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Abstract

We determine the probability that a random polynomial of degree n
over some complete discrete valuation ring O with a finite residue field Fq

has exactly r roots in its field of fractions K.
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1 Introduction

Suppose that O is a complete discrete valuation ring with a finite residue class
field Fq where q denotes the order of the field. Let K be the field of fractions
of O. Fix n ∈ Z≥0. Let f(x) = anx

n + an−1x
n−1 + · · · + a0 be a random

polynomial of degree ≤ n having coefficients a0, a1, . . . , an ∈ O. In this paper
our aim is to determine the probability that f has exactly r roots in K. We
will normalize the additive Haar measure µ on the set of coefficients On+1 such
that µ(On+1) = 1, and determine the density µ(Sr) of the set Sr of degree n
polynomials in O[x] having exactly r roots in K.
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The result was first established by Manjul Bhargava, John Cremona, Tom
Fisher, and Stevan Gajović for polynomials over the p-adic numbers in their
paper [2], and in this paper, we aim to generalize their proof for more general
coefficient rings.

Similar to their paper, let us formally define the probabilities, expectations
and generating functions required to state our main results. For 0 ≤ r ≤ n,
let ρ∗(n, r) := ρ∗(n, r; q) denote the density of polynomials of degree n over O
having exactly r roots in K. For 0 ≤ d ≤ n, set

ρ(n, d) =

n∑
r=0

(
r

d

)
ρ∗(n, r). (1)

Hence ρ(n, d) is the expected number of sets of size d of K-roots.

Remark. We will use this notion a lot so we will call sets of size d, d-sets.

For a fixed n, determining ρ(n, d) for all d is equivalent to determining
ρ∗(n, r) for all r, via the binomial inversion formula, [6, Page 192, Trick 3]

ρ∗(n, r) =

n∑
d=0

(−1)d−r

(
d

r

)
ρ(n, d). (2)

Equations (1) and (2) are equivalent to the standard observation that a
probability distribution is determined by its moments; the formulation in d-sets
equivalently in terms of factorial moments is most convenient for our purposes.

Similarly let α(n, d) denote the expected number of d-sets of K-roots of
monic polynomials of degree n over O, and let β(n, d) denote the expected
number of d-sets of K-roots of monic polynomials of degree n over O that
reduce to xn modulo π where π ∈ O is a generator of the unique maximal ideal
of O. Define the generating functions:

Ad(t) = (1− t)

∞∑
n=0

α(n, d)tn,

Bd(t) = (1− t)

∞∑
n=0

β(n, d)tn,

Rd(t) = (1− t)(1− qt)

∞∑
n=0

(qn + qn−1 + · · ·+ 1)ρ(n, d)tn.

Then we prove the following theorem.

Theorem 1.1. Let n, d be any integers such that 0 ≤ d ≤ n. Then:

a) For fixed n and d, the expectations α(n, d; q), β(n, d; q) and ρ(n, d; q) are
rational functions of q which depend only on n, d, q and satisfy identities:

ρ(n, d; q) = ρ(n, d; q−1); (3)

α(n, d; q) = β(n, d; q−1). (4)
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b) We have the following power series identities in two variables t and u:

∞∑
d=0

Ad(qt)u
d =

( ∞∑
d=0

Bd(t)u
d

)q

, (5)

∞∑
d=0

Rd(t)u
d =

( ∞∑
d=0

Ad(qt)u
d

)( ∞∑
d=0

Bd(t)u
d

)
=

( ∞∑
d=0

Bd(t)u
d

)q+1

,

(6)

Bd(t)− tBd(
t

q
) = Φ(Ad(t)− tAd(qt)), (7)

where Φ is the operator on power series that multiplies the coefficient of

tn by q−(
n
2).

1.1 Examples

Here we work on an example to show how one can use Theorem 1.1, explicitly
calculating α(n, 1) for all n. Now we use (5) to get a recursive relation between
Ad and Bd, noting that A0(t) = B0(t) = 1 we expand the sums on both sides.

1 +A1(qt)u+ · · · = (1 + B1(t)u+ · · · )q

= 1 + qB1(t)u+ · · ·

Hence by comparing coefficients wee see that

A1(qt) = qB1(t). (8)

Now we use (7),

B1(t)− tB1(
t

q
) = Φ(A1(t)− tA1(qt)). (9)

Using equality (8) we set B1(t) =
1
qA1(qt) in (9). Then we have

1

q
A1(qt)− Φ(A1(t)) =

1

q
tA1(t)− Φ(tA1(qt)).

Now suppose that an is the n’th coefficient of A1(t). The equality above with
the operator tells us

(qn−1 − q−(
n
2))an = (

1

q
− qn−1−(n2))an−1.

Noting that a1 = 1, we can solve for an, n ≥ 1. Setting n = 2, we see that

a2 =
−1

q + 1
.
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Now setting n = 3 we observe

(q2 − q−3)a3 = (
1

q
− q−1)a2,

and hence an = 0 for n ≥ 3. Therefore

A1(t) = t− 1

q + 1
t2. (10)

From how we defined A1(t) before, we have

A1(t) = (1− t)(α(0, 1) + α(1, 1)t+ α(2, 1)t2 + · · · ) (11)

= α(0, 1) + (α(1, 1)− α(0, 1))t+ · · · . (12)

By comparing coefficients of (10) and (12) we see that

α(n, 1) =


0 n = 0,

1 n = 1,
q

q+1 n ≥ 2.

2 Valuation Theory

We refer to the entire section in Neukirch’s Algebraic Number Theory [7, 3].

2.1 Valuation

Definition 2.1 (Valuation). A valuation of a field K is a function

| | : K → R

which satisfies the following properties;

• |x| ≥ 0, and |x| = 0 ⇔ x = 0

• |xy| = |x||y|

• |x+ y| ≤ |x|+ |y| ”Triangle Inequality”

Remark. There is a trivial valuation on every field K where |x| = 1 for all
x ̸= 0, and |0| = 0. In our paper, we will always exclude this case.

A valuation of a field K induces a metric on K. This metric is given by

d(x, y) = |x− y|.

Proof. Let x, y, z ∈ K

• Note that α = x−y ∈ K. Therefore d(x, y) = |x−y| = |α| ≥ 0. Moreover
|α| = |x− y| = 0 if and only if α = 0, which implies x = y.
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• Note that d(x, y) = |x− y| = | − 1||y − x| = |y − x| = d(y, x). Let us also
prove |1| = | − 1| = 1 in real numbers.

– |1| = |1 · 1| = |1||1| which implies |1| = 1.

– Now note that 1 = |1| = |(−1) · (−1)| = |(−1)||(−1)| which implies
| − 1| = 1 or | − 1| = −1, since latter cannot be true, | − 1| = 1.

