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Abstract: This research investigates the cognitive processes and skill acquisition mechanisms
underlying multiplication fact learning in primary education through computational modelling
techniques. By analysing performance data from 540 children (ages 6-10) who completed 315,690
trials using an adaptive learning system, we examined how young learners acquire multiplication
facts and what skill dependency analysis reveals about their strategic approaches. The study
employed TafelTrainer, an adaptive learning application implementing a three-level progression
from initial calculation to automatised recall, combined with GraafTel, a novel graph-based algo-
rithm for analysing skill hierarchies and dependencies. Through systematic analysis of response
accuracy, reaction times, and memory decay patterns across learning stages, we identified three
distinct skills with differential relationships to performance metrics. One skill maintained strong
correlations with reaction times across all learning encounters, suggesting its association with
calculation-based strategies that remain time-intensive despite practice. The other two skills
demonstrated variable and generally decreasing correlations with reaction times in later encoun-
ters, indicating potential transition to retrieval-based processes that become more efficient with
practice. These computational patterns align with established frameworks of cognitive skill acqui-
sition that propose discrete transitions between computational, retrieval-based, and automatic
processing during learning. The findings contribute to our understanding of mathematical cogni-
tion while informing the development of adaptive learning technologies that more precisely align
with learners’ cognitive developmental trajectories.

Introduction

Mastering fundamental arithmetic operations, such
as multiplication, constitutes a necessary founda-
tion for mathematical competence and the de-
velopment of more advanced mathematical skills.
Research by Kaskens et al. (2022)) demonstrates
that arithmetic fluency—specifically the ability
to quickly and accurately retrieve arithmetic
facts—plays a significant role in predicting mathe-
matical problem-solving performance, particularly
in solving multistep problems. These findings are
consistent with the multi-level framework of math-
ematical cognition described by Gilmore (2023)),
which emphasises that arithmetic fluency is one of
the key specific components of mathematics that
contributes to overall mathematics achievement.

Significant challenges exist in developing arith-
metic fluency, particularly in implementing ef-
fective instructional strategies that accommodate
diverse cognitive profiles. Research by Das and
Janzen (2004]) identifies working memory and pro-
cessing speed as key cognitive factors influencing
mathematical learning, with these constraints af-
fecting both computational efficiency and fact re-
trieval. These individual differences in cognitive
processing necessitate adaptive learning approaches
capable of responding to varied learning trajecto-
ries and strategy development patterns.

Traditional instructional methods, often relying
on rote memorisation, may not optimally align
with the cognitive processing of numerical infor-
mation because they do not leverage the way hu-



mans naturally structure and retrieve mathemat-
ical knowledge. Research in numerical cognition
suggests that mathematical learning involves both
declarative memory (fact retrieval) and procedural
strategies (rule-based problem-solving), with effi-
cient problem-solving requiring flexible integration
of these components (Dehaene, |2011). Rote memo-
risation primarily strengthens declarative recall but
can bypass the conceptual understanding necessary
for flexible application, limiting transferability to
novel problems. Furthermore, studies indicate that
numerical processing relies on the mental number
line—a cognitive representation where numbers are
spatially organised—and that meaningful engage-
ment with numerical relationships, such as through
strategy-based learning, better supports long-term
retention and adaptive skill use (Siegler, |[2009). Re-
cent research indicates that approaches prioritising
conceptual understanding and strategic problem-
solving promote deeper learning, as they align with
cognitive mechanisms underpinning numerical rea-
soning and retrieval (del Carmen Chamorro, 2021)).
By developing and implementing computational
frameworks for tracking skill acquisition and strat-
egy development, we can create more responsive
educational tools that adapt to individual learning
patterns while maintaining rigorous assessment of
mastery progression.

This research examines the acquisition of mul-
tiplication facts through computational modelling
of learning trajectories among primary school stu-
dents aged 6-10. Computational modelling refers to
the use of algorithmic and mathematical represen-
tations to simulate and analyse cognitive processes
underlying learning. In this context, it enables the
systematic study of how multiplication facts are
acquired by constructing models that infer skill
development patterns from student performance
data. Learning trajectories describe the progres-
sive paths through which students acquire math-
ematical knowledge, encompassing the sequence of
concepts, strategies, and skills they develop over
time. By utilising a large-scale dataset of 315,690
trials collected from 540 students through an adap-
tive digital learning environment that automati-
cally adjusts practice schedules based on individual
performance patterns, we apply graph-based anal-
ysis techniques to construct and analyse hierarchi-
cal skill structures, revealing patterns in fact mas-
tery and strategy development. Our investigation

addresses the following research question:

How do young learners in primary school
(ages 6-10) acquire multiplication facts,
and what can skill dependency analysis re-
veal about the strategies they use in mas-
tering these facts?

1.1 Knowledge Tracing and Adap-
tive Learning Systems

Knowledge tracing (KT) systems enable systematic
monitoring of student learning progression through
interactions with digital learning materials (Abdel-
rahman et al.,|2023)). These systems employ compu-
tational methods to observe, represent, and quan-
tify students’ knowledge states, often focusing on
their mastery of specific skills underlying the edu-
cational content. Recent advances in KT have facil-
itated more precise modelling of learning patterns
by accounting for complex factors such as skill de-
pendencies and temporal dynamics in knowledge
acquisition (van Rijn et al., |2009)).

A key exemplar of these principles is Tafel Trainer
(Tancu et al., |2024; van der Velde, [2024), an adap-
tive learning system designed specifically for mul-
tiplication fact automatisation. Tafel Trainer imple-
ments a three-tiered learning structure that guides
students from initial exposure to rapid, accurate re-
call (Tancu et al.,|[2024)). The system integrates cog-
nitive modelling principles to track memory reten-
tion and forgetting, aligning practice schedules with
the cognitive processes involved in learning. Rather
than maintaining fixed intervals, TafelTrainer em-
ploys an adaptive spaced repetition strategy that
continuously updates each learner’s ”speed of for-
getting” parameter («). This adaptive strategy en-
sures that practice occurs briefly before predicted
memory decay (Tancu et al., [2024; van Rijn et al.,
2009).

TafelTrainer’s adaptive scheduling methodology
is based on the latency-based adaptation model
from van Rijn et al. (2009), which uses response
latencies to estimate individualised forgetting rates
for each multiplication fact. By analysing how
quickly a learner responds to a retrieval attempt,
the system infers the strength of the memory trace:
faster responses indicate stronger memory, lead-
ing to a lower estimated forgetting rate and thus
longer intervals before the next practice, while



slower responses suggest weaker memory, resulting
in a higher forgetting rate and more frequent prac-
tice. For example, if a student quickly recalls that
3 x 4 = 12, the system may extend the time before
retesting this fact, whereas a delayed response for
7 x 8 might prompt earlier review. This dynamic
adjustment ensures that practice occurs just before
the predicted point of forgetting, optimising both
the spacing and testing effects. Supporting this ap-
proach, Sense et al. (2016) demonstrated that for-
getting rates can vary significantly across different
materials for the same individual, underscoring the
importance of fact-specific adaptations to accom-
modate varying cognitive demands.

Maths Garden, developed by Klinkenberg et al.
(2011)), complements these adaptive approaches by
introducing a distinct methodology for tracking
knowledge states through performance-driven pa-
rameter updates. While TafelTrainer focuses on
memory retention through latency-based adapta-
tion, Maths Garden employs a modified Elo rating
system (Elo, |1978), originally designed for chess,
to dynamically estimate learner ability and item
difficulty. After each interaction, the system ad-
justs ratings based on discrepancies between ex-
pected and observed performance, incorporating re-
sponse times to reward accurate answers given at
developmentally appropriate speeds while penal-
ising rapid errors. This approach operationalises
knowledge tracing as a continuous calibration pro-
cess, where iterative updates approximate learners’
evolving mastery states. However, Maths Garden’s
linear rating model, though effective for adaptive
practice scheduling, treats arithmetic facts as iso-
lated units and may not fully capture the multidi-
mensional nature of skill acquisition—particularly
the interdependencies between facts and strategic
flexibility emphasised by Siegler (2009).

