university of faculty of science
groningen and engineering

Controlling Recurrent Neural Networks with Improved Feature
Conceptors
Graduation Project

A.G.B. (Otto) Bervoets (S3417522)

March 6, 2025

Abstract

Conceptors are used to control various neural network architectures. Matrix Conceptors can be used to
control recurrent neural networks and feed forward neural networks. Although Conceptor Control yields
good performance, each Matrix Conceptor’s size is equal to the number of neurons squared. Diagonal
Conceptor matrices were introduced to address the high storage cost. However, they lack performance
and flexibility of use. Random Feature Conceptors (RFCs) are an expansion of these diagonal conceptors.
Using Principal Component Analysis (PCA) this research further improves the RFC architecture. Here
we show that with this newly proposed PCA based method, stability and prediction accuracy improve
compared to RFCs. These results are broadly applicable in most scenarios where matrix Conceptors and
RFCs are used.

Main Supervisor: Prof. Dr. Herbert Jaeger (Artificial Intelligence, University of Groningen)
Second Supervisor: Guillaume Pourcel (Artificial Intelligence, University of Groningen)

Artificial Intelligence
University of Groningen, The Netherlands

university of faculty of science
groningen and engineering

1 Introduction

Research in artificial intelligence can be viewed in two ways. On the one hand, one may adopt a top-down
approach by beginning at higher levels of cognitive performance, such as reasoning, conceptual knowledge
and emotion, and then attempt to model these phenomena using mathematical logic, computer science, and
linguistics. However, this research focuses on a bottom-up approach. More specifically, we will research how
one can control recurrent neural networks using conceptors as introduced by Jaeger| (2017).

Within the field of reservoir computing, a reservoir — also known as a randomly generated recurrent
neural network — can be loaded with multiple patterns. Loading refers to the process of adjusting the weights
of the reservoir such that a pattern can be regenerated autonomously. Subsequently, the reservoir can be
allowed to ‘hallucinate’ or regenerate one of the stored patterns. Without the use of conceptors, it would be
impossible to control which of the loaded patterns is recalled.

Matrix conceptors are the first conceptors introduced by Jaeger| (2017). These conceptors are full N x N
matrices for a network size N. Although they yield good performance, matrix conceptors are expensive to
store, especially for larger networks as the storage cost increases quadratically with the network size.

Diagonal conceptors were introduced to reduce the storage costs associated with full matrix conceptors.
Diagonal conceptors are diagonal N x N matrices, having only N non-zero elements. As shown by De Jong
(2021), diagonal conceptors can yield good performance. However, this requires a less flexible approach
than full matrix conceptors. The methods described by |De Jong (2021)) do yield good performance but cannot
consecutively load patterns. This consecutively loading is, however, one of the important upsides of conceptor
as this makes continual learning possible, which is an active research field within Al

Random Feature Conceptors (RFCs) further expand on the idea of diagonal conceptors. First introduced in
Jaeger|(2017)), RFCs linearly map the reservoir state to a higher dimensional space. In this higher dimensional
space, the conceptor is represented as a vector of size M, where M is larger than N but, for large reservoirs, is
substantially smaller than N2. In Jaeger|(2017) it is shown that for M = 5N performance is already reasonable
good. Also, RFCs do support consecutively loading patterns and with that continual learning.

The word random in Random Feature Conceptors refers to the randomly drawn features used to map the
reservoir state to the higher dimensional space. These features can also be viewed as directions in the reservoir
space. As RFCs use random directions of the reservoir space, we investigated whether these features could be
constructed systematically.

The objective of this research is to find a systematic approach to selecting the features for the Feature
Conceptor (FC) that improves on the RFC architecture.

The significance of this research can be seen at different levels. First of all, RFCs can be used simi-
larly as matrix conceptors, without the high storage costs. However, this comes at the cost of a lower task
accuracy. This research aims to improve the quality of RFCs while maintaining the storage benefits. For a
machine learner who aims to take advantage of the nice properties that conceptors offer, the potential similar
performance for a fraction of the storage cost is attractive. Hence, further optimizing and exploring the RFC
architecture is important.

On a more fundamental level, the RFC architecture is not biologically implausible (Jaeger, 2017). There-
fore, if one wishes to build truly Artificial Intelligence from the ground up, this research is highly significant.

There are also some limitations within this study. First, although the biological plausibility of this research
is an important motivator, this research will not cover this, and we refer to Jaeger|(2017)) for more information
about biological plausibility. Also, although conceptors can be applied to a variety of neural networks, this

university of faculty of science
groningen and engineering

research is limited to the setting of reservoir computing. However, the findings naturally transfer to other
forms of neural networks.

The remaining sections of this thesis will be structured as follows. The literature review, will
present some background information. Then [Section 3|will define the mathematical landscape and the ins and
outs of the conceptor architecture. will present the methods and experimental settings.
will present the results of the experiments and will interpret these results. Finally will
conclude this research and give directions for further research.

university of faculty of science
groningen and engineering

2 Literature Review

Random Feature Conceptors are introduced in Jaeger| (2017), together with the more broadly used matrix
conceptor architecture. Since then, matrix conceptors have been used and researched widely. Wherever
one can use a matrix conceptor, one could also use a random feature conceptor. Hence, the use of matrix
conceptors is also relevant to RFC research.

Conceptors are used in several applications. Let us highlight some of them. Firstly, conceptors can be used
to prevent catastrophic forgetting. Catastrophic forgetting refers to the phenomenon where neural networks
tend to forget acquired knowledge during the learning of new knowledge. [Jaeger| (2017) introduces how
conceptors may be used to prevent catastrophic forgetting. Building on this, |He & Jaeger (2018) describe a
conceptor backpropagation algorithm to prevent this effect. The conceptors were used as a “shield” to prevent
important knowledge from being overwritten. The authors were able to outperform two other methods on the
disjoint MNIST task. The disjoint MNIST task, a common benchmark for continual learning at that time,
contains two data sets, one with the numbers 0-4, and a second one with the numbers 5-9. The network
then learns the two sets one after the other. Although acieving good performance, the authors mention the
relatively large computational cost of the conceptors. The creation of the conceptor has a time complexity of
O(nN? + N3), with n observations and N features (in this caseN = 784 pixels).

Another application of (matrix) conceptors is in that of correcting for (racial/gender/etc.) bias in word
representations. [Karve et al.| (2019) use matrix conceptors to adjust for biases in word embeddings. Embed-
ding bias is the phenomenon that some gender-neutral words (receptionist) lay closer to gender-based words
(men/women). Using conceptor matrices, the authors were able to mitigate these issues successfully. The
work of [Postmus| (2024) further extends the line of research. They show that using conceptors they outper-
form traditional point-based steering methods on several benchmarks.

Next, literature that uses random feature conceptors is discussed. (Gast et al.|(2017) use Hierarchical Fea-
ture Conceptors (HFC) based on RFC to classify bird songs, also proposed by [Jaeger| (2017). They use a
two-step approach, first extracting syllables from songs and then classifying songs based on these syllables.
The classification uses HFC. Here the RFCs are used as a sort of representation for a song. Those representa-
tions can then be compared to the reservoir states emerging from driving the reservoir with test data and thus
be used for song classification.