• d(x, z) = |x− z| = |(x− y)+ (y− z)| ≤ |x− y|+ |y− z| = d(x, y)+ d(y, z).

Therefore a fieldK with a valuation is aHausdorff topological space with
metric d, detailed information is in sections 2 and 4 of Sutherland’s Introduction
to Metric and Topological Spaces [8].

Definition 2.2. The valuation | | is called nonarchimedean if |n| stays bounded
for all n ∈ N. Otherwise it is called archimedean.

Remark. Here n = n · 1K = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

Proposition 2.3. The valuation | | is nonarchimedean if and only if it satisfies
the strong triangle inequality

|x+ y| ≤ max{|x|, |y|}.

Proof. Suppose that the strong triangle inequality holds, then

|n| = |1 + · · ·+ 1| ≤ 1.

Conversely, suppose that |n| ≤ N for all n ∈ N. Let x, y ∈ K and suppose
|x| ≥ |y|. Then |x|v|y|n−v ≤ |x|n for v ≥ 0 and we get

|x+ y|n ≤
n∑

v=0

|
(
n

v

)
||x|v|y|n−v ≤ N(n+ 1)|x|n.

Therefore

|x+ y| ≤ N1/n(1 + n)|x| = N1/n(1 + n)1/n max{|x|, |y|}.

If we let n→ ∞ we get the strong triangle inequality.

Remark. The strong triangle inequality implies that

|x| ≠ |y| ⇒ |x+ y| = max{|x|, |y|}.
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2.2 Exponential Valuation

Definition 2.4 (Exponential Valuation). An exponential valuation of a field
K is a function

v : K → R ∪ {∞}

which satisfies the properties:

• v(x) = ∞ ⇔ x = 0

• v(xy) = v(x) + v(y)

• v(x+ y) ≥ min{v(x), v(y)}

where one uses the convention that for a ∈ R, a <∞, a+∞ = ∞,∞+∞ = ∞.

Again we will be excluding the trivial case where v(x) = 0 for x ̸= 0, v(0) = ∞
throughout our paper.

Remark. If | | is a valuation of a field K which is nonarchimedean then | |
induces an exponential valuation v by setting

v(x) = − log |x|

for x ̸= 0, and v(0) = ∞.
In a similar manner if v is an exponential valuation of a field K, v induces

a valuation of K by setting

|x| = q−v(x)

for some q ∈ R>1. To distinguish it from v, we call | | an associated multi-
plicative valuation or absolute value.

2.3 Valuation Ring

Properties of an exponential valuation v of a field K give rise to a subset of K
with some algebraic properties.

Proposition 2.5. The subset

O = {x ∈ K | v(x) ≥ 0} = {x ∈ K | |x| ≤ 1}

is a ring with group of units

O∗ = {x ∈ K | v(x) = 0} = {x ∈ K | |x| = 1}

and the unique maximal ideal

P = {x ∈ K | v(x) > 0} = {x ∈ K | |x| < 1}.
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O is an integral domain with field of fractions K and has the property that,
for every nonzero x ∈ K, x ∈ O or x−1 ∈ O. Such a ring is called a valuation
ring. Its only maximal ideal is P = {x ∈ O | x−1 /∈ O}. The field O/P is called
the residue class field of O.

An exponential valuation v is called discrete if it admits a smallest positive
value s, which in case one finds

v(K∗) = sZ.

It is called normalized if s = 1. Dividing by s we may always pass to a
normalized valuation without changing the invariants O,O∗,P. Having done
so, an element

π ∈ O such that v(π) = 1

is a prime element, and every element x ∈ K∗ admits a unique representation

x = uπm

with m ∈ Z and u ∈ O∗, for if v(x) = m, then v(xπ−m) = 0, hence u = xπ−m ∈
O∗.

We have a proposition which arises from discrete valuations, but we need to
state a definition.

Definition 2.6 (Discrete Valuation Ring). A principal ideal domain is called a
discrete valuation ring if it has a unique maximal ideal.

Proposition 2.7. If v is a discrete valuation of K, then

O = {x ∈ K | v(x) ≥ 0}

is a principal ideal domain and hence a discrete valuation ring. Suppose v is
normalised, then the nonzero ideals of O are given by

Pn = πnO = {x ∈ K | v(x) ≥ n}, n ≥ 0

where π is a prime element, i.e. v(π) = 1. One has

Pn/Pn+1 ∼= O/P.

Proof. Let I ̸= {0} be an ideal of O and x ̸= 0 an element in I with smallest
possible value v(x) = n. Then x = uπn, u ∈ O∗, so that πO ⊆ I. If y = ϵπm ∈ I
is arbitrary with ϵ ∈ O∗, then m = v(y) ≥ n, hence y = (ϵπm−n)πn ∈ πnO.
Moreover aπn 7→ a mod P is a surjective map from Pn to O/P with kernel
Pn+1.
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2.4 Bases

In a discretely valued field K, the chain

O ⊇ P ⊇ P2 ⊇ P3 ⊇ · · ·

consisting of ideals of the valuation ringO forms a basis of neighbourhoods of the
zero element. If v is a normalized exponential valuation and | | = q−v (q > 1)
an absolute value, then

Pn = {x ∈ K | |x| < 1

qn−1
}.

As a basis of neighbourhoods of the element 1 ∈ K∗, we obtain in a similar
manner the descending chain

O∗ = U (0) ⊇ U (1) ⊇ U (2) ⊇ · · ·

of subgroups

U (n) = 1 + Pn = {x ∈ K∗ | |1− x| < 1

qn−1
}, n > 0,

of O∗. U (n) is called the n-th higher unit group and U (1) the group of
principal units.

Proposition 2.8.

O∗/U (n) ∼= (O/Pn)∗

and

U (n)/U (n+1) ∼= O/P

for n ≥ 1.

Proof. The proof is given under Proposition 3.10 in Neukirch’s book[7, 3].

3 Completeness

Completeness or completion of a metric space is usually the next best question
to ask after finding a metric on the given set.

Definition 3.1 (Cauchy Sequence). Let (K, | |) be a valued field. A sequence
{an}n∈N in K is called a Cauchy sequence if for every ϵ > 0 there exists
N ∈ N such that

|an − am| < ϵ for all n,m ≥ N.
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Definition 3.2. A valued field (K, | |) is called complete if every Cauchy
sequence {an}n∈N in K converges to an element a ∈ K, i.e.,

lim
n→∞

|an − a| = 0.

Lemma 3.3 (Hensel’s Lemma). Let K be a field which is complete with respect
to a nonarchimedean valuation | |. Let O be the corresponding valuation ring
with maximal ideal P and residue class field k = O/P. A polynomial f ∈ O[x]
is called primitive if f(x) ̸≡ 0 mod P.