GraafTel addresses this limitation by imple-
menting data-driven graph-based skill structures
(Taatgen & Blankestijn, 2024). Unlike systems like
Maths Garden, which rely on linear rating mod-
els to rank items on a single difficulty dimen-
sion, GraafTel organises skills hierarchically in a
graph where nodes represent clusters of items re-
quiring specific skill combinations and edges de-
note prerequisite relationships inferred from stu-
dent performance data. For instance, foundational
facts like 2 x 3 might emerge as prerequisite
nodes for solving derived problems like 4 x 3 if

learners systematically apply doubling strategies.
This methodology avoids rigid predefined skill tax-
onomies, instead inferring structures from empiri-
cal patterns in learner performance, thereby cap-
turing multidimensional interdependencies—such
as how known facts might scaffold new strate-
gies—that linear models oversimplify. While Graaf-
Tel’s inferred structures—such as clusters of inter-
connected skills, prerequisite dependencies between
facts, or hierarchical skill progressions—can sug-
gest how students develop and deploy mathemat-
ical strategies, interpreting these findings requires
grounding in theoretical and empirical research on
mathematical skill acquisition. The following sec-
tion explores mathematical skill development and
provides the context for enabling meaningful anal-
ysis of the strategic patterns that may emerge in
GraafTel’s skill graphs—for example, clusters indi-
cating a transition from counting-based strategies
(e.g., repeated addition for 3 x 4) to derived-fact
usage (e.g., leveraging 2 x 6 to solve 4 x 6).

1.2 Learning of Basic Skills in Math-
ematics

The computational patterns revealed through sys-
tems like GraafTel must be interpreted within
the broader context of cognitive development and
strategic learning progressions in mathematics.
Siegler (1988) established that children’s multi-
plication skill development involves a sophisti-
cated model of strategy choice rather than sim-
ple fact memorisation. Through systematic inves-
tigation of children’s problem-solving approaches,
Siegler (1988]) identified multiple concurrent strate-
gies that learners employ when solving multiplica-
tion problems.

Building on this foundation, Lemaire and Siegler
(1995) conducted a longitudinal investigation of
French second-graders’ acquisition of single-digit
multiplication skills, identifying four distinct di-
mensions of strategic change that contribute to im-
provements in speed and accuracy: (1) introduction
of new strategies, (2) increasing use of more efficient
existing strategies, (3) more efficient execution of
each strategy, and (4) more adaptive choices among
strategies. Their research demonstrated that even
early in learning, children’s strategy choices were
highly adaptive, with retrieval dominating for eas-
ier problems while backup strategies like repeated



addition were employed for more challenging ones.
Importantly, Lemaire and Siegler (1995) found
that children continued to use multiple strategies
throughout the learning process, with the transi-
tion to retrieval-based approaches occurring grad-
ually and selectively, based on problem character-
istics rather than as a wholesale shift.

The process model proposed by Siegler (1988)
describes three key mechanisms involved in multi-
plication problem-solving. First, learners may re-
trieve answers directly from memory based on the
associative strength—the strength of the mental
connection linking a multiplication problem (e.g.,
3 x 4) to its correct answer (e.g., 12) in long-term
memory—between problems and potential answers.
When retrieval fails to meet a confidence criterion,
learners employ backup strategies such as repeated
addition or counting sets of objects. The choice be-
tween retrieval and backup strategies depends on
factors including problem difficulty, the current as-
sociative strength of the problem-answer link (re-
flecting prior exposure and practice frequency), and
previous experience (Siegler, [1988)).

This framework helps explain observed patterns
in children’s multiplication performance. As noted
by Siegler (1988), backup strategies are used more
frequently on problems that elicit higher error rates
and longer solution times. The model accounts for
systematic variations in strategy use across dif-
ferent problem types—for instance, problems with
larger operands tend to elicit more backup strategy
use compared to problems with smaller operands.
These patterns emerge from the interaction be-
tween associative strength, confidence criteria, and
the relative success of different approaches.

Recent work by Gilmore (2023) builds on this
understanding by examining how domain-specific
skills like fact retrieval interact with domain-
general cognitive processes such as working mem-
ory and inhibition. The constraints imposed by
these cognitive factors, as identified by Das and
Janzen (2004)), influence both initial learning and
subsequent strategy selection. Additionally, Camp-
bell and Thompson (2012) highlights how strength-
ening certain fact associations may temporarily in-
hibit access to related facts through interference
effects.

Understanding how learners navigate between re-
trieval attempts and backup strategies helps ex-
plain the clusters and relationships manifested in

GraafTel’s skill graphs. This perspective on strat-
egy development naturally extends to broader the-
ories of cognitive skill acquisition and the mecha-
nisms underlying the transition from declarative to
procedural knowledge.

1.3 Human Fact Learning

Siegler (1988) emphasises adaptive strategy use
in mathematics learning, which broader frame-
works extend to explain how components of a skill
evolve into smooth, automatic performance. Ander-
son (1982) outlines a progression from declarative
knowledge—where learners deliberately recall facts
and rules—to procedural knowledge—where these
elements are applied rapidly and with minimal cog-
nitive load. In the early stages of learning multi-
plication, students might carefully break problems
into smaller segments, effectively applying ”declar-
ative” strategies. For example, when confronted
with 7 x 8, a novice learner might first calculate
7 x5 = 35, then 7 x 3 = 21, and finally combine
these results to arrive at 56. As practice continues,
these procedures become integrated and stream-
lined, allowing instantaneous retrieval of facts and
effortless application in problem-solving. This pro-
gression clarifies how learners transition from la-
borious, step-by-step reasoning to more direct and
fluent recall.

Tenison et al. (2016) provide empirical support
for this multiphase progression through their {MRI
investigation of skill acquisition. Their research
identified three distinct learning phases that align
closely with the theoretical framework proposed by
Anderson (1982)): a computation-dominant phase,
a retrieval-based phase, and an automatic response
phase. By combining multi-voxel pattern analysis
with hidden semi-Markov modelling, they demon-
strated that the majority of practice-related speed
up stems from discrete changes in cognitive process-
ing—specifically, transitions between these learn-
ing phases—rather than from continuous improve-
ments within each phase. Particularly noteworthy
is their finding that the solving stage of the first
learning phase involves a sequence of arithmetic
computations, while the transition to the second
phase occurs when learners can retrieve answers di-
rectly, substantially reducing solution time. With
continued practice, learners then transition to the
third phase where problems are recognised as uni-



fied patterns that trigger automatic responses. This
neuroimaging evidence provides strong empirical
validation for the theoretical phase transitions de-
scribed in cognitive skill acquisition models.

Furthermore, Anderson (1982) describes pro-
cesses of knowledge generalisation and discrimina-
tion that demonstrate how learners refine their mul-
tiplication skills over repeated encounters. Gener-
alisation allows them to apply learned strategies
to novel problems, while discrimination helps them
recognise when certain approaches are inappropri-
ate. For instance, a student who has mastered the
strategy of doubling to calculate 4 x 7 (by com-
puting 2 x 7 and then doubling the result) might
generalise this approach when encountering 4 x 9.
Conversely, discrimination occurs when the stu-
dent recognises that using the doubling strategy
for 7 x 8 is less efficient than direct retrieval after
sufficient practice. This iterative process of testing,
adjusting, and internalising strategies ensures that
learners become adept at selecting the best tools
for each scenario. Anderson’s framework provides a
temporal perspective on skill acquisition, explain-
ing changes in performance and strategy use across
learning encounters and difficulty levels.

Separate from Anderson’s framework, Taatgen
(2013) introduces the primitive elements theory
(PRIMs), suggesting that cognitive skills can be de-
composed into fundamental processing units. These
primitive elements serve as the lowest level build-
ing blocks from which more complex cognitive op-
erations are constructed. According to this theory,
PRIMs—such as recognising numerals or perform-
ing basic comparisons—constitute essential cogni-
tive operations that, when combined, enable the
execution of more sophisticated mathematical pro-
cedures. For example, the cognitive operation of
recognising that 5 x 8 equals 40 involves primi-
tive elements such as visual processing of numer-
als, retrieval of arithmetic facts, and selection of
the appropriate response. The PRIMs framework
provides a mechanistic explanation for how basic
cognitive operations can be reused across different
tasks, facilitating transfer of learning.

