhibit diminishing return (e.g., De Weerd
and Verheij, 2011}; De Weerd et al., 2012; De Weerd et al., 2022).

These examples show that ToM is a useful skill that humans use on a daily basis. This
could mean that the use of ToM would also be beneficial to animals. The ability of animals
to use ToM is an area of research that initially focused mainly on primates like chimpanzees
since these species are closely related to us. Premack and Woodruff (1978]) and Povinelli et al.
(1996), for example, investigated whether these animals have a notion of the mental states of
others by using various experimental setups. Research on ToM in animals is not limited to just
primates, it also focuses on other species like corvids (Emery et al., 2004). The research by
Emery and colleagues describes how corvids seem to attribute mental content to other corvids
and use this to hide their food, suggesting the use of ToM. However, there is no consensus
about whether non-human animals are capable of using ToM because the conclusions that are
drawn based on research in this area are conflicting (Krupenye and Call, 2019; Van der Vaart
and Hemelrijk, 2014} Arre and Santos, 2021). It is difficult to assess the mental processes of an
animal when it is impossible to verbally communicate with them. The main argument against
animals having ToM is therefore that the behavior of animals in the experiments can be caused
by other cognitive processes than ToM: it is not possible to rule these alternative explanations
out. Current research gives us reason to believe that the ‘“ToM’ of animals is not as advanced
as in humans, and that higher-order ToM is unique to humans (Krupenye and Call, 2019; Van
der Vaart and Hemelrijk, 2014)). This raises the question of which social settings caused humans
to develop this advanced cognitive skill, whilst other species did not do this to this extent.

To explore this question, research focuses on the settings in which ToM can be useful.
Agent-based simulation research has shown that the use of ToM can be beneficial in compet-
itive, cooperative, and mixed-motive settings (De Weerd et al., |2013b; De Weerd, Verbrugge,
and Verheij, 2015; De Weerd et al., 2017). A competitive setting is a setting in which the gain
of one individual is the loss of another individual. Individuals compete with each other to reach
their own goal. A cooperative setting on the other hand is a setting in which the gain of an
individual is also the gain of another individual. They work together towards a shared goal. A
mixed-motive setting involves a combination of cooperation and competition. An example is a
negotiation, where individuals need each other to reach their personal goal, but they want the
best possible outcome for themselves. The ability to take the goals of others into account allows
an individual to increase their personal gain in each of these settings. However, since animals
also encounter competitive and cooperative settings, this alone does not explain why humans
have uniquely advanced (higher-order) ToM.

The relevance of ToM across different settings offers insights into its evolution in humans.
The Machiavellian intelligence hypothesis indicates competitive settings as the cause of the de-
velopment of ToM in humans (Byrne and Whiten, [1988|, as cited in De Weerd et al., 2022), the
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Vygotskian intelligence hypothesis indicates cooperative settings as the cause (Vygotsky and
Cole, 1978, as cited in Moll and Tomasello,[2007), and the Mixed-motive interaction hypothesis
indicates negotiation settings as the cause of the development of ToM in humans (Verbrugge,
2009). Research by De Weerd et al. (2014, 2017) suggests that the Mixed-motive interaction
hypothesis is more likely than the Machiavellian intelligence hypothesis and the Vygotskian in-
telligence hypothesis, because higher-order ToM was shown to be more beneficial to the agents
than in other settings. De Weerd et al. (2022)) additionally state that we may have developed
ToM due to the complex social settings and unpredictable environments encountered during
evolution.

Given the lack of (higher-order) ToM evidence in animals despite their exposure to com-
petitive and cooperative interactions and the advantages of higher-order ToM in mixed-motive
settings, this study will explore the Mixed-motive interaction hypothesis further. The conclu-
sions that were drawn from De Weerd et al. (2014, 2017, 2022) that support the hypothesis are
all based on pairwise interactions. Whether or not the advantages of (higher-order) ToM rea-
soning found in pairwise mixed-motive interactions translate into advantages on a population
level is an open question.

1.1 The Current Research

This thesis aims to provide new insights into the evolution of ToM by simulating a multi-agent
setting and establishing an evolutionary process in a population of agents. Individual agents use
different orders of ToM, ranging from zero to two. The agents are positioned in an environment
that requires negotiation to gather sufficient resources. Agents can ‘die’ when failing to gather
all resources, and are then replaced by a new agent, which is a copy of a randomly chosen agent
of the population. Some randomness (mutation) is added to the ‘reproduction’: with a small
probability, the agent that was chosen to ‘reproduce’ may not be copied exactly, but instead
altered a bit. The order of ToM of the new agent may thus differ from that of its ‘parent’. This
process contains all the main components of an evolutionary process, which are replication,
selection and mutation (see Nowak (2006)).

The aim of the research is to see how ToM in the agents evolves over time, and if in such
complex social settings the use of higher-order ToM increases an agent’s chances to survive.
The research question is thus:

How do various orders of Theory of Mind evolve in a population of agents placed in a mixed-
motive environment?

Sub-questions that will be used to answer the research question are:
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1. Is there an order of ToM that is the ‘winner’ in this environment, or is a dynamic equilib-
rium reached?

2. Do lower orders of ToM (ToM0, ToM 1) go extinct over time? In other words: does higher-
order ToM provide an evolutionary benefit in this negotiation environment?

The structure of this thesis is as follows: Chapter 2 provides an overview of relevant back-
ground literature. It includes a discussion of research in the field of ToM, agent-based modeling,
and evolution theory. Chapter 3 details the methods of the research. It describes the two exper-
iments that were performed, as well as the GUI that can be used to run these experiments. The
results of the experiments are presented in Chapter 4. Finally, Chapter 5 discusses the impli-
cations of the findings, provides suggestions for future research, and concludes with the main
insights derived from this study.
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Chapter 2

Background Literature

Artificial Intelligence aims to create computer systems that mimic human intelligence. Intelli-
gence in this sense is not just brain power, but also comprehension of surroundings. Theory of
Mind is a skill that humans use to understand the motives of others and to guess their actions.
What Theory of Mind is, whether we are the only species capable of Theory of Mind and how
we developed this skill is discussed in the first section of this chapter (Section [2.1)). The cur-
rent research aims to explain the emergence of Theory of Mind in a mixed-motive (negotiation)
setting. For this reason, an agent-based model was created. Section [2.2] presents information
on agent-based models, which can be used as a research tool to simulate societies. This section
also discusses why agent-based models can be useful to study Theory of Mind. The model
that we present simulates an evolutionary process that is based on the principles of Darwinian
evolution. Literature about the Darwinian Evolution is discussed in Section [2.3] This chapter
thus gives an overview of previous studies that are relevant for the topic of the current research.

2.1 Theory of Mind

Theory of Mind (ToM; Premack and Woodruff, 1978)) denotes the ability to reason about the
mental content of other beings. This includes the goals, intentions, and beliefs of others. This
skill is useful in a variety of social settings: think about playing the game poker, working in
teams, or negotiating about your salary. In these scenarios, considering the thoughts of others
to predict their actions may benefit your personal gain. Humans develop the ability to use
ToM when they are between three and five years old (Wellman et al., |2001). This has been
empirically established by using the so-called false belief task, an experimental paradigm to
assess ToM (Wimmer and Perner, [[983} see Section [2.1.2).

Most individuals learn how to use higher-order ToM, meaning that their use of ToM is
recursive (Verbrugge, 2009). People are thus aware that others can reason about their own
mental state. The level of recursion is the order of the ToM. Thus, zero-order ToM (ToMO)

5
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refers to the inability to use ToM, while fourth-order ToM (ToM4) refers to people’s ability
to understand sentences like “Andrew knows that Bob thinks that Andrew believes that Chris
intends to go to the party”. Adults are generally able to understand and use ToM4 (Kinderman
et al., |1998)).

There is no consensus on whether we are the only species capable of ToM, but it is generally
accepted that humans are the only species capable of higher-order ToM. This raises the question
as to why humans did develop such a complex cognitive skill, whilst other species most likely
did not. This section first reviews a selection of studies regarding ToM in animals (Section
2.1.1). Then, in Section the capacity of ToM reasoning in humans is discussed, followed
by a discussion of the evolutionary development of ToM in humans in Section[2.1.3]

2.1.1 Theory of Mind in Animals

There is no definite answer to the question if animals can reason about the mental state of
others, even though it has been a topic of research for several decades. The question holds
significance because knowing if other animals developed this skill allows us to determine what
types of social settings may cause species to develop ToM. The first researchers to address ToM
in animals were Premack and Woodruff in their paper titled Does the chimpanzee have a theory
of mind? (Premack & Woodruff, 1978)). A chimpanzee was presented with videos of a human
that faced a problem like not being able to reach a banana, or being locked in a cage. The
chimpanzee was given several images and had to decide which image provided a solution to
the problem of the video. The results indicated that the chimpanzee was capable of solving the
problem for the human in many cases. Based on these results, the question arose whether the
behavior of the chimpanzee was caused by the chimpanzee projecting mental contents onto the
human and thus using ToM to solve the problem, or if other interpretations are more plausible.

Several studies followed, many of them focusing on primates. Examples are Povinelli et al.
(1996), who studied if chimpanzees understand visual perception, Call and Tomasello (1999),
who studied chimpanzee’s and orangutan’s performance on false belief tasks, and Kummer et
al. (1996)), who studied Macaque’s ability to take the perspective of the experimenter. Each of
these three studies showed some evidence of ToM in primates. Critics argue that the behav-
ior of primates that some researchers interpret as evidence of ToM, may as well be achieved
by associatism (Premack and Woodruff, |1978; Povinelli and Vonk, [2003; Penn and Povinelli,
2007). This means that primates choose a certain action because they recognize the situation
and choose the next step of the familiar sequence. The inability to verbally communicate with
primates withholds us from distinguishing between the two interpretations.

A recent study (Arre & Santos, 2021) concludes that primates have some kind of ToM to
represent the vision and knowledge of others. They note that current research does not provide
enough evidence that primates can impute other’s beliefs. This conclusion is in line with a
study by Povinelli and Vonk (2004) and Call and Tomasello (2008). The latter reflects on past
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research regarding ToM in primates. Call and Tomasello conclude that chimpanzees have some
understanding of other’s goals, intentions, perception, and knowledge, even though there is not
enough evidence to believe that they have ToM as advanced as humans that allows them to
understand that others have a mental representation of the world. A similar conclusion as Call
and Tomasello was drawn by Tomasello et al. (2003). Puga-Gonzalez et al. (2009)) introduce
an Agent Based Model (ABM; see Section of primates with an anxiety level which moti-
vates the grooming of others, generating affiliative effects also observed in real primates. This
research shows that complex primate behavior can be explained by other cognitive processes
than ToM, and thus shows an alternative interpretation of research results suggesting primate
(higher-order) ToM.

Non-primates have also been the subject of ToM research, especially corvids. An example
is a research by Van der Vaart et al. (2012)), who investigated the re-caching phenomenon of
the scrub jay as described in Emery et al. (2004). Empirical evidence showed that scrub jays,
a type of corvid, relocate their caches when they are watched. Emery and colleagues interpret
this finding as evidence supporting that scrub jays have a ToM, and use this to hide their food
from others by reasoning about the mental content of competitors. Van der Vaart and colleagues
provide an alternative explanation: they simulate corvids that contain a stress level that is im-
pacted by the presence of others and the inability to relocate their caches. Their model shows
results similar to empirical evidence, solely caused by stress levels. This research contributes to
the evidence that other cognitive processes than ToM can explain the behavior of animals that
was previously assumed to be the result of the use of ToM.

Thus, so far the evidence on the capability of non-human animals to use ToM is conflicting,
but there is no evidence that non-human animals use higher-order ToM. A demanding cognitive
skill like (higher-order) ToM evolves in a species when there is an advantage to using the skill
(see Section[2.3). There exist various hypotheses (see Section[2.1.3)) that offer possible explana-
tions as to which types of situations foster the development of a ToM. Primates encounter both
competitive and cooperative social situations in their daily activities, and both types of settings
have been used in experiments (e.g., Hare and Tomasello, [2004). However, they do not show
behavior consistent with (higher-order) ToM. Various theories may explain why this is the case
(e.g., they may use an alternative to ToM, or the competitive and cooperative settings that they
encounter are not competitive or cooperative enough to trigger the development of ToM). A
possible explanation could be that some other type of social setting requires this cognitive skill.
Research has not yet shown why the competitive and cooperative settings that non-human ani-
mals encounter were not enough to develop (the use of) higher-order reasoning. Section[2.1.3|
further explores the evolutionary development of ToM.
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2.1.2 Theory of Mind in Humans

The false belief task is a paradigm designed to test the theory of mind reasoning of children
(Wimmer & Perner, [1983). The original false belief task focuses on ToMI, but there exist
adaptations to test ToM2 and ToM3 (e.g., Flobbe et al., 2008}; Liddle and Nettle, [2006). To test
for ToM1, the Sally-Anne test is often used (Baron-Cohen et al.,|1985). A participant is shown
an image that shows a cartoon. In this cartoon, a doll named Sally puts marbles in a basket.
She then walks away, and another doll, Anne, takes the marbles and places them in a box. The
participant and the dolls cannot see the marbles. The question is where Sally will look for her
marbles when she returns. To answer correctly, the participant needs to understand that Sally
could not see the marbles being moved to the box, and thus that she still has the false belief
that they are in the basket. So, to succeed in this false belief task, the participant needs to use
ToM1 to infer the beliefs of Sally. Variations on the ToM1 false belief test exist, such as the
Chocolate Bar Story (Hogrefe et al., 1986) and the Birthday Puppy Story (Tager-Flusberg &
Sullivan, |1994)). False belief tasks showed that children develop the ability to use ToM when
they are between three and five years old (Wellman et al.,[2001).

Second-order false belief tasks showed that ToM2 does not develop until a few years after
ToM1 (Flobbe et al., 2008; Liddle & Nettle, 2006). An example of a second-order false belief
task is an extension of the Sally-Anne test by Baron-Cohen et al. (1985). Again, Sally puts the
marbles in a basket and Anne replaces them to the box. However, in this test, Sally observes
Anne through a window, without Anne realizing. Sally thus knows that the marbles have been
relocated. The question is where Anne thinks Sally will look for the marbles. The participant
now needs to understand that Anne thinks that Sally thinks that the marbles are still in the basket.
It thus requires second-order reasoning. Flobbe et al. (2008) used a similar task in their research,
an adapted version of the Chocolate Bar first-order false belief task by Hogrefe et al. (1986), and
concluded that children develop the ability to use ToM2 when they are between seven and eight
years old. However, note that research by Arslan et al. (2020) showed that children between five
and six years old can already be trained to correctly apply ToM2 at second-order false belief
tasks. Flobbe et al. (2008)) note that the use of ToM?2 is harder for children than the use of ToM1,
and that this also holds for adults, although adults perform better than children. These findings
suggest that ToM keeps improving in humans after the age of eight. These conclusions are in
line with research by Liddle and Nettle (2006), who found that children aged ten and eleven
master the ability to use ToM1 and ToM2. They also manage to apply some ToM3, since they
perform above chance on tasks requiring ToM3. Adults can reason using ToM3, better than
children, and are additionally capable of using ToM4 (Kinderman et al., 1998)).

That adults can reason using up to ToM4 does not mean we always use this ability. Re-
search suggests that we first omit using ToM in interactions, and only apply it when necessary
(Meijering et al., 2014). Other research suggests that we use ToM1 by ‘default’, and only oc-
casionally use ToM2 (Hedden & Zhang, 2002). However, the latter research used a misleading
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training session (see Verbrugge et al.,|2018)). Much of the research on the use of higher-order
ToM uses strategic games as a test bed, since these games do not only require the understand-
ing of higher-order ToM, but also its application (e.g., Colman, [2003; De Weerd, Broers, and
Verbrugge, 2015; Hedden and Zhang, 2002; McKelvey and Palfrey, |1992; Verbrugge et al.,
2018]). Previous research shows that humans may adjust their use of ToM to that of others, even
if they are not aware of the order of ToM that their opponent/trading partner is using (Colman,
2003 De Weerd, Broers, & Verbrugge, 2015; Hedden & Zhang, 2002). For a detailed review
of research on higher-order ToM in games, see Verbrugge (2009).

ToM is thus a useful skill that humans develop at a young age, but that we do not always
use to our maximum capability. A plausible explanation for our modest use of this capability is
its high cognitive demand (Aiello & Wheeler, [1995; Schneider et al.,2012). To avoid spending
more cognitive resources than necessary, people only use higher-order ToM when the situation
requires so. These kinds of situations, where higher-orders of ToM like ToM4 give us a social
benefit, are likely to have contributed to our evolutionary development of higher-order ToM
(De Weerd et al., [2013b) (see Section [2.1.3)). However, it is still an open question why some
situations, like story tasks, cause humans to use ToM automatically, whilst in others we fail to
apply it correctly.

2.1.3 Evolutionary Development of Theory of Mind

What caused humans to develop higher-order ToM, whilst other species did not develop this
skill has been a topic of research for a long time. Three hypotheses that offer possible expla-
nations are the Machiavellian intelligence hypothesis (Byrne and Whiten, |1988,, as cited in De
Weerd et al., 2022 and Moll and Tomasello, 2007), the Vygotskian intelligence hypothesis (Vy-
gotsky and Cole, 1978, as cited in Moll and Tomasello, |[2007)), and the Mixed-motive hypothesis
(Verbrugge, 2009). In the past 15 years, new insights about the evolutionary development of
ToM in humans have been gained through the use of agent-based models (ABMs) (see Sec-
tion[2.2). ABMs have been used to simulate different types of environments to test hypotheses
for the development of ToM. Each of the hypotheses is detailed in this section, followed by
empirical results from ABMs that suggest which hypothesis is most likely to be true.
According to the Machiavellian intelligence hypothesis, ToM in humans evolved due to
competitive settings that humans faced (Byrne and Whiten, 1988, as cited in De Weerd et al.,
2022 and Moll and Tomasello, 2007). The hypothesis builds upon the ideas of Humphrey
(1976), who argued that social competition in daily life required animals to develop higher
intellectual faculties. Social competition refers to a social setting in which the gain of one
individual is the loss of another. An example is the competition for food: when one individual
eats an animal in the habitat, other individuals cannot eat that specific animal anymore. ToM
allows individuals to reason about the ideas and intentions of others, and thus it can help to
‘outsmart’ others in order to win the competition. This provides an evolutionary advantage
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compared to others that do not use ToM.

The Vygotskian intelligence hypothesis indicates cooperative settings as the cause of the
development of ToM in humans (Vygotsky and Cole, |1978, as cited in Moll and Tomasello,
2007). A cooperative social setting is a setting in which individuals share a common goal.
To reach their goal, these individuals take either a reciprocal or complementary role, and they
support each other in their roles if necessary. These characteristics of a cooperative setting were
defined by Bratman (1992). An example of such a cooperative setting is hunting. The total
reward increases when individuals work together to corner and kill prey. Even though cognition
in animals may have emerged as a result of competitive situations, according to Vygotsky and
Cole, the more advanced cognitive abilities of humans, such as higher-order ToM, are a result
of cooperative settings. ToM could help to improve coordination during a cooperative effort to
reach a common goal (De Weerd, Verbrugge, & Verheij, 2015).