Now suppose that a primitive polynomial f ∈ O[x] admits a modulo P fac-
torization

f(x) ≡ g(x)h(x) mod P

into relatively prime polynomials g, h ∈ k[x], then f(x) admits a factorization
into polynomials g, h ∈ O[x] such that deg(g) = deg(g) and

g(x) ≡ g(x) mod P and h(x) ≡ h(x) mod P.

Proof. A detailed proof is given at [7, Lemma 4.6].

Remark. In general for any valued field, one can get a complete valued field by
the process of completion, see [7, Section 4].

4 Local Fields

Definition 4.1 (Local Fields). All fields which are complete with respect to
a discrete valuation and have a finite residue class field are called (nonar-
chimedean) local fields. For such a local field, the normalized exponential
valuation is denoted by vρ, and | |ρ denotes the absolute value normalized by

|x|ρ = q−vρ(x)

where q is the cardinality of the residue class field.

Definition 4.2 (Locally Compact). A topological space X is locally compact
if every point has a neighborhood which is itself contained in a compact set.

Proposition 4.3. A local field K is locally compact. Its valuation ring R is
compact.

Proof. For a detailed proof, check Proposition 5.1 in Neukirch’s book [7, 5].

Proposition 4.4. Let K be a local field with discrete valuation ring O. Let
R ⊆ O be a system of representatives for the residue class field Fq = O/P such
that 0 ∈ R, let π ∈ O be a prime element. Then every x ̸= 0 in K admits a
unique representation as convergent series

x = πm(a0 + a1π + a2π
2 + · · · )

where ai ∈ R, a0 ̸= 0, m ∈ Z.
Proof. A detailed proof is given in [7, Proposition 4.4].
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5 Topological Groups

The following propositions and definitions are taken from [4, Section 9].

Definition 5.1 (Topological Group). A topological group G is a group (say
with operation (x, y) 7→ xy) such that G is also equipped with a topology where
the operations (x, y) 7→ xy and x 7→ x−1 are continuous.

A locally compact group is a topological group whose topology is locally
compact and Hausdorff.

Proposition 5.2. Let G be a topological group, let e be the identity element of
G, and a be an arbitrary element of G.

• The functions x 7→ ax, x 7→ xa and x 7→ x−1 are homeomorphisms of G
onto G.

• If U is a base for the family of neighbourhoods of e, then {aU : U ∈ U }
and {Ua : U ∈ U } are bases for family of the neighbourhoods of a.

• If K and L are compact subsets of G, then aK,Ka,KL and K−1 are
compact subsets of G.

Proposition 5.3. Let G be a topological group, let e be the identity element of
G, and let U be an open neighbourhood of e.

• There is an open neighbourhood V of e such that V V ⊆ U .

• There is a symmetric open neighbourhood V ′ of e that is contained in U .
(V ′ is called symmetric if V ′ = (V ′)−1)

Proposition 5.4. Let G be a topological group, and let H be an open subgroup
of G. Then H is closed.

6 Haar Measure

As in Section 5, our reference for this section is [4, 9].

Definition 6.1. Let G be a locally compact group, and let µ be a nonzero regular
Borel measure on G. Then µ is a left Haar measure if it is invariant under
left translations, in the sense that µ(xA) = µ(A) holds for each x ∈ G and each
A ∈ B(G). A right Haar measure is defined similarly, in case the group G is
abelian then the notion of left and right coincides.

Remark. Proposition 5.2 implies that if x ∈ G and if A is a Borel subset of G,
then xA and Ax are Borel subsets of G, thus the Haar measure is well defined
on those sets.

Remark. In our paper we will be interested in the case where a locally compact
group G is abelian, henceforth we will drop the notion of left-right Haar measure.
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Theorem 6.2 (Existence of Haar Measure). Let G be a locally compact group.
Then there is a Haar measure on G.

Theorem 6.3 (Uniqueness of Haar measure). Let G be a locally compact group,
and let µ and µ′ be Haar measures on G. Then there is a positive real number
c such that µ′ = cµ.

Proposition 6.4. Let G be a locally compact group, and let µ be a Haar measure
on G. Then µ is finite if and only if G is compact.

7 Preliminaries

7.1 Identification on polynomial rings

For a ring R, let R[x] denote the ring of univariate polynomials over R, and
for n ≥ 0, let R[x]n denote the subset of polynomials of degree at most n, and
R[x]1n the subset of monic polynomials of degree n.

We identify R[x]1n with Rn via

xn +

n−1∑
i=0

aix
i ↔ (a0, a1, . . . , an−1).

When R is a complete discrete valuation ring with a finite residue field, we
will the use measure on R[x]1n which is inherited with this identification.

Now suppose thatO is a complete discrete valuation ring with a finite residue
field. For f ∈ O[x], we denote by f its image under reduction modulo π in
Fq = O/P = O/πO, where P = (π) is the unique maximal ideal of O. A
polynomial with coefficients inO is primitive if not all its coefficients are divisible
by π, or in other words f ̸= 0. For a primitive polynomial f ∈ O[x], we define
the reduced degree of f to be deg(f). Therefore deg(f) ≥ deg(f), with equality
satisfied if and only if the leading coefficient of f is a unit since O has a unique
maximal ideal which contains all non-units.

7.2 Some counting

Let O be a complete discrete valuation ring with a finite residue field Fq where
q denotes the order of the field.

A splitting type of degree n is a tuple (de11 d
e2
2 · · · dett ) where dj and ej are

positive integers satisfying
∑
djej = n. We allow repeats in the list of symbols

d
ej
j , but the order in which they appear does not matter. Let S(n) denote all

the splitting types of degree n. For example S(2) = {(1 1), (12), (2)} has three
elements, S(3) has five elements, and S(4) has eleven.

We say that a monic polynomial f in Fq[x]n of degree n has splitting type

(de11 d
e2
2 · · · dett ) ∈ S(n) if it factors as f(x) =

∏t
j=1 fj(x)

ej where fj are distinct
irreducible monic polynomials over Fq with deg(fj) = dj .

14



We write σ(f) for the splitting type of f , and Nσ for the number of monic
polynomials in Fq[x]n with splitting type σ.

If σ = (d), then we writeNd forNσ, that is the number of degree d irreducible
monic polynomials over Fq. Writing µ for the Möbius function [1, Section 2.2],
we get a formula for Nd. [5, Section 14.3, Proposition 18]

Nd =
1

d

∑
k|d

µ(k)qd/k.

Since there are qn monic polynomials of degree n in Fq[x], the probability
that a degree n monic polynomial f ∈ Fq[x] has splitting type σ, for σ ∈ S(n),
is Nσ/q

n. This is a rational function of q, there is a formula given in [2, Section
2.2] for Nσ, where the output for any Nσ is a function of q.