While PRIMs operate at the most fundamen-
tal level of cognitive processing, Taatgen and
Blankestijn (2024]) demonstrate that mathematical
skill acquisition can be more effectively understood
through higher-level skill structures that emerge
from these primitive operations. Their data-driven

approach to cognitive skill modelling reveals that
mathematical competencies manifest as combina-
tional and transferable skills that form hierarchi-
cal relationships. Taatgen and Blankestijn (2024)
identify specific mathematical skills—such as sim-
ple arithmetic operations, handling large num-
bers, solving story problems, and multistep reason-
ing—that function as distinct, reusable components
within a skill hierarchy. For instance, the skill of
multiplying by 10 (e.g., 10 X 6 = 60) can be com-
bined with addition to solve more complex prob-
lems like 12 x 6 by computing (10 x 6) + (2 x 6) =
60 + 12 = 72. Unlike PRIMs, which represent the
most basic cognitive operations, these mathemati-
cal skills represent clusters of coordinated processes
that learners combine to address increasingly com-
plex problems.

This hierarchical skill perspective helps explain
why certain clusters of related multiplication facts
emerge in learning trajectories. For instance, mas-
tery of basic multiplication facts (e.g., 2 x 3) func-
tions as a foundational skill that can be combined
with other skills (like doubling) to derive solutions
to more complex problems (e.g., 4 X 3). A concrete
manifestation of this hierarchy appears when stu-
dents leverage knowledge of multiplication by 5 to
compute products involving 6: having memorised
that 5 x 7 = 35, a student might calculate 6 x 7
as 35 + 7 = 42. Understanding the higher-level or-
ganisation of mathematical skills provides insight
into how learners navigate their developing skill
network, utilising existing components at various
levels of abstraction to develop more sophisticated
problem-solving approaches.

In essence, Anderson (1982) skill acquisition
framework offers a temporal perspective on how
learners progress from declarative to procedural
knowledge across learning encounters, while Taat-
gen’s models—from primitive elements to hierar-
chical skill structures—provide a structural ac-
count of how cognitive skills are organised and
combined. Together, these complementary theo-
retical perspectives establish a methodological ba-
sis for examining both temporal progression in
skill acquisition and the interconnected relation-
ships between skills, thereby informing our empiri-
cal investigation. The analytical tools employed in
this study, namely GraafTel, derive methodologi-
cal utility from both frameworks: temporal changes
across encounters are interpreted through Ander-



son’s lens, while skill hierarchies and transfer rela-
tionships align with Taatgen’s approach.

1.4 Outline of the Study

This research utilises comprehensive student per-
formance data from an adaptive learning system
designed to develop multiplication fact fluency
among primary school students. Through the anal-
ysis of accuracy metrics, response times, and forget-
ting rates, this study implements a GraafTel-based
skill analysis to investigate patterns in strategy de-
velopment and fact mastery acquisition.

Building on previous research in cognitive skill
acquisition (Anderson, [1982} Siegler, [1988)), we
identify three primary strategies that learners may
employ when solving multiplication problems:

e Counting-based strategies, where early learn-
ers prioritise accuracy over speed by using re-
peated addition (e.g., solving 3 x 4 as 4 + 4
+ 4) (Siegler, [1988])

e Derived-facts strategies, which align with Taat-
gen’s primitive elements theory (Taatgen,
2013), where learners reuse and adapt known
facts to solve new problems (e.g., using 2 x 3
= 6 to deduce 4 x 3 = 12 by doubling)

e Direct fact retrieval, representing the transi-
tion from declarative knowledge to procedural
fluency described by Anderson (1982), where
answers are automatically retrieved without
calculation

Our central research question remains: How do
young learners in primary school (ages 6-10) ac-
quire multiplication facts, and what can skill de-
pendency analysis reveal about the strategies they
use in mastering these facts? To address this ques-
tion, we analyse performance data from 540 stu-
dents across three distinct levels of the Tafel Trainer
platform, capturing 315,690 trials over 17,575 ses-
sions. For each student-level combination, we exam-
ine three critical learning stages: initial encounter,
middle encounter, and final encounter with multi-
plication facts. This temporal approach allows us
to trace developmental trajectories and strategic
shifts as learners progress from novice to more ex-
pert performance.

We propose three main hypotheses regarding
skill acquisition patterns:

1. Skill analysis can distinguish between retrieval
and calculation strategies. We test this by ex-
amining correlations between GraafTel skill
probabilities and reaction times across dif-
ferent learning encounters. If distinct cog-
nitive processes are captured by different
skills, we expect differential correlation pat-
terns—specifically, skills associated with cal-
culation should maintain strong positive cor-
relations with reaction time throughout learn-
ing, while retrieval-based skills should show de-
creasing correlations as automaticity develops.

2. Skill analysis measures independent cognitive
processes rather than redundant metrics. We
evaluate this by analysing inter-skill correla-
tions across different skill configurations (3-6
skills). If the model successfully captures dis-
tinct cognitive processes, we expect relatively
low inter-skill correlations, particularly in con-
figurations that optimally balance model com-
plexity and predictive accuracy.

3. Skill analysis reveals the development of strate-
gic approaches across learning. We test this
by comparing skill probability distributions
across different levels and encounters, par-
ticularly focusing on how skill-reaction time
relationships evolve. We expect to observe
systematic shifts from calculation-dominant
to retrieval-dominant patterns, evidenced by
changing correlations between skill probabili-
ties and performance metrics.

The unique contribution of this research lies in
its application of a novel graph-based skill analy-
sis methodology (GraafTel) to empirically derived
learning trajectories, providing a data-driven ap-
proach to understanding multiplication fact acqui-
sition that extends beyond traditional theoretical
models. Unlike previous studies that often rely on
predefined skill taxonomies or linear difficulty as-
sessments, our approach infers skill structures di-
rectly from performance patterns, capturing the
multidimensional nature of mathematical learn-
ing. By integrating temporal analysis (across learn-
ing encounters) with structural analysis (skill de-
pendencies and hierarchies), we bridge theoreti-
cal frameworks of cognitive skill acquisition with
empirical patterns in naturalistic learning environ-
ments.



This approach has significant educational impli-
cations, potentially informing the development of
adaptive learning technologies that more precisely
align with learners’ cognitive development trajec-
tories. Rather than treating multiplication facts
as isolated units to be memorised, our method-
ology reveals the interconnected skill structures
that underpin effective learning, enabling more tar-
geted instructional interventions that leverage nat-
ural learning progressions and strategic develop-
ment patterns.

Through this comprehensive analysis of multipli-
cation fact acquisition, we aim to advance both the-
oretical understanding of mathematical cognition
and practical applications in educational technol-
ogy design, contributing to more effective and de-
velopmentally appropriate learning experiences for
young mathematics students.

2 Methods

2.1 Data Collection

The dataset was sourced through Iancu et al.
(2024), who conducted a naturalistic study using
the TafelTrainer adaptive learning system across
11 primary schools in the Netherlands. The study
involved 540 students aged 6-10 years, who col-
lectively completed 315,690 trials across 17,575
sessions during a 197-day period. While teachers
retained autonomy over implementation schedul-
ing, students maintained freedom to select multi-
plication tables and difficulty levels according to
their preferences (Iancu et al., 2024)). Average plat-
form engagement was 66 minutes per student, dis-
tributed across approximately 26 sessions.

2.2 Computational Framework

The study utilised two primary computational sys-
tems: TafelTrainer for adaptive learning delivery
(Tancu et al., 2024) and GraafTel for skill depen-
dency analysis.

2.2.1 TafelTrainer Implementation

As described by Iancu et al. (2024), TafelTrainer
implemented a three-tiered learning progression.
The first level, focused on foundation building, pre-
sented facts sequentially without algorithmic adap-

tation and required a single correct response for
completion. The second level introduced adaptive
practice, employing memory model-based schedul-
ing using accuracy metrics and implementing
model-based mastery criteria. The third level aimed
at automatisation by adding an 8-second response
limit while maintaining the adaptive scheduling
and model-based mastery assessment from the pre-
vious level.

