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Abstract

We determine the probability that a random polynomial of degree n
over some complete discrete valuation ring O with a finite residue field F,
has exactly r roots in its field of fractions K.
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Introduction

Suppose that O is a complete discrete valuation ring with a finite residue class
field F, where g denotes the order of the field. Let K be the field of fractions
of O. Fix n € Z>o. Let f(z) = an2™ + ap_12" "' + .-+ + ag be a random
polynomial of degree < n having coefficients ag,aq,...,a, € O. In this paper
our aim is to determine the probability that f has exactly r roots in K. We
will normalize the additive Haar measure p on the set of coefficients O™*! such
that pu(O™*1) = 1, and determine the density u(S,) of the set S, of degree n
polynomials in O[z] having exactly r roots in K.



The result was first established by Manjul Bhargava, John Cremona, Tom
Fisher, and Stevan Gajovi¢ for polynomials over the p-adic numbers in their
paper [2], and in this paper, we aim to generalize their proof for more general
coefficient rings.

Similar to their paper, let us formally define the probabilities, expectations
and generating functions required to state our main results. For 0 < r < n,
let p*(n,r) := p*(n,r;q) denote the density of polynomials of degree n over O
having exactly r roots in K. For 0 < d < n, set

pnd) = 3 (). 1)

r=0
Hence p(n,d) is the expected number of sets of size d of K-roots.
Remark. We will use this notion a lot so we will call sets of size d, d-sets.

For a fixed n, determining p(n,d) for all d is equivalent to determining
p*(n,r) for all r, via the binomial inversion formula, [6, Page 192, Trick 3]

() = >0 (ot )

d=0

Equations (1) and (2) are equivalent to the standard observation that a
probability distribution is determined by its moments; the formulation in d-sets
equivalently in terms of factorial moments is most convenient for our purposes.

Similarly let «(n,d) denote the expected number of d-sets of K-roots of
monic polynomials of degree n over O, and let B(n,d) denote the expected
number of d-sets of K-roots of monic polynomials of degree n over O that
reduce to " modulo m where m € O is a generator of the unique maximal ideal
of O. Define the generating functions:

Aqa( 1—ti (n,d)t",
n=0
" oo

Ra(t) = (1= )1 — at) 3 (q" + @+ + Dp(n, d)t.
n=0

Then we prove the following theorem.

Theorem 1.1. Let n,d be any integers such that 0 < d < n. Then:

a) For fized n and d, the expectations a(n,d;q),B(n,d;q) and p(n,d;q) are
) ; P ,d;q), B(n,d; q p(n,d;q
rational functions of q which depend only on n,d,q and satisfy identities:

p(n,d;q) = p(n,d;q~"); (3)
a(n,d;q) = B(n,d;q"). (4)



b) We have the following power series identities in two variables t and u:

iAd(qt)ud = <i Bd(t)ud> , (5)
d=0 d=0

o) 0o 00 00 q+1
ZRd(t)ud = <Z Ad(qt)ud> (Z Bd(t)ud> = <Z Bd(t)ud> ,
d=0 d=0

d=0
t
Ba(t) - th(Q) = ®(Aa(t) — tAa(qt)), (7)
where ® is the operator on power series that multiplies the coefficient of
t" by qf(g).
1.1 Examples

Here we work on an example to show how one can use Theorem 1.1, explicitly
calculating a(n, 1) for all n. Now we use (5) to get a recursive relation between
Ay and By, noting that Ag(t) = Bo(t) = 1 we expand the sums on both sides.

1+ A (gt)u+---=Q+Bi(t)u+---)1
=14 gBi(t)u+ -

Hence by comparing coefficients wee see that
Ai(qt) = B (). (8)

Now we use (7),
Bi(1) ~ 1B1(2) = B(Ai(0) — tAi (a1). (9)
Using equality (8) we set Bi(t) = ¢ Ai(gt) in (9). Then we have
i {at) — DAL D) = A1) — DA (00).

Now suppose that a, is the n’th coefficient of A;(t). The equality above with
the operator tells us

n—1 q7(2))an = (é — qnili(g))an_l.

Noting that a; = 1, we can solve for a,,n > 1. Setting n = 2, we see that

-1
ay = ——.
2 q+1



Now setting n = 3 we observe
2 -3 1 -1
(€ —4q )asz(gfq Jaz,

and hence a,, = 0 for n > 3. Therefore

A =t— g2 (10)

From how we defined A; (¢) before, we have

Ar(t) = (1= t)(a(0,1) 4+ (1, 1)t + (2, 1)t2 + - - ) (11)
= a(0,1) + ((1,1) — (0, 1))t + - - - . (12)

By comparing coefficients of (10) and (12) we see that

0 n =0,
a(n,1) =<1 n=1,
q% n> 2.

2 Valuation Theory

We refer to the entire section in Neukirch’s Algebraic Number Theory [7, 3].

2.1 Valuation

Definition 2.1 (Valuation). A wvaluation of a field K is a function
| [:K—=R

which satisfies the following properties;
e [2|>0,and |z|=0&x=0
o |zy| = |z[|y|
o |z +y| <|z|+|y| "Triangle Inequality”

Remark. There is a trivial valuation on every field K where |x| = 1 for all
x #0, and |0] = 0. In our paper, we will always exclude this case.

A valuation of a field K induces a metric on K. This metric is given by
d(z,y) = |z —yl.
Proof. Let z,y,z € K

e Note that « = x —y € K. Therefore d(x,y) = |x —y| = |a| > 0. Moreover
|a] = | — y| = 0 if and only if & = 0, which implies © = y.



e Note that d(z,y) = |z —y| =|— 1|y — z| = |y — | = d(y, z). Let us also
prove |1] =| — 1] = 1 in real numbers.

— |1] =|1- 1] = |1||1| which implies |1] = 1.

— Now note that 1 = |1] = |(=1) - (=1)| = [(—1)||(=1)| which implies
| — 1] =1 or | — 1| = —1, since latter cannot be true, | — 1| = 1.

o d(z,2)=|r—z|=|(x—y)+(y—2)| < |z —y[+|y— 2] = d(z,y) +d(y, 2).
O

Therefore a field K with a valuation is a Hausdorff topological space with
metric d, detailed information is in sections 2 and 4 of Sutherland’s Introduction
to Metric and Topological Spaces [8].

