
Social Balance: The dynamics of weak and

strong links on social network balance

Bachelor’s Project Thesis

Klaas de Jong, s3489515, k.de.jong.9@student.rug.nl

Supervisors: M.D. Venema-Los, MSc, Z.L. Christoff, PhD

Abstract: This project investigates the dynamics and influence of weak and strong ties in social
networks according to social balance theory. Social balance theory is a field of study in which
interpersonal relationships are quantified as positive or negative, such that statements can be
made about the degree of internal strife in a social network. By abstracting real life social
networks into a graph based model, the dynamics of changing weak or strong social connections
and their influence on the balance of the entire network are studied. Analysis of the data shows
that the influence that changing either weak or strong social links has on the network balance
is dependent on the size of the network and the initial balance that the network has, but that
strong links have a much more significant influence.

1 Introduction

Social balance theory or structural balance theory
is a field concerned with the dynamics of relation-
ships in social networks. The theory of balance in
social networks has many uses in differing fields of
science such as sociology, computer science, and
psychology, and therefore has been studied quite
extensively since its inception by Heider (1946). In
this paper, he hypothesized that in a social set-
ting, the relations between the actors are either bal-
anced (for example each actor has a positive opin-
ion towards all other actors) or there exists ten-
sion in the interaction which, if possible, will lead
the actors to change their opinion to achieve a bal-
anced state. Later, Cartwright and Harary (1956)
extended the idea and made it into a more formal
definition by stating it in the mathematical theory
of linear graphs, abstracting the concept slightly
but allowing for more rigorous methods of research
by now being able to apply graph theory to the field
of social sciences. Since nearly all we do in life is
in the context of some form of a social network, be
it online or in the real world, the dynamics of how
these networks and the actors in them adapt their
behaviours towards each other is of great interest.
For studying the dynamics of social networks, it is
impractical to use human test subjects and inter-

view them about their feelings towards each other,
not in the least because relationships between peo-
ple are complex and multifaceted, and also because
getting an adequate sample size to produce scien-
tifically sound data is extremely difficult when you
have to collect data by asking people to fill in sur-
veys. Once the internet and concurrently internet
forums appeared, however, research into the field
became more straightforward since it was now pos-
sible to perform experiments with scientifically ap-
propriate sample sizes. After all, there now existed
a mountain of data on human-to-human interac-
tions, with recorded interactions from which posi-
tive or negative sentiments can be analysed. From
these data-sets, ideas that had been merely theoret-
ical in the field of structural balance could be tested
on real-world data. Belaza et al. (2019) found when
analysing data on alliances in an online game as
well as data from the Cold War political landscape,
that not only did the established theories hold up,
but they could even be furthered by, for example,
realizing the importance of non-active connections
in social networks.

Since the mass adoption of the internet is a
recent phenomenon along with its possibilities of
collecting big sentiment analysed data-sets, most
of the fundamental research in the field has been
and is done by representing social networks as an
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un-directed graph of nodes and edges (Wasserman
et al. (1994); Watts and Strogatz (1998); Albert
and Barabási (2002); Newman (2003); Fowler and
Christakis (2010); McPherson et al. (1992); Bor-
gatti et al. (2009); Hanaki et al. (2007); Lazer et al.
(2009); Carrington et al. (2005). The edges in these
networks are then often denoted by + or - to in-
dicate positive or negative relations between the
nodes((Wasserman et al., 1994); (Easley and Klein-
berg, 2010); (Katai and Iwai, 1978)). The concept
of balance within these networks can be described
by the age-old adage: “The friend of my friend is
my friend, the friend of my enemy is my enemy
and the enemy of my enemy is my friend”. In more
practical terms, this means that when looking at
such networks, one can divide them up into triads
of nodes. In these triads, there is balance when the
multiplication of the signs of the edges is positive.
So +++ and -+- are balanced but - - - and -++
are not. Under generalized balance, which is more
lenient in its balance definition, a - - - triad is also
considered balanced (Van de Rijt, 2014) and other

Figure 1.1: Example of triads, where a solid line
represents a positive connection and a dotted
line a negative connection. a and b are balanced,
but c and d are not.

models consider a triad in which one node has no
connection to the others to be “pressure-free” and
such a triad can thus be counted as neutral (Hoek
et al., 2022). These “pressure-free” or neutral triads
are only possible in network that is not fully con-
nected. This idea of these balance dynamics finds
its origin in the real world in the fact that people
like to be in social situations that are free of con-
flict. Since it is, in general, not pleasant to be in a
situation where two of your friends do not like each

other, thereby causing conflict.