The system’s memory model predicted fact acti-
vation levels through:

M(f,t) = A(f,t+24h) > a1

=In) ((t+24h) —t;)~" > 7y

(2.2)

In this equation, M ( f,t) represents the predicted
mastery of fact f at time ¢, while A(f,t + 24h)
indicates the activation level prediction 24 hours
ahead. The parameter 7); serves as the activation
threshold, and d represents the decay parameter,
which was fixed at 0.45.

The model incorporated fact-specific forgetting
rates (a), which were updated based on student
performance. In Level 2, a adjustments were based
solely on response accuracy, with increments or
decrements of 0.01 from the default assumption of
0.3. For Level 3, the o adjustments incorporated
both accuracy and response time, allowing for more
nuanced adaptation to student performance.

2.2.2 GraafTel Algorithm

The GraafTel system employs a novel graph-based
algorithm, currently under development by Taat-
gen and colleagues, to analyse skill hierarchies and
dependencies. This methodology, part of an ongo-
ing research initiative to advance adaptive learn-
ing frameworks, represents both items and learn-
ers through skill vectors whose dimensionality cor-
responds to the number of skills in the domain.
For items, vector elements represent the probability
that a specific skill is required for successful com-
pletion, while for learners, these elements indicate
the probability of skill mastery.

The system calculates the expected probability
of success (ES) through the following multiplicative
model:

ES = H(l —x; + xlsz) (23)
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Figure 2.1: Illustration of the GraafTel vector repre-
sentation model. Both multiplication facts and learners
are represented through skill vectors. For items, vector
elements (z;) represent the probability that a specific
skill is required for successful completion; for learners,
elements (s;) indicate the probability of skill mastery.

In this equation, = represents the item skill vec-
tor indicating the probability of skill requirements,
while s denotes the learner skill vector reflecting
the probability of skill mastery. Both vectors were
constrained to values between 0 and 1.

The model evaluates performance by comparing
actual scores with expected probabilities:

error = score — ES (2.4)

This error is then used to update the skill vec-
tors x and s via a gradient-based optimisation pro-
cedure. The updates adjust each vector component
proportionally to its contribution to the expected
success probability, aiming to minimise the discrep-
ancy between predicted and actual performance.
Specifically, the adjustment process leverages par-
tial derivatives of ES with respect to z; and s;,
scaled by the error and distinct learning rates (o,
and «y) for items and students, respectively. To en-
hance efficiency and stability, the ADAM optimisa-
tion algorithm is employed, adapting the learning
rates based on the first and second moments of the
gradients (Kingma & Ba, 2017)).

GraafTel Free Parameters The GraafTel algo-
rithm requires setting several free parameters that
influence the model’s behaviour. The most critical

parameter is the number of skills, which determines
the dimensionality of the skill vectors and conse-
quently the complexity of the skill structure that
can be captured. We systematically evaluated skill
configurations ranging from 3 to 6 skills to deter-
mine the optimal setting, assessing each configura-
tion based on both model error rates and the inde-
pendence of the resulting skill dimensions.

Additionally, the model’s training process is gov-
erned by epoch configurations that determine how
many iterations of the optimisation algorithm are
performed. For this study, we experimented with
epoch settings of 1000, 2000, 3000 and 4000, exam-
ining convergence patterns and stability of results.
The final analysis employed 2000 epochs, which
provided a suitable balance between computational
efficiency and model convergence.

The present study contributes to a series of in-
vestigations testing GraafTel’s capabilities in mod-
elling strategic learning pathways.

2.3 Data Structure

For each student-level combination, we constructed
three distinct datasets capturing different stages of
learning. The initial encounter dataset contained
the first attempt at each multiplication fact, while
the middle encounter occurred half-way between
the first and last trial per level, with adjustments
to ensure distinction from the initial encounter. For
instance, if a student did 6 trials, the 4th trial was
taken as the middle encounter. The final encounter
dataset comprised the most recent attempt at each
fact. Response parameters included accuracy for
all levels, with completion time measurements and
memory decay rates only available for Levels 2 and
3.

GraafTel outputs skill dependency analyses with
two entity types: multiplication facts (e.g., "1 X
17) and anonymised students. Each entry features
a skill vector whose dimensionality matches the
configuration (3-6 skills in our study). For items,
vector elements represent the probability of requir-
ing each skill for problem-solving (x; in ); for
students, elements denote inferred mastery proba-
bilities (s;). These bounded [0,1] values are itera-
tively refined through GraafTel’s optimisation pro-
cess, which minimises discrepancies between pre-
dicted and observed performance.



2.4 Data and Code Availability

To ensure research transparency and reproducibil-
ity, all data and analysis code used in this
study have been made publicly available. The
dataset containing anonymised student perfor-
mance metrics, alongside the R scripts imple-
menting the analyses presented in this paper,
can be accessed through a public GitHub repos-
itory: |https://github.com/theodrosmhaile/times_
table_tracing. This repository includes the com-
plete computational procedures for preprocessing
the TafelTrainer performance data and generating
the statistical results and visualisations presented
in this study.

3 Results

Our analysis revealed distinct patterns in multipli-
cation fact acquisition across learning stages and
strategy development.

3.1 Overview of Learning Results
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1.00

3 0.95

e

§ Group

< 0.90 -® Multiplicand
% - Multiplier
[0}

=

o
o
o

0.80

1 2 3 4 5 6 7 8 9 10
Number

Figure 3.1: Mean accuracy across multiplication fact
groups. The plot compares mean accuracy for multipli-
cation facts grouped by multiplicand (red) and multi-
plier (blue). The x-axis represents the number in the
multiplication fact (1-10), while the y-axis represents
mean accuracy. Accuracy is highest for facts involving
1s and 10s, while mid-range numbers (3-7) show a dip
in performance. The trend is similar for both multi-
plicand and multiplier groupings, though multiplicands
generally show slightly higher accuracy.

Results vary systematically depending on columns
of multiplication fact (e.g., column of numbers mul-

tiplied by 1, 2, 3 and so on) and the three condi-
tions (L1, L2 and L3). As shown in Figure in
Appendix [B] accuracy is highest for multiplication
facts involving multipliers 1 (Mean: 0.95, SD: 0.21),
2 (Mean: 0.90, SD: 0.30), 5 (Mean: 0.90, SD: 0.30),
and 10 (Mean: 0.94, SD: 0.23). Figure [3.1] further
illustrates these differences, showing mean accu-
racy for multiplicands (red) and multipliers (blue).
While 1s and 10s consistently yield the highest ac-
curacy, accuracy dips for mid-range numbers (par-
ticularly 3s to 7s), though the trend is not strictly
linear. Notably, 5s show relatively high accuracy
despite being in the mid-range group.

Reaction times varied considerably across levels
and encounters, reflecting the influence of the adap-
tive learning system and time constraints. Overall,
the mean reaction time across all trials was 5.16s
(SD = 43.35s), with a median of 2.51s, indicating
a positively skewed distribution. Notably, Level 2
exhibited substantially longer mean response times
(M = 7.33s, SD = 60.11s, median = 2.80s) com-
pared to Level 3 (M = 2.99s, SD = 11.83s, median
= 2.29s). This difference likely reflects the 8-second
time limit introduced in Level 3, which encouraged
faster responses.

Across different encounter positions, reaction
times showed modest variations, with first encoun-
ters averaging 5.33s (SD = 31.32s), middle encoun-
ters 4.69s (SD = 24.89s), and last encounters 5.45s
(SD = 63.53s). The combination of level and en-
counter position revealed that Level 2 first encoun-
ters had the slowest responses (M = 7.60s, SD =
44.16s), while Level 3 last encounters showed the
fastest performance (M = 3.02s, SD = 15.22s). Cor-
rect responses were substantially faster (M = 4.92s,
SD = 42.14s, median = 2.44s) than incorrect ones
(M = 7.23s, SD = 52.66s, median = 4.36s), sug-
gesting that slower responses were often associated
with difficulty or uncertainty.

Level First Middle Last
1 0.88 £0.32 0.91 £0.28 0.95 + 0.23
2 091 £0.28 0.92+0.26 0.95 £ 0.21
3 0.84 £0.36 0.88 +£0.33 0.87 + 0.33

Table 3.1: Mean accuracy (+ standard deviation) for
each level and encounter combination.