According to the third hypothesis, the Mixed-motive interaction hypothesis, social settings
that require both cooperation and competition caused humans to develop ToM (Verbrugge,
2009). In these mixed-motive settings, there exists no outcome that is optimal for all indi-
viduals, but the individuals can reach a mutually beneficial outcome. One example of such a
mixed-motive setting is a negotiation: all participants want to reach a mutual agreement, but
each of them also wants to maximize their own gain. A more concrete example is bargaining
about exchanging a number of coins for a piece of bread. Both parties want to reach an agree-
ment, but the buyer of the bread wants to minimize his spending, while the seller of the bread
wants to maximize his earnings. ToM can allow individuals to predict the intentions and actions
of others, which can help them find a beneficial agreement.

ABMs show that agents benefit from the use of ToM in each of the three types of settings:
competitive, cooperative, and mixed-motive. These studies are discussed in the next section
(Section[2.2.2). The results indicate that higher-order ToM, specifically ToM4, mainly benefits
agents in mixed-motive settings.

The finding that ToM4 only offers a benefit to agents in mixed-motive settings provides
a plausible explanation as to why humans may have developed higher-order ToM. A skill or
ability evolves in a species over time when it provides the species with an environmental benefit
(see Section [2.3). As mentioned in Section primates that encountered cooperative and
competitive situations did not show behavior consistent with the use of higher-order ToM. For
that reason, De Weerd et al. (2014) state that the Mixed-motive interaction hypothesis provides
a more likely explanation for the emergence of ToM in humans than the other two hypotheses.

More recent work (De Weerd et al., 2022) suggests that the benefit of ToM in social settings
depends on the level of predictability of the environment. In dynamic environments, where
observable variables change over time, agents without ToM struggle to predict the actions of
others and, as a consequence, struggle to make desirable decisions. Agents capable of ToM1,
ToM2, and ToM3 all outperform agents without ToM. Based on these results, De Weerd and
colleagues conclude that higher-order ToM may have emerged in humans due to complex social
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settings and unpredictable environments encountered during evolution. Additionally, a recent
study by Lenaerts et al. (2024) explores ToM in the context of a sequential dilemma, i.e., the
Incremental Centipede Game. The research implemented bounded rationality, considering that
people might make mistakes in their rational reasoning. Their results, which show similarities to
behavioral data, suggest that ToM could have evolved because it helps people navigate complex
social situations by balancing cooperation and competition.

These conclusions are in line with the Social Brain Hypothesis, which designates our social
lives as the cause of the development of higher-order reasoning (Gamble et al., 2014). This
hypothesis is built on the ideas presented in Dunbar (1996), that language is the key to being
part of a community. Dunbar states that the vast majority of language is used for social matters:
gossip. This gossip makes the bonds between members of a group of people stronger. Gamble et
al. (2014) further developed these ideas into the Social Brain Hypothesis. They advocate that,
as group sizes grew for humans, grooming like other primates became too time-consuming.
This may have led to the development of language as a form of vocal grooming, which allowed
humans to connect with larger groups. The social emotions associated with members of these
larger groups require ToM. In turn, language possibly also forms a requirement for reasoning
with high-order ToM.

To summarize, considering the research done so far, it seems that humans have developed
higher-order ToM due to our embodiment in dynamic environments, and our encounters with
situations that require a combination of cooperation and competition. It is, however, important
to note that these conclusions were drawn based mainly on research consisting of pairwise
interactions (De Weerd, Verbrugge, & Verheij, 2015; De Weerd et al., 2013a, 2013b, 2014,
2017, 2022). This means that the research included cooperation, competition or negotiation
between two agents that were not part of a population. Therefore, it remains an open question
if the advantages of the use of ToM can also be found on a population level. Since humans are
known to be social animals that generally live in groups (Gamble et al., [2014), this question
is crucial for our understanding of the evolutionary development of the skill. The research by
Lenaerts et al. (2024) did focus on the emergence of ToM in a population of agents, but here
the population was modeled using evolutionary game theory, thereby disregarding individual
characteristics of agents. The current research instead simulates an evolutionary process and
gives each agent individual beliefs. This makes each agent a unique member of the population,
whilst they still belong to a particular group (i.e., the order of ToM).

2.2 Agent-Based Modeling

Certain phenomena can be studied more easily than others. Whereas water evaporation can
be studied simply by using a kettle, a stove and water, finding methods to study how panic
spreads in a group of people is a lot more challenging. One possibility is to find video footage
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of several incidents and study these, but there may not always be enough data available, and
gathering new data can be unethical. The latter example therefore highlights the difficulty of
capturing and studying the behavior of a group of individuals. This section presents Agent-
Based Models (ABMs) as a research tool (Section [2.2.1)), highlights previous research using
ABMs (Section [2.2.2), and discusses agent communication in ABMs, focusing specifically on
negotiations (Section[2.2.3).

2.2.1 Agent-Based Modeling as a Research Tool

ABMs can serve as a tool to study phenomena that are difficult to recreate (Axelrod, |1997, as
cited in Bryson et al., 2007). This computational tool can be used to simulate environments
with agents in it. The agents are autonomous entities that attempt to fulfill their objectives
(Wooldridge, 2009). Agents can interact with each other and with the environment. From these
interactions, real-life phenomena may emerge. This way, ABMs can be used to study real-life
phenomena through simulations.

The term ‘multi-agent system’ is regularly used interchangeably with ‘agent-based model’
(Niazi & Hussain, 2011). Although both belong to the same field of agent-based computing,
ABM as a term is used more widely than multi-agent systems (MAS), since the former is used
in fields ranging from ecology to economics, whilst the latter is especially used in the context
of technology, mainly Artificial Intelligence (AI). MAS focuses on the interaction of different
agents and the social processes emerging due to those interactions (Wooldridge, |2009). It is
therefore a useful tool to simulate populations and societies. The current research regards only
ABMs in the context of Al, and with multiple agents. Therefore, in the context of this research,
ABM refers to simulations that can also be considered MAS.

According to the principles of Hogeweg (1988)) for ‘good’ simulations, there is no need for
the simulation to be a replica of reality. Instead, it should capture the patterns of life that are
of interest in the research. Even with a simple model, the interaction between multiple agents
and between agents and their environment can lead to unexpected emergent effects (Hemelrijk,
1999). Since the agents are generally much simpler than the real entities that they represent
(e.g., animals), their behavioral patterns are in a way exaggerated and therefore the resulting
emergent patterns can be observed closely. ABMs are therefore bottom-up models (Kliigl &
Bazzan, 2012)). When the same patterns are validated by empirical evidence, existing hypothe-
ses can be tested and new hypotheses can be generated.

2.2.2 Previous Research using Agent-Based Modeling

Over the past 60 years, the use of ABMs for research about populations of animals has become
more and more common. Schelling (1969) was one of the first scientists who used an ABM
for his research about residential segregation. It was not until 1996 however, when Epstein
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and Axtell published their book Growing artificial societies: Social science from the bottom
up (Epstein and Axtell, [1996, as cited in Kliigl and Bazzan, [2012), that ABM became a more
commonly used research tool. In their book, Epstein and Axtell introduce Sugarscape, which is
an ABM where agents harvest sugar to survive. Even though the model is simple, it managed to
generate emergent behavior that resembled real social phenomena. This showed the significance
of ABMs as a research tool.

Some of the most influential work using ABMs simulating animal populations comes from
Hemelrijk. She used ABMs to study, among others, various types of primates, fish schools, and
birds. Her models are simple, adhering to the principles of Hogeweg (1988), but allowed her to
generate and test hypotheses for various phenomena in animal populations. Hemelrijk (1999)
presents a model of a population of agents that 1) tend to group together, and 2) that can win
or lose dominance interactions with other agents. The agents use their previous experience for
new encounters to estimate if the risk is low enough to approach. The encounters shape the
behavior of individuals and thus the social environment, which in turn changes the structure of
the society. The model shows that despotic and egalitarian societies emerge as a result of the
level of aggression of the individual agents. This research illustrates that what was previously
assumed to be a result of natural selection, is an emergent effect of the environment that the
individuals are situated in.

Other research by Hemelrijk builds upon this model. Gradually, more features are added
to test increasingly complex hypotheses. An example is Hemelrijk (2002) proposing that the
variance in intersexual dominance between various primate species may be the result of the
difference in cohesiveness in the grouping of individuals. Furthermore, Hemelrijk et al. (2008)
used a model to illustrate the winner-loser effect. Puga-Gonzalez et al. (2009) add an anxiety
level to individuals in the model to motivate the grooming of other individuals; this is the model
that was introduced in Section where affiliative effects emerged which are also observed
in real primates.

Van der Vaart and Hemelrijk (2014) suggest using ABMs to overcome the lack of consensus
regarding ToM research in animals. They encourage creating models that simulate individuals
as embodied and embedded in their environment, and use this to study the emerging patterns.
The environment can constrain the individuals in such a way that behavior is observed that
seems to result from the use of ToM, while in reality, the behavior is a direct consequence of
the complex dynamic environment (Van der Vaart & Hemelrijk, 2014). These relations can
be observed using ABMs. One example is the grooming model mentioned in the previous
paragraph, by Puga-Gonzalez et al. (2009). Another example is research by Van der Vaart et al.
(2012)), who used an ABM to show that the re-caching behavior of corvids is not necessarily
evidence of ToM, but can alternatively be explained by the stress levels of the birds.

ABMs are not just useful for studying animals and their ToM, they are also a useful tool
for testing hypotheses regarding the evolutionary development of higher-order ToM in humans.
ABMs were used to study the advantage of using ToM in various settings:
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Competitive settings: De Weerd et al. (2013b) tested the Machiavellian intelligence hypothesis
by simulating four competitive two-player games, played by agents capable of ToMO, ToM1,
ToM2, ToM3, or ToM4. The results indicate that ToM1 and ToM2 benefit agents playing com-
petitive games, whilst the additional advantage of ToM3 and ToM4 is limited. Furthermore,
Devaine et al. (2014) use an ABM to investigate whether agents with various orders of ToM
survive hide-and-seek. They conclude that higher-order reasoning does increase the survival
chances of the agents, but the use of ToM2, ToM3, or ToM4 is not necessarily better than the
use of ToM1.

Cooperative settings: De Weerd, Verbrugge, and Verheij (2015)) tested the Vygotskian intelli-
gence hypothesis by simulating a two-player cooperative communication game with an infor-
mation Sender and a Receiver, again played by agents of varying orders of ToM. The results
show that ToM1 and ToM?2 allow agents to establish communication more quickly than ToMO.
However, the benefit of higher-order ToM depends on the role of the agent in the game (i.e.,
Sender or Receiver). The results furthermore suggest that in some cases, lower orders of ToM
allow for more effective cooperation.

Mixed-motive settings: De Weerd et al. (2013a), De Weerd et al. (2017) and De Weerd et al.
(2014)) each test the Mixed-motive interaction hypothesis by using a two-player negotiation
framework called Colored Trails. Again, different agents used different orders of ToM. The
results of De Weerd et al. (2013a) and De Weerd et al. (2017)) indicate that ToMO agents might
perform well, depending on their partner. ToM1 agents understand the need for a mutual agree-
ment and thus prevent the negotiation from halting. ToM1 agents therefore do not necessarily
outperform ToMO agents. ToM2 agents can find the best possible agreement for themselves by
finding the best mutual agreement. The results of De Weerd et al. (2014) indicate that ToM1 and
ToM2 agents benefit from their ToM, and their trading partners do too. Furthermore, the use of
ToM4 allowed agents to increase their personal gain, contrasting with the results of De Weerd
et al. (2013b) in competitive settings. However, Devaine et al. (2014) found that in the battle
of the sexes setting, ToM1 and ToM2 agents performed better than ToM3 and ToM4 agents. A
recent research by Lenaerts et al. (2024) explored the development of ToM in the Incremental
Centipede Game using evolutionary game theory. ToM evolved in the agents, allowing them to
cooperate with their partners, causing a higher reward for both of them.

ABMs thus showed that ToM can benefit individuals in competitive, cooperative, and mixed-
motive settings. Cooperative and competitive tasks are both tasks that especially primates like
apes face on a daily basis, but this apparently did not trigger the development of higher-order
ToM in these species. The aforementioned research therefore suggested that the Mixed-motive
interaction hypothesis seems most likely to explain the evolutionary development of higher-
order ToM in humans, even though this is still a topic of debate. The existing models that were
used to test the hypothesis include mainly pairwise single-shot interactions, whilst the answer
to the question of how and why humans developed higher-order ToM may lie in the population-
wise dynamics resulting from these interactions.
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2.2.3 Agent Interactions

The aim of the use of ABMs is to see the effect of interactions between individual agents
on the population as a whole. Agents interact through some form of communication. This
communication serves as a means to reach a certain goal, like gaining/sharing information or
finding an agreement in a negotiation (Wooldridge, 2009). Agent communication can take many
forms, although within Al we generally focus on verbal communication through the use of a
communication language. We thus disregard other means of communication, like the human
ability to use facial expressions to convey opinions, since it is not straightforward to model
nonverbal communication in an ABM (Wang & Ruiz, [2021)).

Communication languages can be used to set up verbal communication between agents.
Examples of such languages are KQML and FIPA ACL. Both are based on the principles of
speech act theory (Austin, (1962; Searle, 1969): sending a message is seen as performing an
action. According to the speech act theory, communication is divided into categories like re-
quest, inform, and promise. KQML (Finin et al., 1996; Patil et al., 1992, as cited in Wooldridge,
2009) provides a format for communicating messages, distinguishing between different cate-
gories. FIPA ACL (FIPA, 1997, as cited in Wooldridge, 2009) is similar to KQML in that it
provides a format for messages, but its performatives, i.e., communication categories, are dif-
ferent. Furthermore, FIPA ACL provides more detailed formal semantics than KQML. Both
communication languages facilitate agents to share or receive knowledge, which can alter their
mental state (Wooldridge, 2009)). In addition to these communication languages, messages can
also be sent in the form of interactions, where agents signal their desires by performing a certain
action. In this research, the latter type of communication is used. The mentioned communica-
tion languages thus merely function as background knowledge on communication types.

Communication is essential in several social situations, one of them being negotiations.
In a negotiation, two or more agents try to reach an agreement regarding some exchange of
items/services (Kraus, 2001). An example of such a negotiation is the bread example detailed
in Section [2.1.3] where a seller wants to earn money, and a buyer wants to receive the bread
while paying as little as possible. Agents in a negotiation setting like this example need to
communicate to convey their proposals and to respond to the offers of the other party (Lewicki
et al., 2020). Negotiations are a popular topic of research within Al and MAS due to the
increasing importance of automated negotiation, which can be faster and may result in better
agreements than human negotiation (Baarslag et al.,|2017; Jennings et al., 2001).

Formally, negotiations consist of a negotiation set, a protocol, a collection of strategies, and
an agreement deal (Wooldridge, 2009). The negotiation set consists of all the proposals that
agents can make, and the protocol is the subset of allowed proposals. Each agent has a set of
strategies that it can use to decide on its proposal. Finally, the agreement deal refers to the
outcome of the negotiation. An agreement cannot always be reached immediately. Therefore, a
negotiation usually comprises several rounds. An example of a negotiation protocol to structure
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the negotiation is the alternating offers model (Osborne, [1990; Rubinstein, |1982), in which two
agents negotiate by altering which agent makes the offer, and which agent accepts or rejects.
The outcomes of negotiations between pairs of individuals impact their future encounters and
thus the dynamics of the population. ABM:s (see Section[2.2)) are therefore a useful tool to model
negotiations. The other way around, negotiations are also a useful tool to resolve conflicts of
agents in ABMs (Wooldridge, 2009).

2.3 Evolution

Evolution is a concept referring to the theory that animal species are dynamic and that they have
developed from ancient species, gradually changing over time (De Lamarck, 1809, as cited in
Nowak, 2006). According to the theory, species are forced to adjust to their environments to
survive, which is what catalyzes the gradual change in their internal and external characteristics.
This is how complex cognitive skills, like ToM, can develop in a species. The principles of
evolution contrast with the view that God created the Earth including all animal species, and
that these species are static. This section gives a brief overview of the history of Darwinism
(Section [2.3.1)) and discusses the characteristics of an evolutionary process, which can be used
to simulate evolution and study the evolutionary development of a skill (Section[2.3.2)).

2.3.1 History of Darwinism

Before the 18th century, the generally accepted worldview was based on the Bible (Ray, |1691,
as cited in Bowler, 2000). According to the Bible, God created the Earth around 4000 BC,
including all of its flora and fauna. The animal species that were created by God were made
to survive all conditions on Earth and remained the same over time. All species, including
humans, are thus static according to this theory.

In the 19th century, Jean-Baptiste Lamarck was the first person to create a theory of bio-
logical evolution, which contrasted with the generally accepted idea at the time (De Lamarck,
1809, as cited in Nowak, 2006)). He believed that species can initiate their own ‘improvements’,
and additionally that their environment forces them to change. This theory was backed by evi-
dence from research of the time: paleontologists found fossils that were older than 6000 years,
and that must therefore have existed before the creation of the Earth (Bowler, 2000). These
findings suggested that the Earth was much older than assumed at that time. Furthermore, the
fossils showed that certain species had gone extinct, and others had changed: both conclusions
contradicting the generally accepted worldview (Pojeta & Springer, [2001). This led Lamarck
to develop his theory of dynamic species.

With his theory, Lamarck paved the way for Charles Darwin. Darwin’s ideas were inspired
by several researchers other than Lamarck, such as Condorcet, Linneus, E. Darwin, Lyell,
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and Malthus (Avery, [2003). In 1859, Darwin published a book: On the Origin of Species
(Darwin, [1859), in which he formulated his beliefs. Darwin proposed that changes in species
are unintentional and happen due to chance, a concept which is known as natural selection, as
opposed to artificial selection (Darwin, 1859] as cited in Nowak, 2006). Alfred R. Wallace had
also sent Darwin a paper, On the Tendency of Varieties to Depart Indefinitely from the Original
Type, in which he discussed ideas similar to Darwin’s beliefs (Wallace, 1858, as cited in Avery,
2003). Together they are seen as the pioneers of the evolution theory as we know it today:
the Theory of Evolution by Natural Selection. This theory is sometimes also referred to as
Darwinian Evolution or Darwinism.

2.3.2 Characteristics of an Evolutionary Process

Darwinian Evolution is characterized by the following key ideas: populations can reproduce,
all individuals part of a population have descended from the species that existed before them,
and genetic diversities in new generations emerge due to mutations (Bowler, [2000; Darwin,
1859). ‘Fitter’ individuals are the individuals that are more suited to their environment. A
population/species with fit individuals therefore has bigger chances of surviving and as a con-
sequence, its individuals also have bigger chances of reproducing. Therefore, favorable traits
are developed over time, while unfavorable traits disappear. New traits like cognitive skills are
thus developed only when the demand is high enough to outweigh the cognitive demand it takes
to use such a skill (Aiello & Wheeler, |1995). If a species fails to adapt to the environment, it
may become distinct.