Meyer zu Driehausen et al.| (2019) use RFC architecture in combination with the Hierarchical Feature
Conceptors to accurately model bistable perception, the phenomenon of perception alternating between stable
states when a subject is presented with two incompatible stimuli. They conclude that the HFC architecture is
a promising model for general human perception.

Finally, both [De Jong| (2021) and |Pals| (2024) present research concerning diagonal conceptors. Diagonal
conceptors are matrix conceptors where only the diagonal is non-zero. One could also say that these are RFC
conceptors with identity mapping of size N.

De Jong| (2021)) explores the mechanics of diagonal conceptors. They show that diagonal conceptors
can be used on the same tasks as matrix conceptors. Just like matrix conceptors, diagonal conceptors can
be morphed into each other. |De Jong (2021) also shows that diagonal conceptors are able to control periodic
patterns, chaotic attractors, and human motion patterns. However, by design, the methods that are described by
Pals| (2024) are unfit for continual learning. \De Jong| (2021) starts from random conceptors before the loading
of the patterns, making the methods useless for continual learning. [De Jong| (2021) also finds that controlling
patterns using diagonal conceptors requires more precision parameter tuning. The range of parameters that
leads to a model that is able to learn a pattern is narrower.

university of faculty of science
groningen and engineering

The literature review concludes that a conceptor, matrix or vector, is a useful tool. In the RFC architecture,
conceptors are cheaper to store than a full matrix conceptor. Research towards diagonal conceptors, which can
be defined as an RFC, shows that they lack stability. However, there is no research addressing these issues.

The goal of this research is to fill this gap. Hence, how can we improve the prediction accuracy and stability
of RFCs?

university of faculty of science
groningen and engineering

3 Theoretical Framework

In the following section, the theory will be presented. This follows the theory described inJaeger|(2017)). This
will be a self-contained description. This research is centred around storing patterns in a reservoir to retrieve
them as accurately as possible later. This section will start by describing the theoretical landscape. Following
this, the matrix conceptor architecture will be defined. Then, the RFC Architecture will be defined, together
with the reasoning behind the RFC architecture. Next, the computation of the weights and the loading of the
patterns will be explained. Finally, the adaptations of RFCs will be discussed and the novel way to construct
expansion mapping F’ will be presented.

3.1 Conceptor Architecture

In this subsection, we will formally define the core model used in this research, the random feature archi-
tecture. But first, let us draw up the mathematical landscape, starting with some mathematical notations. In
this report, matrices are denoted by a capital letter, where then a;; denotes the element on the i-th row and
Jj-th column of a matrix A. The transpose of matrix A is denoted as A’. Vectors are denoted by lowercase
letters, and v; denotes the i-th element of vector v. To denote a diagonal matrix with the diagonal the elements
of vector v diag(v) is used. Furthermore, when the norm || - || is used, the Frobenius norm is meant unless

specified otherwise. The Frobenius norm of a real matrix A is defined as [|A|| = /¥, ¥; alzj. E[x(n)] denotes
the expectation (temporal average) of a stationary signal x(n), assuming it is well-defined.

Let P = {p/|j € N} be a set of p patterns. Patterns are signals that are generated by some generator. For
example, a random pattern can be generated by sampling from a random number generator. This research only
considers discrete patterns and p/(n) € RX denotes step n € N of the sequence j generated by the generator
of pattern j with K € N, the dimension of the signal.

Now let us define the reservoir state vector r(n) € (—1,1)", with N € N, which can be represented as
a collection of N neurons. These neurons are connected, and these connections are represented by a weight
matrix W € RV The reservoir can be autonomously updated by applying the weight matrix on the reservoir
state vector leading to r(n+ 1) = tanh(Wr(n)), with tanh(-) the tanh activation function. The reservoir can be
driven by a pattern p/. Let us define Wi € RV*K as the input weight matrix. This can be represented by K
input neurons connected to the reservoir neurons with weights W, The state update function of a reservoir
driven by a pattern p is defined as r(n+ 1) = tanh(W'" p(n) +Wr(n)).

For our network to be able to learn, it needs to adhere to the Echo State Property (ESP). The ESP states
that for a resevoir that is beeing driven by a pattern p, the effect of initial conditions (0) should vanish as
time passes (Yildiz et al.L[2012). To ensure that the ESP is satisfied the spectral radius of the reservoir weight
matrix W will be adjusted. Intuitively, a too-high spectral radius will lead neurons to have on-off plipping
behaviour, whereas a too-low spectral radius can lead to a too small effect of input on the reservoir state, or
too short memory spans.

This research is interested in the ability to regenerate patterns. Hence, a way to construct a pattern from
the reservoir states is needed. To do so, the states of the reservoir will be read out using an output matrix
wout ¢ REXN " where WO connects K readout neurons to the reservoir neurons. The K read-out neurons
should then follow the loaded pattern. The complete mechanics of a reservoir driven by a pattern are described

university of faculty of science
groningen and engineering

Figure 1: Driving of a reservoir. p is the one-dimensional input pattern that drives the network using Wi as
the input weight. y the observer or output of the reservoir that uses W°" the output matrix. W the internal
weight matrix. Taken from Jaeger (2017)).

by

r(n+1) = tanh(Wp/ (n) + Wr(n) +b), (1)
y(n) = Wr(n), ©)

where b € RY is a bias vector. presents a schematic overview of these reservoir architecture. When
the reservoir is loaded and runs autonomously, the reservoir is updated according to the following equation

r(n+1) =tanh(Dr(n) +Wr(n) +b), 3)

where D is the input simulation matrix. Hence, Dr(n) replaces any of the driving patterns, Dr(n) tries to mimic
the effect on the rservoir of W p/(n) for all patterns. This implies that we have tanh(Wr(n) 4 Dr(n) +b) =~
tanh(Wr(n) + Wi p/(n) 4+ b) and WOr(n) =~ p/(n) for every p/ € P. Note that Jaeger| (2017) also proposes
a second method for adapting the weight matrix W. In this case, the unadjusted raw weight matrix W*, is
adjusted to make sure that tanh(Wr(n) + b) ~ tanh(W*r(n) + Wi p/(n) +b).

Now that the basic reservoir is defined. Let us describe the matrix conceptor architecture. When a pattern
p/ drives the reservoir, the neurons get excited. Recall that 7/ (n), the reservoir states, represents the excitement
of these neurons. The neurons vary in their excitement, leading to a reservoir state sequence r/(n),r/(n +
1),... which can be represented as a cloud of points in the N-dimensional reservoir state space, referred to as
the point cloud related to pattern j. The consecutive states r/(n),r/(n+1)... will be collected in X/. A point
cloud related to pattern j can be described using the correlation matrix R/ = E[r/(r/)'].

Let us now assume that there is a D computed such that we have that Dr(n) ~ Wi p(n) for multiple
patterns, i.e. multiple patterns are loaded into the network. If one wishes to retrieve a certain pattern and
starts driving the network autonomously, as described in the behaviour will be unpredictable.
The network does not “know” which pattern to retrieve. Ideally, the point cloud of a pattern j is confined
to a proper linear subspace S/ C (—1,1)", such that the state vector can be projected on S/ using projection
matrix Pg;. However, the state r/(n) vectors usually span the entire state space (—1,1)" so Ps; then would be
the identity matrix, which would not help to single out a certain pattern.