Definition 2.2. The valuation | | is called nonarchimedean if |n| stays bounded
for all n € N. Otherwise it is called archimedean.

Remark. Heren=n-1lg =1+1+4+---4+1.
—_——

n times

Proposition 2.3. The valuation | | is nonarchimedean if and only if it satisfies
the strong triangle inequality

|z +y| < max{|z], |y[}.
Proof. Suppose that the strong triangle inequality holds, then
In|=14+---+1] <1

Conversely, suppose that [n| < N for all n € N. Let z,y € K and suppose
|z] > |y|. Then |x|"|y|™™ " < |x|™ for v > 0 and we get

n - n v, |n—v n
z+y" <) <U>||$| ly|"™" < N(n+1)]z|".
v=0

Therefore
@ +y| < NY"(1+n)|z| = NY™(1+n)"/" max{|z], |y[}.
If we let n — oo we get the strong triangle inequality. O

Remark. The strong triangle inequality implies that

|z # |yl = |z + y| = max{|z[, [yl}.



2.2 Exponential Valuation

Definition 2.4 (Exponential Valuation). An exponential valuation of a field
K is a function

v: K — RU{occ}
which satisfies the properties:
e v(z) =00 =0
o v(zy) = v(z) +v(y)
* v(z+y) > min{v(z),v(y)}
where one uses the convention that for a € R, a < 00, a+ 00 = 00,00+ 00 = 00.

Again we will be excluding the trivial case where v(x) = 0 for z # 0, v(0) = oo
throughout our paper.

Remark. If | | is a valuation of a field K which is nonarchimedean then | |
induces an exponential valuation v by setting

o(w) = —log o]

forx #0, and v(0) = oco.
In a similar manner if v is an exponential valuation of a field K, v induces
a valuation of K by setting

x| = ¢ *@

for some q € Rsy. To distinguish it from v, we call | | an associated multi-
plicative valuation or absolute value.

2.3 Valuation Ring

Properties of an exponential valuation v of a field K give rise to a subset of K
with some algebraic properties.

Proposition 2.5. The subset
O={zecK|v(x)>0}={ze K||z| <1}
18 a ring with group of units
O'={zeK|vx)=0={xec K||z|=1}
and the unique mazximal ideal

P={reK|v(r)>0}={recK||z| <1}



O is an integral domain with field of fractions K and has the property that,
for every nonzero x € K, z € O or x~! € O. Such a ring is called a valuation
ring. Its only maximal idealis P = {x € O | 27! ¢ O}. The field O/P is called
the residue class field of O.

An exponential valuation v is called discrete if it admits a smallest positive
value s, which in case one finds

v(K™*) = sZ.

It is called normalized if s = 1. Dividing by s we may always pass to a
normalized valuation without changing the invariants O, O*,P. Having done
so, an element

m €O such that v(r) =1
is a prime element, and every element x € K* admits a unique representation
T =um
with m € Z and u € O*, for if v(z) = m, then v(z7~™) = 0, hence u = z7~™ €
¢ .We have a proposition which arises from discrete valuations, but we need to

state a definition.

Definition 2.6 (Discrete Valuation Ring). A principal ideal domain is called a
discrete valuation ring if it has a unique mazximal ideal.

Proposition 2.7. If v is a discrete valuation of K, then
O={zxe K|v(z) >0}

s a principal ideal domain and hence a discrete valuation ring. Suppose v is
normalised, then the nonzero ideals of O are given by

Pr=n"O={zeK|v(x)>n}, n>0
where m is a prime element, i.e. v(w) = 1. One has
P Pt =2 O)P.

Proof. Let I # {0} be an ideal of O and x # 0 an element in I with smallest
possible value v(z) = n. Then z = un™, u € O*,sothat tO CI. lfy=ex™ € I
is arbitrary with e € O*, then m = v(y) > n, hence y = (ex™ ")x" € 7"O.
Moreover an™ — a mod P is a surjective map from P" to O/P with kernel
pntl, O

10



2.4 Bases
In a discretely valued field K, the chain
ODP2P?’2P° D

consisting of ideals of the valuation ring O forms a basis of neighbourhoods of the
zero element. If v is a normalized exponential valuation and | | =¢™" (¢ > 1)
an absolute value, then

1
Pr={re K |lel < )

As a basis of neighbourhoods of the element 1 € K*, we obtain in a similar
manner the descending chain

O =y ) 9480 ) U®) ...

of subgroups
1
U(”):1+P":{xeK*||1—£E|<qn7_1}, n >0,

of O*. U™ is called the n-th higher unit group and UM the group of
principal units.

Proposition 2.8.

0" U™ = (0/P")"
and

U™yt = o/p
form > 1.

Proof. The proof is given under Proposition 3.10 in Neukirch’s book[7, 3]. O

3 Completeness

Completeness or completion of a metric space is usually the next best question
to ask after finding a metric on the given set.

Definition 3.1 (Cauchy Sequence). Let (K,| |) be a valued field. A sequence
{an}nen in K is called a Cauchy sequence if for every e > 0 there exists
N € N such that

|an, —am| <€ forall n,m > N.

11



Definition 3.2. A wvalued field (K,| |) is called complete if every Cauchy
sequence {an tnen in K converges to an element a € K, i.e.,

lim |a, —a|=0.
n—oo

Lemma 3.3 (Hensel’s Lemma). Let K be a field which is complete with respect
to a nonarchimedean valuation | |. Let O be the corresponding valuation ring
with mazimal ideal P and residue class field k = O/P. A polynomial f € O[z]
is called primitive if f(x) Z0 mod P.

Now suppose that a primitive polynomial f € Olx] admits a modulo P fac-
torization

f(x) = g(x)h(x) mod P
into relatively prime polynomials g, h € k[z], then f(x) admits a factorization
into polynomials g, h € Olx] such that deg(g) = deg(g) and
g(z) =g(r) mod P and h(x) = h(z) mod P.
Proof. A detailed proof is given at [7, Lemma 4.6]. O

Remark. In general for any valued field, one can get a complete valued field by
the process of completion, see [7, Section 4.