Darwinism not only offers an explanation for the development of modern species, but it
also sets forth a set of conditions for evolutionary processes. The three components of an evo-
lutionary process are selection, replication, and mutation. The mathematical biology professor
Nowak states that “Wherever information reproduces, there is evolution” (Nowak, 2006). The
key features of evolutionary processes all have a mathematical nature. Therefore, according to
Nowak, all evolutionary processes can be characterized by mathematical formulae to analyze
evolutionary dynamics. This mathematical nature of evolution argues for the use of simulations
to study the evolution of complex cognitive skills, such as ToM.
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Chapter 3

Methods

This chapter describes the methods that were used to answer the research question. The simu-
lation environment in which the experiments were conducted is described in Section Then,
the agents are detailed in Section[3.2] This includes a discussion of their movement, the logic
of the negotiations used to trade resources, and their Theory of Mind (ToM). The evolutionary
process established in the environment is described in Section [3.3] Finally, the experiments
are described in Section followed by a hyperparameter overview in Section and the
implementation in Section

3.1 Environment

The environment that was created consists of a simple square arena (600x 600 tiles), which is
the area in which agents exist and can move. A screenshot of the arena can be found in Figure
[3.1). Within the environment, there is a notion of time, which is managed using ‘ticks’: each tick
represents one time-step in the environment. The environment is fully accessible to all agents,
with no obstacles or objects located in it apart from other agents. The environment contains a
population of n agents, where n can be varied by the user. In this research, this number was set
to 60, which was chosen based on a qualitative study ﬂ This number of agents allows them to
move freely through the environment, whilst still leading to frequent negotiations for all agents.

More information about the agents can be found in Section [3.2]

I'The values 30 and 90 were also tested. The results were different from those for 60 agents. This is therefore a
design choice that influenced the results, and it is discussed in the discussion section.
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Figure 3.1: The arena (green square) in which the agent population is situated, where the black
surrounding indicates the boundaries of the arena. The arena includes 60 agents, where the
black dots represent the ToMO agents, the red dots the ToM1 agents, and the blue dots the
ToM?2 agents.
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3.2 Agents

Each agent can move through the environment (Section [3.2.1). The agents have resources and
can use these to negotiate with other agents that they encounter (Section[3.2.2). There exist three
types of agents, each reasoning with a different order of ToM (Section [3.2.3)). No ToM orders
higher than two were implemented, to limit the computational complexity, and to resemble the
research by De Weerd et al. (2017) as closely as possible. After initialization, there are n/3
agents of each type. This distribution over the agent types may change over time due to the
evolutionary process in the environment, whilst n always remains the same.

3.2.1 Movement

The initial position of each agent is random, with the only restrictions being that the location is
within the bounds of the arena and that it is not yet occupied by another agent. The agents can
move through the environment by taking one step every tick. Their initial direction is random.
They continuously move in that direction unless they either encounter the edge of the arena,
in which case their direction changes randomly, or they encounter an agent within negotiating
distance, in which case they may start to negotiate (see Section[3.2.2). The negotiating distance
is a constant that may be varied by the user. For this research, it was set to 10px. The radius of
an agent is 2px, and the distance is measured from the center of the agents. Therefore, agents
will interact when there is a maximum of 6px between the two agents. This value was chosen
to resemble an average talking distance between two humans. If the agent that they encounter
is already negotiating with someone else, the agent changes its direction randomly to avoid the
negotiating pair.

3.2.2 Resources and Negotiations

The mixed-motive aspect of the environment lies in the negotiations between individuals. Pre-
vious research by De Weerd et al. (2017) used the game Colored Trails (CT) as a mixed-motive
setting. In this game, two agents negotiate about a redistribution of chips. The agents need
certain chips to buy a path toward their goal on the game board. The current research does not
use the CT setting. Instead, agents in the environment have resources that they need to trade to
survive. For these trades, negotiation is used.

The choice of using a trading system instead of CT games between pairs of agents was made
to make the environment as realistic as possible, as barter existed long before currencies were
introduced (Anbugeetha & Nandhini, 2021). This section first describes the logic of the negoti-
ations used for trading, followed by a formal definition. The (formal) model of negotiation used
for this research was largely inspired by that of De Weerd et al. (2017), which they implemented
for the CT setting.
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Each agent can possess four types of resources. Of each type, they can carry a maximum
of four (see Table [3.1] in Section [3.5] for an overview of all parameters). Each agent has the
ability to produce one of the four resources themselves. Which resource this is, is arbitrary, but
consistent throughout the run. At the start of each negotiation, the agent will have four of its
producing resource. More details about the production interval of this resource can be found
in Section The other resources can be acquired through negotiation with other agents.
This negotiation is essential since agents need to reach a resource threshold of two for each
resource type within 2500 ticks in order to survive (see Section [3.3). The number of items of
the producing resource is virtually limitless, so the threshold for this resource is always met.
For the other resource types, the agents start with one resource per type. They thus need to
gather at least one additional item of each resource type in order to reach this threshold. If they
do not manage to do that before the time limit, they die.

The described parameter values can be altered by the user, except for the number of resource
types (see Section [3.5]for an overview of the hyper-parameters). The number of resource types
was set to four as a balance between the computational complexity and the negotiation pos-
sibilities: it allows for a wide range of offers, whilst the complexity is still reasonable. The
more resource types, the more offers need to be evaluated for each negotiation round and thus
the higher the computation time. The same holds for the maximum number of resources per
resource type. For this parameter, also a value of four was chosen. This, in combination with
the resource threshold of two (see Section [3.3)), gives agents the possibility of having spare
resources that can be offered. Increasing this maximum capacity increases the computational
complexity. It is important to note, however, that this limit of four resource types, four resources
per type, and the resource threshold of two affect the results. If the limit had been higher, there
would be more offer possibilities, which in turn increases the chances of a successful negotia-
tion. For this research, the number of initial resources per type was set to one to pressure the
agents to negotiate in order to survive. See Section [3.3|for further details about the evolutionary
process.

Negotiation is thus the key element of the behavior of the agents. Whenever another agent is
within the negotiation threshold of 10, the pair of agents can start a new negotiation. This new
negotiation partner cannot be their most recent negotiation partner to avoid infinite negotiation
loops. One of the two agents makes the initial offer. This means that this agent uses its ToM to
make an offer or withdraw immediately. The initial agent is chosen randomly, because the type
of ToM that is used for the first offer oftentimes impacts the course of the following offers. To
avoid agents of a certain ToM order always being the initiator, this decision was randomized.

When an agent receives an offer, it can choose to accept the offer, propose a counteroffer, or
withdraw from the negotiation. Which of these options the agent chooses depends on the state
of the environment and the order of ToM that the agent uses, and this is described in Section
[3.2.3] The negotiation then consists of a sequence of alternating offers between the two agents.
It ends when one of the agents withdraws, accepts an offer, or when a maximum number of
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rounds is reached. Each round lasts for one tick. The maximum number of rounds/ticks is
implemented to avoid infinite loops, where agents keep going back and forth without reaching a
consensus. For this research, this number was set to 50, as can be seen in Table[3.1] This value
was chosen based on a qualitative observation of multiple test runs. The maximum was first set
to an unrealistically high number (10000). This showed that the negotiations that did terminate,
all terminated within 35 rounds. Therefore, 50 was taken as the maximum.

There are two restrictions on the offers that an agent can make. Firstly, the offer should
be possible, meaning that the resources it asks from the trading partner are owned by the trad-
ing partner. Secondly, an agent can only offer excess resources, meaning that it cannot offer
resources from which it has less than the resource threshold of two. This threshold needs to
be reached within 2500 ticks in order to survive, and agents thus are prevented from taking an
unnecessary risk by offering a non-spare resource. An exception to this second condition is the
producing resource r, for which it does not matter if it decreases beneath the threshold.

We adapt the formal definition of negotiation that is given in De Weerd et al. (2017). The
negotiation is a tuple (N, D, R, m;, m;, Do), where:

» N = the set of agents participating in the negotiation: {i, j};

* D = the set of possible distributions of resources, based on the current resources of i and
Js
* R = the set of possible producing resources;

* T;, Tj : R x D — R = the score functions such that w;(r, D) denotes the score of agent
i when its producing resource is r € R and the resources are distributed according to
distribution D € D. The score function is defined in the next paragraph;

* Do € D = the initial distribution of resources over i and j.

The alternating offers can be represented as a sequence of offers {Og, 01,05, ...}, where Oy is
the initial offer. An agent can thus receive an offer O;, which it may counter with counteroffer
O;+1. The negotiation ends when either of the agents accepts a received offer O, either of the
agents withdraws, or when the negotiation limit of 50 rounds is reached.

A notational difference with the negotiation model of De Weerd and colleagues is that in
our research R is used instead of L. L represented the set of possible goal locations, whereas
the R in this research represents the set of possible producing resources. The utility of a state
in this environment thus depends only on what resource the agents produce themselves r; € R
and not on a goal location /;. Apart from this (mainly notational) difference, the main difference
between the model of De Weerd and colleagues and the one presented here is the score function
7. The function was redesigned to fit the new environment. In this research, there is no time
penalty in the utility function like there is in the model of De Weerd and colleagues. This
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was removed due to the nature of the setting of this research: agents need to gather enough
resources of each type before they are ‘checked’: the environment thus already reflects the time
pressure on the negotiations without specifically adding this to the utility function. Another
important difference is that in the current research, a negotiation may not have the possibility of
a successful outcome, whilst those modeled by De Weerd and colleagues were always at least
potentially successful. This is a consequence of the varying resources that two agents bring to
a negotiation.

The score function 7 should capture the need for reaching the threshold for each of the four
resource types. This is more important than having a high total number of resources. Therefore,
a shortage weighs heavier than a surplus. The 7 function is defined as follows: for each shortage
the agent receives -2 points, and for each surplus it receives +1. For the producing resource r,
the agent always receives O points. This definition leads to T — [—12,6]. This is mapped to
0, 18] by adding 12 points to remove negative numbers, which are inconvenient in the beliefs
computations that are described in Section [3.2.3] This can be compared to the CT settings by
considering a game board where each step towards the goal location is worth two points, and
each additional unused chip is worth one point. Furthermore, each player has one token that
has no value to them. Example 1 provides an example of the use of the function.

From this definition of the utility function, it follows that agents are indifferent to owning
their producing resource. They do not receive a penalty for having little of this resource, nor
do they benefit from having four of this resource. Within the negotiation, this may result in the
agents accepting offers where they only give a number of items from their producing resource,
without receiving anything in return. This is a design choice that was made to stimulate free
trade, where agents own at least one resource with which they may make an acceptable offer.
How various agents reason about an offer like this is detailed in the corresponding ToM Section
3.2.3]

Example I: Let’s take an example to illustrate the use of the 7 function. Assume we want
to know the utility of a state of agent 7 after accepting offer O;. Assume that O, leads to
the distribution D [1,4,0,4,2,3,1,3|. This means that after accepting the offer O;, i will
have the following resources: [1,4,0,4], i.e., one of resource 1, four of resource 2, zero
of resource 3 and four of resource 4. See Figure [3.2]for a visualization of the state of the
agent. Assume that the producing resource of i, r;, is resource type 2. Then the utility
m;i(2,[1,4,0,4,2,3,1,3]) = —2+0—4+2 = —4. Mapping this to [0,18] gives m;(r,D) = 8.
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Figure 3.2: A visualization of the state of an agent, contrasting the current resources with
the threshold to stay alive.

Following De Weerd et al. (2017), each agent knows its own producing resource r, but not
that of other agents. Additionally, they do know the resources that others have. In other words:
we make the assumption that the set of possible offers is fully observable, but agents do not
have complete information about the preferences of other agents. The decision that agents can
observe the resources of others was made for two reasons. Firstly, it is less computationally
expensive than examining all offers, including the ones that are not actually possible because
the trading partner does not have the required resources. Secondly, the focus of this research is
on the adaptation of negotiations with ToM from pairwise settings to a population setting. It is
therefore important to imitate previous implementations of negotiations as closely as possible.
In the CT setting, the number of chips in the game is constant and thus the distribution of them
is observable to both agents.

3.2.3 Theory of Mind

The agents use Theory of Mind (ToM) to determine their move in the negotiations. Which
order of ToM they use is determined during their initialization. Agents can have a ToM order
of zero, one, or two. The model for ToM that was used in this research was based on De Weerd
et al. (2017). Due to the difference in environment, there are some key differences between
the ToM model in this research and that of De Weerd and colleagues. Whenever this is the
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case, it is explicitly stated. Contrary to De Weerd and colleagues, this paper does not always
omit the notation of variables when they can be inferred from the context. Instead, all variables
are included, or, in the case that this leads to a lack of space, they are mentioned underneath
the formula. Despite those differences, it is still recommended to read the paper by De Weerd
and colleagues for relevant background information. Furthermore, De Weerd and colleagues
contains relevant examples of the behavior of agents with various orders of ToM.

Zero-order ToM

The zero-order agents, ToMO agents, are unable to reason about the mental content of others.
They therefore do not consider the intentions or desires of others, and make decisions and
offers based solely on their personal gain. However, even though they do not model what their
trading partner wants to achieve, ToMO agents can use the response of the trading partner as an
indication of how likely it is that other offers will be accepted. This is known as their zero-order
beliefs.

There are two types of zero-order beliefs: the beliefs that are updated across the negotiations
(initialBeliefs), and beliefs that are updated within the negotiation (b(*) : D — [0,1]). Contrary
to De Weerd and colleagues, this paper indicates these two with different names to highlight the
difference between the two. The former is more general, as it contains the beliefs that an offer
that proposes an x number of resources for an y number of resources will be accepted. The latter
is specific to the current negotiation, as it contains the beliefs that an offer that proposes an x
number of a specific resource type for an y number of a specific resource type will be accepted
by this trading partner. Initially, each negotiation starts with a () that is equal to initalBeliefs.
Then, () (0) is the belief that offer O € D will be accepted by the trading partner. More details
about these beliefs can be found in Section[3.2.3

Which offer a ToMO agent will make is decided based on the expected value of that offer,
which is the utility that the agent thinks it will receive when making that offer O € D. For this
computation, the zero-order beliefs are used, meaning that the EV of an offer decreases when
the zero-order belief of this offer decreases. This expected value, EV, is computed using this
formula:

EV9(0,7,6©) = b (0) - 7;(r;, 0) + (1 — b (0)) - :(r1, Do) (3.1)

where b9 are the zero-order beliefs of the agent, and T, r; and Dy are as described in Section
Note that this formula differs from the formula provided by De Weerd et al. (2017) in two
ways: the use of r; instead of /;, and the omission of the time index, both of which are described
in Section

Offers with a high EV are more beneficial for the agent than offers with a low EV score,
and thus if the agent wants to make an offer it will choose (one of the) offers with the maximum
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EV. In other words, the agent assesses all offers O € D and chooses offer O where

Of := argmaxEVi(O)(O,r,-,b(o)). (3.2)
0oeD
However, there are situations in which it is not beneficial for the agent to make this

(counter-) offer O;. There is one case in which the agent has two available actions, which is
during the initial round: in this round, the agent can make the initial offer or withdraw. In the
other rounds, there are three available actions to the agent: it can make a counteroffer, but it can
also accept the offer from the partner O;_1, or withdraw from the negotiation. The agent will
accept the offer from the trading partner if it is at least as good as O;, and it will withdraw from
the negotiation if there exists no offer that is expected to result in a higher score. Which of the
actions the agent takes can be computed using the following function:

(0; if EV?(0,7:,6©) > m;(r;, Dy) and
0) / ~x
EVl( )(Ot 7rlab ©) ) > nl(rhOl‘—l)
ToMOi(O,_l,r,-,b(O)) = < accept if 7;(ri,0—1) > ;(ri,Dp) and (3.3)

i(ri, 0r—1) > EV.”(07,r;,b)
| withdraw  otherwise.

In this function, EV(© refers to Equation

Equation allows the ToMO agent to take part in negotiations without having the ability
to reason about the intentions of its trading partner. Due to the zero-order beliefs, the ToMO
agent can propose offers that are beneficial to the trading partner as well, even though the agent
does not explicitly model that this is the case. An example of the behavior of a ToM0 agent
can be found in Example 2. A ToMO agent may accept an offer in which it needs to give a
number of items from its producing resource r without receiving anything in return. This can
be interpreted as the agent not caring about this resource in any way, and thus not minding it
gone. A comparison is when a Dutch person has some foreign coins left, from a country it will
not visit in the near future. The coins hold no value to the owner, but they do hold value for
another person. However, since a ToM0 agent cannot reason about how other value resources,
it is a rational decision to accept an offer where it gives away its producing resource. Note that
this can only happen when there are no better offers available to the agent, so in practice, it
rarely happens.

Example 2: ToMO agents do not reason about the mental content of trading partners. Let
us consider a situation where two agents are negotiating. We look at the negotiation from
the point of view of a ToMO agent, i, who is choosing an initial offer to make to its trading
partner j. Figure shows an example situation, where 7 has a total of ten resources: two
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of type 1, three of type 2, one of type 3 and four of type 4 (represented here are food,
water, tools, and materials respectively). Its producing resource is type 4, as indicated by
the underlining.

If i would not have initialized zero-order beliefs initialBeliefs at the start of the negoti-
ation, it will simply ask for everything it needs and can get from j, as that would maximize
w;. Ideally, i would like to have four items of every resource type. However, when look-
ing at the resources of j it sees that that is impossible to achieve. Therefore, i asks for
every resource that j has that i still needs to reach four of every resource type. Note that
agents will never ask for their producing resource since they always have four at the start
of a negotiation, meaning that their maximum capacity for the resource is reached. The
production logic of the resources can be found in Section [3.3]

This example highlights the importance of zero-order beliefs of ToMO agents. Without
those, their offers are very unlikely to be accepted, since they will ask for a lot, but won’t
be offering to give anything themselves. Since this is an initial offer, b is not updated
yet and reflects the initialBeliefs. When ToMO agents use their initialBeliefs they know
from experience that offers like this, giving zero and receiving five (i.e., 0:5), are not likely
to be accepted. More information about the offer types can be found in Section in
Example 4.
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Figure 3.3: Visualization of an offer by a ToMO0 agent (i) without (initialized) zero-order
beliefs. The producing resource of i is resource type 4: the materials. In this case, agent i
asks to be given five resources, while offering nothing in return.

Figure 3.4 shows the same situation, except now the ToMO agent has zero-order beliefs.
It is still the initial offer, so the beliefs that are used are the general initialBeliefs. i comes
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up with (an example of) a different offer. This time, it asks for one resource of type 3 (tools)
and gives one resource of type 4 (materials). It offers this because i knows that generally,
an offer of the type 1:1 is likely to be accepted. In the case that this offer is rejected, i
updates its b0 apparently j is not interested in giving resource type 3.
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Figure 3.4: Visualization of an offer by a ToMO agent (i) with (initialized) zero-order
beliefs. The producing resource of i is resource type 4: the materials. In this case, agent i
offers one of its producing resource for one resource that it is missing.

Note that the situation that was discussed here serves only as an example of the behavior
of a ToMO agent, but that in reality, the trading partner j would always have four items of
at least one of the resource types (since it has a producing resource).

First-order ToM

The first-order agents, ToM1 agents, do have the ability to model the mental content of other
agents. This allows them to reason about the desires of the trading partner. The ToM1 agent
therefore considers what benefit the trading partner receives from the offers as well, instead
of focusing solely on their own gain. To do so, the agent looks at the negotiation from the
perspective of the trading partner. It then reasons what action the ToM1 agent itself would take
if it were in the position of its trading partner. It then uses this information to determine which
offer O it should make that is beneficial to itself, but at the same time is likely to be accepted
because the trading partner benefits from the offer as well.