Using Principal Component Analysis (PCA), the shape of a point cloud can be captured by an N-dimensional
ellipsoid whose main axes point in the main directions of the point cloud. This ellipsoid is a geometrical rep-
resentation of the correlation matrix R of the state points. The singular values Gy, ..., Oy represent the lengths

university of faculty of science
/ groningen / and engineering

of the axes of the ellipsoid, indicating the importance of the principal components. The directions of the axis
are described by the eigenvectors of R. The eigenvector relating to the largest singular value describes the
most important direction of the point cloud. gives an illustration of the reservoir activations and their
ellipsoids.

pattern p? pattern p? pattern p?

Figure 2: Conceptor geometry (schematic, here network size N = 3). Three patterns p!, p?, p> excite neural
state clouds (black dots) whose shapes can be characterized by ellipsoids (red, green, blue) corresponding to
conceptors C!,C?,C3. Taken from Jaeger| (2014).

The conceptor is the result of a minimization of a cost function £(C/|R/,a). This cost function has two
components. The first component reflects the objective that C/ should behave as an identity matrix for the
states that occur in the pattern-driven run of the reservoir. This component is E[||r/(n) — C/r/(n)||?], the time-
averaged difference between the product C/r/(n) and the state vector r/. The second component of L tries to
pull C/ toward the zero matrix. This component is &~2||C/||?, smaller values for alpha diminishes all singular

values of C/. A conceptor is the solution of the following minimization,
C/(R,01) = argming; E[||r/ (n) — C/r(n)|[*] + o272,

which has the following solution, . o
C/(R,a) = R/(R' + o217, 4)

with R/ = E[r/(n)r/(n)] the correlation matrix. If one now wishes to use a conceptor, [Equation 3|is adjusted
to be

r(n+1) = C/tanh(Dr(n) + Wr(n) +b),

with C/ the conceptor related to pattern j and D the input simulation matrix. Where Dr(n), the input simulation
matrix, mimics Wi" p(n) for all loaded patterns p/. How to find D will be discussed later on. Note that applying
a matrix conceptor takes N2 multiplications and N? additions. As C € RV*V the size of a matrix conceptor
grows quadratically with the number of neurons in the reservoir.

Let us expand this to the random feature conceptor architecture. The random feature conceptor still tries
to map the reservoir state space towards an ellipsoid that describes the important directions associated with
a pattern. Just as with the matrix conceptor, the dominant directions of the ellipsoid are let go free, whereas
the unimportant directions are dampened. Matrix conceptors achieve this by applying a conceptor matrix
C € RV*N onto the reservoir states r. However, within the RFC architecture, the storage cost of an Conceptor
are significantly lower.

In the RFC structure, the N-dimensional reservoir state is first mapped to a higher M-dimensional feature
space or z-state. The components of the higher dimensional z state are z; = ¢;f/r. The conception weights ¢;

university of faculty of science
groningen and engineering

take over the role of the matrix conceptors with ¢ = (cy,...cy) denoting the conceptor vector. Note that the
conceptor multiplications now are M scalar multiplications. In more detail, the following steps are taken:

1. Expand the N-dimensional reservoir state r in to the M-dimensional random feature space by a random
feature map F’ € RM*N with F' = (f1,..., fu)' by computing the M-dimensional feature vector F'r.

2. Multiply each of the M feature projections f;r with an conception weight c{ to get a conceptor-weighted
feature state z = diag(c)F'r, where the conception vector ¢/ € RM with ¢/ = (¢],...,c},) is made of the

conception weights and ¢/ is the conceptor associated with pattern j.

3. Project z back to the reservoir state by a random N x M back projection matrix G € RV*™ | closing the
loop.

The matrices W and potentially G are initially random and recomputed later on. They can be joined in a single
map G* = WG. This leads to the following update cycle for the RFC architecture:

r(n) = tanh(Gz(n) + W' p(n) +b), ®)
2(n+1) = diag(c)F'r(n), (6)
y(n) =Wr(n),

with r(n) € RN and z(n),c € RM™. G* will later be replaced by G, a regularization of G*. A schematic overview

of the RFC architecture is presented in
G
P

° Wln

\A

. 4
reservoir \F_ random
> feature

space

Figure 3: Schematic overview of the RFC structure. The small dots represent neurons, the map F’ maps the
r-state to the higher dimensional z-state where the conceptor multiplications are done. After this, G maps the
z-state back to the reservoir. Using W'", the network is driven by p. Note that a readout y is not displayed here
but could be done by observing r using a matrix referred to as W". Figure retrieved from Jaeger| (2017).

Now that the RFC structure is defined, let us describe how to find the conceptor vector ¢/. The individual
conceptor weights ¢; of vector conceptor ¢ = (cy,...,cy) can be computed using

¢/ = El (n)’)(E[] ()] +-)7, ©)
which is the solution of minimizing the following objective function

E[(z‘-’(n) - ciz'{(n)z] + a2

university of faculty of science
groningen and engineering

with o the aperture. The aperture, an important parameter, controls the amount of damping. A small aperture
forces the conceptor weights to zero, limiting all directions of the feature space. A large aperture forces the
conceptor weights towards one, limiting no direction of the feature space.

To compute ¢!, z/(n) needs to be collected. This will be done in the following manner. First, the basic
network without expansion to higher dimensional space as described in will be driven. After an
initial washout phase, n. reservoir states will be collected. Next, using map F the states r/(1),...,r/(n.) will
be mapped to the higher dimensional z-space, resulting in states z/(1),...,z/(n.). These will then be used to
compute the conceptors as described in

Let us now highlight the intuition behind the map F’. The elements f; of F can be viewed as directions
in the reservoir space. Hence, f/r measures the magnitude of the state space in the direction of f;. The
conceptor weight ¢; can now manipulate the magnitude of this specific direction. By doing this for many
directions of the state space, some directions of the reservoir state can still be suppressed depending on the
intended pattern. Note that in the random feature conceptor architecture, the directions of the state space f;
are sampled randomly.

3.2 Computing weights

In the following section, the process of loading the reservoir will be described. First, loading the RFC ar-
chitecture will be described. This will follow the order that is used in practice. Afterwards, the loading
of the matrix conceptor architecture will be described. Although matrix conceptors are not the main focus,
of this research, the RFC architecture will be compared to the matrix conceptor architecture and hence, for
completeness, it will be described.

As a first step, F/,b,W" and G* are sampled from a centred normal distribution with 6z = 65 = 1 and
Gp,Oin chosen optimally. Note that G* is the raw version of G. Since the N x N map G*F’ replaces the
weight matrix W of the basic echo state network, the map G*F’ needs to be scaled such that the network
attains the ESP as discussed in Hence F’ and G* are scaled such that the combined map G*F’
attains a prescribed spectral radius.

Next, D, W and G are (re)computed. The matrixix D € RV*M is called the input simulation matrix. The
goal of this matrix is to imitate the effects of the driving pattern on the reservoir. Hence, D needs to be chosen
such that we have Dr(n) ~ Wi p(n).

