university of faculty of science artificial intelligence
gﬁ,&“é / groningen / and engineering /

ACCELERATING MODEL BASED REINFORCEMENT
LEARNING USING GPU THROUGH PARALLELIZATION OF
DYNA-Q ARCHITECTURE

Bachelor’s Project Thesis

Rares Stefan Stoian, s4775309, s.rares@student.rug.nl,
Supervisors: R. (Rafael) Fernandes Cunha

Abstract: In this paper, we propose Parallelized Dyna Q-Network (PDQN), a fully online,
GPU-accelerated reinforcement learning algorithm that integrates model-based planning with the
recently introduced Parallelized Q-Network (PQN). By employing learned world models for short-
horizon planning, PDQN seeks to further accelerate convergence while preserving the simplicity
of fully online temporal-difference learning. Empirical results on multiple MinAtar environments
show that PDQN achieves performance on par with PQN. Our analysis also reveals that selecting
appropriate values for planning delay and planning steps is crucial for the performance to be at

least on par with the baseline.

1 Introduction

Artificial intelligence has seen an astronomical rise
in popularity in recent years due to advancements
in machine learning algorithms. This surge in in-
terest has been credited mostly to the development
of deep learning [18], which was quickly adopted
by both research and industry as its potential was
rapidly recognized.

Deep Reinforcement Learning (DRL) has demon-
strated amazing performance in environments char-
acterized by large state and action spaces, enabling
agents to generalize effectively across diverse sce-
narios. This capability has been essential in advanc-
ing both online and offline learning frameworks. No-
tably, algorithms such as Deep Q-Networks (DQN)
[25] and Proximal Policy Optimization (PPO) [31]
have emerged as prominent methods within this do-
main. However, these advancements are accompa-
nied by increased computational demands, poten-
tially widening the gap in research accessibility due
to the need for substantial computational resources
[26].

Offline learning, although more successful thus
far, is not without its problems [9, 19]. One issue
attributed to offline learning is the instability of
experience replay when its size becomes too large,
causing algorithms to converge slowly [21]. Despite

these persistent issues, offline learning methods re-
main the preferred choice for most because they are
more data efficient, improving sample efficiency by
allowing agents to learn effectively from pre-trained
policies on unseen data [1] or by bootstrapping from
existing data without needing to interact with the
environment [32].

Despite recent improvements in the field of DQNs
[40], these methods are temporal-difference (TD)
methods, and some are plagued by certain prob-
lems, such as instability and prone to overestima-
tion caused by at least one of the “deadly triad*
components: function approximation, bootstrap-
ping, and off-policy learning [39, 40].

A recent study by Gallici et al. [10], which serves
as the basis for our work, aims to reintroduce on-
line learning and temporal-difference (TD) meth-
ods into the spotlight. Specifically, the authors pro-
pose the Parallelized Q-Network (PQN) algorithm,
a parallelized and fully online variant of Q-learning
designed explicitly for GPU architectures. By elim-
inating the replay buffer and target network,
which are core components in traditional Deep Q-
Networks (DQN), PQN significantly reduces the
computational and memory overhead. Additionally,
PQN’s approach of simultaneously running mul-
tiple vectorized environments fully on the GPU

avoids the traditional communication bottleneck
between CPU-based environments and GPU-based
learners, leading to markedly faster convergence
speeds. In addition to the above changes, PQN uses
regularization methods such as Batch Normaliza-
tion [14] and Layer Normalization [2] for better sta-
bility.

Model-based Reinforcement Learning (RL) is a
class of algorithms that centers around building a
model of the environment, allowing agents to pre-
dict future states and rewards without needing to
interact directly with the environment itself. One of
the earliest model-based algorithms was introduced
by Sutton et al. [33], who proposed not only the
Dyna Q-learning algorithm—an adaptation of the
classical Q-learning—but also the widely influential
Dyna architecture. Since agents can utilize these
world models to learn independently from their
real interactions, convergence can often be achieved
with significantly lower computational costs and, in
certain scenarios, at faster rates compared to purely
model-free approaches [20, 23, 24, 29]. Motivated by
the potential computational efficiency and accel-
erated convergence offered by model-based meth-
ods like Dyna Q-learning, alongside recent advance-
ments demonstrated by PQN, we pose the following
question: To what extent does the improved con-
vergence speed provided by Dyna Q-learning affect
Parallelized Temporal-Difference learning in GPU
environments, and does this justify its implemen-
tation?