Three factors make it difficult for the agent to predict the action of the trading partner:
it doesn’t know the zero-order beliefs, the producing resource, and the order of ToM of the
trading partner. For this reason, ToM1 agents do not only have zero-order-beliefs (b(*) and
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initialBeliefs), but also first-order beliefs: b(!) : D — [0,1]. These beliefs represent what the
ToMI1 thinks the () of the trading partner are. pM) (O) thus represents what the ToM1 agent
thinks the beliefs of its trading partner are about the ToM1 agent accepting offer O. It can then
use these first-order beliefs for the computation of what action it would take in the position of
the trading partner. The ToM1 agent computes the first-order beliefs by reflecting on its own
actions, and reasoning how it would update its own bO) if it were the trading partner. More
information about these belief updates can be found in Section[3.2.3]

Furthermore, the agent also models the expected producing resource of the trading partner,
which is updated based on the offers it receives from this trading partner. This is modeled
as a probability for each of the four resources: p{!): R — [0,1]. p(l)(r) then indicates how
likely the agent finds it that r is the producing resource of the trading partner. Additionally, it
uses a confidence score that represents its confidence in the first-order ToM: ¢; € [0, 1]. If the
predictions made by the ToM1 agent are incorrect, this confidence will decrease, and the agent
will simply use ToMO. More about the model of the producing resource of the trading partner
and the confidence score can be found in Section[3.2.3

The predicted action of the trading partner is used by the ToM1 agent to compute the ex-

pected value (EV) of making offer O. This E Vi(l) 1s computed using the following function:

(i, Do) if ToM0;(0,r;,bV)) = withdraw,
EVi(l)(rj,O,r,-,b(l)): (1, 0) ifToMOj(O,rj,b(l)) = accept, (3.4)
max {ni(ri, O,(I)),Tc,-(r,-,Do)} otherwise,

where r; is the (expected) producing resource of the trading partner and

OV = ToM0;(0,r;,bM) (3.5)

is the counter-offer that the ToM1 agent thinks the trading partner will make. Furthermore, note
that ToMO refers to Equation

Equation [3.4] shows that the prediction of the action of the trading partner influences the EV
of the offer O that the ToM1 agent evaluates. If the trading partner is expected to withdraw, the
resulting EV is simply the EV score of the current state Dy. If the trading partner is expected to
accept offer O, the EV is the utility of the state after the trade. If the trading partner is expected
to counteroffer, this counteroffer is used to compute the EV. This function shows that the ToM 1
agent looks ahead one step in the negotiation. It considers the response of the trading partner in
the next timestep ¢ + 1 and uses this to choose an offer in the current timestep ¢.

As mentioned above, the ToM1 agent may not be 100% sure that its first-order predictions
of the actions of the trading partner are correct. Therefore, the agent may use its zero-order
beliefs instead. This is reflected in the following formula, which is used to compute the EV of
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an offer O.
EVi(l)(07rivb(0)7b(1)7p(1)7cl) =

(1—c1)-EV2(0,r,6) +¢1- Y pV (1) -EVV (1,0,7,61)  (3.6)
reRrR

In this formula, EV () (0, r;,b(9)) refers to Equation 3.1/and E Vl.(l) (r,0,r;, b)) refers to Equa-
tion Furthermore, this formula uses the described producing resource beliefs pM and the
confidence score cj.

Equation has a key difference compared to the computation of E Vi(l) by De Weerd et
al. (2017). Instead of computing EV () with Formulausing U(bV,0) like De Weerd and
colleagues, we simply use pM. U (b(l),O) refers to an update of the first-order beliefs that is
made when considering an offer: the beliefs are updated to reflect how the ToM1 agent thinks
the trading partner updates its zero-order beliefs. This belief-update for considered offers is
omitted in this research to decrease the computational complexity of the program. Whereas
De Weerd and colleagues only had two agents, this research contains 60 agents, making it
infeasible to compute all these belief updates. Instead, the first-order beliefs are only updated
based on offers that were made, not those that were only considered. This allows the program to
compute expected counter offers only once. Note that this does remove some of the randomness
that may occur when an agent chooses (randomly) between multiple offers with the same EV
score. Instead, when an agent computes an expected counteroffer, it uses this same expectation
for all of its computations.

Similarly to the ToMO agent, the ToM1 agent chooses (one of) the offers with the maximum
EV. That is, it picks an offer O; where

Of .= argmaxEVi(l)(O,r,-,b(o),b(]),p(l),cl). (3.7)
0eD

The agent does not always make offer O;: it may also withdraw or accept the previous offer
O;_1. Note that the latter is only possible after the initial round of the negotiation. The function
that determines which action the ToM1 agent will take is similar to that of the ToMO agent,

except for the use of £ Vi(l) instead of E Vi(o):

TOMli(Ot—l;ri7b(0)7p(1)7b(1)7cl)

(0 if EVY(07) > mi(r1, Do) and
EVZ(I)(O:) > TC,'(I‘,', Otfl)
= { accept if 7i(ri, Or—1) > mi(ri,Dg) and  (3.8)

1) A«
mi(ri,0-1) = EVV(07)
| withdraw  otherwise,
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where EVZ.(I) (O7) follows the notation of De Weerd and colleagues by omitting variables that

can be derived from the text. EVi(l) (O7) is thus a shorter version of EVZ.(I) (0F,ri,b 0 b)) pO) ).

A ToM1 agent may accept an offer in which it needs to give a number of items from its
producing resource r without receiving anything in return. This happens rarely, since ToM1
agents can try to exploit the value others assign to the (for them) worthless resource. If however
there are no other offers available, the ToM1 agent will accept.

Example 3: Assume we have a ToM1 agent i. When i has to make a move, either in the
initial round or later on, it will consider all offers that it is allowed to make. For each offer,
i considers what action it would take if i were a ToMO agent and received that offer. It takes
this predicted response of j into account when choosing which (counter)-offer to make, or
whether to accept or withdraw from the negotiation.

Figure 3.5 provides a visualization of i considering making an offer O where it asks for
three items of resource type 1. It predicts that j will reject O and therefore will not make
this offer. Note that this differs from 5(©) in that 5(¥) are only used in the computation of
an EV score of an offer, whereas ToM1 agents really determine what their move would be
if they were in the position of their trading partner. If they were to reject, the offer would
receive an EV of ;(r;, D). Due to a lack of benefit from i, O will not be chosen.
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Figure 3.5: ToM2 agent i is considering an offer and predicts that trading partner j will
reject this offer.

Second-order ToM

The second-order agents, ToM2 agents, also have the ability to model the mental content of
other agents. Additionally, a ToM?2 agent is aware that others may reason about its own inten-
tions and goals. The ToM2 agent is thus capable of looking not just one, but two steps ahead in
the negotiation. This allows the ToM2 agent to choose an action that it knows will influence the
producing resource beliefs of the trading partner. It may use this for tactical moves, where it
manipulates the beliefs of the trading partner so that it may receive more beneficial offers from
this trading partner. In other settings, ToM?2 can thus be used to manipulate the trading partner
by sending ‘false’ information about which resource it produces, by asking for a resource that
it produces. This is not possible in this setting, since all agents start a negotiation with the
maximum number of items from their producing resource. This design choice allows for offers
with more resources, but as a consequence, the described type of manipulation is not possible.
However, ToM2 agents can use their second-order reasoning to make offers that signal what
their producing resource is by asking for everything except their producing resource. A lower-
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order ToM agent is unlikely to do this because it expects that the trading partner will reject the
offer. ToM2 agents can reason that signaling their preferences may result in better offers from
the trading partner, similar to how a human may start a negotiation by directly asking what it
wants.

Using second-order ToM, the agent computes the expected value (EV) for an offer O. It
does so by using Equation (3.9, which is similar to Equation except for the use of ToM1,

b and (5,(2) instead of ToMO, 5 and 0;1) respectively.

EV,'(Z)(rjvOarhb(l)?b(z)?p(l))
TC,'(I",',D()) if TOMlj(O, rj, b(z)) = withdraw,
= { mi(r;,0) if ToM1;(0,r;,b?) = accept, (3.9)
max {ni(ri, Ot(z)),n,-(ri,Do)} otherwise,

where
0 = ToM1;(0,r;,b). (3.10)

This function shows the recursive nature of ToM, since ToM1;(O,r;, b(z)) (short for
ToM1;(0, rj,b(l),p(l),b(z), 1) refers to Equation which in turn calls Equation

Similarly to the ToM1 agent, the ToM2 agent is also not certain about its (second-order)
predictions of the behavior of the trading partner. The agent has a certain confidence, ¢; € [0, 1]
that its second-order predictions are correct. If it observes behavior from the trading partner that
contrasts with the predicted ToM1 behavior, ¢, decreases. Note that the agent does not model
the confidence of the trading partner, and that thus ¢, should not mistakenly be interpreted as
the expected confidence of the trading partner. More details about the confidence updates can
be found in Section The ToM?2 agent may choose to disregard its second-order beliefs,
and instead behave as a ToM1 agent. This is reflected in the following formula, which describes
how the expected value of an offer O can be computed:

EVi(z)(Oariab(o)7b(l)7b(2)7p(1)7p(2)7cl7C2) =

(1 _C2) 'EV(l)(OJrivb(0)7b(l)7p(1)7cl)+C2' Zp(l)(r) 'EVi(Z)(r707riab(l)ub(Z)ap(2)7 1)
reR
3.11)

In this formula, EV) (0, 7,6 b1 p() ¢)) refers to Equation and
EVZ.(Z) (r,0,ri, b , b(z),p(l), 1) refers to Equation where ¢ is substituted by a 1. The ToM2
agent does not attribute a confidence score to the trading partner, instead it assumes that this
trading partner always uses ToM1. This is a design choice that was taken from De Weerd and
colleagues. It prevents the expected ToM1 model of the ToM?2 agent from converging to a ToM0



3.2. AGENTS 35

model. In other words: if the ToM2 agent models the trading partner as a ToM1 agent, this
should not be replaced by modeling it as a ToMO agent. Equation [3.11] omits the belief update
for considered offers described De Weerd et al. (2017), similar to Equation [3.6] Furthermore, it
uses the confidence in the second-order reasoning ¢, and p(?). The latter is similar to p{!) in the
sense that it models beliefs about the producing resource of an agent. However, p? is not the
beliefs about the producing resource of the trading partner, but what the ToM2 agent believes
that the trading partner’s producing resource beliefs pM) are about the ToM?2 agent. How these
beliefs are formed is described in Section[3.2.3]

The E Vl.(z) function is used to compute the expected value of each offer O € D. The ToM2
agent then chooses (one of the) offers O with the highest EV:

07 :=argmax EV (0,r,6© 5 p@ pM) p@) ¢ o). (3.12)
0eD
Apart from the computation of the expected value, the behavior of the ToM2 is comparable
to that of the other agent types. Again, there are two alternative actions apart from making a
counter-offer: withdrawing, or accepting the previous offer O,_;. Note that the latter is only
possible after the initial round. The function that is used by the ToM2 agent to determine its
action is:

TOMzi(Otflariab(O)7b(1)7b(2)7p(])>p(2)7C17C2)

(0 if EV?(07) > m(r1, Do) and
EVl(z)(O;k) > TCi(rl',Ot_l)
= ¢ accept if m;i(ri,O—1) > mi(ri,Dp) and (3.13)

2) [ s
mi(ri, Or—1) = EV,7 (0;)
| withdraw  otherwise,

where EVZ-(Z) (O;) denotes EVZ.(Z) (0F,r, b0 M) p2) p(1) p2) ¢ c)).

A ToM2 agent may accept an offer in which it needs to give a number of items from its
producing resource r without receiving anything in return. Again, this offer type is only ac-
cepted by the ToM?2 agent if there are no better offers available. Furthermore, ToM2 agents
also model how they expect others to think about them. Although it is not explicitly modeled
in Experiment 1 (Section [3.4), ToM2 agents might thus care about how other agents perceive
them, since it may impact future negotiations. The acceptance of such offers thus relates to the
interplay between ToM and reputation.

Learning Within Negotiations

Within a negotiation, an agent (indirectly) learns about the desires of the trading partner, even
without modeling their mental content. If a specific offer is rejected, an agent will be more
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likely to try another offer in the next round, instead of trying the same offer again. This is
reflected in the negotiation-specific beliefs: b () p2).

How quickly an agent learns from the actions of its trading partner depends on its learning-
speed parameter A € [0, 1]. Although in reality, different people have different learning speeds,
in this research this variable was chosen to be constant for every agent. Furthermore, the focus
of this research lies on the dynamics of different orders of ToM within a population. The
results might be impacted by the difference in learning speed between agents. The learning
speed was thus chosen to be constant to make the results of the research more interpretable and
reproducible. A qualitative study of multiple test runs showed that the results were impacted
by the value of the learning rate. Therefore, three variants of the experiment were created, each
using a different value for A: 0.8, 0.5, or 0.2. These values were chosen to test a slow learning
process, an average learning process, and a fast learning process.

Let’s first consider b(9): zero-order beliefs. When an agent receives an offer O;_1, it can use
this to update his beliefs about which offers the trading partner might accept, and which not.
That is, if an agent i receives an offer from trading partner j and this offer gives an x amount of
resources of a specific resource to i, it decreases its b(o)(O) for offers O € D that ask for more
resources of that type from j than O,_; gave i. This in turn decreases the likelihood of the agent
picking O for O, i.e., the offer it will make this round. An example can be found in Example 3.

Example 3: Suppose an agent i received an offer from the trading partner j that gives three
of resource type 1 to i. In later steps of this negotiation, i will be less likely to make offers
where it asks for more than three of resource type 1. This is reflected by the zero-order
beliefs: H(©) (O) decreases for all offers O € D that ask more than three of resource type 1.
This example is visualized in Figure The image should be observed from right to left,
as i is influenced by the offer that was made by j. It shows how i decreases its zero-order
beliefs about an offer where it asks for four items of resource type 1 (food), which is more
than j gave in its offer. Note that the same update happens for offers where i asks for five
items of resource 1 (food).
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Figure 3.6: A visualization of an example where agent i decreases its belief about an offer
when it has received an offer from j.

The update rule for the zero-order belief about an offer O € D based on receiving offer O;_
from the trading partner is:

U®b”,0,1)(0) = (1-1)"-p(0), (3.14)

where m indicates the number of resource types for which the offer O asks more from the
trading partner than that trading partner gives of that resource type in offer O,_. The range of
m is thus [0,4]. This definition of m differs from the one given by De Weerd et al. (2017) due
to the difference in environment. In the CT setting by De Weerd and colleagues, the number
of chips in the game is constant. Therefore, in the CT setting the number of items you ask for
of a type/color is equal to giving the total number of items of that type/color minus what you
ask for. In this research, the number of resources per type differs per negotiation, and there is
not a complete redistribution of the resources. As a result, an agent could ask for a number of
resources of a type, but this would not say anything about what this agent gives. The definition
of m was chosen to closely resemble that of De Weerd and colleagues to be able to compare the
results with those obtained by them.

Another situation that causes an agent to update its zero-order beliefs is when it proposes an
offer Oy, and that offer is rejected by the trading partner. This gives the agent information about
what the trading partner does not want. If an agent i made an offer O, that asks an x amount of
resources of a specific resource from trading partner j, and this offer was rejected, it decreases
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its b(0) (0) for offers O € D that ask for least as many resources of that type from j than it did
in O; gave i. This in turn decreases the likelihood of the agent picking O later on. The idea is
that if the trading partner does not want to give this, it probably does not want to give more. An
example can be found in Example 4.

Example 4: Suppose an agent i made an offer O, that asks for three of resource type 1 from
trading partner j. This offer is rejected by j. In later steps of this negotiation, i will be less
likely to make offers where it asks for three or more of resource type 1. This is reflected
by the zero-order beliefs: »(®) (0) decreases for all offers O € D that ask three or more of
resource type 1. This example is visualized in Figure It shows how i decreases its
zero-order beliefs about an offer where it asks for three items of resource type 1 (food),
which is the same amount that was asked in its previous offer that was rejected. Note that
the same update happens for offers where i asks for four or five items of resource 1 (food).

REJECT

Figure 3.7: A visualization of an example where agent i decreases its belief about an offer
when its previous offer was rejected by j.

The update rule for the zero-order belief about an offer O € D based on offer O; being
rejected by is:

uR(»,0,)(0) = (1-1)" -b(0), (3.15)

where m’ indicates the number of resource types for which the offer O asks as least as many

from the trading partner as the rejected offer O; did. The range of m’ is thus [0,4]. Similar to the
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definition of m, also the definition of m’ differs from the one given by De Weerd et al. (2017)
due to the difference in environment. Contrary to the CT setting, in this research, the number
of resources per type differs per negotiation, and there is not a complete redistribution of the
resources. The definition of m’ was chosen to closely resemble that of De Weerd and colleagues
to be able to compare the results with those obtained by De Weerd and colleagues.

The first-order beliefs of ToM1 and ToM2 agents are updated similarly. bW is updated when
a ToM1 knows the trading partner is updating its zero-order beliefs. The ToM1 agent then uses
the described update rules to update its own first-order beliefs as if it were the zero-order beliefs
of trading partner. Since this research takes the learning speed A to be constant, the bM) of the
ToM1 agent and the b of the trading partner are updated the same way. The only possible
difference between the two is caused by a difference in initialBeliefs, since the history of the
two agents is likely to differ.

The second-order beliefs b(2) of ToM2 agents represent what this agent thinks the trading
partner thinks that the ToM2 agent has as zero-order beliefs 5(©). To make this a bit more
concrete, consider a ToM2 agent i. This agent has zero-order, first-order and second-order
beliefs that it uses to choose an action during a negotiation with a trading partner j. i is aware
that j might reason about its mental content, i.e., that of i. Therefore i models what it thinks j
thinks are the zero-order beliefs »(®) of i. In this research, the second-order beliefs are identical
to the zero-order beliefs. That is, b©® = p(2)_ This is caused by the resources of the trading
partner being fully observable, and by the constant A. When i models the second-order beliefs,
it knows that j can see what resources i has and how these are updated after the trade. It
furthermore assumes that the initialBeliefs of j are the same and thus that j assigns the same
zero-order beliefs to i as i actually has.

Apart from the acceptance beliefs, ToM1 and ToM?2 agents also model what they think the
producing resource of their trading partner is. Receiving an offer from a trading partner gives
insight into what that agent is and is not interested in, which relates to the producing resource
of this agent. Agents know that all agents play rationally, and that they will thus only make an
offer if it benefits them, else they would withdraw from the negotiation. An agent will therefore
not ask for a resource that it produces itself. The producing resource beliefs are reflected by a
probability p over each of the four resources. ToM1 agents use p(!) to decide their action, and
ToM2 agents use pM and p® The former is what the agent thinks the producing resource is of
the trading partner, and the latter is what the agent (i) thinks that the trading partner () thinks
that its (i’s) producing resource is.

A producing resource probability p*)(r), where k € {1,2} and r € R, is set to zero if the
trading partner would not benefit from making the offer O,_; that it made. Furthermore, it is
increased when O,_; made by the trading partner has an EV close to the EV of the best offer O*
for this agent if it would choose an action while having r as producing resource. It is decreased
when the EV that the ToM agent thinks its trading partner receives for O;_ is less than what
the ToM agent would achieve if it had r as producing resource and chose its best offer O*. The
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update rule for p®) for a resource r € R is:

0 ifTCj(r,Otfl) STC]'(I",DQ)

(k) — (k—1) 3.16
p(r) B- p(k)(r)~ 1+EV, (<0kt—11))(0) otherwise, 10

I4+maxpep EV,

where EVi(k_l)(O) refers to EVZ.(O)(O,ri,b(O)) (Equation or EVZ.(I)(O,r,-,b(o),b(l),p(z),cl)
(Equation for k = 1 and k = 2 respectively. Furthermore, 3 is a normalizing constant that
ensures that the four probabilities always add to one. This update rule is called whenever an
agent receives an offer (p(1)), or when it gives an offer and thus knows that the trading partner
receives and offer (p(?)). If the p-value for each of the four resources is set to zero, the agent
has made a misjudgment and thus p(k) is reset to 0.25, the initial value, for each of the four
resources. This may happen when a trading partner with ToM2 has made a certain offer to
mislead this agent by making an offer that does not benefit the agent.