4 Local Fields

Definition 4.1 (Local Fields). All fields which are complete with respect to
a discrete valuation and have a finite residue class field are called (nonar-
chimedean) local fields. For such a local field, the normalized exponential
valuation is denoted by v,, and | |, denotes the absolute value normalized by

|33‘p = qivp(z)
where q is the cardinality of the residue class field.

Definition 4.2 (Locally Compact). A topological space X is locally compact
if every point has a neighborhood which is itself contained in a compact set.

Proposition 4.3. A local field K is locally compact. Its valuation ring R is
compact.

Proof. For a detailed proof, check Proposition 5.1 in Neukirch’s book [7, 5]. O

Proposition 4.4. Let K be a local field with discrete valuation ring O. Let
R C O be a system of representatives for the residue class field Fy = O/P such
that 0 € R, let m € O be a prime element. Then every x # 0 in K admits a
unique representation as convergent series

r=71"(ag + a7 + aym® +---)
where a; € R, ag # 0, m € Z.
Proof. A detailed proof is given in [7, Proposition 4.4].

12



5 Topological Groups

The following propositions and definitions are taken from [4, Section 9.

Definition 5.1 (Topological Group). A topological group G is a group (say
with operation (x,y) — xy) such that G is also equipped with a topology where
the operations (x,y) — xy and x — x =% are continuous.

A locally compact group is a topological group whose topology is locally
compact and Hausdorff.

Proposition 5.2. Let G be a topological group, let e be the identity element of
G, and a be an arbitrary element of G.

e The functions x + ax, x — xa and x + 1 are homeomorphisms of G
onto G.

o If % is a base for the family of neighbourhoods of e, then {aU : U € % }
and {Ua : U € %} are bases for family of the neighbourhoods of a.

o If K and L are compact subsets of G, then aK,Ka, KL and K~' are
compact subsets of G.

Proposition 5.3. Let G be a topological group, let e be the identity element of
G, and let U be an open neighbourhood of e.

e There is an open neighbourhood V' of e such that VV C U.

e There is a symmetric open neighbourhood V' of e that is contained in U.

(V' is called symmetric if V! = (V')71)

Proposition 5.4. Let G be a topological group, and let H be an open subgroup
of G. Then H s closed.

6 Haar Measure

As in Section 5, our reference for this section is [4, 9].

Definition 6.1. Let G be a locally compact group, and let p be a nonzero reqular
Borel measure on G. Then i is a left Haar measure if it is invariant under
left translations, in the sense that u(xA) = p(A) holds for each x € G and each
A € B(G). A right Haar measure is defined similarly, in case the group G is
abelian then the notion of left and right coincides.

Remark. Proposition 5.2 implies that if x € G and if A is a Borel subset of G,
then A and Ax are Borel subsets of G, thus the Haar measure is well defined
on those sets.

Remark. In our paper we will be interested in the case where a locally compact
group G is abelian, henceforth we will drop the notion of left-right Haar measure.

13



Theorem 6.2 (Existence of Haar Measure). Let G be a locally compact group.
Then there is a Haar measure on G.

Theorem 6.3 (Uniqueness of Haar measure). Let G be a locally compact group,
and let p and p' be Haar measures on G. Then there is a positive real number
¢ such that iy’ = cp.

Proposition 6.4. Let G be a locally compact group, and let u be a Haar measure
on G. Then p is finite if and only if G is compact.

7 Preliminaries

7.1 Identification on polynomial rings

For a ring R, let R[z] denote the ring of univariate polynomials over R, and
for n > 0, let R[z], denote the subset of polynomials of degree at most n, and
R[z]} the subset of monic polynomials of degree n.

We identify R[z]l with R™ via

n—1

n i
"+ E a;x’ < (ag, a1, ..., an_1).
i=0

When R is a complete discrete valuation ring with a finite residue field, we
will the use measure on R[z]} which is inherited with this identification.

Now suppose that O is a complete discrete valuation ring with a finite residue
field. For f € O[z], we denote by f its image under reduction modulo 7 in
F, = O/P = O/nO, where P = (w) is the unique maximal ideal of O. A
polynomial with coefficients in O is primitive if not all its coefficients are divisible
by 7, or in other words f # 0. For a primitive polynomial f € O[x], we define
the reduced degree of f to be deg(f). Therefore deg(f) > deg(f), with equality
satisfied if and only if the leading coefficient of f is a unit since O has a unique
maximal ideal which contains all non-units.

7.2 Some counting

Let O be a complete discrete valuation ring with a finite residue field I, where
q denotes the order of the field.

A splitting type of degree n is a tuple (dj'd3? - - - d;*) where d; and e; are
positive integers satisfying ) d;je; = n. We allow repeats in the list of symbols
d;j , but the order in which they appear does not matter. Let S(n) denote all
the splitting types of degree n. For example S(2) = {(1 1),(1?),(2)} has three
elements, S(3) has five elements, and S(4) has eleven.

We say that a monic polynomial f in Fy[z],, of degree n has splitting type
(d5rds? ---d5t) € S(n) if it factors as f(z) = H;zl fj(z)% where f; are distinct
irreducible monic polynomials over Fy with deg(f;) = d;.

14



We write o(f) for the splitting type of f, and N, for the number of monic
polynomials in F,[z],, with splitting type o.

If o = (d), then we write N4 for N, that is the number of degree d irreducible
monic polynomials over F,. Writing 4 for the M6bius function [1, Section 2.2],

we get a formula for Ny. [5, Section 14.3, Proposition 18]
1
N, = - Zﬂ(k)qd/k.
k|d

Since there are ¢" monic polynomials of degree n in Fy[z], the probability
that a degree n monic polynomial f € F,[z] has splitting type o, for o € S(n),
is N, /q™. This is a rational function of ¢, there is a formula given in [2, Section
2.2] for N,, where the output for any N, is a function of q.

7.2.1 Power series identities involving N,

Referring to [2, Section 2.3], we follow the authors’ footsteps to get power series
identities involving the counts N,. They will be necessary for our paper’s main
goal.