To obtain these weight matrices, the states r/(n) and z/(n) need to be collected. This is done by driving
the system with each pattern p/ as defined in|[Equation 5|and [Equation 6|for npares steps, collecting the states
of r/(n) and z/(n) in matrix X € (—1,1)N*maresl®l and Z € RM*Mmarvesl?| | where |P| denotes the number of
patterns in P. Hence, all the reservoir states and the z-states are concatenated in a matrix. Similarly, the
patterns are collected in P € RX *mares|?| To make sure the initial reservoir state is of no influence, the system
is first washed out for ny,shout Steps before collection.

Using the matrices X,Z and P, the weight matrices can be computed. The input simulation matrix D €

RN*M can be computed by solving the regularized linear regression
_ . in_j 7 2 (12
D = argminp) _||W" p’(n) — D/ (n—1)||* + Bpl|D|I*, (8
n7j

= ((2Z' +Bply) ' z(WP)'Y,

10

university of faculty of science
groningen and engineering

where D is the raw version of D, Bp a suitably chosen Tychonov regularizer, and I, the M x M identity matrix.
The intuition behind is that autonomous system update z/(n + 1) = diag(c/)F’ tanh(G*z/ (n) +
Dz/(n) + b) should be able to simulate input-driven updates as defined in [Equation 5|and [Equation 6|

Next, W is computed by solving

W = argming ¥ ||p7 (n) = Wrd (n)]|? + Buou| W%,)
n,j
= ((XX' 4+ Bwouly)~'XP'Y, 1o

where W is the raw version of W, Byou a suitably chosen Tychonov regulizer, and Iy the N-dimentional
identity matrix. The intuition behind is to retrieve p/(n) from r(n) as well as possible for all j
patterns at all timesteps 7. shows the closed form solution of

Optionally, which is the way how it is done in this research, one can also recompute G* by solving the
trivial regularized linear regression:

G =argming Y ||G*z/ (n) — G2/ (n)|* + Bal |G| P,
n.j

= ((2Z' +Baln))~'2Z')

where G* the raw weights, for a suitable chosen Tychonov regularizer B¢, and Iy, the M x M identity matrix.
While G* and G should behave virtually identically on the training inputs, the average absolute size of entries
in G will be (typically much) smaller than the original weights in G* as a result of the regularization. Such
regularized auto-adaptations have been found to be beneficial in pattern-generating recurrent neural networks
(Reinhart & Steil, [2010), and |Jaeger (2017)) took advantage of this re-computation of G.

When one now wants to re-generate a pattern p/ one runs the following system:

r(n) = tanh(Gz(n) + Dz(n) +b),
() = Wor(n),
z(n+1) = diag(c)F'r(n),

where the stating state z(n) can be initialized randomly by sampling from the normal A((0,3). Another
option is to use the state vector z/ at the end of the training sequence for pattern j. The latter case is equal to
forecasting the next timesteps of pattern j.

Let us now describe the loading of matrix conceptors. This method is exactly equal to the one described
in|Jaeger| (2017), and is based on recalculating W*.

First, Wi", b and W* are sampled from a centred normal distribution with 6y« = 1 and Gy,), chosen
based on an optimization process discussed later. The internal weight matrix W* is adjusted to have a sparsity
of %, i.e. on average neurons are connected with 10 other neurons. Next, W* is scaled to a prescribed spectral
radius.

To load the pattern, W* needs to be recalculated. To read out from the loaded reservoir, W°" needs to
be computed. To do this, the reservoir states r/(n) for each pattern need to be collected. This is done by
driving the reservoir with each pattern as defined in After an initial washout period of length
Rwashout> the reservoir states are collected for npavest Steps. These recorded reservoir states rl (n) are collected
and combined in matrix X € (—1,1)V *marves| P Defining X as the one-timestep-delayed version of X, hence
recording r(n — 1). The driving patterns are also collected in [€ RK*/harvest|Pl,

11

university of faculty of science
groningen and engineering

The conceptors C/ can be computed according to The internal weight matrix W will be
computed using ridge regression. Writing B for the N X (|P| - niparvest) matrix whose columns are all identical
equal to b. The ridge regression solution is defined as

W = (XX’ +Bw) 'X(tanh ' (R) — B)'Y,
whit By a suitably chosen Tychonov regularizer. To compute W°", the readout matrix, compute
WU = ((RR' + Byouly) 'RP'),

with Byou a suitably chosen Tychonov regularizer.

3.3 Construction of F’ and G

As stated previously, in the random feature conceptor architecture described by Jaeger (2017) F’ and G are
constructed randomly. This research aims to explore if there exist methods to construct these maps to improve
task accuracy. For every case in this research, G* will be constructed using G* = WF, with W the randomly
sampled weight matrix and F' the expansion map.

This research aims to improve task accuracy by changing the construction of F. The goal is to choose
the directional vectors f; that combined make up F in such a manner that they are better able to control the
reservoir than random vectors. Hence, we want to find directional vectors f; that point in directions of the
reservoir space that are relevant to a certain pattern. A very simple way to do this would be by driving the
reservoir with a certain pattern p/ and sampling the reservoir states that occur. In this case, the reservoir
without expansion would be driven. Hence, the reservoir update follows

ri(n+1) = tanh(W"p/ (n) + W*r(n)), (11)

where r(n) would be sampled at some fixed interval and stored for all patterns p’/. These sampled reservoir
states r(n) are scaled to have unit norm and used as directional vectors f; to construct F.

In the original research |Jaeger (2017), G* is sampled from a random normal distribution. However, if this
were done, the dynamics of the original weight matrix W* would be lost. To ensure the reservoir dynamics
captured by F are still present in the (autonomous) update sequence, one would define G* = WF.

However, during initial testing, sampling directly from the reservoir states yields poor performance. The
average inner product of the sampled reservoir vectors f; equals around 0.8 as was observed during initial
experimentation. This implies that the directional vectors f; all point in very similar directions, making
distinguishing the different patterns with limited features hard. At this point, this research direction is not
further investigated.

A second, more involved method is also proposed. First, the reservoir is driven by the patterns p/ as
described above in For each pattern j, all reservoir states r/(n) are stored in a matrix X/. Next,
construct the reservoir state correlation matrix R/ = X/(X/)’ for each pattern. Now, a Principal Component
Analysis (PCA) is conducted on each R/. This results in a set of N unit vectors for each pattern j that point
in the leading directions of the reservoir state when it is driven by pattern j. For each pattern, the first kpca
components are selected as vectors f; to form F'.

Note that X/ forms a point cloud in the reservoir space. Also note that by applying PCA on the reservoir
correlation matrix R/ = X/(X/)’, the main axes of the scattering directions of this are found. The idea here is
that using these main scattering directions as vectors helps to control the network in choosing which pattern

12

university of faculty of science
groningen and engineering

to regenerate. The inspiration for the PCA method originates from the idea that if one wants to control the
reservoir activations in directions that are important for a certain pattern, it may help to know these directions.