Finally, the confidence score ¢ needs to be updated for ToM1 and ToM2 agents, and ¢, for
ToM?2 agents. These scores reflect how much confidence the ToMk agent has in the k-th order,
where k € {1,2}. ¢ is updated whenever an agent receives an offer. The ToM agent compares
this offer O;_ with the offer it predicted based on the k—th order. If O;_; gives a high EV®)
to the agent, then the confidence in this order & increases, and vice versa. The update rule for ¢
is:

(k)
1+EvVY(0,_
= (1-1) e+ Y pP(r)- )

——, (.17)
rer 1—|—1’1’1aX0€7_)EVi (0)

where EVi(k) refers to EVi(l) (0, ri, b (D) p(2) c1) (Equation or

EVZ.(Z) (0,r;,b© 50 b2 p(M) p() ¢ ) (Equation[3.11) for k = 1 and k = 2 respectively. An
example of the intuition behind these updates of ¢y, is given in Example 6.

Example 6: A ToMk agent i, where k € {1,2}, models the behavior of its trading partner
Jj as if it were an ToM(k — 1) agent. When the trading partner behaves differently than
expected, i decreases its confidence ck. This is visualized in Figure [3.§]
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| was wrong,

decrease ¢

Figure 3.8: A visualization of the idea behind ¢ updates, where agent i decreases its confi-
dence after trading partner j behaves differently than predicted.

The confidence scores start at 1, representing that initially, ToMk agents model their trading
partner as a ToM(k — 1) agent. Gradually, this confidence decreases if the used ToM model
seems inaccurate. This implementation was used to resemble the methods of De Weerd et al.
(2017)) as closely as possible.

Learning Across Negotiations

Agents learn from previous encounters. Regardless of the order of ToM of the agent, agents
realize that other agents differ from each other, and thus that an offer O may be accepted by
one agent, but rejected by another. For that reason, they keep track of past experiences, and
use the general information from these encounters as a baseline for new negotiations. Note that
this type of learning requires no ToM, since the agent does not reason about the desires of the
trading partner, it only requires looking at previous actions from trading partners.

Practically, this means that agents keep track of the number of offers they made per offer
type, and how many of those were accepted. An offer type in this case refers to a ratio of the
number of resources that were proposed to be given, and the number of resources that were
proposed to be received. This ratio is general to all negotiations, since it does not consider
which resource type is traded for which. There exist a total of 400 offer types. Example 5 gives
some further explanation about how the offer type is determined and why there are 400 types.
For each offer type, the agent computes the probability of this offer type being accepted by the
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trading partner as follows:

#offers accepted + 5
#offers made + 5

initial Belie f s(offer_type) = ) (3.18)
where a constant of five is added to the numerator and denominator to avoid the probability of
reaching a value of zero, and thus a zero percent chance of accepting a certain offer. This can
be seen as giving each agent five positive experiences for each offer type.

Example 5: Suppose an agent proposes the offer that was described in Figure i.e., the
agent asks for two of resource type 1, one of resource type 2, two of resource type 3, and
zero of resource type 4, and gives none of the four resource types. In this case, the number
of resources given is zero, and the total number of resources asked for is five. The ratio and
thus the offer type is therefore 5:0.

For each of the four resources, there are five possible options for giving: giving [0,4].
There are also five options for receiving for each of the four resources. Thus, there exist a
total of 4-5 x 4.5 =20 x 20 = 400 offer types.

These initial beliefs are used throughout the life of an agent, and the agent updates them
after every offer it makes. At the start of each negotiation, they are used as a baseline for
the negotiation, by initializing the negotiation-specific beliefs (i.e., p©) b)) b)) with these
probabilities. Note that it takes a while before the initial beliefs are properly initialized since
each of the offer types needs to be encountered several times.

3.3 Evolutionary Process

Within the arena, an evolutionary process is established. The three key aspects of evolution
as described by Nowak (2006), selection, replication, and mutation, were implemented in the
environment. This section describes how agents can survive (Section [3.3.1), how the process

continues by replicating agents when another agent dies (Section [3.3.2), and how mutation is
introduced in the population (Section [3.3.3)).

3.3.1 Selection

Agents can only survive when they have enough resources to continue living, that is, if they
reach the resource threshold for each of the four resource types. The threshold was set to two,
since this leaves enough room for negotiations, even though agents are only able to offer their
spare resources. Initially, the agents have one resource per type. Agents thus do not survive if
they are inactive. Instead, they have to negotiate with others in order to trade resources. This
also justifies the choice of the threshold of two, since the agents need to gather at least one
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resource from every resource type, except for their producing resource type. Each agent has
one producing resource type r, of which it always has four at the start of a negotiation to allow
for free trade. From the perspective of an agent, this r is worthless: they can use it to make
offers but do not wish to receive it. They would also not mind giving the trading partner all
their resources of this type, although they do not offer this themselves. The negotiation process
is explained in Section and the behavior of the agents during a negotiation is explained in
Section

Agents need some time to be able to reach the resource threshold of two. Therefore, their
resources get checked in intervals, once every CHECK_INTERVAL checks, which is 2500 in
this research. This value was chosen based on a qualitative study. The interval was tested in
three scenarios: with A = 0.2,A = 0.5 and A = 0.8. This resulted in an average (over 30 runs)
number of 41, 43, and 43 agents surviving the check, respectively. Thus, the check interval
of 2500 causes approximately two-thirds of the agents to reach their threshold. All agents
have an age, which is used for the evolutionary process. Initially, their age is initialized to a
random integer between zero and a chosen CHECK_INTERVAL, to ensure that not all agents
in the population have the same age, which would be counter-intuitive H As a result, the ticks
at which agents get an evolutionary check vary. When the resources of an agent are checked
and the agent has enough of each type, it continues to live. One resource is deducted from
each resource type. This resembles the usage of those resources. It also stimulates further
negotiation, since the agent again needs to reach the threshold of two for each resource type. In
the case that the agent does not manage to reach the threshold for each of the resource types, it
dies. This agent thus dies through natural selection: it was not fit enough to survive.

In this experiment, it is possible that an agent is checked whilst it is taking part in a negoti-
ation. If the agent did not reach the threshold, is continues this negotiation, but dies afterwards,
regardless of the outcome of the negotiation. The same holds for the case where the agent
did reach the threshold: it’s resources are reduced after the negotiation. This design choice
was made to ensure that the negotiation process of the trading partner is not affected by the
revolutionary process.

3.3.2 Replication

When an agent fails its evolutionary check, it dies. This means that the agent is removed from
the population. Then, a surviving agent is randomly selected. This individual serves as the
parent of a new agent; some of its characteristics are replicated. The new agent inherits the
order of ToM of its parent, as well as the initialBeliefs. This ensures that this new agent has a
baseline and thus a fair chance at surviving. The probability of a new agent being of a certain
ToM order is proportional to the quantities of these different types in the population. The age
of this new agent is zero and its producing resource is random. The new agent then behaves as

ZFor the interval tests, the initial age of all agents was zero
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any other agent. That is, there is no special communication or behavior between the parent and
the child. The initial location of the new agent is arbitrary and is therefore not influenced by
that of its parent.

3.3.3 Mutation

When an agent dies, there is a small probability that the new agent will be a mutation. In other
words, there is a chance that the new agent does not copy both characteristics (i.e.,, the ToM
order and the initialBeliefs) from a parent. Instead, the mutation causes the order of ToM k to
be chosen randomly such that k € [0,2]. In practice, this means that all orders of ToM have an
equal chance of being chosen for this mutated agent. Therefore, also extinct orders can return
to the population. The beliefs were chosen to be copied from a random living agent. This gives
these mutated agents a baseline and thus still a shot at surviving like the other agents. There
is a 2% chance that a new agent is mutated. This value was chosen to be low enough to keep
stability in the population, while still allowing for occasional mutations to introduce diversity.

3.4 Experiments

Two types of experiments were conducted. In the first experiment, previous negotiations do not
influence the movement of agents through the arena. This experiment is described in Section
[3.4.1] Section[3.4.2]describes the second experiment, in which agents rejected negotiations with
incompatible partners and remembered what they learned from previous negotiations with this
partner. Finally, the procedure of the experiments is discussed in Subsection [3.4.3]

3.4.1 Experiment 1

At the start of the experiment, a baseline is created for the behavior of the agents by initializing
the initialBeliefs of the agent. This is achieved by allowing a population of 120 ToMO agents
to negotiate and move through the environment as if the experiment had started, but without
the possibility of dying. This allows the agent to gain experience that is used to update their
zero-order beliefs. As soon as an agent gains four items of each resource, their resources are
reset so that they can continue learning. Although ideally, this initialization period would be
infinite to give each of the ToM orders a fair chance in the experiment by ruling out the lack of
experience, this is not feasible. The initialization period was therefore set to 1,000,000 ticks.
Qualitative research showed that by that time, all agents had encountered each type of offer
multiple times and thus updated the corresponding initialBeliefs.

When a baseline has been created, this needs to be implemented into the agents that partic-
ipate in the experiment. This is done by randomly sampling (with replacement) one agent from
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the initial population of ToMO agents, and copying these initialBeliefs into those of a newly
created agent. This is repeated for each of the 60 new agents of the experiment. Thus, all agents
start with a baseline, but this baseline differs per agent. Another option would have been to re-
use the same initialBeliefs all agents. The latter option was disregarded because the influence
of one abnormality on the outcome of the experiment would be large. As an example, consider
a ToMO agent of the initial population, that by chance repeatedly encountered similar situations
and did not develop an informed initial belief about another situation. If this agent were to be
taken as the prototype of all agents of the experiment, the results may not be representative
of the experiment. To rule this out, the randomized prototype-picking tactic was chosen. For
similar reasons, the initialization process was repeated for every run of the experiment, instead
of saving the baseline and using this for all the runs of the experiment.

When the population of agents is created, the experiment starts. This means that the agents
are free to move throughout the arena and negotiate with each other as described in Section[3.2]
The evolutionary data, i.e., the number of agents per agent type per time step, is tracked. The
experiment ends when one of the following two stopping conditions is met:

1. One type of agent remains,
2. The maximum number of ticks of 3,750,000 is reached.

The maximum number of ticks, 3,750,000, was chosen based on a qualitative study of multiple
test runs. Since the check interval of the resource thresholds is 2500, this maximum represents
1500 generations. In most of the test runs, the experiment terminated earlier due to two orders
going extinct. In a few cases, this was not the case. However, a maximum of 1500 gener-
ations was also picked because of the memory complexity of the program. Several types of
data (described in the next paragraph) were collected and saved, and 1500 generations were
approximately the maximum number of generations that were feasible.

Note that due to the nature of the evolutionary process and the possibility of mutations,
extinct orders of ToM can come back due to a mutation. Therefore, if one type of agent remains,
this does not necessarily mean that the other types are gone forever. However, in this research,
the experiment does stop when one type remains.

3.4.2 Experiment 2

Experiment 2 builds upon experiment 1: the description of experiment 1 thus still holds. There
are two differences between the two experiments. Firstly, in experiment 2, agents save infor-
mation about their trading partners. In practice, this means that all agents save their producing
resource beliefs about the trading partner. If they encounter an agent again, they do not have to
restart forming this belief. ToM1 agents additionally save their ¢y, so the confidence in the ToM
order of the trading partner. ToM2 agents also save this ¢y, as well as ¢;. Agents thus recall
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their previous beliefs about the agent. Note that the other beliefs, so »(©) , b(l), and b(z), are not
saved. These beliefs are negotiation-specific and may be misleading in a new negotiation.

Another difference compared to experiment 1 is that now, negative encounters cause agents
to avoid the agents that they had these negative encounters with. If the outcome of a negotiation
was that either of the agents withdrew, or that the time limit was reached, an agent saves the
index of this trading partner to a queue. Agents avoid the trading partners that are in the last
five elements of this queue. This stimulates them to negotiate with new agents. If an agent
encounters a trading partner that is in its queue but not in the last five elements, it gives this
trading partner a new chance. It can then either be removed from its queue, if the outcome of
the negotiation is positive, or be placed at the end again.

3.4.3 Procedure

Several types of data were collected. Firstly, the final distribution of the agents was saved: so
the number of agents per type at the moment of the termination of the experiment. This data
gives insight into which orders of ToM were useful to survive the evolutionary checks. When
an agent dies, its age is saved. So, for each of the ToM orders, the ages of all the agents of that
type are collected as well. Additionally, the history of these distributions per type step can also
be saved. This can be determined by the user. The dominance frequency for each ToM order
was saved as well. It is the fraction of the ticks that this order was (one of) the most occurring
order of ToM in the population at that time step. The frequency does thus not always add to 1,
since multiple orders can be dominant. For example, after the initialization, there are 20 agents
per type, and thus each of the three ToM orders is dominant in the first time step.

Furthermore, information about the negotiations was collected. For each negotiation in an
experiment, the type of negotiation (so the orders of ToM of both agents), the negotiation length,
and the gain of both agents after the negotiation were saved. The agent that made the initial offer
was determined as well, as this may influence the negotiation outcome.

The two experiments were both run for each of the three values for A € [0.2,0.5,0.8]. Each
sub-experiment was repeated 120 times, resulting in 360 runs per experiment. This value was
chosen to balance between robust results and computational feasibility.

3.5 Parameters

Table [3.1] gives an overview of all hyper-parameters of this research, and their corresponding
values. The variables in caps-lock can be adjusted by the user, whereas the others are implic-
itly implemented in the code. The table is structured as follows: in the top section, all agent
parameters are includes, followed by the hyper-parameters of the evolutionary process and the
experiments.
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| Parameter | Value | Description |
n_resources 4 number of resource

types that exist
N_AGENTS 20 initial ~ #agents  per
ToM-type
AGENT_RADIUS_THRESHOLD | 10 negotiation radius
N_START_RESOURCES 1 initial #resources per
resource type
MAX_N_RESOURCES 4 max #resources per re-
source type
LEARNING_SPEED [0.2, 0.5, 0.8] how quickly the agent
learns from experiences
MAX_N_ROUNDS 50 max #rounds per nego-

tiation

age (initial)

[0,CHECK_INTERVAL]

initial age that de-
termines when the
agent gets evolutionary
checks

CHECK_INTERVAL 2500 #timesteps between
evolutionary checks
RESOURCE_THRESHOLD 2 min # resources per
type to survive
MUTATION_CHANCE 2 probability of new
agents being mutated
(out of 100)
INIT_TIME 1,000,000 #ticks of initialBelief
forming
EXP_LENGTH 3,750,000 #ticks before experi-

ment stops

Table 3.1: Hyper-parameters of the agents, the evolutionary process, and the experiments.
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3.6 Implementation

The experiments were implemented in the programming language J av;ﬂ Along with the ex-
periments, a simple graphical user interface (GUI) was created to visualize the agents and their
environment, serving as a way to obtain qualitative results. The interface displays the arena in
which the 60 agents are positioned, some buttons to manage the experiment, and an information
pane. A screenshot of the interface during an experiment can be found in Figure[3.9] The green
square is the arena, which includes black, red, and blue dots, which are the ToMO0, ToM1, and
ToM2 agents respectively. The screenshot furthermore shows two buttons, the ‘New’ button and
the ‘Pause’ button. The information pane on the right of the interface shows the time, i.e., the
number of ticks that have passed, the current agent counts per ToM order, and a graph showing
the most recent evolutionary activity.

The interface can be used to run the experiments. A new file can be created by clicking the
‘New’ button in the top left corner. This generates a new arena with new, uninitialized agents,
and it cleans the information pane. Furthermore, the interface can be used to initialize the ini-
tialBeliefs of the agents by clicking the button ‘Initialize’, which is located at the position of
the ‘Pause’ button in Figure [3.9] when a new file is created. The ‘Pause’ button can be clicked
to pause the initialization or the experiment. A ‘Start’ button appears that can be used to start
the initialization or the experiment again after pausing it.

The program requires three parameters, one that specifies whether or not to enable the GUI
(true or false), one that specifies which experiment to run (1 or 2), and one that specifies the
name of the file to which the results are written.

When an experiment ends, the data are saved to the computer automatically, as a CSV file
with the specified name. This file is stored in the ‘EvolutionToM’ folder. The GUI can thus be
used to start a new experiment without the risk of losing the data of the previous experiment.
Note that the previous results file will be replaced if the file name is not altered.

For this project, the data are structured as follows: all the results are placed in the ‘finalRe-
sults/quantitative’ folder, which contains a folder for experiment 1 and experiment 2. Within
both folders, the results are divided based on their corresponding A values. The folders fur-
thermore contain a file that can be used to visualize the data ‘processData.py’, and ‘process-
DataExp2.py’ for experiments 1 and 2 respectively. This program requires an integer input
argument, which specifies how many experiments were done per lambda value. It can then be
used to create graphs that show the collected data.

A detailed explanation of how to run the simulation and the other programs can be found in
the README of the GitHub repository (see footnote 3).

3For the code, see https://github.com/SanneBerends/EvolutionToM
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eee Environment

Overview

Ticks: 253

ToMO (black): 22
ToM1 (red): 19
ToM2 (blue): 19

ToM evolution

|— ToM0 — ToM1 — ToM2

Figure 3.9: A screenshot of the GUI, including the arena (green), two buttons, and an infor-
mation pane. The information pane shows the number of ticks so far, the agent count per ToM
order, and a graph with the most recent progression of these agent counts.
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Chapter 4

Results

This chapter presents the results of experiment one and two, as described in Section [3.4]

4.1 Experiment 1

The results of Experiment 1 are discussed in this section. First, some qualitative results are
presented, followed by the quantitative results.

4.1.1 Qualitative Results

Although the focus of this research lies mainly on the quantitative analysis, a qualitative analysis
was done to check if the agents exhibited any unexpected or unwanted behavior. Furthermore,
it was used for parameter tuning, as mentioned in the Methods section (Section 3).

The first observation is that agents with second-order Theory of Mind (ToM2) sometimes
make an offer that seems to be disadvantageous for them. An example is an agent with initial
resources [4, 4, 4, 2], with r = 1. This agent makes offer where it gives [0, 0, 1, 0] and asks for
[0, 0, 0, 0], even though he would receive nothing in return for the (non-producing) resource that
it gives. This would yield the following resources: [4, 4, 3, 2]. The reason behind these types
of offers is that the ToM2 expects a good offer in return. In this particular case, the agent was
certain about the producing resource of the trading partner and therefore expected the following
counteroffer: receiving [0, 0, 0, 2] and giving [1, 0, 1, 0]. Accepting this offer would yield the
following resources: [3, 4, 3, 4], which is better than the current state of the agent: recall that
the agent does not receive points for its producing resource. This example highlights the ability
of ToM2 agents to signal their preferences. By making the disadvantageous offer, the agent
shows that it is willing to give an item of resource type 3.