Let x4 for d,e > 1 be indeterminates. For a splitting type o € S(n) of
degree n, let

Polynomials with these indeterminates will be weighted by setting wi(z4.) =
de. Setting yo = 1, and for n > 1 we define

Z Nozs,

oceS(n)
so that every monomial in y, has weight n. We set x40 =1 for all d > 1.

Proposition 7.1. We have the following identity in Z{xde }tda.e>1[[t]]:

[ oo oo
Z yntn _ H(Z $detde)Nd
n=0

d=1 e=0

Proof. When the right hand side is multiplied out, we see that the coefficient
of t" is a sum of monomials in the x4, of weight n. Such product has the form
z, for some o in S(n) and the times that each monomial occurs is equal to N,
which shows the coefficient of " is equal to y, proving the claim. O

Corollary 7.2. We have the following identity in Z[[t]]:

(1—qt)” H

15



Proof. Setting x4, = 1 for all d,e, we get £, = [[4.c, 1 = 1, since in Propo-
sition 7.1 we set z, = Hdeeg ZT4ge and zge = 1 for all d,e . Therefore y, =
> oesm) No = ¢", since the N actually partitions the set I, [z]L which has
¢" elements. We have that Y 2 ¢"t" = > > (¢t)" = (1 — qt)~' where we
have used the geometric sum formula. We now use Proposition 7.1 again to get
(I—gt)' =3700¢"" = 132,20, tde)Ne = T2, (1 — t9)~Ne, where we
have used the fact that Y oo t% = (1 —¢4)~1. O

Corollary 7.3. Let x. for e > 1 be indeterminates, and set xo = 1. Then in
Zlxy, xa,.. |[[t], we have:

ST Nzt = O wat™) (1 —1)7(1 - qt) "
n=0c0€eS(n) lego n=0

Proof. We set 1. = x. and x4, = 1 for all d > 2 in Proposition 7.1. Now we
observe that

e o 0 0 [ SIS
S unt” =TI maet ) = (3 et T] (Y waet ™)™,
=0 d=1 e=0 =0 d=2 e=0

where N1 = ¢ and the indeterminates x4, are equal to 1 in the infinite product
at the right hand side.
We now make use of the corollary we proved before, note that

o0 o0 o0 o0 o0
(L—gt) " =TItV = Oty (IO ™))
d=1 e=0 e=0 d=2 e=0
where
Oty =1-1
e=0
Hence
OtV = (1 qt) ' (1 — 1)
d=2 e=0
Now we have
S =Y Y N
n=0 n=0c€eS(n)
where
Ty = H Te.
leco
Therefore

ST Nzt = O wat™ (1 —1)7(1 — qt) "

n=00€eS(n) le€o n=0

16



7.3 Resultants, coprime factorizations, and independence
7.3.1 Resultants

We derive some lemmas about resultants of polynomials in O[z] and their be-
havior upon reduction modulo 7.

Definition 7.4 (Sylvester matrix). Let f(z) = ama™ + -+ + ao and g(z) =
bpx™ 4 -+ + by be two polynomials of degrees m and n, respectively over an
arbitrary ring R. The Sylvester matrix is an (m-+n) x (m+n) matriz formed
by filling the matriz beginning with the upper left corner with coefficients of f(x),
then shifting down one row and column to the right filling in the coefficients
starting there until they hit the right side. The process is then repeated for the
coefficients of g(x). In matriz form it is given as

Ay Q1 . ag 0 ... 0
0 A Q1 ag 0
0 - 0 A Gl --- G
B I A S b 00
0 bn bn—l bO 0
L 0 0 bn  bp_1 bo

Definition 7.5 (Resultant). The resultant of two polynomials over a commu-
tative ring R is defined as the determinant of their Sylvester matriz. We let
Res(f,g) denote the resultant of two polynomials f,g.

Lemma 7.6. Let f,g € Olz] have degrees m and n respectively.

1. If the leading coefficients of f and g are both wunits, then Res(f,g) =
Res(f,9).

2. If the leading coefficient a,, of f is a unit and d = deg(g) < n, then
Res(f, 9) = @ “Res(f,7).

3. If the leading coefficients of f and g are both non-units, then Res(f, g) = 0.

Proof. 1. Since the leading coefficients of both f and g are units, they are
not contained in the unique maximal ideal, therefore @, # 0,b, # 0.
Since in this case Syl(f,g) is actually the reduction mod 7 of Syl(f,g),

Res(f,g) = Res(f,9).
2. Suppose the leading coefficient a,, of f is a unit and d = deg(g) < n.

This implies that in reduction mod = of Syl(f,g) all the terms b;,7 > d
are actually equal to 0. Therefore

Res(f, g) = det(Syl(£, 9)) = @~ % det(Syl(f,9)) = @n" * Res(f, 7).

17



3. This is trivially true since the leading coefficients are non-units, under the
reduction map they are equal to 0. Therefore Res(f,g) = 0.
O

Corollary 7.7. Let f,g € O[z] have degrees m and n respectively. Then
Res(f,g) is a unit if and only if at least one of the leading coefficients of f
or g is a unit, and the reductions f,g are coprime.

Proof. If Res(f,g) is a unit in O, then Res(f,g) # 0 and also Res(f,g) # 0.
Moreover since R is a principal ideal domain, it is also a unique factorization
domain, and a well known property of resultants is that for two polynomials
f', ¢ over a unique factorization domain Res(f’,¢’) = 0 if and only if they
share a common root. Therefore by first and second part of Lemma 7.6, the
reductions should be coprime while at least one of the polynomials should have
a leading coefficient which is a unit.

Conversely if the reductions are coprime then Res(f,g) # 0. Moreover as we
assume at least one of the leading coefficients is a unit, we see that Res(f, g) # 0.
Therefore Res(f,¢g) is a unit in O.

O

Lemma 7.8. Let R be an arbitrary ring. For any d > 1, we identify R[x]} = R?

and R[z]q = R4 as R-modules.