In this paper, we adapt the aforementioned
PQN algorithm to incorporate world model learn-
ing methods by following the Dyna architecture.
Our contributions are as follows: (A) We create the
Parallelized Dyna Q-network (PDQN) algorithm,
and (B) we investigate whether there is a significant
improvement in convergence speed without sacrific-
ing the algorithm’s performance on the given tasks.

To our knowledge, the implementation of paral-
lelized world model methods in the research field is
somewhat unexplored, with only one paper imple-
menting Dyna Q-learning where the parallelization
occurs between multiple agents within the same en-
vironment [36]. Contributions related to Dyna Q-
learning using deep RL methods are more promi-
nent in fields such as robotics [27], recommender
systems [45], and task-completion dialogue agents
[28], or any domain where training requires exten-
sive interactions with the environment that are ei-

ther costly or time-consuming. The lack of research
on this topic and evidence that Dyna Q-learning
greatly increases learning speed further motivate
us to document our findings.

For simplicity, we maintain the core concept of
the PQN algorithm by using Q-learning as a foun-
dational TD method with function approximation,
and augment it by introducing a world model com-
ponent, thus creating the PDQN algorithm. We
have chosen MinAtar [44], a vectorized version of
the Atari Learning Environment (ALE) [4], to en-
able straightforward analysis of performance on a
popular benchmark within a fully end-to-end GPU
setup.

2 Theoretical Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of Ma-
chine Learning (ML) an agent is employed to inter-
act with an environment by performing actions and
observing the resulting rewards through trial-and-
error exploration. Over time, the agent’s objective
is to maximize cumulative reward, refining a policy
that governs its behavior. By adjusting its reward-
based policy, the agent effectively learns the most
suitable actions to achieve a given goal within the
environment [34].

A Markov Decision Process (MDP) [5] is a math-
ematical framework commonly used to formalize
the interaction between an agent and its environ-
ment in Reinforcement Learning (RL). Formally,
an MDP is defined by the 5-tuple (S, A, P, R,7),
where:

1. S: The set of possible states the agent can
occupy.

2. A: The set of possible actions the agent can
perform.

3. P: The transition probability function
P(s¢41]8t,at), which specifies the probabil-
ity of moving from one state s; at time ¢ to
s¢+1 when taking action a;, where s;,s:41 €
S and a; € A.

4. R: The reward function, R(s;,a;), which re-
turns a numerical reward r; for each state tran-
sition.

5. «: the discount factor, with 0 < v < 1,
and determines the present value of future
rewards and balances immediate versus long-
term gains.

The objective of RL is to maximize the cumu-
lative discounted reward (or return), formally de-
fined as:

00
Gy = Z’yk”""k"'l (2.1)
k=0

Consequently, the central goal becomes finding
an optimal policy 7* that maximizes the expected
return starting from every state s. According to
Sutton and Barto [34], this optimal policy satisfies:

7" =argmaxE;[G: | St =s], VseS. (2.2)
s
Using Gy, we derive the state-value function
vr(8), representing the expected return from state
s under policy 7:

Ur(s) = Ex[Gy|S; = 8. (2.3)

Similarly, we define the action-value function
g=(s,a) as the expected return when starting from
state s, taking action a, and thereafter following
policy :

Gr(s,a) = E;[G|S; = s, A, = a). (2.4)

Given these definitions, the optimal policy ex-
plicitly selects actions that maximize the action-
value function:

7 (s) = argmax ¢« (s,a), Vs € S. (2.5)
a€cA
This optimal policy ensures the highest possible
expected return across all states and actions, serv-
ing as the theoretical foundation for various RL al-
gorithms, including PQN and Dyna-Q.

2.1.1 Temporal Difference (TD) Methods

Temporal Difference (TD) learning is a core class
of methods in reinforcement learning that update
value estimates based on the difference between

successive predictions. TD methods combine the
strengths of Monte Carlo methods (learning di-
rectly from experience) and Dynamic Programming
(bootstrapping from current estimates), allowing
agents to learn directly from raw experience with-
out requiring a model of the environment.