Also note that the maximum number of PCA vectors per pattern is N, the size of the reservoir. Hence, in
both of the above-described methods, it is possible and sometimes necessary to add randomly sampled unit
vectors to the map F. Again, compute G* = WF to ensure that the reservoir dynamics are preserved.

13

university of faculty of science
groningen and engineering

4 Experiments

The following section will describe the experiments investigating the performance of the newly proposed
feature conceptors relative to the original feature conceptors. The performance of the proposed architectures
will be assessed on prediction accuracy and stability. For completeness, the performance of matrix conceptors
will be reported as well. First, the chaotic patterns will be presented, next, the assessment criteria will be
explained, and lastly, the hyperparameter tuning will be explained.

Rossler Attractor Lorenz Attractor Mackey Glass Hénon Attractor

....

=, « True

Figure 4: 200 timesteps from the true patterns that are stored in the reservoirs.

All models are loaded with four chaotic attractors to assess the performance of the different models. These
chaotic attractors, taken from Jaeger| (2017)), are defined in [Appendix Al [Figure 4] displays a 200-timestep
sample from the true patterns. Each pattern is a two-dimensional representation of a chaotic attractor.

The reservoir was loaded with a training sequence of 3000 timesteps for each pattern. The prediction ac-
curacy was asses by computing the NRMSE, as defined in on the collection of the next 84 timesteps.
The NRMSE of network-generated signal y(n) matched against the target pattern p(n) is defined as

_ [l —pm)?
NRMSE‘\/ PR

where [-] is the mean operator over data points n. After loading the patterns, the last z-state or r-state (in the
case of matrix conceptors) is stored, and the model predicts from that point on.

Next, the stability of the architecture needs to be assessed. Stability will be tested by adding some (nor-
mally distributed) noise to the saved last training reservoir z-state or r-state. Then, by using visual inspection,
the stability will be assessed. A model is considered stable for a certain amount of noise if it recovers within
5000-timesteps after applying the perturbation five times in a row. Each time, a new model was initialized,
trained and then perturbed. The more noise a model can recover from, the more stable the model.

First the model is run for 5000 timesteps without perturbation. If the model does “derail” within these
5000 timesteps, it is considered not stable, as even without noise the model is unable to behave like the loaded
pattern. After this, the model is perturbed with decreasing amounts of noise. The noise levels that are tested are
c=1,0.5,0.1,0.05,...,0.00005,0.00001. If, by assessment of visual inspection, the model “derails” for at
least one of the chaotic attractors, the noise will be decreased. The highest amount of noise that can be added
without the model derailing will be reported. Let us now turn to the optimization of the hyperparameters.

displays all parameters that are relevant for the feature conceptors. Similarly, displays the

14

university of faculty of science
groningen and engineering

parameters that are optimized for the matrix conceptor. As can be seen, next to the starting value a range, step
type and step size are reported. When a relative step size is used, the step size is relative to the current value.
For relative stepsize , the actual step size is calculated by the current value x relative step size. For example,
if the current value is 10, and the relative step size is 0.1, the actual step size = 10 x 0.1 = 1, if the current
value is 100, the same relative step size would imply an actual stepsize of 10. Relative step sizes make sure
that for parameters with a wide spread, the step sizes are still of significant size. If a step type is absolute, the
step size is equal to the step size that is reported.

The number of parameters is large, and their tuning is delicate. Hence, a full grid search is not feasible.
Therefore, the parameters are optimized by looping over the parameters and finding the optimal parameter for
each setting. Hence, one-by-one each parameter is optimized keeping the others fixed. This looping over the
parameters is done three times.

When optimizing one parameter, the average NRMSE for 5 runs is calculated. Each run, the models
are re-initialized. The NRMSE is calculated by comparing the nest 84 predicted timeseries when continuing
from the last stored reservoir state and with the true signal for these time steps. Next, the direction for the
parameter is decided (bigger or smaller) by computing the NRMSE for the two surrounding parameter values.
The direction with the lowest NRMSE is chosen and as long as the NRMSE improves, steps in this direction
will be taken. When the parameter is at its (local) optimal value, proceed to the next parameter. This is then
looped three times. After optimizing the parameters, the hyperparameters with the lowest average NRMSE
will be used to conduct 30 experiments, the average NRMSE on these 30 experiments will be reported.

For the Feature Conceptors, the reservoir size will be set to N = 250. The models will be optimized for
different sizes of the expansion map M. The values of M are presented in The matrix conceptor
architecture will be optimized for both a reservoir size of N = 250 and N = 500. Note that only the prediction
error is used as a metric to optimize the parameters.

M [100 125 187 250 312 375 500 750 1000
Muliipleof N | 2 5 3 1 3 3 2 3 4

Table 1: Values of M and their multiple of N

15

university of faculty of science
/ groningen / and engineering

Parameter Starting Value Range Step type Step size

Greservoir 5-10~% [0,0.5] Relative 0.1
Osignal 7-1073 [0,0.5] Relative 0.1
kpca min(N/4,M/4) [0,N] Relative 0.1
OlRossler 48 (0,10*] Relative 0.1
Olf_orenz 40 (0,10*] Relative 0.1
OlMackey Glass 40 (0,10*] Relative 0.1
Ofenon 40 (0,10*] Relative 0.1
Byyou 0.02 [0,10] Relative 0.25
Bp 6-107° [0,10] Relative 0.1
Bc 0.4 [0,10] Relative 0.1
ow 1 [0,2] Absolute 0.05
op 1 [0,2] Absolute 0.05
p(F'G) 1.4 (0,2] Absolute 0.1
p(W) 1.2 (0,2] Absolute 0.1

Table 2: Feature Conceptor parameters to optimize, starting value and range. Greservoir and Giignal denote the
standard deviation of the noise added to respectively the reservoir and the signal, kpcs denotes the maximum
number of components to take from the PCA. 3; denotes the Tikhonov regularizor for matrix i, o; denotes
the aperture for pattern i and G; denotes the standard deviation when sampling matrix i from the normal
distribution, p(-) denotes the spectral radius. Note that kpca is only relevant for PCA FC.

Parameter Starting Value Range Step type Step size
Oreservoir 5- 10_4 [0, 05] Relative 0.1

Gsignal 7-1073 [0,0.5] Relative 0.1
OlRossler 150 (0,10%] Relative 0.1
OlLorenz 50 (0,10*] Relative 0.1
OlMackey Glass 100 (0,10%] Relative 0.1
OlHenon 60 (0,10*] Relative 0.1
Bw 0.4 [0,10] Relative 0.1
Byyou 0.02 [0,10] Relative 0.25
ow, 1 [0,2] Absolute 0.05

o 1 [0,2] Absolute 0.05
p(W) 1.2 (0,2] Absolute 0.1

Table 3: Feature Conceptor parameters to optimize, starting value and range. Greservoir aNd Oiignal denote the
standard deviation of the noise added to respectively the reservoir and the signal, kpca denotes the maximum
number of components to take from the PCA. 3; denotes the Tikhonov regularizor for matrix i, o; denotes
the aperture for pattern i and G; denotes the standard deviation when sampling matrix i from the normal
distribution, p(-) denotes the spectral radius.