7.2.1 Power series identities involving Nσ

Referring to [2, Section 2.3], we follow the authors’ footsteps to get power series
identities involving the counts Nσ. They will be necessary for our paper’s main
goal.

Let xde for d, e ≥ 1 be indeterminates. For a splitting type σ ∈ S(n) of
degree n, let

xσ =
∏
de∈σ

xde.

Polynomials with these indeterminates will be weighted by setting wt(xde) =
de. Setting y0 = 1, and for n ≥ 1 we define

yn =
∑

σ∈S(n)

Nσxσ,

so that every monomial in yn has weight n. We set xd0 = 1 for all d ≥ 1.

Proposition 7.1. We have the following identity in Z{xde}d,e≥1[[t]]:

∞∑
n=0

ynt
n =

∞∏
d=1

(

∞∑
e=0

xdet
de)Nd .

Proof. When the right hand side is multiplied out, we see that the coefficient
of tn is a sum of monomials in the xde of weight n. Such product has the form
xσ for some σ in S(n) and the times that each monomial occurs is equal to Nσ

which shows the coefficient of tn is equal to yn proving the claim.

Corollary 7.2. We have the following identity in Z[[t]]:

(1− qt)−1 =

∞∏
d=1

(1− td)−Nd .
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Proof. Setting xde = 1 for all d, e, we get xσ =
∏

de∈σ 1 = 1, since in Propo-
sition 7.1 we set xσ =

∏
de∈σ xde and xde = 1 for all d, e . Therefore yn =∑

σ∈S(n)Nσ = qn, since the Nσ actually partitions the set Fq[x]
1
n which has

qn elements. We have that
∑∞

n=0 q
ntn =

∑∞
n=0(qt)

n = (1 − qt)−1 where we
have used the geometric sum formula. We now use Proposition 7.1 again to get
(1 − qt)−1 =

∑∞
n=0 q

ntn =
∏∞

d=1(
∑∞

e=0 t
de)Nd =

∏∞
d=1(1 − td)−Nd , where we

have used the fact that
∑∞

e=0 t
de = (1− td)−1.

Corollary 7.3. Let xe for e ≥ 1 be indeterminates, and set x0 = 1. Then in
Z[x1, x2, . . .][[t]], we have:

∞∑
n=0

∑
σ∈S(n)

Nσ(
∏
1e∈σ

xe)t
n = (

∞∑
n=0

xnt
n)q(1− t)q(1− qt)−1.

Proof. We set x1e = xe and xde = 1 for all d ≥ 2 in Proposition 7.1. Now we
observe that

∞∑
n=0

ynt
n =

∞∏
d=1

(

∞∑
e=0

xdet
de)Nd = (

∞∑
e=0

xet
e)N1

∞∏
d=2

(

∞∑
e=0

xdet
de)Nd ,

where N1 = q and the indeterminates xde are equal to 1 in the infinite product
at the right hand side.

We now make use of the corollary we proved before, note that

(1− qt)−1 =

∞∏
d=1

(

∞∑
e=0

tde)Nd = (

∞∑
e=0

te)N1(

∞∏
d=2

(

∞∑
e=0

tde)Nd)

where

(

∞∑
e=0

te)N1 = (1− t)−q.

Hence
∞∏
d=2

(

∞∑
e=0

tde)Nd = (1− qt)−1(1− t)q

Now we have
∞∑

n=0

ynt
n =

∞∑
n=0

∑
σ∈S(n)

Nσxσt
n

where

xσ =
∏
1e∈σ

xe.

Therefore
∞∑

n=0

∑
σ∈S(n)

Nσ(
∏
1e∈σ

xe)t
n = (

∞∑
n=0

xnt
n)q(1− t)q(1− qt)−1.
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7.3 Resultants, coprime factorizations, and independence

7.3.1 Resultants

We derive some lemmas about resultants of polynomials in O[x] and their be-
havior upon reduction modulo π.

Definition 7.4 (Sylvester matrix). Let f(x) = amx
m + · · · + a0 and g(x) =

bnx
n + · · · + b0 be two polynomials of degrees m and n, respectively over an

arbitrary ring R. The Sylvester matrix is an (m+n)×(m+n) matrix formed
by filling the matrix beginning with the upper left corner with coefficients of f(x),
then shifting down one row and column to the right filling in the coefficients
starting there until they hit the right side. The process is then repeated for the
coefficients of g(x). In matrix form it is given as

Syl(f, g) =



am am−1 . . . a0 0 . . . 0
0 am am−1 . . . a0 . . . 0
...

. . .
. . .

...
0 . . . 0 am am−1 . . . a0
bn bn−1 . . . b0 0 . . . 0
0 bn bn−1 . . . b0 . . . 0
...

. . .
. . .

...
0 . . . 0 bn bn−1 . . . b0


.

Definition 7.5 (Resultant). The resultant of two polynomials over a commu-
tative ring R is defined as the determinant of their Sylvester matrix. We let
Res(f, g) denote the resultant of two polynomials f, g.

Lemma 7.6. Let f, g ∈ O[x] have degrees m and n respectively.

1. If the leading coefficients of f and g are both units, then Res(f, g) =
Res(f, g).

2. If the leading coefficient am of f is a unit and d = deg(g) < n, then
Res(f, g) = am

n−d Res(f, g).

3. If the leading coefficients of f and g are both non-units, then Res(f, g) = 0.

Proof. 1. Since the leading coefficients of both f and g are units, they are
not contained in the unique maximal ideal, therefore am ̸= 0, bn ̸= 0.
Since in this case Syl(f, g) is actually the reduction mod π of Syl(f, g),
Res(f, g) = Res(f, g).

2. Suppose the leading coefficient am of f is a unit and d = deg(g) < n.
This implies that in reduction mod π of Syl(f, g) all the terms bi, i > d
are actually equal to 0. Therefore

Res(f, g) = det(Syl(f, g)) = am
n−d det(Syl(f, g)) = am

n−d Res(f, g).
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3. This is trivially true since the leading coefficients are non-units, under the
reduction map they are equal to 0. Therefore Res(f, g) = 0.

Corollary 7.7. Let f, g ∈ O[x] have degrees m and n respectively. Then
Res(f, g) is a unit if and only if at least one of the leading coefficients of f
or g is a unit, and the reductions f, g are coprime.

Proof. If Res(f, g) is a unit in O, then Res(f, g) ̸= 0 and also Res(f, g) ̸= 0.
Moreover since R is a principal ideal domain, it is also a unique factorization
domain, and a well known property of resultants is that for two polynomials
f ′, g′ over a unique factorization domain Res(f ′, g′) = 0 if and only if they
share a common root. Therefore by first and second part of Lemma 7.6, the
reductions should be coprime while at least one of the polynomials should have
a leading coefficient which is a unit.