In a fully connected network (in which every
node knows and has a relationship with every other
node) finding out whether the network as a whole
is balanced becomes trivially easy. There are dif-
ferent definitions of the balance of a network, some
research considers a network balanced only when all
of the triads in the network are balanced (Easley
and Kleinberg, 2010), while others have a looser
definition of balance, based on the ratio of balanced
triads divided by the total amount of triads in the
network (Situngkir and Khanafiah, 2004). For the
process of balancing an unbalanced network there
are many different methods, all of which eventu-
ally lead to a balanced outcome, but differ in the
specific methods by which they perform balancing.
For example: A node could balance one of its triads
by changing one of the signs of its edges based on a
probability value, or it could change one of its edges
based on knowledge it has about the other nodes
in the network. The end result will be the same
in both cases, but the dynamics of the procedure
will differ. Wang and Thorngate (2003) found that
when given an arbitrary fully connected network,
two options exist pertaining to the possible balance
of such a network. The balancing rules they used
worked as follows: The function will select one of
the edges of a triad at random and change its sign to
balance the triad. If the triad had a neutral connec-
tion, it would either change it to a positive or neg-
ative relation to balance the triad. If the triad was
balanced or had two or three neutral connections,
it would leave the triad untouched. When applying
these balancing rules on such a network, all nodes in
the network either become friends with each other
or can be divided into two distinct groups of nodes.
These groups of nodes are all friends of each other
and enemies of all the nodes in the other group.
They also proved that in a fully connected net-
work no more than two such subgroups can exist. If
such a network contains no unsigned edges between
nodes (where there is an edge between two nodes,
but it is neither positive nor negative), it is prede-
termined to which subgroup each of the nodes will
eventually belong after the balancing procedure. If
there are unsigned edges between the nodes, how-
ever, the balancing rules with which the network is
balanced becomes a factor in determining to which
subgroup the nodes will belong. Although a signed
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graph is naturally not a good representation of the
grey-valued relationships that can be had in the
real world, it forms a good basis for more research
on more complex types of networks that better rep-
resent the real world. It also seems interesting that
this property of balanced graphs overlaps with the
tendency of people in groups to either all like each
other or divide themselves into two vehemently op-
posed sides who stand directly against each other.

In incomplete graphs, the story changes a little.
In such graphs, not all nodes are aware of each other
and consequently do not have an opinion on every
other node in the network. When trying to figure
out if such a network is balanced, more options be-
come available than all nodes being friends or being
divided into two camps. When looking at incom-
plete networks, it becomes much more interesting
to make claims about the amount of balance in a
network and what this entails. Davis (1967) found
that when a network contains no cycle with exactly
one negative relation, the graph becomes cluster-
able. In his definition of a cluster, a node has only
positive connections within the cluster, and all the
negative connections are considered to be outside
the cluster. This means that in such a graph there
are two, or often more clusters of agents where each
node lies at the center of a dense network of positive
relations, but the graph as a whole might be very
disconnected, containing a multitude of node pairs
that have neither direct nor indirect connections
to each other. In clusterable graphs, the balance of
an entire network, therefore, could be significantly
different when viewed as a whole as opposed to sub-
dividing the network into smaller balanced clusters.
A better measure for balance, in this case, might be
localized balance (Situngkir and Khanafiah, 2004),
where a balance value is calculated for each pair of
nodes by taking the number of balanced triads it is
a part of and dividing by the total number of triads
it participates in.