Another observation is that an agent often has higher initial beliefs for offers where it asks
for m resources of a type than offers where it asks for n resources, where m > n. This is
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caused by the way that the belief updates work. Initial beliefs can only go down, so agents who
encounter a certain situation many times are likely to develop a low belief for this situation.
There are fewer scenarios where an agent can consider asking for many resources of a type than
scenarios where it can ask for little resources of a type, since this depends on the inventory of
the trading partner. As a result, the beliefs for those offers where it asks for little may get a
lower belief than those where it asks for a lot. This sometimes causes an agent to make an offer
where it asks for m of a resource, even though an offer where it asked for n of this same resource
was already rejected. In practice, this can increase the negotiation length.

Furthermore, a (ToMO) agent sometimes withdraws even though there appears to option for
a deal with its trading partner. This has to do with the way the negotiation starts. If a ToMO
agent receives a ‘high’ offer like one where it has to give [1, 1, 1, 0] in exchange for [0, 1,
0, 1], this agent will decrease the beliefs for offers where it gives less than asked for in the
received offer. As a result, the agent will not make the offer of giving [0, 0, 0, 1] in exchange
for [0, 0, 1, 0], even though it would benefit both agents. This behavior is a consequence of the
implementation of zero-order ToM.

Another important observation is that a relatively large amount of negotiations do not ter-
minate before the negotiation limit. It occurs mostly when the learning speed of the agents is
0.2, in which case it can occur in each ToM type. For the other learning speeds, it only hap-
pens when no ToMO agent participates. An inspection of the negotiations where the limit was
reached, showed that the offers that were made were repeated every turn. This behavior is the
result of the implementation of the ToM, especially the confidence scores used to determine
which ToM order is projected on the trading partner. Each ToM1 and ToM2 agent starts a ne-
gotiation with a confidence score of 1 in its order of ToM. This confidence can be decreased
when different behavior is observed from the trading partner than expected. When an agent
made an offer and received a counteroffer, the zero order belief for that offer decreases, which
ideally would decrease the chance of that offer being chosen again the next round. However,
these beliefs are only used when the confidence score is lower than 1.0. This pattern would be
resolved as soon as the confidence score decreases, but this happens only very slightly. The
confidence updates depend on the difference between the expected action of the trading partner
and what this agent would do, but this difference is often very small since the agent is good
at estimating the behavior of the trading partner. This especially leads to repeating offers if
the agent has no way of knowing the producing resource of the trading partner. This explains
why it is more frequent in negotiations with a ToM1 agent: these agents need the producing
resource of the trading partner to find a good offer. If there is no way of finding out what this
producing resource is, there will be no improvement in offers. The problem occurs less often
for ToM2 agents, since these agents might instead start signaling their own producing resource.
If this is impossible, they too will likely start repeating offers. If the learning speed is low,
the confidence scores reduce even slower, explaining why it is a more-often occurring problem
in these experiments. These findings are reflected in the qualitative results of the negotiation
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termination reasons (see Section @.1.2)).

Finally, apart from the experiments with 60 agents, also two alternatives were tested: 30
agents and 90 agents. Initially, 180 agents were tested, but this resulted in a memory issue.
These variations were tested by running them three times for each learning value. The number
of experiments was thus too small to draw any conclusions, but a qualitative inspection of the
results indicated that for the experiments with 30 agents, the ToM1 and ToM2 agents had a
higher survival rate than for the experiments with 60 agents. The results of the experiments
with 90 agents seem similar to those found for the experiments with 60 agents.

4.1.2 Quantitative Results

The quantitative results of the first experiment include all the data that were collected in the 120
runs per learning speed value, as described in Section [3.4.3

Experiment Lengths

The maximal length of the experiment was set to 3.750.000 ticks, corresponding to 1500 gen-
erations. An experiment terminated either when this maximum was reached, or when only one
type of agent remained. The experiment lengths of all experiments are visualized in a violin
plot, shown in Figure 4.1} The plot displays the spread of the experiment lengths per learning
speed. Two horizontal lines were added to indicate the minimum and maximum length of the
experiments. Note that these limits were not exceeded. The plot reveals that for each learning
speed, the majority of experiments ended before reaching the maximum length. In other words,
the majority of the experiments terminated due to one species surviving. The plot furthermore
shows that the median of the experiment lengths was highest for the learning speed of 0.8, then
for 0.2, and finally 0.5. The latter also shows the widest shape, indicating that the variability in
experiment lengths is the smallest for this value. The shape of the violin for the learning speed
of 0.8 is the narrowest, and the inter-quartile range is the largest, indicating that the experiment
length varied more than for the other learning speeds.

Final Agent Distribution

The final distribution of agent types was saved for each experiment. The 360 experiments were
divided into two categories: the experiments where only one agent type remained, and those
where multiple types remained. This was done to make the graphs more readable since the
majority of the experiments ended with only one species surviving. The average final distri-
bution of agents, when one type survived, is plotted in Figure 4.2| The figure also shows the
corresponding error bars, which reflect one standard error. As can be concluded from the figure,
if the experiment terminated because one Theory of Mind (ToM) order survived, this surviving
order was always ToMO. This was the case for each learning speed.
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EXP1: Distribution of Experiment Lengths,
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Figure 4.1: A violin plot showing the distribution of experiment lengths of experiment 1, plotted
for the experiments with a learning speed of 0.2, 0.5, and 0.8.
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EXP1: Average Final Distribution (one type left),
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Figure 4.2: The average final distribution of agents for experiment 1 when only one ToM order
survived, plotted for each learning speed. The error bars indicate one standard error.
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In the case that multiple species survived until the end of the experiment, the number of
surviving species was always two. This can be concluded from Figure 4.3 which displays the
average final distribution when multiple ToM orders survived. Again, the error bars indicate
one standard error. The figure shows that on average, ToMO was still the most dominant species
at the end of the experiment, but that ToM1 also had an average of 3.8, 5.9, and 6.0 agents
left for learning speeds of 0.2, 0.5, and 0.8 respectively. In other words, whilst ToM2 always
went extinct before the end of the experiment, this was not the case for ToM1. A closer look
at the (standard) error bars reveals that the average final number of agents was not significantly
different for the experiments with learning speeds of 0.2 and 0.8. For the experiments with a
learning speed of 0.5, the average number of surviving ToM1 agents was lower than for the
other learning speeds, and, consequently, the average number of surviving ToMO agents was
higher.
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Figure 4.3: The average final distribution of agents for experiment 1 when multiple ToM orders
survived, plotted for each learning speed. The error bars indicate one standard error.
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Dominant Species

Besides the final distribution of agent types, the dominance frequencies of each ToM order were
also collected. Recall that the dominance frequency of a ToM order is the fraction of the ticks
that this order was (one of) the most occurring order of ToM in the population at that time step.
Note that multiple species can be dominant simultaneously and that the summed frequencies
can thus exceed 1.0. The average dominance frequencies can be found in Figure 4.4 where the
error bars indicate one standard error. The figure shows that, for each learning speed, ToMO
had a significantly higher average dominance frequency than ToM1 and ToM2. The average
dominance frequency of the former is close to 1.0, whilst that of the latter two are hard to
distinguish from the graph due to the large difference compared to ToMO. Therefore, Figure
[.5] shows a zoomed-in version of a section of Figure d.4] From this figure, it follows that the
average dominance frequency of ToM2 was higher than that of ToM1, even though both were
substantially smaller than that of ToMO. The (small) overlap of the error bars suggests that there
was no significant difference between the results of the different learning speeds.
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Figure 4.4: The average dominance frequency for experiment 1 per ToM order, plotted for
each learning speed. Frequencies do not add to one because multiple types can be dominant
simultaneously. The error bars indicate one standard error.
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EXP1: Average Dominance Frequencies for ToM1 and ToM2,
A € [0.2,0.5,0.8]
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Figure 4.5: The average dominance frequency for ToM1 and ToM2: an enlarged version of a
section of Figure[4.4] The error bars indicate one standard error.
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Typical Run

The progression of the distribution of the agent types over time was collected for a selection of
the experiments. An example of a typical run for the experiments with a learning speed of 0.2
can be found in Figure The number of agents per ToM order was collected once every five
ticks. The graph shows that in the first 50,000 ticks, the blue (dotted) line has the upper hand,
indicating that ToM2 was dominant here. This matches the found dominance frequencies, in the
small portion of the time-lapse where black (solid), i.e., ToMO, is not dominant, ToM2 is. The
graph furthermore shows that the number ToM1 agents (red: dashed) quickly beats the number
of ToM?2 agents (blue: dotted). ToM1 went extinct around 430,000 ticks but came back due to
a mutation. The experiment was terminated due to both ToM1 and ToM2 being extinct at the
same time. This happened after approximately 1,250,000 ticks. Note that the red (dashed) line
corresponding to the ToM1 agents does not reach zero; this is a consequence of only plotting
one out of five ticks.
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Figure 4.6: An example of a time-lapse of the distribution of agent types for the experiments of
type 1 with a learning speed of 0.2. This example is representative of the other runs.

Figure shows an example of the evolution of ToM over time for the experiments with
a learning speed of 0.5. The progress was very similar to that discussed above. Again, ToM?2
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became the dominant species at the very start of the experiment. In this particular example,
the period of its dominance was shorter than in the example run of A = 0.2, but note that there
was no significant difference overall. Again, the ToM0 agents were most dominant for the vast
majority of the experiment. The ToM2 agents were the first to go extinct, whilst the ToM1
agents lasted longer in the environment, until also going extinct after approximately 1,080,000
ticks.
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Figure 4.7: An example of a time-lapse of the distribution of agent types for the experiments of
type 1 with a learning speed of 0.5. This example is representative of the other runs.

Finally, Figure {.§] shows the evolution of ToM in a typical run of an experiment with a
learning speed of 0.8. The pattern that can be observed is very similar to that of the other
learning speeds. The main difference is that in this experiment, ToM1 agents lasted until the
end of the experiment, so until the maximum experiment time was reached. In this situation,
there were thus two agent types left at the end: ToMO agents and ToM1 agents. This is in
accordance with what can be seen in Figure {.3]
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EXP1: ToM Progression over Time,
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Figure 4.8: An example of a time-lapse of the distribution of agent types for the experiments of
type 1 with a learning speed of 0.8. This example is representative of the other runs.
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Agent Ages

The ages of the agents were collected for every experiment. The ages are plotted per learning
speed, per order of ToM. Since the distribution of ages per ToM was very similar for the different
learning speeds, the plots for A = 0.2 and A = 0.8 can be found in Appendix

Figure |4.9shows the spread of the ages per ToM order for a learning speed of 0.5. Note that
the ages did not exceed the lower bound of zero, even though it may appear so in the figure as
a result of the wide spread of ages. The figure shows that ToMO agents had the highest variety
in ages. The wide bottom of the violin shape indicates that most agents died relatively young,
but the long upper tail shows that some agents reached very high ages, up to approximately 2.4
million ticks. The distribution of ages of the ToM1 agents shows a similar pattern, except that
the bottom of the violin is wider and thus that more agents died young compared to the ToM1
agents. The violin plot of ToM2 has a much shorter upper tail, indicating that agents of this type
generally did not survive as long as the other types. The positions of the medians, shown by
white lines in each violin, confirm that most agents across all ToM orders had relatively short
lifespans.
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Figure 4.9: A violin plot of the spread of agent ages of experiment 1 per ToM order, for the
experiments with a learning speed of 0.5.



4.1. EXPERIMENT 1 63

Negotiation Lengths

Apart from the agent and experiment-related data, negotiation-specific data were also collected.
Figure .10 shows the average negotiation length per negotiation type, for each learning speed.
The negotiation type specifies the order of ToM of the agent that initiates the negotiation, and
the order of its trading partner. The figure thus shows nine times three bars, along with their
corresponding standard errors. A substantial amount of information can be deducted from the
graph. Firstly, the results differ significantly between the three learning speeds. For each ne-
gotiation type, the average negotiation length was highest for a learning speed of 0.2, then 0.5,
and finally 0.8. How large the difference in average negotiation length was between the ex-
periments with the different learning speeds varied per negotiation type. For the ToM1-ToM1,
ToM1-ToM2, ToM2-ToM1, and ToM2-ToM2 negotiations, the difference was the smallest, al-
though still significant (the error bars do not overlap). The difference in negotiation length was
the largest for ToMO-ToMO negotiations, with the average lengths being 16.4, 7.6, and 4.5 for
A=0,2,0.5, and 0.8 respectively.

EXP1: Average Negotiation Length,
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Figure 4.10: The average negotiation length for experiment 1 per negotiation type, plotted for
learning speeds 0.2, 0.5, and 0.8. The negotiation type specifies the order of the initiating agent
and its trading partner. The error bars indicate one standard error.
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Due to the variations in the results of the different experiments, the rest of the observations
are discussed per learning speed. For a learning speed of 0.2, the average negotiation length of
type ToMO-ToMO was significantly higher than for the other negotiation types. In fact, all the
observed differences between the average lengths of the negotiation types for this learning speed
were significant. This type is followed by ToM1-ToM2 and ToM1-ToM1, with an average ne-
gotiation length of 14.4 and 13.3 respectively. After that, negotiations of type ToM2-ToM1 and
ToM2-ToM2 had the highest average length, Followed by ToM1-ToM0, ToM0-ToM2, ToM2-
ToMO, and finally ToMO-ToM1.

For a learning speed of 0.5, again all differences in average negotiation lengths were sig-
nificant. The negotiation type with the highest average negotiation length was ToM1-ToM?2
with an average length of 13.6, followed by ToM1-ToM1 with an average length of 12.9. Next,
ToM2-ToM1, ToM2-ToM2, and ToM0O-ToMO on average resulted in the longest negotiations.
On average, the shortest negotiations were those of type ToM1-ToM0O, ToM0-ToM?2, ToM2-
ToMO, and ToMO-ToM1 respectively. The results thus indicate that all negotiation types that
include a ToMO agent had a lower length on average than those without a ToM0 agent.

For a learning speed of 0.8, the negotiation types with the longest average length were also
ToM1-ToM2 and ToM1-ToMI1 respectively, followed by ToM2-ToM1 and ToM2-ToM?2. After
these negotiation types, ToM0-ToMO and ToMO-ToM?2 had the highest average length respec-
tively. The differences between these six negotiation types were significant. There was no
significant difference between the types ToM1-ToM0O and ToM2-ToMO, but both had a signif-
icantly higher average length than ToMO-ToM1. Again, all negotiation types that include a
ToMO agent, had a lower length on average than those without a ToMO agent.

Reasons for Negotiation Termination

Apart from the lengths of the negotiations, the reason for the termination of these negotiations
was also collected. A negotiation terminates when either of the agents withdraws or accepts, or
when the negotiation limit (of 50) is reached. The frequency data are plotted in three graphs,
one per learning speed. Figure {.11]shows the results for a learning speed of 0.2. The data are
visualized as a stacked bar plot per negotiation type. What is notable is that the majority of the
negotiation did not end successfully, since for each negotiation type, the summed frequency of
either of the agents accepting was lower than 30%. Instead, most negotiations were terminated
due to one of the agents withdrawing from the negotiation or the negotiation limit being reached.
The success rate was the lowest for negotiation types ToM1-ToM1 and ToM1-ToM2. The
highest success rates were found for ToM0-ToMO, ToM1-ToMO0, and ToM2-ToMO negotiations.
Thus, for the negotiations where the non-initiating agent was a ToMO agent.

The graph shows that for all negotiation types except for ToM0-ToM1 and ToMO-ToM?2,
the most occurring reason for the termination of the negotiation was that the initiator withdrew.
For the two exceptions, the most occurring reason was that the trading partner withdrew. This
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EXP1: Relative Frequency of Negotiation Endings by Type,

A=0.2
1001 Reason for Termination
. B |limit reached
\0 P .
S 801 mm B OB BB B I initiator withdrew
a I other withdrew
5 BN initiator accepted
> 60 B B 0 B other accepted
9]
—
L
v 8 BE B & &5 &0 5 & B
=
)
o
g2/ B BE B B BB B B
0_

Q> Qv QO X2 v QO X2 v
Q&$ QQ Q"&o‘\ &&0\‘\ '\/&0@ '\/Q’LQ’L‘\’LQ
&o‘\ 4o® 40® &oé\ 40‘\ &$ &oé\ 40\“ $

Negotiation Types

Figure 4.11: The reason for negotiation termination for experiment 1 per negotiation type, for
the experiments with a learning speed of 0.2.
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reason also has a relatively high frequency for the negotiation types ToM0-ToMO, ToM1-ToM1,
ToM1-ToM2, ToM2-ToM1, and ToM2-ToM?2. The graph furthermore shows that for most nego-
tiation types, a small frequency of the negotiations was terminated due to the negotiation limit.
This frequency was relatively high (above 15%) for ToM1-ToM1, ToM1-ToM2, ToM2-ToM1,
and ToM2-ToM2: so in all negotiation types without a ToMO agent. The graph furthermore
indicates that for ToM0O-ToM 1, ToM0-ToM2, ToM2-ToM1, and ToM2-ToM2, the frequency of
the initiator accepting was higher than that of the trading partner accepting. For ToM0-ToMO,
ToM1-ToMO, ToM1-ToM1, and ToM2-ToMO, this was the other way around. For ToM1-ToM?2
these frequencies were approximately the same.

Figure d.12| shows the relative frequency of the reason for negotiation termination per nego-
tiation type, for the experiments with a learning speed of 0.5. The pattern that can be observed
is very similar to that for the experiments with a learning speed of 0.2. The main difference
is that now, the time limit of the negotiation was only reached for negotiations of types ToM1-
ToM1, ToM1-ToM2, ToM2-ToM1, and ToM2-ToM?2, and never for the other types. Still, for
each negotiation type, over 70% of the negotiations did not end in a successful trade. Again,
the negotiations where the non-initiating agent was a ToM0 agent had the highest success rate,
whilst the negotiations of type ToM1-ToM1 and ToM1-ToM2 had the lowest success rate.

The relative frequencies of the reasons for negotiation termination per negotiation type, for
the experiments with a learning speed of 0.8, were almost identical to those with a learning
speed of 0.5. Therefore, the corresponding figure can be found in Appendix

Negotiation Gains

How useful a negotiation was to an agent can be measured in terms of the increase in its T-
score. This represents the value of their resources. This increase is known as the negotiation
gain for this agent. The gains were collected for each agent in each negotiation. The results
are plotted for each learning speed, negotiation type, and the role of the agent (initiator or its
trading partner).

Figure {4.13] shows the results for a learning speed of 0.2, i.e., the average gains for both
agents, for each negotiation type. Note that only the gains of successful negotiations were
included in the averages. The error bars indicate one standard error. The graph shows that
there are negotiation types for which the average gain of the initiator was higher (ToM1-ToMO
and ToM2-ToMO), and types where that of the trading partner was higher (all the other types).
In each of the negotiation types, the difference between the gain of the agents was significant,
although some of the differences were much larger than others. For example, the difference in
average gain was approximately 0.7 for negotiation type ToM0-ToM1, but only 0.1 for ToM1-
ToM2.

Notable is that none of the average gains exceed 2.4. The highest average gain was ap-
proximately 2.3, which was achieved by the non-initiating agent in a ToM2-ToM?2 negotiation.
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EXP1: Relative Frequency of Negotiation Endings by Type,
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Figure 4.12: The reason for negotiation termination for experiment 1 per negotiation type, for
the experiments with a learning speed of 0.5.
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EXP1: Average Gains of Initiator vs Other by Negotiation Type,
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Figure 4.13: The average gains of the initiating agent and its trading partner for each negotiation
type of experiment 1, plotted for the experiments with a learning speed of 0.2. The error bars
indicate one standard error.
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This average gain was not significantly higher of that obtained by the non-initiating agent of a
ToM1-ToM2 negotiation. This was followed by both the initiating agent of this ToM1-ToM2
negotiation type. After that, the non-initiating agents of the ToM0-ToM2 and ToM2-ToM1
negotiations benefited the most from their negotiations, but there is no significant difference
between these two negotiation types. The lowest gains (on average) were obtained by the ini-
tiating agent in the ToM0O-ToM1 negotiation, and the non-initiating agent in the ToM1-ToMO
negotiation.