1. The multiplication map R[z]}, x R[z]} — R[z]} ., has Jacobian at (f,g)
given by Res(f, g).

2. The multiplication map R[z]}, x R[z], — R[z]m+n has Jacobian at (f,g)
given by Res(f, g).

Proof. A detailed proof is given in [2, Lemma 2.6]. O
Corollary 7.9. Let A C Oz]},, B C O[z]}, and AB C Olz]},.,, be measurable

n’ m—+n
subsets such that multiplication induces a bijection

AXxB— AB={ab|a€ Abe B}.

If Res(g,h) € O* for all g € A and h € B, then this bijection is measure
preserving.

Proof. We identify O[z]},,, O[z]} and Olz]},,,, with O™ O™ and O™*" respec-
tively. Similarly we also identify O™ x O™ with O™+". With these identifications
we view the map as a map from R™*™ to itself. The change of variables formula
from measure theory induces a Jacobian factor Res(f,g). Written explicitly

[3, Thrm. 10.1.2],

/ / | Res(g, h)|dhdg — / df.
geA JheB FEAB

Since |I] = 1 for every I € O* and Res(g, h) is assumed to be a unit, | Res(g, h)| =
1 proving the claim. U
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7.3.2 Measure theoretic Hensel’s lemma

For f € Fy[z]}, denote by Ps the set of polynomials in O[z]} that reduce to f
modulo 7; and for n > d, we denote by P} the set of polynomials in O[xz],, that
reduce to f modulo .

Lemma 7.10. Suppose that g,h € F,[z] are monic and coprime. Then the
multiplication map

Pg X Pp — Pgh
18 a measure preserving bijection.

Proof. We first show that Py is a measurable set for any f € F,[z]}. Suppose
g(x) € Py where g(z) = aptarz+---+ags_129" 1 +2¢ € O[z]}, similarly assume
f(z) =bo+biz+--+bg_ 12?42 € F,[x]}. Since g = f, we have that a; = b;
mod 7 for all 0 < ¢ < d. This implies a; = wk + b} for some k, € O where b a
fixed lift of b; , therefore a; € b; +P. x + P is open for all z € O. Therefore P
is measurable for all f € F[z]}.

Now let f € O[z]} be such that f factors in Fy[z] as f = gh. Then by
Hensel’s lemma f factors uniquely in Olz] as f = ¢'h/, where ¢’ € P, and
h' € Py. Therefore the map we have is a bijection of measurable sets, where
the Jacobian is a unit in @ (which implies it has a valuation 1). Due to the
Corollary 7.9 this map is measure preserving. The resultant is a unit due to
Corollary 7.7. 0

We use the following variant of previous the lemma to handle polynomials
f € O[z] whose leading coefficient is not a unit.

Lemma 7.11. Let n > m > 0 and consider the multiplication map

p:Oxlh, x PP™ — {f € Olzl, : f € Fy[z]},}. (13)

1. @ is a measure preserving bijection.

2. Let r be an integer satisfying m < r < n. In (13) , if we replace
the set on the right hand-side with the subset of f € Olx], also sat-
isfying 7" f(xm=1) = a"(mod 7), and replace the second factor of the
left-hand side with the subset of h € P]'™™ satisfying 7" ™h(zn~1) =
2™ ™ (mod 7). Then the restriction of p to these subsets is still a mea-
sure preserving bijection.

Proof. 1. Let f € O[z],, be such that f is monic of degree m. Now note that
f={)(z™+---+ap). We use Hensel’s lemma to see that f = gh where
g € Olz]}, and h € P[""™. Therefore (13) is a bijection and measure
preserving due to Corollary 7.9 since g is monic and the resultant is a
unit. Again the resultant is a unit since the reductions are coprime for g

and h, therefore we use 7.7.
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2. Let f € Olx], be such that f is monic of degree m, and also that
7" f(xm~1) = 2™ mod m; this implies that 7" f(z7~!) € O[] and
7" f(xr—1) — 2™ € 7O[z]. We factor f = gh as before, then

amg(zn™ ) 7" h(en ) = 7" f(ar ) = 2™ mod T

since g € O[z]L,, we have m"g(zn~!) € O[z] and 7"g(zn!) = =«

mod 7. Since 77 f(z7 1) € Olx], 7" f(zn~t) = 7mg(zn1) - 7" h(zr 1)
and m"g(xm~t) € O[z], by Gauss’s lemma 7" ™h(z7~1) € Olz] . Now
using the unique factorization in F,[z] also 7"~ h(z7~!) = 2"~™ mod 7.

m

Conversely if h satisfies 7" ~™h(z7~!) = 2"~ mod 7, then since

amg(zr~!) = 2™ mod 7 for all g € O[z]},, it follows that f = gh satisfies
7" f(xr=1) = 2™ mod m. Therefore u restricts to a bijection between the
subsets on each side, and measure preserving as before as well. Similarly
the resultant is a unit due to 7.7.

O

7.3.3 Independence Lemmas

We rephrase Lemmas 7.10 and 7.11 to create suitable random variables which
are independent.

Corollary 7.12. Let f,g € Fy[z]| be coprime monic polynomials. For f € Py,
let 1 and ¢o denote the projections of Py, onto Py and Py, respectively under
the bijection Py, — Py x Py,. Then the number of K-roots of f € Py, is X +Y,
where X,Y : Py, — {0,1,2,...} are independent random variables distributed
on f € Py, as the number of K -roots of p1(f) € Py and ¢2(f) € Py, respectively.
The independence is justified due to the measure preserving property of the map
in Lemma 7.10.

Corollary 7.13. Let m <n, and let
B = {f € O[], : f € Fylz]L.}.
For f € By, let 11 and 12 denote the projections of By, onto Olz]}, and

m

P]™™, respectively under the bijection By, — Olz]l, x P!™™. Let X,Y :

m

B — {0,1,2,...} be the random variables giving the number of roots of f €
B, in O and in K\ O, respectively. Then X andY are independent random
variables distributed on f € By, as the number of K -roots of 11 (f)(z) € O[z]},

and of Yo (f)""(x) == 2™ o (f) (L) € Pyn—m, respectively.
8 Proof of the Theorem

8.1 Proof of Theorem 1(b)
8.1.1 Conditional Expectations

In the introduction we defined the expectations a(n,d) and B(n,d). We now
make a few definitions for our problem.
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Lemma 8.1. P; has relative density ¢~ in O[z]}.