In the process of balancing a network, by shifting
the balance of one triad another triad may become
imbalanced, this means when all the nodes are al-
lowed to reassess their relationships a snowball ef-
fect can occur in the entire network by creating a
single local change in a triad. In a paper on the dy-
namics of balancing social networks by Antal et al.
(2006), two different methods are discussed con-

cerning such a balance shift. Local triad dynamics
are when a random unbalanced triad is made bal-
anced, without considering the effect of this balanc-
ing act on the rest of the network. The creation of
balance in this triad might result in the unbalancing
of multiple other triads. A single random opinion
change can thus have a big impact on the balance
of the network as a whole. With these dynamics,
if the probability of changing a negative edge in
an unbalanced triad with only one negative edge
to a positive edge is lower than 50 percent (which
one could consider an “asocial” society), they show
that the system will not reach a balanced state. In-
crease this probability above 50 percent, however,
and eventually, balance will be reached. When look-
ing at constrained triad dynamics, a random unbal-
anced triad is also made balanced, but now only
if the total amount of balanced triads increases (a
more “social” approach). If the amount of balanced
triads stays equal, a random link in the triad is ad-
justed based on a 50 percent probability. Since the
number of imbalanced triads can never increase,
these dynamics create a fully balanced network.

In real-world social networks, there is a difference
between weak and strong ties. Dunbar and Spoors
(1995) found for example that amongst the British
population on average a person had 10-15 people
they would contact frequently (multiple times per
month, in said paper named a “sympathy group”
who all know one another well), while also having
a group of around 100 people who they would ask
for a favour, but rarely contact (a few times per
year, considered “acquaintances”). Based on this
research in this paper strong and weak ties are de-
fined as follows: Strong ties are relationships such
as exist in close-knit friend groups, where many of
the people you know also know each other and weak
ties on the other hand are acquaintances that are
known to you, but not or barely known by the
rest of your friend group. Sandstrom and Dunn
(2014) found in a study on Cambridge University
students that people on average have more interac-
tions with weak ties than strong ties with respec-
tively 11.40 to 6.70 interactions per day. Through
these interactions information is dispersed that can
allow one to reevaluate opinions and relationships
to others. Gravenotter (1983) discusses that weak
ties between individuals are like bridges between
close knit groups of friends. Here he also discusses
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the theory that weak ties allow for more cognitive
flexibility by manner of being subjected to infor-
mation that might not have reached a person via
their strong ties and close knit friend groups. Zhao
et al. (2010) found in their research on the impor-
tance of weak ties in online information diffusion
that weak ties are essential for the wider spread of
information in a network, but are significantly less
used than strong ties for exchanging information.

When looking at the previous research done in
the field of social balance theory, there seems to
be a hole in the literature concerning the influence
of weak and strong ties on social balance theory.
What is the importance of weak and strong ties
respectively on the balance of the entire network?
And if, as the literature suggests, strong ties are
more influential than weak ties, is there a certain
number of weak ties that have the same influence
as one strong tie? If this is the case, why and what
might be the specific properties of the network that
cause this? Based on the above mentioned research
this paper tries to investigate the role that weak
ties play in the balance properties of a network.
When a strong tie is changed in a close knit friend
group, many of the interconnected relationships of
that specific tie are also impacted, and go through
a process of re-evaluation. To investigate the im-
pact this change has on the rest of the network, a
balancing process of the whole network is started
from this initial seed of change. In this paper a
weak tie is constituted as an edge that is not a part
of many triads. By changing such an edge the as-
sumption is made that the nodes it is connected to
re-evaluate one of their own triads, based on the
hypothetical new information that the change in
relation gave them. From there the balancing pro-
cess of the whole network is started just as with the
changing of a strong tie.
The main origin of this question is a combination of
reading the literature on the subject and combining
that with observations of real-world social events.
In the real world, a shift in relationship in a close
group has more influence than changes in relation-
ship with acquaintances, based on my own obser-
vations. Therefore this paper investigates which, if
any, properties of a network have influence of the
importance of strong and weak ties. My hypothesis,
therefore is as follows: The changing of a strong tie
in a signed social network has significantly more in-

fluence on the balance of the network than changing
multiple weak ties. To study this question, I have
built a model in Python, which can create random
signed social networks and perform tests on the dy-
namics of these networks to test my hypothesis.