All experiments where implemented using python 3.12.0| All matrix calculations where done using NumPy
2.1.1 and Scikit Learn 1.5.2 was used to solve the ridge regressions. The code can be found at https://
github.com/ottobervoets/RandomFeatureConceptors.

16

https://www.python.org/downloads/release/python-3120/
https://numpy.org/doc/2.1/index.html
https://numpy.org/doc/2.1/index.html
https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.Ridge.html
https://github.com/ottobervoets/RandomFeatureConceptors
https://github.com/ottobervoets/RandomFeatureConceptors

university of faculty of science
groningen and engineering

5 Results

The following section presents the results of the experiments as described in First, the results of
the hyperparameter tuning will be presented, and with that the prediction accuracies of the models. Next,
the stability results will be presented. Finally, some figures will be presented to gain further insights into the
obtained results.

The performance of the PCA Feature Conceptors and Random Feature Conceptors are presented in
For every M, the NRMSE of the PCA FC is on average lower than the one of the RFC. Also, with
the increasing size of M, the NRMSE decreases. For an expansion size of 312, both the RFC and the PCA
FC obtain a lower NRMSE than a matrix conceptor with N = 250. Note that the performance of a matrix
conceptor with a reservoir size of N = 500 is similar to a PCA FC with N = 250 and M = 500. For large M
the mean NRMSE for the PCA FC and RFC are lower than a matrix conceptor with N = 500.

To gain insight into the spread, symmetric error bars of one standard deviation are plotted. Note that the
NRMSE is skewed towards 0, the minimum value for the NRMSE. [Table 3|and [Table 2]in[Appendix B present

the optimal hyperparameters that are used to generate

0.008
RFC Type
—— Matrix Conceptor N=250
0.007 - —— Matrix Conceptor N=500
PCA Feature Conceptor
—f— Random Feature Conceptor
0.006 -
T
wn
= 0.005
o
=2
0.004
B
0.003 - i i N = +
— T ——+——1 | T |
+ -3 b4 —$
0.002 ! ' ' ' ' . . —L | T
0 100 200 300 400 500 600 700 800 900 1000

M

Figure 5: Average NRMSE over 30 experiments for all the architectures with optimal hyperparameters. Error
bars indicate one standard deviation. Note that the matrix conceptors have no expansion map and their error
bar is plotted at M = 0 and M = 50.

To give some intuition, [Figure 6| and [Figure 7| present some prediction results of a PCA RF with an
expansion mapping size of M = 100 and M = 1000. As can be observed, for N = 100 to Lorenz Attractor is
not recalled properly. Also note that the Mackey Glass is recalled as a simple path, without much detail. For
N = 1000 the characteristics of the are captured a lot better.

17

gronin gen and engineering

university of / faculty of science

Rossler Attractor Lorenz Attractor Mackey Glass Hénon Attractor
°
® o
[
k’-
\ T~ TR - True . *
\ ;‘ \\Qq . Predicted i .
N <% ;
—— True // —— True —— True ¢) .
Predicted — Predicted Predicted L -
NRMSE: 0.00266 NRMSE: 0.01165 NRMSE: 0.00169 NRMSE: 0.00389

Figure 6: Predictions PCA feature conceptor z-space size M = 100. Green and red dot indicating the starting
and ending point of the prediction.

Rossler Attractor Lorenz Attractor Mackey Glass Hénon Attractor
—— True —— True L
. ‘ee.
1 Predicted 75& Predlcted / .
\.‘
True .
Predicted P
Predicted \/ -
NRMSE: 0.00115 NRMSE: 0.00088 NRMSE: 0.00039 NRMSE: 0.00388

Figure 7: Predictions PCA feature conceptor z-space size M = 1000. The green and red dot indicate the
starting and ending points of the prediction.

Let us now turn to the stability. [Table 4] presents the results of the stability. As can be observed, for small
values of M, stability is not guaranteed. Hence, without adding noise, the models would (sometimes) derail
and never return to the loaded attractor. For M = 375 the RFC is stable. For values of M > 500 both PCA FC
and RFC are stable. For M = 750 and M = 1000 the amount of noise that can be added to a PCA FC is similar
to that of the matrix conceptors and higher than the amount that can be added to the RFC architecture.

M| 100 125 187 250 312 375 500 750 1000
Random Feature Conceptor | ns ns ns ns ns 0.00005 0.001 0.005 0.005

PCA Feature Conceptor ns ns ns ns ns ns 0.001 0.01 0.01
Matrix (250) 0.01
Matrix (500) 0.01

Table 4: Maximum amount of noise to be added. Where ‘ns’ indicates that without adding noise, this setting
was not stable.

18

university of faculty of science
groningen and engineering

1.0
Portion of PCA features
Remaining random features
0.8 1
_E 0.6 1
5 25 31
Q.
o
a 0.4 50
56 73
26 40
0.2 A
50 62
00 T T T T T T T T T
Q \e) A Q v \) Q Q Q
N N 2 o A A B N &
M

Figure 8: The optimal number of PCA features (blue) in relation to the number of random features (orange).
In text the optimal number of PCA features per pattern is displayed. Hence, since this research deals with
loading four patterns, if the number of PCA features per pattern equals 25, the total amount of PCA features
equals 100.

The optimal number of PCA features is optimized. presents the number of features as a portion
of the total number of features. Note that the remaining features are drawn from a N-dimensional symmetric
normal distribution and scaled to have a norm equal to one. Also, note that the number displayed inside the
bar is the number of features taken from one pattern. Hence in this research, the total amount of PCA features
is this number multiplied with four. The tofal number of PCA features is represented by the hight of the blue
bar.

To get a better understanding of the size of the conceptor weights, displays the conceptor weights
for the four patterns. Note that in this example, the number of PCA components was set equal to 250. The
first 250 conceptor weights are related to the Rossler Attractor, the second 250 to Lorenz Attractor, 500-749
are based on the Mackey Glass and the remaining 250 are connected to the Hénon attractor.

It can be observed that the weights of the conceptor vector of the pattern that corresponds to the PCA
features are only visibly above zero for up until about the first 50 of the PCA features. The total size of the
PCA weights also decreases as the PCA features become less important and for the last PCA feature, the
weights are close to zero.

presents the conceptor weights for randomly drawn features. If is compared with
IFigure 9 weights are generally close to one. If the average sum of all weights ¢; equals 0.93.

19

;1;@; university of faculty of science
&Ej groningen and engineering

Lorenz Attractor Rossler Attractor

Mackey Glass

Hénon Attractor

o S o S
P > A° R

Index

Figure 9: Conceptor weights per pattern. The expansion map size is M = 1000, and the number of PCA
components equals the reservoir size of 250. Hence, all feature vectors f; are PCA components. The first 250
components are taken from the Rossler Attractor, the second 250 from the Lorenz Attractor, the next from
Mackey Glass and the last 250 from the Hénon Attractor.

20

X university of faculty of science
&Ej / groningen and engineering

1.0

0.5

0.0
1.0

Lorenz Attractor Rossler Attractor

Mackey Glass

Hénon Attractor

Q Q Q Q
02 < A2 KN

Index

Figure 10: Conceptor weights per pattern. The expansion map size is M = 1000, All features are drawn from
a random normal distribution and scaled to a uniform size.