The graph indicates that the ToM1 agent received the highest average gain in most of the
negotiation types that it was part of. The only exception is the ToM1-ToM?2 negotiation type
where the ToM2 agent received a higher gain on average. The ToMO agent received the lowest
average gain in each of the negotiation types that it was part of. The figure also shows how the
average gain of an agent type depends on the order of its trading partner. A ToM2 agent, for
example, received an average gain of 2.0 when being the non-initiating agent in a negotiation
with a ToMO agent, an average gain of 2.2 when being the non-initiating agent in a negotia-
tion with a ToM1 agent, and an average gain of 2.3 when being the non-initiating agent in a
negotiation with a ToM2 agent. The role of the agent within the negotiation also played a role:
a ToMO agent received a slightly lower gain on average when initiating a negotiation with a
ToM?2 agent than when a ToM2 agent initiated this negotiation. This can furthermore be seen
in the ToM1-ToM2 and ToM2-ToM1 negotiation types. In both types, the agents had the same
trading partner, but the average gain obtain depended on the role of the agent.

The average gains for the experiments with a learning speed of 0.5 were quite similar to
those with a learning speed of 0.2. They can be found in Figure 4.14] where the error bars
indicate one standard error. One of the differences is that in this scenario, the ToM1 agent
received a slightly higher gain when initiating an experiment with another ToM1 than with a
ToMO agent, which was the other way around for the lower learning speed. Furthermore, for this
learning speed of 0.5, there was no significant difference between the gains of the initiator and
its trading partner in a ToM1-ToM2 negotiation. Also the difference in average gain between
the initiator and its trading partner of a ToM1-ToM1 negotiation was no longer significant for
this learning speed.

The average gains for the experiments with a learning speed of 0.8 can be found in Figure
M.T5] The error bars indicate one standard error. The findings were again quite similar to
those with a learning speed of 0.2. The main difference is that now, the initiating agent of the
ToM1-ToM2 type received the highest average gain together with the non-initiating agent of
the ToM2-ToM2 type. Furthermore, for the ToM1-ToM1 negotiation type, the initiator now
obtained a higher average gain than its trading partner.
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Figure 4.14: The average gains of the initiating agent and its trading partner for each negotiation
type of experiment 1, plotted for the experiments with a learning speed of 0.5. The error bars
indicate one standard error.
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EXP1: Average Gains of Initiator vs Other by Negotiation Type,
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Figure 4.15: The average gains of the initiating agent and its trading partner for each negotiation
type of experiment 1, plotted for the experiments with a learning speed of 0.8. The error bars
indicate one standard error.
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4.2 Experiment 2

The results of Experiment 2 are discussed in this section. First, some qualitative observations
are presented, followed by the quantitative results.

4.2.1 Qualitative Results

The majority of the simulation was the same for both experiments. The logic of the ToM was
not changed, and therefore the observations that were made for experiment one also hold for
this experiment (see Section.1.1)).

This experiment made the agents behave more realistically, since they remembered previous
encounters with others. In real life, humans also use previous knowledge to make informed
decisions. The model may thus be more accurate to answer the research questions. In the
simulation, this meant that the agents now saved agent-specific data, so their confidence scores
and producing resource beliefs. Agents could also reject agents based on previous experiments.
Visually, the main difference compared to experiment 1 is that agents change their direction
more often.

4.2.2 Quantitative Results

The quantitative results of the second experiment include all the data that were collected in the
120 runs per learning speed value, as described in Section |3.4.3

Experiment Lengths

The distributions of the experiment lengths (per learning value) are visualized in the violin plot
that can be found in Figure The figure shows two horizontal lines: one that indicates the
line where the number of ticks is zero, and one that indicates the maximal experiment length
of 3.750.000 ticks. None of the experiments exceeded this length, even though this may seem
the case for A = 0.2. For this learning speed, the majority of the experiments ended due to the
time limit being reached. This can be seen by the wide upper part of the violin. The white line
represents the median, which lies around 3.25 million ticks. The long (relatively narrow) tail of
the violin shows that some experiments ended before the time limit.

In contrast, the distribution of the experiment lengths for the learning speed of 0.5 shows
that only a few experiments reached the limit, whilst the majority terminated around 1 million
ticks, as indicated by the wide shape around this number. The narrower shape overall, compared
to the left-most violin, indicates that the variation in experiment lengths was larger. The median
of the experiment lengths with A = 0.5 was lower than that of the others.

Finally, the right-most violin shows that for the experiments with a learning speed of 0.8,
some experiments reached the maximum experiment length, as indicated by the wider shape at
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EXP2: Distribution of Experiment Lengths,
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Figure 4.16: A violin plot showing the distribution of experiment lengths of experiment 2,
plotted for the experiments with a learning speed of 0.2, 0.5, and 0.8.
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the top. Furthermore, it shows a concentration of experiments that ended around 1 million ticks,
similar to the violin of A = 0.5. The median for this learning speed of 0.8 is lower than for 0.2
but higher than for 0.5.

Final Agent Distribution

For each experiment, the final distribution of agent types, and thus ToM orders, was saved
and plotted. The 360 experiments were divided into those where only one type remained, and
those where multiple types remained. The average final distribution of the former can be found
in Figure The error bars indicate one standard error. The figure shows that when the
experiment ended because one ToM order survived, this order was always ToMO, regardless of
the learning speed used in the experiment.
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Figure 4.17: The average final distribution of agents for experiment 2 when only one ToM order
survived, plotted for each learning speed. The error bars indicate one standard error.

In the case that multiple species remained at the end of the experiment, ToMO agents still
had the largest population at the end. This can be deduced from Figure {.18] where the error
bars again indicate one standard error. However, ToM1 agents also had an average population
of 6.5, 4.4, and 5.5 left, for A = 0.2,0.5, and 0.8 respectively, although the difference between
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these averages of learning speeds was not significant. Furthermore, at the end of the experiment,
there were on average also still approximately 0.1 ToM?2 agents left. In other words, there were
cases in which at least one ToM2 agent survived until the end of the experiment. There was
again no significant difference between the results of the different learning speeds.
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Figure 4.18: The average final distribution of agents for experiment 1 when multiple ToM orders
survived, plotted for each learning speed. The error bars indicate one standard error.

Dominant Species

Besides the final distribution of agent types, the dominance frequencies of each ToM order
were also collected. The average dominance frequencies can be found in Figured.19] The error
bars indicate one standard error. Since more than one species can be dominant at a time, the
summed frequencies can exceed 1.0. The figure shows that the dominance frequency of the
ToMO agents lies close to 1.0. There is a small effect of the learning speed: the dominance
frequency of the ToMO agents was slightly, but significantly, for A = 0.2 than for the other two
values. The average dominance frequencies of ToM1 and ToM2 can be inspected in Figure[d.20]
which displays an enlarged version of a section of Figure 4.5] From this figure, it follows that
there was no significant difference in the average dominance frequency of ToM1 and ToM2, but
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that both are significantly smaller than that of ToMO0. Furthermore, it shows that the frequency
of both ToM1 agents and ToM2 agents was significantly lower for A = 0.2 than for the other
learning speeds.

EXP2: Average Dominance Frequencies for ToM0, ToM1, and ToM2,
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Figure 4.19: The average dominance frequency for experiment 2 per ToM order, plotted for
each learning speed. Frequencies do not add to one because multiple types can be dominant
simultaneously. The error bars indicate one standard error.

Typical Run

The evolution of the ToM orders over time was collected for a selection of the experiments.
Figure {.21| shows a typical run of the experiments with a learning speed of 0.2. ToMO0 became
the dominant order almost straight away. The graph shows that ToM2 went extinct within the
first 100,000 ticks. Mutations allowed an agent of ToM2 to enter the environment again a few
times, but these quickly died. ToM1 on the other hand, survived until the end of the experiment,
which was terminated due to the limit being reached. The experiment thus ended with two
species in the environment: ToMO and ToM 1.

A typical run for the experiments with a learning speed of 0.5 can be found in Figure
The graph shows that ToM1 (red: dashed) was the dominant species at the start of the exper-
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Figure 4.20: The average dominance frequency for ToM1 and ToM2: an enlarged version of a
section of Figure[d.19] The error bars indicate one standard error.
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EXP2: ToM Progression over Time,
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Figure 4.21: An example of a time-lapse of the distribution of agent types for the experiments
of type 2 with a learning speed of 0.2. This example is representative of the other runs.
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iment. Apart from that, the observed pattern was very similar to that of the experiments with
A = 0.2. This experiment ended due to both ToM1 and ToM2 going extinct.
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Figure 4.22: An example of a time-lapse of the distribution of agent types for the experiments
of type 2 with a learning speed of 0.5. This example is representative of the other runs.

Finally, Figure 4.23| shows the evolution of ToM in a typical run of an experiment with a
learning speed of 0.8. The pattern that can be observed is very similar to that of the experiments
with a learning speed of 0.5. ToM1 was dominant at the start of the experiment, although very
briefly. The experiment terminated because ToMO was the only surviving species.

Agent Ages

The ages of all agents were collected and plotted per order of ToM. The results corresponding to
a learning speed of 0.2, 0.5, and 0.8 were all very similar, so only those of A = 0.5 are discussed,
and the others can be found in Appendix [B]

Figure |4.24{ shows the distribution of the ages of the agents in experiments with a learning
speed of 0.5. The ages did not exceed the lower bound of zero, even though it may appear so in
the figure. This is a result of the wide spread of ages. The figure shows that ToMO agents had
the highest variety in ages. The majority of the ToMO agents died relatively young, which can
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Figure 4.23: An example of a time-lapse of the distribution of agent types for the experiments
of type 2 with a learning speed of 0.8. This example is representative of the other runs.
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be concluded from the wide bottom of the violin shape. The length of the upper tail shows that
some agents reached very high ages, up to approximately 2.0 million ticks. The distribution of
ages of the ToM1 agents follows a similar pattern, except that the bottom of the violin is slightly
wider and the upper tail is shorter. This indicates that more agents died young compared to the
ToM1 agents. The violin plot of ToM2 has a shorter upper tail, indicating that agents of this
type generally did not survive as long as the other types. The positions of the medians, shown
by white lines in each violin, confirm that most agents across all ToM orders had relatively short
lifespans. Additionally, the median age of the agent decreased as the ToM order increased.
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Figure 4.24: A violin plot of the spread of agent ages of experiment 2 per ToM order, for the
experiments with a learning speed of 0.5.

Negotiation Lengths

Multiple types of data were collected from the negotiations. Firstly, the negotiation lengths
were collected and averaged over all the negotiations per learning speed and negotiation type.
The results can be found in Figure which includes the corresponding error bars as well,
which indicate one standard error. The figure shows that except for the ToM1-ToM1 negotiation
type, for each type the average negotiation length was highest for a learning speed of 0.2, then
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0.5, and then 0.8. For the ToM1-ToM1 type, the length was highest for A = 0.5, followed by 0.2
and then 0.8. Each of these differences was significant, as can be concluded by the error bars
(they do not overlap). The impact of the learning speed was highest for negotiations of type
ToMO-ToMO, with average lengths of 16.6, 7.7, and 4.5 for A = 0.2, 0.5, and 0.8 respectively.
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Figure 4.25: The average negotiation length for experiment 2 per negotiation type, plotted for
learning speeds 0.2, 0.5, and 0.8. The negotiation type specifies the order of the initiating agent
and its trading partner. The error bars indicate one standard error.

Since the graph contains a substantial amount of information, its contents are discussed
per learning speed. For a learning speed of 0.2, the average negotiation length was highest
(16.6) for negotiation type ToM0O-ToMO. Each of the differences in average length between
the different negotiation types for this learning speed was significant. After ToM0-ToMO, the
next negotiation types with the highest average length were ToM1-ToM2, ToM2-ToM1, ToM1-
ToMI1, and ToM2-ToM2. The shortest negotiations were of the types ToM1-ToM0, ToMO-
ToM2, ToM2-ToMO, and ToMO-ToM1 respectively, terminating after 5-6 rounds on average.
This shows that all negotiation types with exactly one ToMO agent had the shortest average
length.

For a learning speed of 0.5, the longest average negotiation length belonged to the negotia-
tion type ToM1-ToM2 with an average length of 12.0. After this, ToM1-ToM1, ToM2-ToM1,
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and ToM2-ToM2 were the negotiation types that took the most time, respectively. These differ-
ences in average negotiation length were all significant. The shortest negotiations (on average)
were those where at least one ToMO agent participated: ToMO-ToM?2 was followed by ToMO-
ToM1 and ToM2-ToMO. The latter two did not have a significantly different average negotiation
length: both took 3.4 rounds on average. The shortest negotiations were those of type ToM1-
ToMO.

For a learning speed of 0.8, a similar pattern can be observed: the negotiation types with
the highest average length were ToM1-ToM2 and ToM1-ToM1. These types were followed
by ToM2-ToM1 and ToM2-ToM2. Again, the negotiation types with a ToMO agent had the
lowest average length. Each of the differences in average negotiation lengths was significant.
The mentioned negotiation types were followed by ToM0-ToMO0, ToM0-ToM?2, ToM2-ToMO,
ToMO-ToM1, and ToM1-ToMO respectively, with the latter having an average experiment length
of only 2.5.

Reasons for Negotiation Termination

The reasons for the termination were collected for each negotiation. There are five options:
either of the agents withdrew, accepted, or the negotiation limit (of 50) was reached. The
collected data were plotted per learning speed. Each graph is a stacked bar plot where each bar
corresponds to one of the nine negotiation types. Figure #.26] shows the results for a learning
speed of 0.2. The plot shows that the majority of the negotiations did not result in a successful
trade: for none of the negotiation types, the summed frequency of either of the agents accepting
was higher than 30%. Most of the negotiations terminated due to a withdrawal of one of the
agents or due to the negotiation limit being reached. The negotiation types with the highest
success rates were ToM0-ToMO0, ToM1-ToMO, and ToM2-ToMO. These are all the negotiations
where the non-initiating agent was a ToMO agent. The negotiation types with the lowest success
rate were ToM1-ToM1 and ToM1-ToM2.

The plot shows that the most occurring reason for the termination of the negotiation was a
withdrawal of the initiator, with an exception for the ToM0-ToM1 and ToM0-ToM2 negotia-
tions, where the trading partner withdrew more frequently. The latter is also relatively frequent
for negotiation types ToM0-ToM0, ToM1-ToM 1, ToM1-ToM2, ToM2-ToM 1, and ToM2-ToM?2.
For each of the negotiation types, a percentage of them ended due to the negotiation limit being
reached. This percentage was relatively high (above 15%) for the types ToM1-ToM1, ToM1-
ToM2, ToM2-ToM1, and ToM2-ToM2. These are all the types where no ToMO0 agent partic-
ipates. Furthermore, the results reveal that for the negotiations of type ToM0-ToM1, ToMO-
ToM2, ToM2-ToM1, and ToM2-ToM2, the frequency of the initiator accepting was higher than
that of the trading partner accepting. Additionally, the other types (ToM0-ToMO0, ToM1-ToMO,
ToM1-ToM1, ToM1-ToM2, and ToM2-ToMO) had a higher frequency of the trading partner
accepting.
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EXP2: Relative Frequency of Negotiation Endings by Type,
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Figure 4.26: The reason for negotiation termination for experiment 1 per negotiation type, for
the experiments with a learning speed of 0.2.
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The relative frequencies of the negotiation termination reasons for the experiments with a
learning speed of 0.5 can be found in Figure #.27] The results are quite similar to those for
A =0.2. There is one main difference. The negotiation limit was only reached for negotiations
of type ToM1-ToM1, ToM1-ToM2, ToM2-ToM1, and ToM2-ToM2. However, still 70% of the
negotiations did not end in a successful trade.
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Figure 4.27: The reason for negotiation termination for experiment 2 per negotiation type, for
the experiments with a learning speed of 0.5.

The results for the experiments with a learning speed of 0.8 show no notable differences
from those for the experiments with a learning speed of 0.5. The graph can therefore be found

in Appendix

Negotiation Gains

The usefulness of a negotiation is determined based on the gain that the participating agents
obtain. The gains were collected for the initiator and its trading partner in each negotiation.
The average gains are displayed per learning rate, for each negotiation type.

Figure 4.28] shows the average gains for the negotiations in the experiments with a learning
speed of 0.2, along with error bars that indicate one standard error. The graph shows that there
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were two negotiation types where the initiating agent received a significantly higher average
gain than its trading partner. This was the case for negotiations of type ToM1-ToM0 and ToM2-
ToMO. For the other negotiation types the trading partner received a significantly higher gain
than the initiator. The only exception is the negotiation type ToM1-ToM2, where no significant
difference was found. The largest difference in average gain was found for negotiation type
ToMO-ToM 1, where the difference was 0.7.

EXP2: Average Gains of Initiator vs Other by Negotiation Type,

A=02
3.0
I [nitiator
25 B Other
£ 2.0
(©
O
© 151
©
S
<1.0'
0.5
0.0-
Q > J QO N 4 QO > \
& &S & & O & &S
SR TS P SRR SR SR LSNP 4
<9 <9 <9 <9 <9 <9 <9 <9 <9

Negotiation Types

Figure 4.28: The average gains of the initiating agent and its trading partner for each negotiation
type of experiment 2, plotted for the experiments with a learning speed of 0.2. The error bars
indicate one standard error.

None of the averages exceeded a gain of 2.2 since the highest was 2.1, corresponding to
the non-initiating agent in a negotiation of type ToM2-ToM2. The non-initiating agent of the
ToMO-ToM2 negotiation type received the second-highest gain on average. This was followed
by both the initiating agent and its trading partner in a ToM1-ToM2 negotiation. After that, the
non-initiating agent of the ToM2-ToM1 negotiation type and the initiating agent of the ToM2-
ToM2 type both received the highest gain on average, with no significant difference between
their average gains. The lowest gains (on average) were obtained by the initiating agent in the
ToMO-ToM1 negotiation, and the non-initiating agent in the ToM1-ToMO negotiation.

The results thus show that the ToM1 agent received the highest average gain in most of the
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negotiation types that it was part of. On the contrary, ToMO received the lowest average gain in
each of the negotiation types that it was part of. The figure furthermore shows that the average
gain of an agent type is dependent on the order of ToM of its trading partner. An example is
that a ToM1 obtained a higher average gain when negotiating with a ToM2 agent than when
negotiating with another ToM1 agent. The average gain also depends on which of the agents is
initiating. An example is a ToM1 agent negotiating with a ToM2 agent: the former received a
slightly higher gain when initiating than when the ToM2 initiated.

The results for the experiments with a learning speed of 0.5 can be found in Figure #.29]
Again, the error bars indicate one standard error. The average gains were very similar to those
found for the experiments with a learning speed of 0.2. One difference is that now, the initiator
of a ToM1-ToM2 negotiation obtained a significantly higher gain on average that its trading
partner. This gain was also higher than that obtained by the non-initiating agent of the ToMO-
ToM2 type. Furthermore, initiator of a ToM2-ToM1 negotiation type now obtained a higher
average gain that the initiator of a ToM2-ToMO negotiation.
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Figure 4.29: The average gains of the initiating agent and its trading partner for each negotiation
type of experiment 2, plotted for the experiments with a learning speed of 0.5. The error bars
indicate one standard error.