Proof. We can prove the statement in two ways. Firs suppose that f(z) = a¢ +
a1z +...+z" € F,[x]}. Notice that there are exactly ¢ choices for each a; with
each having probability %. Therefore the relative density of Py is ( %)" =q

Another way to prove the statement is to see that if we let R = {aq,...,aq-1}
with ap = 0, be a set of representatives for F,, then we decompose the local

field K as

—n

q—1

0= U(al—&—’P)

=0

Since p is a Haar measure, p(a; + P) = p(P), and normalization u(0) = 1
forces pu(P) = ¢—*. Using these arguments we see

w(P™) =q~ ", forall n € N>g.

Definition 8.2.

i) For f € Fylz]L, let a(n,d | f) denote the expected number of d-sets of
K -roots of a polynomial in Py C Olz]L. Since Py has relative density ¢~
in Olx]}, we have

amd)=q" >, amdlf). (14)
FEFq[a],
Moreover 3(n,d) = a(n,d | ™).

it) For o € S(n), let a(n,d | o) be the expected number of d-sets of K-roots
of a polynomial in Olz]. whose splitting type is o. Therefore

n

a(n,d)=q" Z Nya(n,d | o), (15)
oceS(n)

and
a(n,d|o)=N," Y amnd]|f), (16)
fEF[z]} 0 (f)=0
where o(f) denotes the splitting type of f.

The intuition in Definition 8.2 i) is the fact that the space O[z]. has a
measure which is equal to 1 which is induced by our identification with the space
O™. Each polynomial f € F,[z]} corresponds to a subset of O[]l consisting of
all the lifts of f which is denoted by Py. The set of polynomials O} [x] is covered
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n

disjointly by these sets where we have proven their density to be u(Pf) = ¢~ ".
Therefore

amd)= S uPpamd| fl=¢" S amd|f).  (17)

fEF[z];, fEeRy[z]5,

Moreover S(n,d) is just a specific configuration of a.

Similarly for Definition 8.2 ii), the relative density depending on the splitting
type o is raised by a factor of N, for each o. This also has an additional factor
of ¢~ since Py has relative density ¢~ for any f € F,[z].. (One can also
remember that the probability of a monic polynomial having splitting type
o € S(n) in Fylz], is %. )

8.1.2 Writing a’s in terms of (’s

Lemma 8.3. Let g,h € Fy[z] be monic and coprime. Then

a(deg(gh),d | gh) = Y a(deg(g),d: | 9) - a(deg(h),dz | h), (18)
di+de=d

where the sum is over all pairs (d1,d2) of non-negative integers summing to d.
Moreover if h has no roots in F,, then

a(deg(gh),d | gh) = a(deg(g),d | g)-

Proof. The lemma is an implication of Corollary 7.12 with the fact that if X
and Y are independent random variables taking values in {0, 1,2,...} then

E(X;Y): > E(f)l@(;). (19)
di+da=d ! 2
The implication of Corollary 7.12 tells us the fact that X and Y are the number
of K roots of a lift of g and h in P, and P} respectively and X and Y are
independent. We note that expectation is a linear function, and the fact that
each d-set of roots must be formed from some di-set from g and ds-set from h,
summing over all possible partitions d; + d2 = d. If h has no roots in F,, then
we know that Y = 0, so the roots are determined completely by g. O

We recall that 3(n,d) = a(n,d | z™) is the expected number of d-sets of
roots of a monic polynomial of degree n which reduces to " modulo 7. Using
Lemma 8.3, we can express a(n,d | f) for monic f € Fy[z],, in terms of f(n/,d")
for suitable n’, d’.

Lemma 8.4. Let 0 = (1™ .--1™) € S(n) be a splitting type with exactly
k =mq(o) powers of 1. Then

k
a(n,d| o) = Z Hﬁ(m,di)~ (20)

di+do+-+dp=di=1
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Proof. Let f € Fy[z]} have splitting type o. To evaluate a(n,d | f), we ignore
the factors of f of degree greater than 1, since if f = fifo where o(f) =
(1™ ... 1™) and f has no linear factors, then a(n,d | f) = a(deg(f1),d | f1)
by Lemma 8.3.

Now let f = HZ L 1, where [; are distinct, monic, and of degree 1. Using

Lemma 8.3 repeatedly gives

k
amd| )= > [[ewud|i).

di+-+dp=di=1

Finally, a(ng, d; | I['") = a(ni,d; | ™) = B(n,,d;), since for fixed ¢ € O the
map g(z) — g(z + ¢) is measure preserving on monic polynomials in Ofz] of
given degree. Therefore

aln,d| f)= Z Hﬁnl, i) =a(n,d| o) (21)

di+do+-+dp=di=1
where the last equality follows from our assumption of o = (1™ ... 1™ ...) €
S(n). O
Proof of Theorem 1.1 D).

Proof. Let o = (1™ ...1™) € S(n) be as in the lemma before. We now have

k
a(n,d) =q " ZNand| ZN Z Hﬁ(ni,dz)

oceS(n) oceS(n) di+---+dp=di=1
(22)

Let us now multiply both sides with u<.

k
a(n, d)ud = ¢ "u? Z N, Z Hﬂ(nmdz)

oeS(n) di+-+dp=di=1
Now we sum for d.
n n k
Satndut =g Y %Y Y [ A dont
d=0 c€S8(n) d=0dy+-+dp=di=1
where
n k e
S>> B diut =TT O Ble,dju). (23)
d=0di+-+dp=di=1 le€o d=0

Let us explain how the equality above follows. We can reformulate the right
hand side as

e k g
H (Z ﬂ(e’d)ud> = H <Z 5(n¢,di)udi> ;
d;=0

leeo = L=
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since the parts of ¢ of the form 1¢ are 1™ for i = 1,..., k. Once we multiply
out, the coefficient of u¢ is in fact Hd1+__.+dk:d B(n;,d;), hence the left hand
side is equal to the right hand side in equation (21).