Conversely if the reductions are coprime then Res(f, g) ̸= 0. Moreover as we
assume at least one of the leading coefficients is a unit, we see that Res(f, g) ̸= 0.
Therefore Res(f, g) is a unit in O.

Lemma 7.8. Let R be an arbitrary ring. For any d ≥ 1, we identify R[x]1d
∼= Rd

and R[x]d ∼= Rd+1 as R-modules.

1. The multiplication map R[x]1m ×R[x]1n → R[x]1m+n has Jacobian at (f, g)
given by Res(f, g).

2. The multiplication map R[x]1m ×R[x]n → R[x]m+n has Jacobian at (f, g)
given by Res(f, g).

Proof. A detailed proof is given in [2, Lemma 2.6].

Corollary 7.9. Let A ⊂ O[x]1m, B ⊂ O[x]1n, and AB ⊂ O[x]1m+n be measurable
subsets such that multiplication induces a bijection

A×B → AB = {ab | a ∈ A, b ∈ B}.

If Res(g, h) ∈ O∗ for all g ∈ A and h ∈ B, then this bijection is measure
preserving.

Proof. We identify O[x]1m, O[x]1n and O[x]1m+n with Om,On and Om+n respec-
tively. Similarly we also identifyOm×On withOm+n. With these identifications
we view the map as a map from Rm+n to itself. The change of variables formula
from measure theory induces a Jacobian factor Res(f, g). Written explicitly
[3, Thrm. 10.1.2], ∫

g∈A

∫
h∈B

|Res(g, h)|dhdg =

∫
f∈AB

df.

Since |l| = 1 for every l ∈ O∗ and Res(g, h) is assumed to be a unit, |Res(g, h)| =
1 proving the claim.
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7.3.2 Measure theoretic Hensel’s lemma

For f ∈ Fq[x]
1
d, denote by Pf the set of polynomials in O[x]1d that reduce to f

modulo π; and for n ≥ d, we denote by Pn
f the set of polynomials in O[x]n that

reduce to f modulo π.

Lemma 7.10. Suppose that g, h ∈ Fq[x] are monic and coprime. Then the
multiplication map

Pg × Ph → Pgh

is a measure preserving bijection.

Proof. We first show that Pf is a measurable set for any f ∈ Fq[x]
1
d. Suppose

g(x) ∈ Pf where g(x) = a0+a1x+ · · ·+ad−1x
d−1+xd ∈ O[x]1d, similarly assume

f(x) = b0+b1x+ · · ·+bd−1x
d−1+xd ∈ Fq[x]

1
d. Since g = f , we have that ai ≡ bi

mod π for all 0 ≤ i ≤ d. This implies ai = πk + b′i for some k,∈ O where b′i a
fixed lift of bi , therefore ai ∈ bi +P. x+P is open for all x ∈ O. Therefore Pf

is measurable for all f ∈ Fq[x]
1
d.

Now let f ∈ O[x]1n be such that f factors in Fq[x] as f = gh. Then by
Hensel’s lemma f factors uniquely in O[x] as f = g′h′, where g′ ∈ Pg and
h′ ∈ Ph. Therefore the map we have is a bijection of measurable sets, where
the Jacobian is a unit in O (which implies it has a valuation 1). Due to the
Corollary 7.9 this map is measure preserving. The resultant is a unit due to
Corollary 7.7.

We use the following variant of previous the lemma to handle polynomials
f ∈ O[x] whose leading coefficient is not a unit.

Lemma 7.11. Let n ≥ m ≥ 0 and consider the multiplication map

µ : O[x]1m × Pn−m
1 → {f ∈ O[x]n : f ∈ Fq[x]

1
m}. (13)

1. µ is a measure preserving bijection.

2. Let r be an integer satisfying m ≤ r ≤ n. In (13) , if we replace
the set on the right hand-side with the subset of f ∈ O[x]n also sat-
isfying πrf(xπ−1) ≡ xn(mod π), and replace the second factor of the
left-hand side with the subset of h ∈ Pn−m

1 satisfying πr−mh(xπ−1) ≡
xn−m(mod π). Then the restriction of µ to these subsets is still a mea-
sure preserving bijection.

Proof. 1. Let f ∈ O[x]n be such that f is monic of degree m. Now note that
f = (1)(xm + · · ·+ a0). We use Hensel’s lemma to see that f = gh where
g ∈ O[x]1m and h ∈ Pn−m

1 . Therefore (13) is a bijection and measure
preserving due to Corollary 7.9 since g is monic and the resultant is a
unit. Again the resultant is a unit since the reductions are coprime for g
and h, therefore we use 7.7.
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2. Let f ∈ O[x]n be such that f is monic of degree m, and also that
πrf(xπ−1) ≡ xn mod π; this implies that πrf(xπ−1) ∈ O[x] and
πrf(xπ−1)− xn ∈ πO[x]. We factor f = gh as before, then

πmg(xπ−1) · πr−mh(xπ−1) = πmf(xπ−1) ≡ xn mod π;

since g ∈ O[x]1m, we have πmg(xπ−1) ∈ O[x] and πmg(xπ−1) ≡ xm

mod π. Since πrf(xπ−1) ∈ O[x], πrf(xπ−1) = πmg(xπ−1) ·πr−mh(xπ−1)
and πmg(xπ−1) ∈ O[x], by Gauss’s lemma πr−mh(xπ−1) ∈ O[x] . Now
using the unique factorization in Fq[x] also π

r−mh(xπ−1) ≡ xn−m mod π.

Conversely if h satisfies πr−mh(xπ−1) ≡ xn−n mod π, then since
πmg(xπ−1) ≡ xm mod π for all g ∈ O[x]1m, it follows that f = gh satisfies
πrf(xπ−1) ≡ xn mod π. Therefore µ restricts to a bijection between the
subsets on each side, and measure preserving as before as well. Similarly
the resultant is a unit due to 7.7.

7.3.3 Independence Lemmas

We rephrase Lemmas 7.10 and 7.11 to create suitable random variables which
are independent.

Corollary 7.12. Let f, g ∈ Fq[x] be coprime monic polynomials. For f ∈ Pgh,
let ϕ1 and ϕ2 denote the projections of Pgh onto Pg and Ph, respectively under
the bijection Pgh → Pg ×Ph. Then the number of K-roots of f ∈ Pgh is X +Y ,
where X,Y : Pgh → {0, 1, 2, . . .} are independent random variables distributed
on f ∈ Pgh as the number of K-roots of ϕ1(f) ∈ Pg and ϕ2(f) ∈ Ph, respectively.
The independence is justified due to the measure preserving property of the map
in Lemma 7.10.

Corollary 7.13. Let m ≤ n, and let

Bm,n := {f ∈ O[x]n : f ∈ Fq[x]
1
m}.