2 Methods

To test my hypothesis, I have built a model in
Python, making use of the network analysis pack-
age NetworkX. Instead of a fully connected graph,
I have chosen to run the simulations on a small-
world network, since research (Barrat and Weigt
(2000), Crossley (2008)) indicates this is a fairly
accurate (although slightly abstracted) representa-
tion of real-world social networks, since the proper-
ties of these graphs show similarities to the organi-
zation of real-world social groups. To generate the
graphs the Watts-Strogatz method is used, which
generates random graphs with small-world proper-
ties. The built-in function in Networkx generates
these graphs with a specified amount of nodes and
degree of connectivity. The degree of connectivity
specifies to how many other nodes a node is con-
nected to. The graphs generated by this method
are inherently not fully connected based on the de-
gree of connectivity, which fits the type of networks
I want to research, namely representations of real
world social networks.
After the graph is generated the edges will be
randomly assigned to be either positive or nega-
tive, based on a percentage value that governs the
amount of positive edges in relation to negative
edges. For simplicity’s sake there are no edges in
the graph with a neutral value, since these are con-
sidered as no connection under most interpretations
of strict as well as generalized balance. An example
of such a graph can be seen in figure 2.1.

The following properties of the generated net-
work are then recorded: Total balance of the graph
with a strict balance criterium, the average degree
of connectivity and percentage of positive edges in
the graph. The balance of the network is calculated
by dividing the number of balanced triads over
the total number of triads. A triad is considered
balanced by the criteria earlier mentioned, namely
having 1 or 3 positive connections in a triad. Seeing
if a triad is balanced can be easily calculated in the
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Figure 2.1: Example of a network. An edge la-
beled friend:0 means a negative relation and an
edge labeled friend:1 denotes a positive relation

program by checking the added integer values of all
the edges in the triads, and counting the results 1
and 3 as balanced while disregarding the rest.
Ordered lists are then created of the most impor-

tant nodes based on the following methods:

• Node degree, the amount of edges a node has

• Node clustering coefficient, the fraction of pos-
sible triads a node can have that exist

• Node eigenvector centrality, a measure of in-
fluence that a node has in the network

The node degree is a representation of the num-
ber of people someone knows, the clustering co-
efficient represents a person with a dense social
network, and the eigenvector centrality represents
someone who knows a lot of people that in turn
also know a lot of people. In lay-mans terms if a
node has many connections to other well connected
nodes, the eigenvector centrality of this node will
be high. It is calculated by the following formula:

xv =
1

λ

∑
t∈M(v)

xt =
1

λ

∑
t∈V

av,txt (2.1)

where xv is the eigenvector centrality of node v, λ is
the eigenvalue of the adjacency matrix of the graph,

M(v) is the set of neighbouring nodes of v, xt the
eigenvector centrality of node t, V the set of all
nodes and av,t the adjacency matrix of the graph.
The clustering coefficient of node u is calculated as
follows:

cu =
2T (u)

deg(u)(deg(u)− 1)
(2.2)

where T(u) is the number of triads through node u
and deg(u) is the degree of u.
To record the balance of the network the following
formula is used:

b(G) =
t+(G)

t(G)
(2.3)

where b(G) is the balance value of the network,
t+(G) is the number of balanced triads in the net-
work and t(G) is the total number of triads in the
network.

After creating these lists, the node with the
greatest value from each method is selected and
used as the starting point for the balancing proce-
dure. Only the best node from each lists is selected,
since exploratory testing indicated that starting the
balancing procedure with lesser nodes showed sim-
ilar trends in the data but with overall lower values
and less pronounced effects. On each of the selected
nodes, the following procedures are performed:

The strongest tie of that node will be selected,
which in this simulation is the edge of the node
that is part of the largest number of triads. In the
case where there are multiple edges in the model
with the same number of triads connected to them,
one of these is selected at random. This edge will
have its value flipped from positive to negative or
vice versa. Flipping this edge represents a change
in opinion of the strongest tie in the network and is
used as a starting place for the balancing procedure
of the network that follows. In this way, the first
change to the network differs from the rest of the
balancing procedure, in that it does not actively try
to improve the balance in the network but merely
changes its opinion. After this flip the change in bal-
ance will be recorded as well as the number of triads
impacted by this change. The absolute impact on
the balance of the network is calculated (since the
change can positively or negatively impact balance)
by taking the absolute difference in balance and di-
viding it by the mean of the initial and new balance
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values. This is done to later calculate the number
of weak ties that have to be changed to have the
same impact on the balance of the network. After
this initial step, all of the nodes impacted by the
change through their triads are added to a list. The
nodes in this list are then allowed to improve one
of their triads, by changing one of their edges from
negative to positive. The other node connected to
this changed edge is then allowed to do the same.
This changed edge is then added to a list to pre-
vent it from being changed again and creating an
unending loop. In this manner, a node is allowed to
be selected multiple times if the procedure circles
back to it through other edges and can improve an-
other one of its triads. The process functions in a
breadth-first search manner, spreading through the
network in parallel and adjusting edges that do not
necessarily have a direct connection to each other,
instead of following one trail of nodes until it can
reach no more This procedure continues until no
more nodes are reachable via this method, or if all
reachable nodes have improved all of their possible
triads.
The final balance of the network will be recorded,