We now have that

Za(n,d)ud Z H <Zﬁ e,d)u > (24)
d=0 -

oceS(n) leeco

Now we multiply both sides with (gt™) and sum over n. For a moment let us
focus only on the right hand side of (22). On the right hand side we then get

> N ] (Z ﬁ(e,d)ud> . (25)

n=0c€S(n) leco

If we set

H (Z 6(e,d)ud> t" = H Tot",

leco leco
we can use Corollary 7.3, after that we get

Z Z H (Zﬂ e, d)u ) mo— (Xazo oLy Bn, d)t™) ut)? (1 _t)q.

n=0gcS(n) l¢€o (1—at)

On the left hand side (after multiplying with (¢¢)™ and summing over n) we
have

Z Z afn, d)ud(qt)" Z <Z a(n,d)(qt)”) ul.
n=0d=0 d=0 \n=0
Therefore we have the equality
e’} o q
> <Z a(md)(qt)”) (Z (Zﬂ n,d)t ) d) (L=1)7(1—qt)"
d=0 \n=0 d=0
Now multiplying both sides with 1 — qt we have,

ZAdqt Zlqt( and )(gt) > ud = (26)
0

_ n=

<Z (Zﬁ (n,d)t" | (1 —t)u )q <§Bd(t)ud>q, (27)

d=0

proving (5).
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8.1.3 Writing p’s in terms of a’s and 3’s

In the introduction we defined p(n,d) to be the expected number of d-sets of
K-roots of polynomials f € O[z] of degree n. Our aim in this section is to prove
equation 6 in Theorem 1.1. Before we start, we need to work out some facts.

We start by noting that any f € O[z] such that f # 0 can be decomposed
as f = 7 fprim where e > 0 is the greatest possible integer and fprim € O[z]
is a primitive polynomial. In the case e = 0, the polynomial f itself is already
primitive and fprim = f. Moreover the set of roots of f is equal to fprim, since
f(e) = 0 if and only if foim(e) = 0 for any root e € K of f. Since p(n,d)
only depends on n,d and ¢, the restriction will not change when we restrict this
expectation to primitive polynomials.

Let f € O[z] be a primitive polynomial of degree n. Let m = deg(f) be
the reduced degree of f. For fixed 0 < m < n, we get the density of primitive
polynomials f € Olz],, with reduced degree m with the following statements.
We first note that there are exactly ¢"*! — 1 choices of a polynomial of degree
< nin Fyfz] \ {0}. Similarly if f € Fy[z],, with degree m, then we have ¢ — 1
choices for the m’th coefficient, and ¢ choices for all other m many coefficients.
Now we derive a density q,,%:ill_lqm. Conditioning on the value of m, we have

-1 <
p(n,d) = prEs— Z q"p(n,d,m), (28)
m=0

where p(n,d,m) denotes the expected number of d-sets of K-roots of f as
f € O|x], runs over polynomials of degree n with reduced degree m. This
expectation will not change when we restrict to f whose reduction mod m is
monic, since the behavior of p(n,d, m) depends on the distribution of polyno-
mials with given reduced degree m (and their roots). If we restrict ourselves to
only ones that reduce to a monic polynomial, then technically we are changing
a factor of ¢ — 1 on all of them, which lets the expectation stay the same.

Lemma 8.5. We have

p(n,d,m) = Z a(m,dy)B(n —m,ds).

di+do=d

Proof. Corollary 7.13 tells us that the number of roots from reduction and the
number of lifted roots are independent. The number of O-roots is determined
by the polynomial’s reduction mod 7. Similarly the number of roots appearing
in K but not O is determined by the additional n — m higher-degree terms.
So we can decompose p(n,d, m) with contributions from roots that are already
present in the reduction and the roots that come from the lifting. «(m,d)
is the expected number of di-sets of roots coming from the reduction of the
polynomial mod 7. In a similar manner 8(n — m, ds2) are the expected number
of ds-sets of roots that arise from lifting the roots. Since they are independent
we can use (19) to get p(n,d,n) =3, | 4._ga(m,d1)B(n —m,ds). O
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Proof of equation (6).

Y Ratyut =Y (1)1 —qt) Y (¢" +¢" "+ -+ Dp(n,d)t"u?
d=0 —

= d n=0

(=)

n

:(1—t)(1—qt)2ud2(q"+--~+ "nqﬂ_l Zq p(n,d, m)

= (1—t)(1—qt)ZudZt” q" Z a(m,di)B(n —m,dz)

0 n=0 m=0 d1+d2=d

d=
= Zud Ztn Z q" Z (1 = gt)a(m, d1)(1 —t)B(n — m,dz)

d=0 n=0 m=0 di1+do=d

:iudit" qm Z(l—qt)a(m,dl)(l—t)ﬁ(n—m,dg)

d=0 n=0 m=0 dy,d2

= Z Zt" Z qm Z (1 — gt)yu a(m,dy)(1 — t)uB(n —m, ds)

=0 n=0 m=0 dy,ds

= Z Z Z q" Z (1 —gt)ua(m,dy)(1 — t)u®B(n —m, do)t"

d=0n=0m=0 dy,d2

= (Z Ad(qt)ud> <Z Bd(t)ud> .
d=0 d=0

8.1.4 Writing £’s in terms of a’s

In this section we aim to prove equation (7) of Theorem 1.1.
Fixing d we set «,, := a(n,d) and B, := B(n,d). We express (5, in terms of
a; for s < n with the following lemma.