21

university of faculty of science
groningen and engineering

6 Discussion

This section will interpret the results presented in First, the results presented in will be
discussed, together with the optimizer. Secondly, the stability of the models will be discussed and lastly, the
optimal number of PCA components will be discussed.

Let us first turn our attention to the prediction accuracy, as presented in Observe that PCA FC
obtains lower NRMSE than RFCs in every setting. For M = 500 the PCA FC very clearly outperforms a
matrix conceptor with a reservoir size of 250 on prediction accuracy and is similar to the matrix conceptor
with N = 500. The addition of PCA features seems to have the highest effect for small values of M. This
might be explained by the fact that for smaller values of M, there are fewer features to work with. Hence,
features that point into the dominant directions of the reservoir state space associated with a pattern will help
control the reservoir more effectively.

The stability of PCA feature conceptors is generally similar to or better than that of RFCs. However,
larger expansion sizes (M = 3N) are necessary to obtain the level of stability that a matrix conceptor offers.
Notice that with increasing M, the stability increases as well. For larger M there are more directions in which
the reservoir state space can be controlled, hence more stability is as expected.

However, stability is also closely related to the aperture o. Small values of aperture result in more stable
models, as for smaller apertures the conceptor approaches the all zero-map. Hence, the level of stability is
adjustable and there is a trade-off to be made with prediction accuracy. Since this research optimized for
prediction error and only tested for stability afterwards, it is hard to conclude which model is the most stable.
What can be concluded is that for large M the RFC FC has a better accuracy with similar stability.

Next to the aperture, signal and reservoir noise (Gsignal, Oreservoir) Influence both the stability and the pre-
diction accuracy. Adding very little noise might lead to very accurate models that are not stable. We have to
note that stability is also not uniformly defined. By using 5 repeated experiments and visual inspection we do
give insight into the stability of the different models.

The optimal number of PCA features seems to lie around 50, a fifth of the reservoir size. If one inspects
IFigure 9] it is clear to see that each pattern only uses about 50 of its “own” PCA features. Hence, both the
parameter optimization and the plot in suggest that, for large enough M the optimal number of PCA
features lies around 50. The maximum number of PCA features needs to be optimized, but a good starting
point would probably be %

The optimization of parameters is very important to asses the performance of these methods. For smaller
M, it may happen that sometimes a pattern is not captured, see This “random” behaviour can make
it challenging to optimize parameters, as the lowest optimization NRMSE may be (and will be) based on
chance. It may happen that with sub-optimal parameters, all four patterns fit fairly well 5 times in a row,
resulting in a low average NRMSE.

To coop with this, presents the mean of 30 new experiments using the hyperparameters that
were found during optimization. This always leads to a higher average NRMSE than the one found during
optimization. It might happen that the optimizer was better able to optimize the parameters for PCA FC,
than for RFC. To check for this the optimal hyperparameters for the RFC were used by a PCA FC with (at
maximum) 50 PCA features. This always resulted in (far) better results than without the PCA features.

22

university of faculty of science
groningen and engineering

7 Conclusion

This thesis aimed to expand the knowledge concerning Random Feature Conceptors and improve task per-
formance. We focused on finding an alternative way to construct expansion map F’, as introduced by Jaeger:
(2017). We found a better-performing method of constructing map F’. In this method, some of the features
f; of the map F’ are based on the principal components of the reservoir state space related to a given pattern.
This systematic PCA-based method improved all performance measures.

The performance assessment was based on the architecture’s ability to control a recurrent neural network,
also known as a reservoir. Four 2-dimensional representations of chaotic patterns were loaded into the reser-
voir using a training sequence of 3000 timesteps. The first performance measure is the prediction accuracy of
the network on the next 84 steps. Secondly, the stability of the network is of interest. To assess the stability,
some random noise was added to the network. The maximum amount of noise that can be added while the
network can still trace back to behave as the original network indicates its degree of stability.

PCA feature conceptors outperformed random feature conceptors in every way. The optimal number of
PCA features seems to be around one-fifth of the total number of neurons in the reservoir. However, this
parameter needs to be optimized for each application.

The improvement of the Feature Conceptor architecture allows future users of this architecture to either
use smaller expansion mappings F without losing performance or improve performance by including some
PCA features within their map. As PCA is a very cheap operation for modern computers, and since no real
changes need to be done to the architecture, even systems that are already in place can be improved easily.

These findings also open up new research directions. In{Jaeger| (2017)) it is shown that the matrix conceptor
architecture can be loaded with patterns in an incremental manner. It has yet to be shown how to do this with
feature conceptors. An especially interesting idea would be to also expand the map F’ with only a few features.
However, this might not be easily done due to the input simulation matrix.

Feature conceptors can be applied in every situation where matrix conceptors can be applied, with a
potential fraction of the storage cost. Hence, in each setting where matrix conceptors are used, it would be
interesting to research how PCA feature-based conceptors would perform.

Lastly, Conceptor control does require both storage and computational effort. It might be interesting
to research what would happen when one applies conceptor control not every timestep. This has obvious
computational advantages, but what would happen performance-wise?

23

university of faculty of science
groningen and engineering

References

De Jong, J. (2021). Controlling recurrent neural networks by diagonal conceptors (Master’s thesis, University
of Groningen). Retrieved from https://fse.studenttheses.ub.rug.nl/24863/

Gast, R., Faion, P,, Standvoss, K., Suckro, A., Lewis, B., & Pipa, G. (2017). Encoding and decoding dynamic
sensory signals with recurrent neural networks: An application of conceptors to birdsongs. bioRxiv. Re-
trieved from https://www.biorxiv.org/content/early/2017/04/28/131052| doi: 10.1101/131052

He, X., & Jaeger, H. (2018). Overcoming catastrophic interference using conceptor-aided backpropaga-
tion. [International Conference on Learning Representations (ICLR 2018). Retrieved from https://
openreview.net/forum?id=Blal7jg0b

Jaeger, H. (2014). Conceptors: an easy introduction. Retrieved fromhttps://arxiv.org/abs/1406.2671

Jaeger, H. (2017). Controlling recurrent neural networks by conceptors. Retrieved from https://arxiv
.org/abs/1403.3369

Karve, S., Ungar, L., & Sedoc, J. (2019). Conceptor debiasing of word representations evaluated on WEAT.
Retrieved from https://arxiv.org/abs/1906.05993

Meyer zu Driehausen, F., Busche, R., Leugering, J., & Pipa, G. (2019). Bistable perception in conceptor
networks. In I. V. Tetko, V. Kirkova, P. Karpov, & F. Theis (Eds.), Artificial neural networks and ma-
chine learning — ICANN 2019: Workshop and special sessions (pp. 24-34). Cham: Springer International
Publishing.