as well as the number of edges changed and the
number of triads impacted

When the balancing procedure has been com-
pleted for the strongest tie, another balancing pro-
cedure will take place on an exact copy of the orig-
inal graph for the weak ties. A list is made of the
weakest ties of the node, in this simulation the
edges that are part of the smallest number of tri-
ads. Then the weakest of these edges is selected
and will have its value flipped. Thereafter the ab-
solute impact this flip has on the balance of the
network is calculated and stored. From there the
next weakest edge is flipped and its absolute im-
pact is added to the impact of the previous edge.
This continues until the total impact of changing
multiple weak edges is the same or greater as the
impact of changing the strong edge in the same net-
work. During each step the change in balance and
the number of impacted triads is recorded. A list is
also made of all the nodes impacted by the change
of the edge, and from the list the same balancing
procedure is performed as with the changing of a
strong edge. Once the balancing procedure is com-
pleted, the final balance, number of edges changed
and number of triads impacted is recorded.

These procedures are repeated 10 times on
graphs generated with the same values for node
count, initial positive edge percentage and connec-
tivity degree. The experiment will be repeated for
all node counts between 20 and 90 in steps of 10
to simulate different network sizes and for each
node count with initial positive edge percentages
between 30 and 80 in steps of 10 to simulate dif-
ferent initial amounts of friendliness in the net-
work, which is associated with balance through the
fact that having a greater number of positive edges
in the network increases the chance of a balanced
triad being generated at random, and a connectiv-
ity degree of between n/2 and n − 5 in steps of 5,
where n is the number of nodes. The connectivity
degree starts at half of the node count because ex-
ploratory testing showed that a connectivity degree
lower than that caused there to be too few triads
to perform balancing in a meaningful way.

When all the data is collected the average for
all the values recorded in the 10 runs with the
same starting conditions is calculated. These val-
ues are than normalized on the node count of the
network. The difference in balancing between weak
and strong ties is analysed. The averages are then
compared with the values of the other starting con-
ditions to figure out if the initial positive edge per-
centage and the connectivity degree have a signifi-
cant effect on the balancing of the network.

3 Results

Calculating the average number of weak edges that
have to be changed to equal the same impact on
balance as one strong edge gives a result of 2.73
weak edges per strong edge with a standard devia-
tion of 5.08. This number is similar over all different
initial settings changed.
When looking at the final balance value for all node
selection types in Figure 3.1, we can see that the fi-
nal balance value for the strong tie method is signif-
icantly higher than the value for the weak tie. This
would indicate that changing a single strong tie has
a much greater effect on the final balance value than
changing multiple weak ties. When digging deeper
in the data, however, we find that to reach these
final balance values, the method for the strong tie
changes on average 60.5% more edges. In order to
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determine the effect that each of these changes has
on the final balance value, we need to control for
this difference in the number of edge changes made.
Since the effect that each edge has on the balance
of the network is in part determined by both the
initial positive edge percentage and the connectiv-
ity degree, we plot the effect that a single changed
edge has (on average, after the balancing procedure
has completed) against these “Friend value” (initial
positive edge percentage) and “K-value” (connec-
tivity degree), respectively, as can be seen in Fig-
ures 3.2 and 3.3.

From these figures, we can see that when
controlling for the difference in the number of edge
changes made, the strong tie still has a greater
effect on the balance of the network than the
weak tie. Of note is that the difference between
the strong and weak ties is relatively even when
comparing to the friend value, but diminishes when
comparing against the connectivity degree. Since
a lower connectivity degree causes the network to
have fewer triads (by virtue of having fewer con-
nections between the nodes), the effect of changing
a strong tie becomes more pronounced in com-
parison to changing a weak tie in a sparser network.