For f ∈ Bm,n, let ψ1 and ψ2 denote the projections of Bm,n onto O[x]1m and
Pn−m
1 , respectively under the bijection Bm,n → O[x]1m × Pn−m

1 . Let X,Y :
Bm,n → {0, 1, 2, . . .} be the random variables giving the number of roots of f ∈
Bm,n, in O and in K \O, respectively. Then X and Y are independent random
variables distributed on f ∈ Bm,n as the number of K-roots of ψ1(f)(x) ∈ O[x]1m
and of ψ2(f)

rev(x) := xn−mψ2(f)(
1
x ) ∈ Pxn−m , respectively.

8 Proof of the Theorem

8.1 Proof of Theorem 1(b)

8.1.1 Conditional Expectations

In the introduction we defined the expectations α(n, d) and β(n, d). We now
make a few definitions for our problem.
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Lemma 8.1. Pf has relative density q−n in O[x]1n.

Proof. We can prove the statement in two ways. Firs suppose that f(x) = a0 +
a1x+ . . .+xn ∈ Fq[x]

1
n. Notice that there are exactly q choices for each ai with

each having probability 1
q . Therefore the relative density of Pf is ( 1q )

n = q−n.

Another way to prove the statement is to see that if we letR = {a0, . . . , aq−1}
with a0 = 0, be a set of representatives for Fq, then we decompose the local
field K as

O =

q−1⋃
i=0

(ai + P).

Since µ is a Haar measure, µ(ai + P) = µ(P), and normalization µ(O) = 1
forces µ(P) = q−1. Using these arguments we see

µ(Pn) = q−n, for all n ∈ N≥0.

Definition 8.2.

i) For f ∈ Fq[x]
1
n, let α(n, d | f) denote the expected number of d-sets of

K-roots of a polynomial in Pf ⊂ O[x]1n. Since Pf has relative density q−n

in O[x]1n, we have

α(n, d) = q−n
∑

f∈Fq [x]1n

α(n, d | f). (14)

Moreover β(n, d) = α(n, d | xn).

ii) For σ ∈ S(n), let α(n, d | σ) be the expected number of d-sets of K-roots
of a polynomial in O[x]1n whose splitting type is σ. Therefore

α(n, d) = q−n
∑

σ∈S(n)

Nσα(n, d | σ), (15)

and

α(n, d | σ) = N−1
σ

∑
f∈F[x]1n:σ(f)=σ

α(n, d | f), (16)

where σ(f) denotes the splitting type of f .

The intuition in Definition 8.2 i) is the fact that the space O[x]1n has a
measure which is equal to 1 which is induced by our identification with the space
On. Each polynomial f ∈ Fq[x]

1
n corresponds to a subset of O[x]1n consisting of

all the lifts of f which is denoted by Pf . The set of polynomials O1
n[x] is covered
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disjointly by these sets where we have proven their density to be µ(Pf ) = q−n.
Therefore

α(n, d) =
∑

f∈Fq [x]1n

µ(Pf )α(n, d | f) = q−n
∑

f∈Fq [x]1n

α(n, d | f). (17)

Moreover β(n, d) is just a specific configuration of α.
Similarly for Definition 8.2 ii), the relative density depending on the splitting

type σ is raised by a factor of Nσ for each σ. This also has an additional factor
of q−n since Pf has relative density q−n for any f ∈ Fq[x]

1
n. (One can also

remember that the probability of a monic polynomial having splitting type
σ ∈ S(n) in Fq[x]n is Nσ

qn . )

8.1.2 Writing α’s in terms of β’s

Lemma 8.3. Let g, h ∈ Fq[x] be monic and coprime. Then

α(deg(gh), d | gh) =
∑

d1+d2=d

α(deg(g), d1 | g) · α(deg(h), d2 | h), (18)

where the sum is over all pairs (d1, d2) of non-negative integers summing to d.
Moreover if h has no roots in Fq, then

α(deg(gh), d | gh) = α(deg(g), d | g).

Proof. The lemma is an implication of Corollary 7.12 with the fact that if X
and Y are independent random variables taking values in {0, 1, 2, . . .} then

E
(
X + Y

d

)
=

∑
d1+d2=d

E
(
X

d1

)
E
(
Y

d2

)
. (19)

The implication of Corollary 7.12 tells us the fact that X and Y are the number
of K roots of a lift of g and h in Pg and Ph respectively and X and Y are
independent. We note that expectation is a linear function, and the fact that
each d-set of roots must be formed from some d1-set from g and d2-set from h,
summing over all possible partitions d1 + d2 = d. If h has no roots in Fq, then
we know that Y = 0, so the roots are determined completely by g.

We recall that β(n, d) = α(n, d | xn) is the expected number of d-sets of
roots of a monic polynomial of degree n which reduces to xn modulo π. Using
Lemma 8.3, we can express α(n, d | f) for monic f ∈ Fq[x]n in terms of β(n′, d′)
for suitable n′, d′.

Lemma 8.4. Let σ = (1n1 · · · 1nk) ∈ S(n) be a splitting type with exactly
k = m1(σ) powers of 1. Then

α(n, d | σ) =
∑

d1+d2+···+dk=d

k∏
i=1

β(ni, di). (20)

22



Proof. Let f ∈ Fq[x]
1
n have splitting type σ. To evaluate α(n, d | f), we ignore

the factors of f of degree greater than 1, since if f = f1f2 where σ(f1) =
(1n1 . . . 1nk) and f2 has no linear factors, then α(n, d | f) = α(deg(f1), d | f1)
by Lemma 8.3.

Now let f =
∏k

i=1 l
ni
i , where li are distinct, monic, and of degree 1. Using

Lemma 8.3 repeatedly gives

α(n, d | f) =
∑

d1+···+dk=d

k∏
i=1

α(ni, di | lni
i ).

Finally, α(ni, di | lni
i ) = α(ni, di | xni) = β(ni, di), since for fixed c ∈ O the

map g(x) 7→ g(x + c) is measure preserving on monic polynomials in O[x] of
given degree. Therefore

α(n, d | f) =
∑

d1+d2+···+dk=d

k∏
i=1

β(ni, di) = α(n, d | σ) (21)

where the last equality follows from our assumption of σ = (1n1 . . . 1nk . . .) ∈
S(n).

Proof of Theorem 1.1 b).

Proof. Let σ = (1n1 . . . 1nk) ∈ S(n) be as in the lemma before. We now have

α(n, d) = q−n
∑

σ∈S(n)

Nσα(n, d | σ) = q−n
∑

σ∈S(n)

Nσ

∑
d1+···+dk=d

k∏
i=1

β(ni, di).

(22)

Let us now multiply both sides with ud.

α(n, d)ud = q−nud
∑

σ∈S(n)

Nσ

∑
d1+···+dk=d

k∏
i=1

β(ni, di).