Pals, R. (2024). Towards an iterative approach for constructing diagonal conceptors for autonomous pattern
generation (Bachelor’s thesis, University of Groningen). Retrieved from https://fse.studenttheses
.ub.rug.nl/33677/

Postmus, J. (2024). Steering large language models using conceptors: An alternative to point-based
activation engineering (Bachelor’s thesis, University of Groningen). Retrieved from https://fse
.studenttheses.ub.rug.nl/33973/

Reinhart, F., & Steil, J. (2010). A constrained regularization approach for input-driven recurrent neural
networks. Differential Equations and Dynamical Systems, 19, 27-46. doi: 10.1007/s12591-010-0067-x

Yildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012). Re-visiting the echo state property. Neural Networks, 35, 1-9.
Retrieved from https://www.sciencedirect.com/science/article/pii/S0893608012001852 doi:
https://doi.org/10.1016/j.neunet.2012.07.005

24

https://fse.studenttheses.ub.rug.nl/24863/
https://www.biorxiv.org/content/early/2017/04/28/131052
https://openreview.net/forum?id=B1al7jg0b
https://openreview.net/forum?id=B1al7jg0b
https://arxiv.org/abs/1406.2671
https://arxiv.org/abs/1403.3369
https://arxiv.org/abs/1403.3369
https://arxiv.org/abs/1906.05993
https://fse.studenttheses.ub.rug.nl/33677/
https://fse.studenttheses.ub.rug.nl/33677/
https://fse.studenttheses.ub.rug.nl/33973/
https://fse.studenttheses.ub.rug.nl/33973/
https://www.sciencedirect.com/science/article/pii/S0893608012001852

university of faculty of science
groningen and engineering

A Chaotic attractors

For the Rossler attractor, training time series were obtained from running simple Euler approximations of the
following ODEs:

i=—(y+2z)
y=x-+ay
Z=b+xz—cz,

using parameters a = b = 0.2,c = 8. The evolution of this system was Euler approximated with stepsize
1/200 and the resulting discrete time series was then subsampled by 150. The x and y coordinates were
assembled in a 2-dimensional driving sequence, where each of the two channels was shifted/scaled to a range
of [0,1].

For the Lorenz attractor, the ODE

x=0(y—x)

y=rx—y—xz

I=xy—bz

with 6 = 10,r = 28,b = 8/3 was Euler-approximated with stepsize 1/200 and subsequent subsampling
by 15. The x and z coordinates were collected in a 2-dimensional driving sequence, again each channel
normalized to a range of [0, 1].

The Mackey-Glass time series was obtained from the delay differential equation

o Px(t—n)
x(t)—m—yx(t)

with B =0.2,n = 10,7 = 17,y = 0.1, a customary setting when this attractor is used in neural network
demonstrations. An Euler approximation with stepsize 1/10 was used. To obtain a 2-dimensional time se-
ries that could be fed to the reservoir through the same two input channels as the other attractor data, pairs
x(t),x(t — t) were combined into 2-dimensional vectors. Again, these two signals were normalized to the
[0,1] range.

The Hénon attractor is governed by the iterated map

x(n+1)=y(n)+1—ax(n)
y(n+1) = bx(n),

where [used a = 1.4,b = 0.3. The two components were filed into a 2-dimensional time series (x(n),y(n))’
with no further subsampling, and again normalization to a range of [0, 1] in each component.

25

faculty of science
and engineering

university of
groningen

&/ /

B Optimal Parameters

M 100 125 187 250 312 375 500 750 1000
Greservoir 239-107% 239-107* 239.107*% 4.95-107% 1.74-107* 3.85.-107* 3.85-10* 3.12-107* 4.05-107*
Gignal 455-1073 5.67-1073 822-1073 4.13-1073 55.-103 5.67-103 6.79-1073 5.1-1073 4.13-1073
kpca 25 31 26 50 40 56 73 50 62
OlRossler 28.1 34.3 34.0 31.5 19.7 31.5 36.3 31.5 36.6
Olf_orenz 28.0 24.7 17.9 18.4 32.3 22.7 26.1 22.7 22.7
OlMackey Glass 15.9 17.5 5.03 21.7 12.3 14.3 9.18 14.3 14.3
Offenon 14.6 13.0 11.5 11.8 7.37 14.3 7.32 14.3 14.3
Byyou 0.0105 0.0165 0.0165 8.44-1073 0.0112 844-1073 4.75-1073 8.44.1073 0.0112
Bo 8.01-10°° 879-1075 2.22-107° 5.63-107° 142-107° 1.67-10° 9.39-10°° 1.67-107° 6-107°
Bg 0.324 0.213 0.474 0.324 0.257 0.260 0.342 0.260 0.360
ow, 1.25 1.25 1.40 1.50 1.40 1.25 1.30 1.25 1.50
p(F'G) 0.600 0.500 1.00 1.10 1.05 1.10 1.20 1.10 1.10
p(W) 1.10 1.15 1.35 1.10 0.900 1.25 1.20 1.25 1.20
b 0.2 0.45 0.35 0.3 0.45 0.4 0.4 0.35 0.45
Table 5: The optimal parameters for the PCA FC with various M and a fix reservoir size of N = 250
100 125 187 250 312 375 500 750 1000
Greservoir 2.66-100% 322-107% 239-107% 3.64-10% 1.74-100% 437-100% 2.15-10% 2.39-107% 295-10°%
Gignal 6.86-1073 5.61-107% 8.22-107% 5.61-1073 55-10° 83-107° 4.01-1073 545-107% 4.95-1073
OlRossler 48.0 10.1 34.0 24.6 19.7 48.0 12.6 12.6 19.7
O orenz 20.6 11.5 17.9 28.0 32.3 9.18 13.2 17.9 17.9
OlMackey Glass 17.7 39.8 5.03 12.3 12.3 30.0 11.8 18.4 18.4
Olfienon 9.22 3.77 11.5 18.0 7.37 11.5 4.72 11.5 11.5
Byyou 0.0200 0.0206 0.0165 0.0112 0.0112 0.0112 4.75-1073 6.33-1073 0.0112
Bp 3.71-100° 6-107° 222107 1.9-107° 142-10° 6-10° 6.01-10° 19-10° 1.9-107°
Bs 0.423 0.257 0.474 0.353 0.257 0.436 0.152 0.250 0.208
ow, 1.45 1.50 1.40 1.50 1.40 1.50 1.30 1.40 1.30
p(F'G) 1.00 0.950 1.00 1.05 1.05 1.00 1.05 1.15 1.15
p(W) 1.20 1.05 1.35 1.20 0.900 1.20 1.10 1.05 1.20
b 0.25 0.3 0.5 0.3 0.4 0.35 0.4 0.45 0.4

Table 6: The optimal parameters for the RFC with various M and a fix reservoir size of N = 250

26

university of
groningen

faculty of science
and engineering

/ /

N 250 500
Greservoir 8.65-10° 3.95.-107*
Giignal 4.05-100* 49.1073
OlRossler 150 1050
OlLorenz 25.6 255
u‘Mackey Glass 41.0 475
OlHenon 60.0 410
Byyou 7.29-107% 7.14-1073
Bw 1-107* 5.31-1073
o, 1.15 1.25
p(W) 0.75 0.55
b 0.3 0.55

Table 7: Optimal parameters found for the matrix Conceptors with reservoir size N = 250 and N = 500

27

	Introduction
	Literature Review
	Theoretical Framework
	Conceptor Architecture
	Computing weights
	Construction of F' and G

	Experiments
	Results
	Discussion
	Conclusion
	Chaotic attractors
	Optimal Parameters