Accuracy generally increases with later encoun-
ters across all levels, though with notable vari-
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Figure 3.2: Correlation matrices of skills across different skill configurations. Each subplot represents the Pearson
correlation coefficients between skills in configurations of 3, 4, 5, and 6 skills. The x-axis and y-axis represent
skill indices, with each cell indicating the correlation between a pair of skills. The colour scale ranges from
-1 (negative correlation, blue) to +1 (positive correlation, red), with white indicating no correlation. Lower
correlation values suggest greater independence between measured skills, whereas higher values indicate stronger

relationships between skill pairs.

ations. Level 1 demonstrates solid performance
(mean = 91.30%, SD = 28.18%), while Level
2 shows the highest overall accuracy (mean =
93.00%, SD = 25.51%), likely attributable to the
adaptive algorithm’s effectiveness in optimising
practice intervals. A slight decrease in accuracy oc-
curs at Level 3 (mean = 86.46%, SD = 34.22%),
which can be attributed to the introduction of
the 8-second time limit constraint. It is impor-
tant to note that all responses were included in
these analyses, including those outside the ex-
pected 1-100 range. While excluding these poten-
tial ’skips’ would have increased the baseline ac-
curacy substantially (from approximately 61% to
70%), we determined that including all responses
was methodologically appropriate, as there is no re-
liable method to differentiate between genuine cal-
culation attempts, retrieval failures, or disengaged
responses. This comprehensive approach provides a
more complete assessment of performance patterns
across the learning conditions.

3.2 Determining Optimal Skill

Count for GraafTel Model

Analysis of skill correlations reveals that correla-
tion strength varies systematically with the num-
ber of skills modelled in GraafTel. The three-skill
configuration shows the lowest inter-skill corre-
lations (r = 0.19 to 0.29), while configurations
with more skills demonstrate progressively higher
correlations. In the five- and six-skill configura-

tions, some skill pairs show correlations as high as
r = 0.46, suggesting increased overlap in measured
mathematical strategies as the number of skills in-
creases. This pattern supports the selection of the
three-skill configuration for subsequent analyses, as
it best maintains strategy independence while min-
imising average error rates during GraafTel model
runs across various epoch configurations.

3.3 Correlation Between GraafTel
Skill Ratings and TafelTrainer
Reaction Time (RT)

To test our first hypothesis—that skill analy-
sis can distinguish between retrieval and calcula-
tion strategies—we examined correlations between
GraafTel skill probabilities and reaction times
across different learning encounters. This analysis
required integrating two primary data sources: (1)
the GraafTel-generated item skill vectors (z;) rep-
resenting the probability that each skill is required
for solving each multiplication fact, and (2) the
mean reaction times for each multiplication fact at
each encounter position within Levels 2 and 3. Level
1 data were excluded from this analysis as reaction
times were not recorded in that level.

For each level-encounter combination, we calcu-
lated mean reaction times per multiplication fact
and then computed Pearson correlation coefficients
between each skill probability and these mean re-
action times. To maintain statistical rigour, we ap-
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plied Bonferroni correction to account for multiple
comparisons across the three skills.

Skill Probabilities vs Mean Reaction Time

Level 2 Level 3
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N
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Significance levels: *** p < 0.001; ** p < 0.01; * p < 0.05 (Bonferroni-adjusted)

Figure 3.3: Pearson correlation coefficients between
skill probabilities and mean reaction time (RT) across
levels and encounters. The x-axis represents the en-
counter position (First, Middle, Last) within Level 2
and Level 3, while the y-axis represents different skills
labelled by GraafTel. Each cell displays the correla-
tion coefficient between the probability of a skill be-
ing required for an item and the corresponding mean
RT at that encounter. Skill probabilities were derived
from the item skill vector (z; in Equation (2.3)) in the
GraafTel model, representing the likelihood that a mul-
tiplication fact requires a given skill (see sections m
and [2.3]). The colour scale ranges from -1 (negative cor-
relation, blue) to +1 (positive correlation, red), with
white indicating no correlation. Significant correlations
are marked with asterisks (* p < 0.05, ** p < 0.01, ***
p < 0.001, Bonferroni-adjusted).

Figure[3.3| presents the correlation coefficients for
each skill across all level-encounter combinations.
Skill 3 shows generally strong correlations across
most encounters and levels, ranging from r = 0.30
(p < 0.01) in the middle encounter of Level 3 to
r =0.84 (p < 0.001) in the first encounter of Level
3. Skills 1 and 2 show more variable correlation
patterns. In Level 2, Skill 1’s correlation decreases
from a significant r = 0.38 (p < 0.001) in the first
encounter to a non-significant r = 0.14 in the last
encounter. Similarly, Skill 2’s correlation weakens
from r = 0.39 (p < 0.001) tor = 0.27 (p < 0.05). In
Level 3, both Skills 1 and 2 show significant corre-
lations in the first encounter (r = 0.53 and r = 0.51
respectively, both p < 0.001), non-significant cor-
relations in the middle encounter, and significant
correlations again in the last encounter (r = 0.50
and r = 0.43 respectively, both p < 0.001). No-

tably, Skill 2 shows a slight negative correlation
(r = —0.15, non-significant) in the middle en-
counter of Level 3.

3.4 Correlation Between Level 1
Skill Probabilities and Level 3
Memory Decay Rates

The memory decay rate parameter («) in Tafel-
Trainer quantifies how quickly learned information
fades from memory, with higher values indicating
more rapid forgetting. Overall, the mean « value
across all analysed data was 0.285 (SD = 0.047),
with values ranging from 0.15 to 0.50, suggesting
moderate memory stability across the student pop-
ulation.

Analysis by level revealed slightly different for-
getting rates between Level 2 (M = 0.294, SD =
0.020) and Level 3 (M = 0.276, SD = 0.062), with
the marginally lower mean in Level 3 potentially
indicating improved retention with practice. Across
encounter positions, middle encounters showed the
highest average a (M = 0.292, SD = 0.042) com-
pared to first (M = 0.284, SD = 0.044) and last
encounters (M = 0.280, SD = 0.053). This pattern
suggests a non-linear progression in memory decay
rates during the learning process.

The combination of level and encounter posi-
tion revealed that Level 2 first encounters showed
the highest memory decay rate (M = 0.297, SD =
0.016), while Level 3 first encounters exhibited the
lowest (M = 0.271, SD = 0.057). This contrast be-
tween levels may reflect different cognitive demands
and strategy deployment between the accuracy-
only focus of Level 2 versus the accuracy and speed
requirements of Level 3.

To further investigate our first hypothe-
sis—distinguishing between retrieval and calcula-
tion strategies—and to examine how early skill pat-
terns might predict later memory characteristics,
we analysed the relationship between skill proba-
bilities from Level 1 and memory decay rates («)
from Level 3. This cross-level analysis provides in-
sights into how the cognitive strategies employed
during initial learning might relate to memory con-
solidation in later, more advanced learning stages.

Unlike the previous analysis that examined cor-
relations within the same level, this analysis inte-
grated data across different learning levels. We con-
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ducted two separate correlation analyses: (1) a fact-
level analysis examining how skill requirements for
specific multiplication facts relate to their memory
characteristics, and (2) a student-level analysis in-
vestigating whether individual differences in skill
profiles correlate with memory parameters.

For the fact-level analysis, we combined the
GraafTel-generated item skill vectors (z;) from
Level 1, representing early strategy patterns, with
the mean memory decay rates («) for each multi-
plication fact at each encounter position in Level
3. The memory decay rate («) quantifies how
quickly learned information fades from memory,
with higher values indicating more rapid forgetting.

For each encounter position in Level 3 (first, mid-
dle, last), we computed the mean « value for each
multiplication fact and calculated Pearson correla-
tion coefficients between these values and the corre-
sponding Level 1 skill probabilities. To account for
multiple comparisons, we applied Bonferroni cor-
rection with an adjustment factor of 3 (for the three
skills tested simultaneously).