Now we sum for d.
n∑

d=0

α(n, d)ud = q−n
∑

σ∈S(n)

Nσ

n∑
d=0

∑
d1+···+dk=d

k∏
i=1

β(ni, di)u
d,

where
n∑

d=0

∑
d1+···+dk=d

k∏
i=1

β(ni, di)u
d =

∏
1e∈σ

(

e∑
d=0

β(e, d)ud). (23)

Let us explain how the equality above follows. We can reformulate the right
hand side as ∏

1e∈σ

(
e∑

d=0

β(e, d)ud

)
=

k∏
i=1

(
ni∑

di=0

β(ni, di)u
di

)
,
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since the parts of σ of the form 1e are 1ni for i = 1, . . . , k. Once we multiply
out, the coefficient of ud is in fact

∏
d1+···+dk=d β(ni, di), hence the left hand

side is equal to the right hand side in equation (21).
We now have that

n∑
d=0

α(n, d)ud = q−n
∑

σ∈S(n)

Nσ

∏
1e∈σ

(
e∑

d=0

β(e, d)ud

)
. (24)

Now we multiply both sides with (qtn) and sum over n. For a moment let us
focus only on the right hand side of (22). On the right hand side we then get

∞∑
n=0

∑
σ∈S(n)

Nσ

∏
1e∈σ

(
e∑

d=0

β(e, d)ud

)
tn. (25)

If we set

∏
1e∈σ

(
e∑

d=0

β(e, d)ud

)
tn =

∏
1e∈σ

xet
n,

we can use Corollary 7.3, after that we get

∞∑
n=0

∑
σ∈S(n)

Nσ

∏
1e∈σ

(
e∑

d=0

β(e, d)ud

)
tn =

(∑∞
d=0 (

∑∞
n=0 β(n, d)t

n)ud
)q

(1− t)q

(1− qt)
.

On the left hand side (after multiplying with (qt)n and summing over n) we
have

∞∑
n=0

n∑
d=0

α(n, d)ud(qt)n =

∞∑
d=0

( ∞∑
n=0

α(n, d)(qt)n

)
ud.

Therefore we have the equality

∞∑
d=0

( ∞∑
n=0

α(n, d)(qt)n

)
ud =

( ∞∑
d=0

( ∞∑
n=0

β(n, d)tn

)
ud

)q

(1− t)q(1− qt)−1.

Now multiplying both sides with 1− qt we have,

∞∑
d=0

Ad(qt)u
d =

∞∑
d=0

(1− qt)

( ∞∑
n=0

α(n, d)(qt)n

)
ud = (26)( ∞∑

d=0

( ∞∑
n=0

β(n, d)tn

)
(1− t)ud

)q

=

( ∞∑
d=0

Bd(t)u
d

)q

, (27)

proving (5).
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8.1.3 Writing ρ’s in terms of α’s and β’s

In the introduction we defined ρ(n, d) to be the expected number of d-sets of
K-roots of polynomials f ∈ O[x] of degree n. Our aim in this section is to prove
equation 6 in Theorem 1.1. Before we start, we need to work out some facts.

We start by noting that any f ∈ O[x] such that f ̸= 0 can be decomposed
as f = πefprim where e ≥ 0 is the greatest possible integer and fprim ∈ O[x]
is a primitive polynomial. In the case e = 0, the polynomial f itself is already
primitive and fprim = f . Moreover the set of roots of f is equal to fprim, since
f(ϵ) = 0 if and only if fprim(ϵ) = 0 for any root ϵ ∈ K of f . Since ρ(n, d)
only depends on n, d and q, the restriction will not change when we restrict this
expectation to primitive polynomials.

Let f ∈ O[x] be a primitive polynomial of degree n. Let m = deg(f) be
the reduced degree of f . For fixed 0 ≤ m ≤ n, we get the density of primitive
polynomials f ∈ O[x]n with reduced degree m with the following statements.
We first note that there are exactly qn+1 − 1 choices of a polynomial of degree
≤ n in Fq[x] \ {0}. Similarly if f ∈ Fq[x]m with degree m, then we have q − 1
choices for the m’th coefficient, and q choices for all other m many coefficients.
Now we derive a density q−1

qn+1−1q
m. Conditioning on the value of m, we have

ρ(n, d) =
q − 1

qn+1 − 1

n∑
m=0

qmρ(n, d,m), (28)

where ρ(n, d,m) denotes the expected number of d-sets of K-roots of f as
f ∈ O[x]n runs over polynomials of degree n with reduced degree m. This
expectation will not change when we restrict to f whose reduction mod π is
monic, since the behavior of ρ(n, d,m) depends on the distribution of polyno-
mials with given reduced degree m (and their roots). If we restrict ourselves to
only ones that reduce to a monic polynomial, then technically we are changing
a factor of q − 1 on all of them, which lets the expectation stay the same.

Lemma 8.5. We have

ρ(n, d,m) =
∑

d1+d2=d

α(m, d1)β(n−m, d2).

Proof. Corollary 7.13 tells us that the number of roots from reduction and the
number of lifted roots are independent. The number of O-roots is determined
by the polynomial’s reduction mod π. Similarly the number of roots appearing
in K but not O is determined by the additional n − m higher-degree terms.
So we can decompose ρ(n, d,m) with contributions from roots that are already
present in the reduction and the roots that come from the lifting. α(m, d1)
is the expected number of d1-sets of roots coming from the reduction of the
polynomial mod π. In a similar manner β(n−m, d2) are the expected number
of d2-sets of roots that arise from lifting the roots. Since they are independent
we can use (19) to get ρ(n, d, n) =

∑
d1+d2=d α(m, d1)β(n−m, d2).
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Proof of equation (6).

∞∑
d=0

Rd(t)u
d =

∞∑
d=0

(1− t)(1− qt)

∞∑
n=0

(qn + qn−1 + · · ·+ 1)ρ(n, d)tnud

= (1− t)(1− qt)

∞∑
d=0

ud
∞∑

n=0

(qn + · · ·+ 1)tn
q − 1

qn+1 − 1

n∑
m=0

qmρ(n, d,m)

= (1− t)(1− qt)

∞∑
d=0

ud
∞∑

n=0

tn
n∑

m=0

qm
∑

d1+d2=d

α(m, d1)β(n−m, d2)

=

∞∑
d=0

ud
∞∑

n=0

tn
n∑

m=0

qm
∑

d1+d2=d

(1− qt)α(m, d1)(1− t)β(n−m, d2)

=

∞∑
d=0

ud
∞∑

n=0

tn
n∑

m=0

qm
∑
d1,d2

(1− qt)α(m, d1)(1− t)β(n−m, d2)

=

∞∑
d=0

∞∑
n=0

tn
n∑

m=0

qm
∑
d1,d2

(1− qt)ud1α(m, d1)(1− t)ud2β(n−m, d2)

=

∞∑
d=0

∞∑
n=0

n∑
m=0

qm
∑
d1,d2

(1− qt)ud1α(m, d1)(1− t)ud2β(n−m, d2)t
n

=

( ∞∑
d=0

Ad(qt)u
d

)( ∞∑
d=0

Bd(t)u
d

)
.