Lemma 8.6. We have

Bn = q_(g)an + (q - 1) Z q (T+1)q [eFR (29)

0<s<r<n

Proof. We first recall that 3, is the expected number of d-sets of K-roots of
f € Py, but we now note that since O is integrally closed, any K-root is in fact
an O-root. Now let us show all such roots must lie in 7. Suppose that e € O
is a root of f € Pyn. Since f(€) = 0, f(e) = €® = 0 mod 7. This is possible if
€ = wk for some k € O. Furthermore since a root must be in 7O, if € = 7we' is a
root of f where € € O, then € is necessarily a O-root of f(mz). Now for each
f € Pyn, we associate a pair of integers (r,s) with 0 < s < r < n as follows.
We consider f(mz), and let r be the largest integer such that 7" | f(7x), so
that 1 < r < n. Indeed since for f = ag + a1x + --- 2™ € Pyn we know that
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a; = 0 mod 7 for all i. Therefore f(rz) = ajm +ajw?z+---7"z" for a} € O for
all i. Hence 1 < r < n. We let s to be the reduced degree of g(z) = 7" f(7x).
Then either 0 < s <r <n, or s =r =n. Let us also show this fact. Suppose
that f(mz) = ajym + aj7?x + - + al,_;7"a" "1 + 772" as before. Suppose
1 < r < n is found and consider:

2—7r

7" f(rx) =apmt T a4 al,_m "

n—2
:Wn_r(an,1$7L_1 +$n) + E :a;ﬂ_z+1—rxz.
=0

If » = n then it is clear that s = n = r. On the other hand if r < n, then s
depends on the fact when ¢+ 1 —r = 0 which in that case s = i( for the highest
ig satisfying the equality, and since i + 1 = r < n, we have that 0 < s <7 < n.

The relative density of the subset of f € Pyn such that 7" | f(7z) is 7).
First note that we do not need to consider the coefficients of 2" and z"~!
in f(mwz) since they are divisible by «" for all ». Now note that from before
a; = a}m are the coefficients of the indeterminates in f. So n” | f(wz) if and
only if a/7'™t = a;7* = 7"k’ for some k' € O. So for 0 < i < r — 2, we require
the coefficient of z? in f to be divisible by 7”~¢ and not only 7. Now since we
know that the probability that the coefficient of - is divisible by 7" ~% is q,,,l,i
we have the density

/g2 X 1/q7=% x oo x 1/q = g(=DF =944 — =572 — (),

Given r < n, the condition that 7" f(7x) has reduced degree at least s gives
out r — s — 1 more divisibility conditions, since there are »r — s — 1 coeflicients
that we put the condition on (—1 comes from excluding z*). Each contribution
gives out a factor of ¢~! and since coefficient of 2® must not be divisible by 7
we have a factor of (1 — 1/q) as well. Therefore the density of f such that the
reduced degree is exactly s is

¢ (1 -1/9) =" (g - 1).

Therefore the relative density of f € P,» with parameters (r, s) is given by

G m(g—1)=¢ (g (g - 1)

for 0 < s <r <n. If r=n, then s = r as we have shown earlier, therefore the
density with parameters (n,n) is q_(g).

If s =r = n, then g = 77" f(7x) is distributed as an arbitrary element of
O[x]}, while if s < 7 < n then g is subject to the conditions that g has degree s,
and moreover 7" f(xm 1) = f(x) = 2™ mod 7. In both cases, given r and s the
conditional expected number of d-sets of O-roots of f € P,» is ay independent
of r. In the case s < r < n, we use Lemma 7.11(b) and consider the restriction
of the random variable X in Corollary 7.13 to the appropriate subset. Using all
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this information we have

Bn = q_(g)an + Z q_(rzl)qs(q - 1)043.

0<s<r<n
O
Proof of (7). Taking equation (29) for n and n — 1 and subtracting we have
ﬁn - ﬁn—l = q_(;)an - q_(ngl)an—l
+@-0 Y ¢ ga,— Y (g,
0<s<r<n 0<s<r<n—1
We observe that
n—2
) ¢ #gra, =¢7) o+ Y g (2 gray,
0<s<r<n s=0 0<s<r<n—1
therefore
n—2
q(z)(ﬂn - 571—1) = (an - qnilan—l) + (q - 1) Z qsas~ (30)
s=0

Now we take Equation (30) for n and n — 1 and subtract which yields

n—1

q(g) (ﬂn - ﬂn—l) - q( 2 )(ﬂn—l - Bn—Z) = (an - qnilan—l)

- (aﬂ—l - qn_2an—2)
n—2 n—3
+(g-1)) ¢as—(g-1)) ¢a
s=0 s=0

We first simplify the right hand side

n—2 n—1

n—2
Op—2 —( Qp_2 =

== (an - an—l) - qnil(an—l - an—Q)a

an — ne1 +q" 20— ¢" a1 +gq

and now noting (";1) = (72’) + (1 — n) we also simplify left hand side

¢ (B — Bur) = B By — Busa) =
= ¢O[(B0 = Bum1) = 4" (Bumt — Bu2))
Therefore we have
BB = Bu1) = @' 7" (Ba1 = Bu-2)] = (an — 1) = 4" (@1 — an-2),
where this equality implies equality of the coefficients of ¢” on both sides of (7).
O

28



References

1]

2]

Tom M Apostol. Introduction to analytic number theory. Springer Science
& Business Media, 2013.

Manjul Bhargava, John Cremona, Tom Fisher, and Stevan Gajovi¢. The
density of polynomials of degree n over Z, having exactly r roots in Q,.
Proceedings of the London Mathematical Society, 124(5):713-736, 2022.

Nicolas Bourbaki.  Variétés différentielles et analytiques: fascicule de
résultats, volume 8. Springer Science & Business Media, 2007.

D.L. Cohn. Measure Theory: Second FEdition. Birkhduser Advanced Texts
Basler Lehrbiicher. Springer New York, 2013.

D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2003.

Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete Mathe-
matics: A Foundation for Computer Science. Addison-Wesley Professional,
1994.

J. Neukirch and N. Schappacher. Algebraic Number Theory. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2013.

W.A. Sutherland. Introduction to Metric and Topological Spaces. An open
university set book. Clarendon Press, 1975.

29



	Introduction
	Examples

	Valuation Theory
	Valuation
	Exponential Valuation
	Valuation Ring
	Bases

	Completeness
	Local Fields
	Topological Groups
	Haar Measure
	Preliminaries
	Identification on polynomial rings
	Some counting
	Power series identities involving N

	Resultants, coprime factorizations, and independence
	Resultants
	Measure theoretic Hensel's lemma
	Independence Lemmas


	Proof of the Theorem
	Proof of Theorem 1(b)
	Conditional Expectations
	Writing 's in terms of 's
	Writing 's in terms of 's and 's
	Writing 's in terms of 's