Performing a linear regression test on these
findings to see if they are significant produced
the following results: Testing to see if the initial
positive edge percentage significantly predicted
a change in balance for the change in a strong
and weak tie showed that it significantly predicted
change in balance with values of strong and weak
ties respectively of (β = 0.003, 0.002; p <.000) and
(R2 = 0.08, 0.15; t = 7.87, 10.35; p <.000), where
β represents the correlation between the change
in balance and the initial positive edge percentage
and R2 is the coefficient of determination, measur-
ing the strength of the linear relationship between
the two variables. A p-value of <.005 indicates
that the result is statistically significant.
For predicting the change in balance value for
strong and weak ties the connectivity degree
also showed a significant, albeit smaller result
with value for strong and weak ties respec-
tively of (β = −7.583e-5, −4.420e-5; p <.000)
and (R2 = 0.437, 0.359; t = -22.06, -18.75; p <.000)

Looking at the results by the different meth-

ods to determine the importance of a node, we can
investigate if there is a difference in the results
based on the measure of importance. Since the
data for all the different importance methods
follows the same trends seen in Figures 3.2 and
3.3 when plotting against the friend or K value,
we plot the average impact that a single edge
change has on balance for all the types in Figures
3.4. In this plot, we can see there is a slight
increase in impact values when selecting the initial
most important node based on the node degree.
Although the difference is small (about 0.0006 per
edge), considering that on larger networks there
are northwards of 2000 edge changes, these effects
add up and might have a significant impact on the
final balance value. To see if there is a significant
difference in the effect a single edge change has
on the final balance of the network based on the
different importance criteria for the nodes used,
an ANOVA analysis was done on these results.
This analysis showed that the different importance
methods have no significant effect on the impact
that a single edge has on the final balance of the
network, with a p-value of 0.363 indicating there is
no significant relation between these variables.

Figure 3.4: Boxplot of the average impact of a
single edge change on balance per type

4 Conclusion and discussion

From these results, multiple things can be con-
cluded. First and foremost, the data shows that the
changing of strong ties has significantly more influ-
ence on the balance of a network than changing
multiple weak ties. This is the case after the first
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Figure 3.1: Final balance value for all node selection types

Figure 3.2: Balance effect of a single edge by friend value

Figure 3.3: Balance effect of a single edge by K-value

8



change as well as when the balancing of the net-
work is propagated for a couple of iterations. The
data also shows that while there are differences in
the dynamics of the change in balance based on the
different types of selection criteria of what consti-
tutes an important node, these differences are not
significant. The initial percentage of positive edges
and the degree of connectivity of the network do
have a significant effect on the balance of the net-
work, where a higher initial percentage of positive
edges results in a higher final balance value and in-
creases the impact each individual edge has, while
a higher degree of connectivity decreases the effect
that changing a single edge has on the network.

To further investigate the dynamics of strong
and weak ties on the balance of a network, multiple
changes can be made to this research. For example:
instead of allowing the nodes only to improve
their relationships also allow them to worsen the
balance of the network, in order to see if this
changes the dynamics between strong and weak
ties when further balancing the network. Although
there is no direct real-world parallel for this type
of behaviour, it is theoretically interesting to see
for example what amount of “bad faith” actors
would be needed to prevent the balancing of a
network entirely. A change to the network can
be made as to where each node has a certain
“belief” value (to represent for example the same
favorite sports team, or similar tastes in music),
which is taken into account when deciding changes
in its relationship to others. Methods could also
be added to allow for the forming and breaking
of new relations between the nodes, which more
realistically represent human interaction. The
experiment could also be performed on a different
type of network, instead of a small-world network,
which might produce entirely different results.

Another avenue for further research could be cre-
ating an agent-based model of a social network and
investigating what the impact of different types of
agents is on the dynamics of a network. For exam-
ple what could the effect of a single bad actor as
opposed to a single good actor be on the balance of
a network. What would the effect of allowing agents
to make or break connections based on their inter-
nal feelings or external stimuli be? Could there be
some emergent properties discovered from such a

simulation, that reflect the dynamics of human-to-
human interaction and group forming? Would it be
possible to devise a method for quickly balancing an
entire network by careful pruning of certain connec-
tions between nodes, thereby ”enforcing” harmony
in a group. In the same vain could a method exist,
that if applied to a group would descend the en-
tire group into disarray in the fastest time possible
by systematically forming or breaking connections
between in-groups to cause the most imbalance?
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