Level 1 Skills vs Level 3 Memory Decay Rates (a)
Across Encounters

I 1.0
’ = - e oo

o
o
Pearson Correlation

22 0.33 -0.14 0.12
1 0.15 0.25% 0.18 I 05
First Middle Last 1.0
Encounter

Significance levels: *** p < 0.001; ** p < 0.01; * p < 0.05 (Bonferroni-adjusted)

Figure 3.4: Pearson correlation coefficients between
Level 1 skill probabilities and Level 3 memory decay
rates (a) across different encounters. The x-axis rep-
resents the encounter position (First, Middle, Last) in
Level 3, while the y-axis represents different skill levels
from Level 1. Each cell displays the correlation coeffi-
cient between a specific Level 1 skill and the memory
decay rate (a) at the corresponding encounter position
in Level 3. The colour scale ranges from -1 (strong neg-
ative correlation, blue) to +1 (strong positive correla-
tion, red), with white indicating no correlation. Signifi-
cant correlations are marked with asterisks (* p < 0.05,
** p < 0.01, ¥** p < 0.001, Bonferroni-adjusted).

Figure |3.4] presents the correlation patterns be-

tween Level 1 skills and Level 3 memory decay rates
at the fact level. Skill 3 demonstrates consistently
moderate and highly significant positive correla-
tions with memory decay rates across all encounters
(r =0.56, r = 0.61, and r = 0.57 for first, middle,
and last encounters, respectively; all p < 0.001).
This suggests that facts requiring higher Skill 3
probability in Level 1 tend to exhibit higher for-
getting rates in Level 3. In contrast, Skills 1 and
2 show weaker and more variable correlations with
memory decay rates. Skill 1 displays modest posi-
tive correlations across all encounters, with only the
middle encounter reaching statistical significance
(r = 0.15, non-significant; = 0.25, p < 0.05; and
r = 0.18, non-significant). Skill 2 shows a moderate
significant positive correlation in the first encounter
(r =0.33, p < 0.01), a non-significant negative cor-
relation in the middle encounter (r = —0.14), and
a non-significant positive correlation in the last en-
counter (r = 0.12).

For the student-level analysis, we used student
skill vectors (s;) from Level 1 and their average
memory decay rates across all facts in Level 3. This
analysis revealed negligible correlations across all
skills (r ranging from —0.09 to 0.04), with none
reaching statistical significance. This contrast be-
tween fact-level and student-level analyses suggests
either that skill ratings are independent of individ-
ual memory decay rates, that there are limitations
in measuring student-level memory decay param-
eters, or that the relationship between skills and
memory operates primarily at the item level rather
than at the student level.

4 Discussion

4.1 Summary of Key Findings

This research aimed to understand how young
learners in primary school (ages 6-10) acquire mul-
tiplication facts and to determine what skill de-
pendency analysis could reveal about the strategies
they use in mastering these facts. Through analy-
sis of performance data from 540 students using the
TafelTrainer adaptive learning system, we sought to
identify patterns in strategy development and skill
acquisition across different learning phases. By ap-
plying the GraafTel computational modelling ap-
proach to construct skill hierarchies, we examined
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how strategy use evolves from initial exposure to
more advanced stages of learning.

Our first hypothesis proposed that skill anal-
ysis might distinguish between memory retrieval
and calculation-based strategies. The correlation
patterns between skill probabilities and response
times support this differentiation, consistent with
the strategy choice framework developed by Siegler
(1988). The observation that Skill 3 maintains rel-
atively consistent correlations with response times
(r = 0.56 to 0.84) across encounters suggests this
skill may correspond to calculation-based strategies
that require greater cognitive resources and time.
In contrast, the weakening correlations observed for
Skills 1 and 2 in later encounters could indicate
these skills relate to retrieval-based strategies that
become more efficient with practice. These patterns
align with Siegler (1988)’s finding that students em-
ploy multiple strategies when solving multiplication
problems, with strategy selection being influenced
by factors such as problem difficulty and previous
experience.

The second hypothesis addressed the indepen-
dence of measured skills. The three-skill configu-
ration demonstrated relatively low inter-skill cor-
relations (r = 0.19 to 0.29), suggesting that our
chosen parameter value for the number of skills ad-
equately captures distinct cognitive processes with-
out redundancy. While this finding supports the
methodological decision to use three skills in our
analysis, it does not itself provide evidence about
skill compilation or integration. To properly exam-
ine such cognitive processes, future research should
track individual facts across encounters and learn-
ing levels, analysing whether the probabilities of
specific skills (particularly those potentially associ-
ated with automatic retrieval) increase systemati-
cally with practice. In particular, if one skill repre-
sents fast automatic retrieval, we would expect to
see its probability increase for multiplication facts
as students progress from Level 1 first encounters
to Level 3 final encounters.

Our third hypothesis concerned strategy develop-
ment patterns. The differential correlation patterns
between Skill 3 and Skills 1/2 with response times
suggest potential differences in cognitive processing
across learning encounters. Specifically, our results
showed that Skill 3 maintained strong correlations
with response times across all encounters (r = 0.56
to 0.84), while Skills 1 and 2 exhibited more vari-

able and generally decreasing correlations in later
encounters, particularly in Level 2. These empirical
patterns align with theoretical frameworks of strat-
egy development, such as those described by Siegler
(1988)), though our current analysis cannot defini-
tively identify the specific cognitive mechanisms
underlying these patterns. The observed correla-
tion patterns provide preliminary evidence for dif-
ferentiation between skills that remain consistently
associated with longer response times (potentially
calculation-based processes) and skills that become
less associated with response times as learning pro-
gresses (potentially retrieval-based processes). To
strengthen these interpretations, future research
should track how individual facts’ skill probabil-
ity distributions evolve across learning encounters
and directly correlate these changes with observed
strategy use, perhaps through concurrent verbal
protocols or other direct measures of strategy se-
lection.

4.2 Integration with Cognitive Skill
Acquisition Frameworks

Our empirical findings provide computational ev-
idence supporting the phase transitions in skill
acquisition proposed by Tenison et al. (2016]).
The distinct correlation patterns between certain
skills and reaction times across learning encoun-
ters suggest qualitative shifts in cognitive process-
ing rather than continuous improvements within
a single processing approach. Specifically, the sta-
ble correlation between Skill 3 and response times
across all encounters (r = 0.56 to 0.84) paral-
lels the computation-dominant first phase identi-
fied through fMRI analysis by Tenison et al. (2016)),
where problem-solving involves a sequence of arith-
metic computations. The decreasing correlations
observed for Skills 1 and 2 in later encounters
may reflect transitions to the retrieval-based second
phase, where answers are retrieved directly without
calculation, and potentially to the automatic re-
sponse third phase, where problems are recognised
as unified patterns.

This interpretation gains further support from
the memory decay rate analysis. The fact that Skill
3 maintains strong positive correlations with mem-
ory decay rates across all Level 3 encounters sug-
gests it captures elements of computational pro-
cessing that remain cognitively demanding despite
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practice. In contrast, the weaker and more variable
correlations for Skills 1 and 2 may indicate these
skills increasingly reflect retrieval-based or auto-
matic processing that becomes less susceptible to
forgetting with continued practice, consistent with
Anderson (1982) progression from declarative to
procedural knowledge.

From the perspective of Taatgen and Blankestijn
(2024)) hierarchical skill framework, our three-skill
configuration may represent distinct levels in the
combinatorial structure of multiplication knowl-
edge. Skill 3, with its consistent association with
longer response times, potentially represents lower-
level computational components such as repeated
addition or counting. Skills 1 and 2, with their more
variable and generally decreasing correlations with
response times, might capture higher-level combi-
natorial skills such as derived-fact strategies or di-
rect retrieval. The differential impact of practice on
these skills aligns with the Taatgen and Blankestijn
(2024) proposition that mathematical competen-
cies manifest as transferable skills that can be hi-
erarchically organised and differentially affected by
learning experiences.

While our current data and analysis methods
cannot definitively establish the neurological or
cognitive mechanisms underlying these skill pat-
terns, the alignment with established theoreti-
cal frameworks strengthens the interpretation that
GraafTel is capturing meaningful cognitive tran-
sitions rather than arbitrary statistical patterns.
Future research incorporating neuroimaging tech-
niques similar to those employed by Tenison et al.
(2016) or more direct strategy assessments could
further validate these theoretical connections.