8.1.4 Writing β’s in terms of α’s

In this section we aim to prove equation (7) of Theorem 1.1.
Fixing d we set αn := α(n, d) and βn := β(n, d). We express βn in terms of

αs for s ≤ n with the following lemma.

Lemma 8.6. We have

βn = q−(
n
2)αn + (q − 1)

∑
0≤s<r<n

q−(
r+1
2 )qsαs. (29)

Proof. We first recall that βn is the expected number of d-sets of K-roots of
f ∈ Pxn , but we now note that since O is integrally closed, any K-root is in fact
an O-root. Now let us show all such roots must lie in πO. Suppose that ϵ ∈ O
is a root of f ∈ Pxn . Since f(ϵ) = 0, f(ϵ) = ϵn ≡ 0 mod π. This is possible if
ϵ = πk for some k ∈ O. Furthermore since a root must be in πO, if ϵ = πϵ′ is a
root of f where ϵ′ ∈ O, then ϵ′ is necessarily a O-root of f(πx). Now for each
f ∈ Pxn , we associate a pair of integers (r, s) with 0 ≤ s ≤ r ≤ n as follows.
We consider f(πx), and let r be the largest integer such that πr | f(πx), so
that 1 ≤ r ≤ n. Indeed since for f = a0 + a1x + · · ·xn ∈ Pxn we know that
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ai ≡ 0 mod π for all i. Therefore f(πx) = a′0π+a
′
1π

2x+ · · ·πnxn for a′i ∈ O for
all i. Hence 1 ≤ r ≤ n. We let s to be the reduced degree of g(x) = π−rf(πx).
Then either 0 ≤ s < r < n , or s = r = n. Let us also show this fact. Suppose
that f(πx) = a′0π + a′1π

2x + · · · + a′n−1π
nxn−1 + πnxn as before. Suppose

1 ≤ r ≤ n is found and consider:

π−rf(πx) =a′0π
1−r + a′1π

2−rx+ · · ·+ a′n−1π
n−rxn−1 + πn−rxn

=πn−r(an−1x
n−1 + xn) +

n−2∑
i=0

a′iπ
i+1−rxi.

If r = n then it is clear that s = n = r. On the other hand if r < n, then s
depends on the fact when i+1− r = 0 which in that case s = i0 for the highest
i0 satisfying the equality, and since i+ 1 = r < n, we have that 0 ≤ s < r < n.

The relative density of the subset of f ∈ Pxn such that πr | f(πx) is π−(r2).
First note that we do not need to consider the coefficients of xn and xn−1

in f(πx) since they are divisible by πr for all r. Now note that from before
ai = a′iπ are the coefficients of the indeterminates in f . So πr | f(πx) if and
only if a′iπ

i+1 = aiπ
i = πrk′ for some k′ ∈ O. So for 0 ≤ i ≤ r − 2, we require

the coefficient of xi in f to be divisible by πr−i and not only π. Now since we
know that the probability that the coefficient of xi is divisible by πr−i is 1

qr−i

we have the density

1/qr−2 × 1/qr−3 × · · · × 1/q = q((r−2)+(r−3)+···+1) = q
−r(r−1)

2 = q−(
r
2).

Given r < n, the condition that π−rf(πx) has reduced degree at least s gives
out r − s − 1 more divisibility conditions, since there are r − s − 1 coefficients
that we put the condition on (−1 comes from excluding xs). Each contribution
gives out a factor of q−1 and since coefficient of xs must not be divisible by π
we have a factor of (1 − 1/q) as well. Therefore the density of f such that the
reduced degree is exactly s is

q−(r−s−1)(1− 1/q) = qs−r(q − 1).

Therefore the relative density of f ∈ Pxn with parameters (r, s) is given by

q−(
r
2)qs−r(q − 1) = q−(

r+1
2 )qs(q − 1)

for 0 ≤ s < r < n. If r = n, then s = r as we have shown earlier, therefore the

density with parameters (n, n) is q−(
n
2).

If s = r = n, then g = π−nf(πx) is distributed as an arbitrary element of
O[x]1n, while if s < r < n then g is subject to the conditions that g has degree s,
and moreover πrf(xπ−1) = f(x) ≡ xn mod π. In both cases, given r and s the
conditional expected number of d-sets of O-roots of f ∈ Pxn is αs independent
of r. In the case s < r < n, we use Lemma 7.11(b) and consider the restriction
of the random variable X in Corollary 7.13 to the appropriate subset. Using all
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this information we have

βn = q−(
n
2)αn +

∑
0≤s<r<n

q−(
r+1
2 )qs(q − 1)αs.

Proof of (7). Taking equation (29) for n and n− 1 and subtracting we have

βn − βn−1 = q−(
n
2)αn − q−(

n−1
2 )αn−1

+ (q − 1)

 ∑
0≤s<r<n

q−(
r+1
2 )qsαs −

∑
0≤s<r<n−1

q−(
r+1
2 )qsαs

 .
We observe that∑

0≤s<r<n

q−(
r+1
2 )qsαs = q−(

n
2)

n−2∑
s=0

qsαs +
∑

0≤s<r<n−1

q−(
r+1
2 )qsαs,

therefore

q(
n
2)(βn − βn−1) = (αn − qn−1αn−1) + (q − 1)

n−2∑
s=0

qsαs. (30)

Now we take Equation (30) for n and n− 1 and subtract which yields

q(
n
2)(βn − βn−1)− q(

n−1
2 )(βn−1 − βn−2) = (αn − qn−1αn−1)

− (αn−1 − qn−2αn−2)

+ (q − 1)

n−2∑
s=0

qsαs − (q − 1)

n−3∑
s=0

qsαs.

We first simplify the right hand side

αn − αn−1 + qn−2αn−2 − qn−1αn−1 + qn−1αn−2 − qn−2αn−2 =

= (αn − αn−1)− qn−1(αn−1 − αn−2),

and now noting
(
n−1
2

)
=
(
n
2

)
+ (1− n) we also simplify left hand side

q(
n
2)(βn − βn−1)− q(

n
2)q1−n(βn−1 − βn−2) =

= q(
n
2)[(βn − βn−1)− q1−n(βn−1 − βn−2)].

Therefore we have

q(
n
2)[(βn − βn−1)− q1−n(βn−1 − βn−2)] = (αn − αn−1)− qn−1(αn−1 − αn−2),

where this equality implies equality of the coefficients of tn on both sides of (7).
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