The average gains for the experiments with a learning speed of 0.8 can be found in Figure
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4.30. The results are mostly similar to those from the experiments with a learning speed of 0.5.
The main difference is that now, the initiating agent of a ToM1-ToM1 received a higher average
gain that its trading partner. The obtained average gain of the ToM1 agent in the ToM1-ToM?2
type increased further compared to the results for the learning speed of 0.5.
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Figure 4.30: The average gains of the initiating agent and its trading partner for each negotiation
type of experiment 2, plotted for the experiments with a learning speed of 0.8. The error bars
indicate one standard error.
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Chapter 5

Discussion

Humans are remarkably good at projecting mental content to others, i.e., at using Theory of
Mind (ToM), compared to other animals. For this quality to develop, there must have been
an evolutionary benefit, especially for the computationally highly expensive higher-order ToM,
where ToM is used recursively. Previous research suggested that mixed-motive settings may
have been the reason for humans to develop higher-order ToM. Mixed-motive settings are those
settings where a combination of competition and cooperation is required, like in a negotiation.
However, previous research focuses solely on simulations with pairwise interactions.

This study aimed to find out if the conclusions that were previously drawn about the social
advantages of using ToM in pairwise interactions in a mixed-motive setting also translate into
advantages on a population level. A population containing agents with various orders of ToM
was simulated. The research question was: How do various orders of Theory of Mind evolve in
a population of agents placed in a mixed-motive environment?

To answer this research question, two experiments were conducted. The first experiment
was constructed to represent a mixed motive setting where negotiations are used to collect
resources that are needed to survive in an evolutionary process. The environment contained a
population of agents that could have zero-order, first-order, or second-order ToM that they could
use during the negotiations. Agents could negotiate in pairs, and these individual negotiations
were an adaptation of the implementation of Colored Trails (CT) in De Weerd et al. (2017).
When the agents did not reach the resources threshold, they were replaced by a new agent
whose ToM order was sampled from the population, with a change of mutation. The results of
the negotiation thus played a role in the dynamics of the population.

The second experiment was constructed to more closely resemble a real scenario. As an
example, if you recently had an unsuccessful negotiation with a company, you will likely avoid a
new negotiation with this company in the near future. Furthermore, you may have learned some
company-specific information during a negotiation in the past, like their preferred purchasing
quantities. In a future negotiation, you may use this remembered information. These two

89
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features were reflected in the second experiment. Apart from these alterations, the experiment
was identical to the first experiment.

This section will first present the interpretation of the results that were found (Section[5.I).
Then, the limitations of the research are discussed (Section [5.2)), followed by suggestions for
future research (Section[5.3). Finally, the implications and insights of this research are discussed
in the conclusion (Section [5.4).

5.1 Interpretation of the Results

The first experiment has shown that ToMO agents were far more evolutionarily successful than
ToM1 and ToM2 agents. This became evident from both the average final distributions and the
average dominance frequencies of the species. In the vast majority of the cases, ToMO agents
were the only type to survive. ToM2 agents generally had the upper hand in the first moments
of the evolutionary process but then went extinct soon after. If multiple species lasted until
the end of the experiment, these were always ToMO and ToM1. The success of the zero-order
agents also became evident from the ages of the agents. Although many agents lasted around
50,000 ticks (20 generations), the ToMO agents had the most ‘dinosaurs’: agents that lived for
more than a million ticks.

The negotiation-specific results provide further insight into the evolutionary process of the
ToM orders. The gains that the agents received after a trade indicate that qualitatively, ToM1
agents made the most rewarding deals. This was especially true for agents with a high learning
speed (0.8). In this scenario, ToM1 agents obtained a higher average gain than their trading
partners in each of the negotiation types. These results differ from those found by De Weerd
et al. (2017), who found that ToM?2 agents received the highest negotiation gain. De Weerd and
colleagues furthermore found that ToM1 agents received lower gains than ToMO agents because
the ToM1 agents suffered from trying to reach a cooperative solution. Our results show that
ToM2 agents generally caused the gain of their trading partner to be higher than if that trading
partner were to negotiate with another agent type. This is similar to the findings by de Weerd
and colleagues that ToM2 agents increase social welfare when they maximize their personal
gain. In the current research, the least rewarding trades were made by the ToMO agents, who
obtained a lower gain than their trading partners in each negotiation type. These results suggest
that first-order and second-order agents are more likely to reach their resource threshold than
zero-order agents.

However, the results furthermore showed that the average negotiation length for negotiations
with two agents with an order above zero could last up to eight rounds longer than those where a
ToMO agent participated. An exception was the negotiations with two zero-order agents, which
took longer than if this agent negotiated with an agent of another type. In the CT setting used
by De Weerd et al. (2017)), the negotiation length was also influenced by the ToM of the par-
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ticipating agents: the research showed that whilst a negotiation took a maximum of 15 rounds
on average, there was an exception for negotiations with a ToM2 agent, which took longer. In
the current research, the learning speed of the agents also played a large role in the negotiation
length: a lower learning speed resulted in longer negotiations. Both factors, i.e., ToM order and
learning speed, are also reflected in the termination reasons of the negotiations: negotiations
with non-ToMO agents frequently ended without a successful deal due to the negotiation limit
being reached. For experiments with a learning speed of 0.2, this limit was even reached for
negotiations with a zero-order agent. Another frequent outcome was a withdrawal. The quali-
tative research showed that often no good deal exists, which is why this high withdrawal rate is
intuitive.

The agents with an order above zero, but especially the ToM1 agents, thus tend to make
better deals than ToMO agents. However, it takes significantly more time for them to reach
this negotiation outcome. Given that in the majority of the negotiations there may not even
be a mutually beneficial deal, the time it takes higher-order agents to terminate a negotiation
decreases their chances of survival. This is a key difference to the research by De Weerd et al.
(2017), where each negotiation at least had the potential of being successful. The results showed
that ToMO was the most successful species, even though they are at a relative disadvantage in
pairwise negotiations when compared to ToM1 and ToM2 agents. In this experimental setting,
the time pressure to reach the threshold was too high for ToM to provide an advantage, causing
the skill to disappear over time.

The results of the second experiment were for the most part similar to those of experiment
one, but in some ways, they differed. The number of experiments where multiple ToM orders
survived until the end of the experiment was larger than for the first experiment. Apparently,
the remembrance of past experiences increases the survival chances of ToM1 and ToM2 agents.
This was also reflected by the observed final distributions, which showed that both ToM1 and
ToM2 occasionally survived until the end of the experiment.

Another interesting difference compared to the first experiment is that the negotiation lengths
were generally shorter. Additionally, the effect of the learning speed on the negotiation length
of negotiations between two ToM1 agents was different than observed previously: the nego-
tiation length was now highest for a learning speed of 0.5. The frequency of the negotiations
where the limit was the termination reason was lower compared to the previous experiment.
The frequency of either of the agents accepting increased slightly. This was the case for each of
the three learning speeds.

These results show that saving the trading-partner-specific information mainly allowed agents
to make a decision earlier in the negotiation process: prior information like the producing re-
source enabled the agents to withdraw immediately if necessary or make a good offer right
away. However, also in a more true-to-life experimental setting, ToMO agents were most fit to
survive, although the survival chances of the other species were slightly higher now. The nego-
tiation lengths were impacted, but the outcomes of these negotiations showed little difference.
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The reduction of negotiation lengths was not large enough to give ToM orders above zero an
evolutionary advantage.

5.2 Limitations

The research that was conducted contains a few limitations. These limitations are described, as
well as the influence they may have had on the results.

Observable environment To make the experimental environment manageable, the design
choice was made so that all agents can view which resources their trading partner has. This
choice was partly made to lower the computational complexity of the program, but also to
resemble the observable nature of the CT setting of De Weerd et al. (2017)). However, it is not
highly realistic in this evolutionary application. In a real-life trade, we do not necessarily reveal
to our trading partner which resources we have. Instead, we may use it to our benefit that the
other person does not know have much it can ask. This may have impacted the results: possibly
more ‘eager’ offers were made, in turn resulting in fewer acceptances.

Limited offer possibilities Another concession that was made to reduce the computational
complexity of the program, was limiting the number of resource types and the maximal stock.
Ideally, many more offers would be possible to allow for more negotiations with a successful
outcome. If the proportion of negotiations with a predetermined negative outcome were to be
smaller, maybe the time cost of ToM1 and ToM2 would have been worth the increased gain
compared to ToMO. The current results may thus favor ToM0 agents.

Producing resource Another limitation of this research is the implementation of the produc-
ing resource. The idea was to set the stock for this resource to four (the maximum) to allow
for free trade where everyone has at least one type of resource to offer. In practice, this made it
very easy for the agents to guess the producing resource of the trading partner, since the agent
always has four of this type. Also, ToM2 might normally want to mislead their trading partners
by asking for their producing resource. Due to the implementation, this was not possible. This
may have reduced the advantage of ToM2 agents in negotiations.

Population size The population size of 60 was a design choice that likely influenced the re-
sults. A smaller size would have caused fewer negotiations, since agents encounter fewer other
agents. The small qualitative inspection that was done suggests that this smaller population may
cause the ToM1 and ToM2 agents to have a better chance at survival: the ToMO agent may not
benefit enough from its fast negotiations in this setting.
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Despite these limitations, some patterns of benefits in pairwise interactions that we observed
were in line with previous literature (De Weerd et al., 2017)). More specifically, we also found
that ToM1 can help a negotiation reach a successful outcome, as well ToM2 increasing the gain
of the trading partner. We also found that ToMO can perform relatively well in negotiations,
benefiting from the ToM of their partner. However, the use of the (adapted version of the) ToM
model by De Weerd et al. (2017) led to some irrational behavior in this new setting. These
are not necessarily limitations since we wanted to compare the results to those found by De
Weerd and colleagues, but they are important to consider when drawing conclusions based on
the findings.

Repeating offers The main drawback of the ToM implementation is that repeated offers occur
frequently. The qualitative observations showed that this repetition was a consequence of the
confidence values, which start off with a value of one. Agents did not use their acquired beliefs,
which is why they could repeat offers an infinite number of times. The repeated offers were
especially a reoccurring issue for ToM1 and ToM2 agents, and they may have greatly influenced
their evolutionary success. The repetition may have been avoided by using a time penalty in
the negotiations as was done by De Weerd et al. (2017). Instead, in this research we opted for a
mechanical time pressure, forced by the evolution in the environment.

Offer beliefs Another point for attention is the non-intuitive use of beliefs about offers. Due
to the implementation of belief updates, frequently encountered offer types receive lower beliefs
than others. As a result, agents may make greedy offers, which are less likely to be accepted.
In combination with the belief updates for specific offers, which decreases the beliefs for offers
where it gives less of a resource than it was asked for, this may lead to unnecessary withdrawals.

5.3 Future Research

The current research expands Theory of Mind (ToM) studies by applying it to simulated popu-
lations rather than just to pairs of simulated agents. Previous research by Lenaerts et al. (2024)
also focused on the evolution of ToM in a population, but they modeled the evolutionary pro-
cess using evolutionary game theory. The biggest difference to their research is that the current
research modeled a population of individuals, where each agent had their own beliefs, making
each individual unique. The order of ToM determined the species and behavior of the agents,
but the behavior was also influenced by their own unique past experiences. Since the study of
the evolution of ToM in a population in this sense is a (to our knowledge) new area of research,
this study can be expanded and used in numerous ways.
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The first suggestion for future research is to validate the findings of this research. Several
design choices, specifically those mentioned in the previous section, may have impacted the
results. We suggest focusing especially on the repeating offers since we expect that this is the
reason for the large number of negotiation rounds for first-order and second-order agents. We
propose initializing the confidence scores differently so that offer beliefs will impact the action
choices of the ToM1 and ToM2 agents. Optionally we propose creating a new version of the
ToM model. The original implementation by De Weerd et al. (2017) was developed especially
for the CT setting. In this research, only some slight adaptations were made to apply the same
model to a new setting where there is not a complete redistribution of the resources/chips.
Developing a ToM model specifically for this setting may give more realistic results.

Another insightful adaption of the current research would be to use the same environment,
but replace the negotiation interactions between the agents with pairwise CT games. Since the
logic of the pairwise interactions would then be the same as in De Weerd et al. (2017), the
results could show whether our finding that the pairwise advantage of ToM did not translate
into population-wise advantages is a consequence of our implementation of the negotiation
setting. We expect that in this scenario, the pattern of repeating offers would be omitted, thereby
reducing the negotiation lengths. In turn, this may cause ToM1 and ToM?2 agents to have a better
shot at survival.

This research only implemented three orders of ToM, and thus only one species with higher-
order ToM: ToM2. However, previous research has shown that in some scenarios, higher-order
ToM like ToM4 may provide an additional social advantage De Weerd et al. (2014)). The ability
of humans to reason with ToM4 also highlights its evolutionary benefit. A suggestion for future
research is therefore to expand the current research with additional species, i.e., ToM orders.
An analysis of the evolutionary dynamics can provide further insight into the validity of the
Mixed-motive interaction hypothesis.

As a further step towards the application of ToM research to multi-agent systems, it would
be interesting to extend this research by allowing groups of agents to negotiate. The current
research does focus on ToM development in a population, but the negotiations are still pairwise
only. This may not fully capture the complexity of real-world social interactions where multiple
agents may negotiate simultaneously. Building a framework for mixed-motive group interac-
tions within a population would make the simulation more realistic. These group negotiations
represent scenarios like team meetings or markets. The complex and dynamic environment that
this would create may make the evolutionary advantage of ToM more apparent.

Finally, another interesting direction for future research is to make the agents more goal-
oriented. In this research, the agents have a stock goal to reach, but apart from that, their
behavior within the environment is quite random. The agents are simply moving in a straight
line until they encounter an agent or a wall. If they move away from either of the two, their new
direction is random. The second experiment of this research reduced some of that randomness
by allowing agents to avoid negotiating with certain trading partners, but this can be taken
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further by allowing agents to physically avoid or search certain trading partners. This would
lead to more goal-directed movement within the environment. Consequently, the results of the
renewed simulation could be more representative of the true evolutionary process.

5.4 Conclusion

This research was conducted to address the gap in understanding why humans developed (higher-
order) ToM, whilst other animals do not seem to have this cognitive ability to this extent. It
builds of the work of De Weerd et al. (2013b), De Weerd et al. (2017) and De Weerd et al.
(2014) where pairwise interactions were used to test the Mixed-motive interaction hypothesis.
That is, a mixed-motive setting was established to check which agent types, and thus which
ToM orders, gave an advantage in that setting. This research extends the previous research by
testing the benefits of ToM in a mixed-motive setting where the agents exist in a population.

To answer the research question of this study, two sub-questions were constructed. The first
question was: Is there an order of ToM that is the ‘winner’ in this environment, or is a dynamic
equilibrium reached? The answer to this question is that in the majority of the cases, only
one species survived. There were situations where multiple species lasted until the end of the
experiment, but we cannot speak of an equilibrium. In these cases, there was always one species
that had over 50 members, whilst the other had just a few members left. There was thus a clear
winner of the evolution. The second question was: Do lower orders of ToM (ToM0O, ToM1) go
extinct over time? In other words: does higher-order ToM provide an evolutionary benefit in
this negotiation environment? The answer to this question is no. In this experimental setup, it
was the other way around. ToM1 and ToM?2 went extinct, whilst ToMO survived. (Higher-order)
ToM thus did not provide an evolutionary benefit in this negotiation environment.

Some of the findings in this research are in line with previous findings. An example is that
ToMO agents can perform well in a negotiation, depending on their partner. We found that ToM0O
agents can receive a relatively high gain when a ToM1 or ToM2 agent initiates a negotiation with
them. Within the negotiations, we also saw that ToM1 and ToM2 agents benefit from their ToM,
and ToMO agents benefit from that too. A difference was that in previous research, ToMO0 agents
received higher gains than ToM1 agents. In this research, this was not the case.

The previous research argued for the Mixed-motive interaction hypothesis, since the ToM
benefits agents in mixed-motive settings. Our results suggest that even though in the negotia-
tions ToM benefits agents, the time cost of using this ToM is relatively high. This prevented the
ToM agents from collecting enough resources in time. This research thus shows that the advan-
tages that were observed by De Weerd et al. (2013b), De Weerd et al. (2017)), and De Weerd
et al. (2014) in pairwise interactions do not translate into population-wise advantages.

This research contributes to a broader understanding of the evolution of ToM in humans.
While the Mixed-motive interaction hypothesis suggests that social settings that combine co-
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operation and competition drove the evolution of higher-order ToM, our results suggest that
population-level dynamics may not necessarily favor higher-order ToM in the way previously
thought. Performance in pairwise interactions did not translate into performance at the popula-
tion level. The research raises questions about alternative social settings that may have caused
humans to develop advanced ToM. One promising framework is the Social Brain Hypothesis by
Gamble et al. (2014)), originating from the ideas presented by Dunbar (1996). Dunbar proposed
that language may have developed as a way to create social cohesion in groups through gossip.
The groups served as a mutual defense against predators. Gamble et al. (2014) build upon this
view that the complexities of managing large social groups may have caused us to develop lan-
guage. They additionally suggest that this may have been why ToM developed. By examining
these broader social contexts, we may expand our understanding of how and why higher-order
ToM emerged specifically in humans.
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Appendix A

Experiment 1

Figure [A.T|shows the distribution of the agent ages for all the agents of experiment 1 where the
learning speed was 0.2. The ages are categorized based on the order of Theory of Mind of the

agent.
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Figure A.1: A violin plot of the spread of agent ages of experiment 1 per ToM order, for the
experiments with a learning speed of 0.2.
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Figure shows the distribution of the agent ages for all the agents of experiment 1 where
the learning speed was 0.8. The ages are categorized based on the order of Theory of Mind of

the agent.
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Figure A.2: A violin plot of the spread of agent ages of experiment 1 per ToM order, for the
experiments with a learning speed of 0.8.

Figure[A.3|shows the frequencies of the reasons for a negotiation termination per negotiation
type for experiment 1 where the learning speed was 0.8.
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EXP1: Relative Frequency of Negotiation Endings by Type,
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Figure A.3: The reason for negotiation termination for experiment 1 per negotiation type, for
the experiments with a learning speed of 0.8.
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Appendix B

Experiment 2

Figure [B.1|shows the distribution of the agent ages for all the agents of experiment 2 where the
learning speed was 0.2. The ages are categorized based on the order of Theory of Mind of the
agent.
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Figure B.1: A violin plot of the spread of agent ages of experiment 2 per ToM order, for the
experiments with a learning speed of 0.2.
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108 APPENDIX B. EXPERIMENT 2

Figure shows the distribution of the agent ages for all the agents of experiment 2 where
the learning speed was 0.8. The ages are categorized based on the order of Theory of Mind of
the agent.
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Figure B.2: A violin plot of the spread of agent ages of experiment 2 per ToM order, for the
experiments with a learning speed of 0.8.

Figure[B.3|shows the frequencies of the reasons for a negotiation termination per negotiation
type for experiment 2 where the learning speed was 0.8.
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EXP2: Relative Frequency of Negotiation Endings by Type,

A=0.8
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Figure B.3: The reason for negotiation termination for experiment 2 per negotiation type, for
the experiments with a learning speed of 0.8.
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