4.3 Strategy Application in Digital
Learning Environments

An important methodological consideration
emerges when comparing our findings to the
strategy framework proposed by Siegler (1988).
Siegler’s original research examined strategy use
in contexts where students typically had access
to pen and paper, providing external memory
support and calculation aids. In contrast, the
TafelTrainer digital environment presents multi-
plication problems without these physical tools,
potentially altering the cognitive demands and the
specific implementations of strategies.

This environmental difference may have signif-
icant implications for how we interpret the ob-
served skill patterns. In a digital-only environment,
counting-based strategies such as repeated addi-
tion (e.g., solving 3 x 4 as 4 + 4 + 4) might im-
pose greater working memory demands since stu-
dents cannot offload intermediate calculations to
paper. This increased cognitive load could mani-
fest in longer response times and potentially higher
error rates for problems that would typically be
solved through calculation rather than retrieval.
The consistently strong correlation between Skill
3 and response times may reflect this heightened
cognitive demand associated with mental calcula-
tion without external support.

Furthermore, the absence of physical calcula-
tion aids might accelerate the transition from
calculation-based to retrieval-based strategies.
When calculation is more cognitively demanding
due to the lack of external support, the relative ad-
vantage of direct retrieval increases, potentially in-
centivising students to develop stronger associative
connections between problems and answers. This
environmental pressure could explain the patterns
observed in Skills 1 and 2, where correlations with
response times decreased in later encounters, sug-
gesting a shift toward more efficient retrieval strate-
gies.

From a methodological perspective, these con-
siderations highlight the importance of contextual-
ising strategy use within specific learning environ-
ments. The strategies identified by Siegler (1988)
remain conceptually relevant, but their specific
implementations and cognitive demands may dif-
fer substantially across physical and digital con-
texts. Future research examining strategy use in
digital learning environments should explicitly ac-
count for these differences, perhaps by comparing
strategy deployment across different presentation
modalities or by incorporating think-aloud proto-
cols that can reveal how students adapt strategies
to environment-specific constraints.

4.4 Cognitive Mechanisms and Re-
sponse Patterns

The correlation patterns between GraafTel skill

probabilities and reaction times provide insights

into potential cognitive mechanisms underlying
multiplication fact learning. The consistent correla-
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tion between Skill 3 and response times (r = 0.56 to
0.84) across learning encounters suggests this skill
may correspond to calculation-based processes that
remain time-consuming regardless of practice. Ac-
cording to Siegler (1988), calculation-based strate-
gies such as repeated addition or counting impose
greater cognitive demands and consistently require
more processing time than direct retrieval. The sta-
bility of Skill 3’s correlation with response times
aligns with this theoretical prediction, suggesting
this skill captures cognitive processes that remain
fundamentally time-dependent even with practice.

In contrast, Skills 1 and 2 showed more vari-
able and generally decreasing correlations with re-
sponse times across learning encounters, particu-
larly in Level 2. This pattern is consistent with the
development of retrieval-based strategies, which be-
come faster and more efficient with practice as as-
sociative connections strengthen. The differential
patterns observed between skills provide prelimi-
nary evidence for the computational differentiation
between calculation-based and retrieval-based pro-
cesses, though our current analysis cannot defini-
tively establish the specific cognitive mechanisms
represented by each skill.

The negligible correlations observed at the stu-
dent level for memory decay rates might indi-
cate that strategy selection operates primarily at
the problem level rather than being determined
by individual student characteristics. This aligns
with Siegler (1988)’s finding that strategy choice is
highly adaptive and problem-specific, with students
employing different strategies for different prob-
lems based on factors such as problem difficulty
and prior success. This pattern suggests that cog-
nitive mechanisms underlying multiplication fact
learning may be more significantly influenced by
item-specific characteristics than by general learner
traits, though this interpretation requires further
validation through research that explicitly mea-
sures strategy use alongside computational mod-
elling.

4.5 Educational Implications

Our findings suggest several concrete implica-
tions for educational practice, though these should
be considered preliminary given the methodolog-
ical limitations discussed later. First, the compu-
tational differentiation between calculation-based

and retrieval-based strategies supports instruc-
tional approaches that deliberately cultivate both
procedural fluency and fact retrieval, rather than
exclusively emphasising memorisation. Educational
interventions might benefit from explicitly teaching
students when to apply different strategies based on
problem characteristics and learning stage.

Second, the distinct correlation patterns between
specific multiplication facts suggest potential im-
provements in how multiplication facts are se-
quenced and taught. Traditional instructional se-
quences often present multiplication tables in nu-
merical order, but our findings indicate that cogni-
tive learning pathways might follow different organ-
isational principles. For example, the strong cor-
relations observed between certain skill probabili-
ties and response times might inform more effective
grouping for instruction, such as teaching facts that
share similar strategic approaches together rather
than adhering strictly to numerical sequence.

Third, our findings highlight the importance of
adapting instructional approaches to specific learn-
ing environments. The differences between digital
and traditional learning contexts, particularly re-
garding the availability of external memory aids,
suggest that digital multiplication practice might
benefit from several adaptations. Initial scaffolding
could gradually fade as students develop greater
working memory capacity and retrieval proficiency.
Adaptive difficulty progression might account for
the potentially increased cognitive load of men-
tal calculation without external support. Explicit
strategy instruction could be tailored to the con-
straints of digital environments, while customised
practice schedules might prioritise facts based on
empirically derived skill hierarchies rather than
conventional sequencing.

Educational technology developers might imple-
ment these insights by incorporating more sophis-
ticated adaptive algorithms that model individ-
ual strategy development trajectories and adjust
practice accordingly. For instance, TafelTrainer’s
existing adaptive scheduling could be enhanced
to differentiate between calculation-dominant and
retrieval-dominant phases, providing appropriately
tailored practice experiences as students progress
through these stages.

These insights also have implications for the de-
sign of adaptive learning systems like TafelTrainer.
The three-level structure implemented in Tafel-
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Trainer aligns conceptually with the three learn-
ing phases identified by Tenison et al. (2016)), sug-
gesting an effective approach for facilitating the
transition from computation to retrieval to auto-
maticity. However, our findings indicate that adap-
tation parameters could be further refined to ac-
count for skill-specific learning trajectories. For ex-
ample, facts that heavily rely on Skill 3 (poten-
tially computation-based processing) might benefit
from different practice schedules than those primar-
ily involving Skills 1 and 2 (potentially retrieval-
based processing). Additionally, the GraafTel ap-
proach to identifying skill hierarchies described by
Taatgen and Blankestijn (2024]) could complement
the memory model currently used in TafelTrainer
(Tancu et al., 2024)), potentially leading to more so-
phisticated adaptation algorithms that account for
both forgetting curves (van Rijn et al., [2009)) and
skill dependencies in scheduling practice opportu-
nities.

4.6 Limitations

Several important limitations of the current study
constrain the interpretation of our findings and
must be acknowledged when considering their im-
plications.

First, our computational approach provides in-
direct evidence of strategy use but cannot di-
rectly observe students’ thought processes or con-
scious strategy choices. The inference of strat-
egy types from performance patterns, while the-
oretically grounded, remains speculative without
direct verification. The GraafTel modelling ap-
proach identifies distinct skill patterns that corre-
late meaningfully with performance metrics, but
the mapping between these computational con-
structs and specific cognitive strategies relies on
theoretical interpretation rather than direct mea-
surement. This limitation is particularly relevant
when interpreting the specific cognitive processes
underlying the three identified skills, as these in-
terpretations remain provisional without converg-
ing evidence from complementary methodologies.

Second, the measurement of response times
in digital environments introduces potential con-
founds that are difficult to disentangle from
strategy-related variations. Typing proficiency, in-
terface familiarity, and technological distractions
might all influence response latencies indepen-

dently of mathematical strategy selection. The
TafelTrainer platform, while providing ecological
validity through its implementation in authentic
educational settings, lacks the experimental control
necessary to isolate strategy-specific effects from
these potential confounding factors. This limitation
affects the interpretation of response time patterns,
particularly when making fine-grained distinctions
between different strategy types based on temporal
metrics.

Third, the student-level analysis of memory de-
cay rates showed negligible correlations across
skills, which might indicate limitations in our mea-
surement approach or suggest more complex in-
teractions than our model captured. The adaptive
nature of the learning system, while educationally
valuable, presents analytical challenges for isolat-
ing stable individual differences. The continuous
adjustment of practice scheduling based on per-
formance potentially masks individual variation in
learning trajectories, making it difficult to distin-
guish between strategy-related and method-related
effects. This limitation affects the generalisability
of our findings regarding individual differences in
strategy development patterns.

Fourth, the ecological validity gained through
our naturalistic study design introduces variability
in implementation conditions across participating
schools and classrooms. Teachers retained auton-
omy over scheduling and integration of the Tafel-
Trainer application, resulting in considerable vari-
ation in usage patterns across participants. This
implementation variability, while representative of
real-world educational technology deployment, cre-
ates analytical challenges when attempting to iso-
late specific learning effects from contextual factors.
The varying exposure levels across participants po-
tentially influences the observed skill patterns, lim-
iting the precision with which developmental tra-
jectories can be mapped across the study popula-
tion.

4.7 Future Research Directions

Building upon the findings and limitations of the
current study, several promising research directions
emerge that could further elucidate the cognitive
mechanisms underlying multiplication fact acqui-
sition and inform more effective educational inter-
ventions.
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Strategy verification studies could combine com-
putational modelling with direct strategy assess-
ment methods, such as verbal protocols or strat-
egy choice questionnaires. By explicitly asking stu-
dents to articulate their solution processes during
or immediately after problem-solving, researchers
could establish more direct links between the com-
putational skill patterns identified through Graaf-
Tel and specific cognitive strategies. Such multi-
method approaches would strengthen the theoreti-
cal interpretation of skill patterns while potentially
revealing additional strategies or hybrid approaches
not captured by performance metrics alone. Par-
ticularly valuable would be studies examining how
strategy verbalisation corresponds to skill probabil-
ities across different learning stages, providing em-
pirical validation for the hypothesised mapping be-
tween computational skills and cognitive processes.

Longitudinal investigations examining how strat-
egy patterns evolve over extended time periods and
persist after instruction concludes would address
the temporal limitations of the current study. Fol-
lowing students over multiple academic terms while
periodically reassessing both performance metrics
and explicit strategy use would reveal whether the
transitions we observed between calculation-based
and retrieval-based approaches represent stable
changes in cognitive processing or temporary adap-
tations to specific learning contexts. Such stud-
ies could also examine how strategy development
trajectories relate to broader mathematical compe-
tencies, potentially establishing predictive relation-
ships between early strategy flexibility and later
mathematical achievement.

Comparative analyses across learning environ-
ments could directly contrast strategy develop-
ment in digital versus traditional learning contexts.
Systematically varying the availability of exter-
nal memory aids (e.g., paper and pencil) within
a controlled experimental design would help iso-
late the specific effects of environmental constraints
on strategy selection and development. This re-
search could identify environment-specific affor-
dances that influence cognitive processing, inform-
ing more targeted instructional approaches that ac-
count for the particular cognitive demands of digi-
tal learning environments. Such studies would be
particularly valuable for understanding how the
findings from traditional strategy research (e.g.,
Siegler (1988)) translate to increasingly prevalent

digital learning contexts.

Individual difference analyses could examine how
learner characteristics such as working memory
capacity, processing speed, or prior mathematical
achievement influence strategy development trajec-
tories. By combining psychometric assessment of
these cognitive factors with longitudinal tracking
of strategy development, researchers could identify
whether certain cognitive profiles predict distinct
patterns of strategy acquisition or particularly ben-
efit from specific instructional approaches. This re-
search would contribute to more personalised ed-
ucational interventions that account for individual
cognitive constraints and affordances in the learn-
ing process.

Educational intervention studies could test in-
structional approaches informed by our findings,
such as sequencing multiplication facts based on
empirically derived skill hierarchies rather than
conventional ordering. Experimental comparisons
between traditional instructional sequences and
cognitively informed alternatives would directly as-
sess whether instruction aligned with computa-
tional skill structures yields superior learning out-
comes. Such studies could also examine whether
different instructional sequences are differentially
effective for learners with varying cognitive pro-
files, potentially leading to adaptive educational ap-
proaches that optimise learning pathways based on
individual characteristics and developmental tra-
jectories.
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A Appendix

The dataset includes 359,950 rows, capturing de-
tailed records of individual practice sessions and
trials and comprising several key columns, each
contributing information helpful for analysing the
learning process:

e user_id: An anonymised identifier for each
student, ranging from 17 to 832.

e session_id: A unique identifier for each prac-
tice session, recorded as a UUID string (e.g.,
"407f83a8—fde2—4a44—b7be—32b16(:d38ed3")7
which allows linking of multiple trials within
the same session.

e level: The adaptive level of the session, with
values of 1, 2, or 3. Each level corresponds to
a specific type of learning approach:

e algorithm: The practice algorithm used in the
session, corresponding to the session level:

— none: used in Level 1.
— accuracy only: used in Level 2.

— accuracy + rt: used in Level 3.

e fact_id: An integer identifying each multipli-
cation fact, where 1 corresponds to "1 x 1",
2 corresponds to "1 x 2", and so on.

e cue_text: A human-readable representation of
the multiplication fact (e.g., "1 x 1").

e answer: The correct answer to the multiplica-
tion fact (e.g., 1 for "1 x 1").

e given _response: The response provided by
the student during the trial (e.g., 2).

e correct: A Boolean value (TRUE or FALSE)
indicating whether the student’s response
matched the correct answer.

e reaction_time: The time elapsed in millisec-
onds from the start of the trial to the student’s
first keypress, available for Levels 2 and 3.

e alpha: A ”speed of forgetting” parameter, rep-
resenting the rate at which a student is likely
to forget specific facts, available for Levels 2
and 3 trials.

e presentation_start_time: The Unix times-
tamp indicates the onset of each trial, recorded
in milliseconds.

e session_time: The time elapsed since the
start of the session, recorded in milliseconds.

We preprocessed the dataset to standardise and
clean the data for analysis. The correct column,
which was a Boolean value indicating whether a re-
sponse was correct (TRUE/FALSE), was converted to
numeric values (1 for correct and 0 for incorrect)
to facilitate statistical computations and compati-
bility with the GraafTel system. Additionally, the
cue_text column required cleaning to ensure con-
sistency in its format. In some instances, strings of
multiplication problems such as 6 x 3 included ad-
ditional characters, for example, "6+x+3". To stan-
dardise the column, these plus signs ("+") were
replaced with spaces, ensuring a uniform format
across all entries.

Two  new  columns, multiplier and
multiplicand, were derived from the cleaned
cue_text column. These variables extracted the
operands of the multiplication (e.g., "6 x 1"
produced multiplier = 6 and multiplicand =
1) and enabled systematic grouping and anal-
ysis of performance by specific multiplication
components.

Each trial was assigned an encounter number
(encounter num) based on its sequential order
within a practice session. This procedure made it
easier to divide the dataset into specific encounter
types.

For GraafTel compatibility, the dataset was re-
fined to include only the required columns: Student
ID, Question ID, and Accuracy. Accuracy values
were ensured to remain between 0 and 1, adher-
ing to GraafTel’s specifications. The cue_text col-
umn, which provides a short, descriptive label of
each multiplication fact (e.g., 6 x 1), was used as
the Question ID, making the data interpretable
during GraafTel analysis. Column headers were re-
moved from the exported files, and separate CSV
files were created for each adaptive level (1, 2, and
3) and encounter type (first, middle, and last).
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B Appendix
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Figure B.1: Mean accuracy across levels and encounters for each multiplication fact. The heatmap matrix
displays mean accuracy for multiplication facts, grouped by multiplicand (y-axis) and multiplier (x-axis), across
three levels of learning (L1, L2, and L3) and three encounter positions (First, Middle, Last), as well as an overall
summary for each level. Warmer colors (yellow) indicate higher accuracy, while cooler colors (red to blue) indicate
lower accuracy. Accuracy is generally highest for facts involving 1s; 2s, 5s, and 10s, while mid-range facts show
more variation, particularly in Level 3, where some accuracy rates drop below 0.6.
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