For value prediction under a fixed policy 7, the
TD target for the state-value function is defined as:

G = reg1 + Y0r(s011), (2.6)
and the corresponding TD error becomes:
0t = re1 + Y0r(Se41) — vn(8e)- (2.7)

The update rule for the state-value function un-
der a TD(0) scheme is:

Uz (8t) ¢ v (8t) + ads, (2.8)

where « is the step-size (learning rate).

For control tasks, the action-value function
g=(s,a) is used. In particular, Q-learning—a widely
used off-policy TD control method—aims to learn
the optimal action-value function Q*(s,a). Its up-
date rule is given by:

q(st,ar) < q(se, ae)+
, (2.9)
o [Tt+1 + ’yn}f}xq(st+1,a) — Q(Stvat)] .

This formulation bootstraps from the current es-
timate of the action-value function and enables the
agent to approximate g, (s,a), leading toward the
optimal policy 7*. TD methods such as Q-learning
form the basis for many modern deep reinforcement
learning algorithms, including PQN and Dyna-Q,
where tabular value functions are replaced with
function approximators such as neural networks.

2.2 Parallelized Q-Network (PQN)

The PQN algorithm mentioned above [10] aims to
reintroduce TD methods using end-to-end GPU
setup to accelerate learning. The findings expand
upon RL through hardware, as is one of the first
papers to explore such methods.

The paper claims state-of-the-art performance in
terms of training speed (i.e, convergence speed),
“up to H50%* in certain environments compared
to their DQN counterpart, without sacrificing the
overall performance. They achieve this through the

use of JAX [7, 30] library in Python, a low-level
framework for numerical transformations. It uses
just-in-time (or jit) compilation and it allows vec-
torization of environments (each running on differ-
ent GPU cores, thus running in parallel).

2.2.1 PQN Algorithm

The theoretical implications of vectorization of the
environments allowed the authors to adapt DQN
and simplify it. With the use of BatchNorm [14]
and LayerNorm [2], and through this vectorization,
multiple environments run simultaneously on sep-
arate GPU cores, allowing parallel sampling of ex-
periences across different episodes. This parallelism
removes the need for traditional stabilizing compo-
nents, such as a replay buffer or a target network,
making the learning process fully online.

This approach relies on directly estimating the
optimal action-value function Q*(s, a) which is de-
rived from equation 2.4 and it is defined as follows:

Q*(s,a) = mT&erqﬂ(s,a) =

(2.10)
mquIE7T (G| St =s,Ar =q].

The PQN algorithm iteratively approximates
this optimal @* through the loss function gradient,
derived from the temporal difference (TD) learning
framework:

Ops1 =0, + 0y (Tt + 'yrglax Qo, (8141, Q1)
t+1

— Qo, (st,a1))VoQo, (51, ar),
(2.11)

Where 6 represents the parameters of the Q-
network and « is the learning rate. You can see the
pseudocode for PQN in Appendix A, specifically in
Algorithm A.1.

For simplicity and readability, we drop the ex-
plicit time-step indices for states and actions in the
following equations and pseudocodes (i.e., s; is sim-
plified to s, s;41 to §’, and similarly for actions and
rewards).

2.3 Dyna Q-learning

First introduced by Sutton in 1991 [33], Dyna
Q-learning expands upon the already existing Q-

learning [42] with the addition of the model com-
ponent and planning.

In addition to updating the Q-values based on
the real transitions (s,a,r,s’), Dyna Q-learning
learns an empirical model of the “world“ or, more
formally, a model of the environment’s dynamics,
usually denoted as P(s’|s,a) and R(s, a). This gives
the agent the ability to “imagine“ the next states
and actions as a result of its knowledge of the world
(i.e., the learned world model) and also based on its
current state.

The ingenuity of model-based algorithms does
not necessarily come from the world model compo-
nent, as this alone does not solve any problems. The
true advancements come from how an agent uses
these predictions of the future states and actions
of the environment. After a number of real inter-
actions, the algorithm performs multiple simulated
updates by drawing hypothetical transitions from
the learned model and updating the Q-function
based on these “imagined“ events. This is called
the planning phase, and it has some advantages
and disadvantages. One such advantage is that it
substantially improves sample efficiency by allow-
ing the agent to exploit simulated experiences, re-
ducing the need for extensive real-world interac-
tions [16]. Additionally, this approach can acceler-
ate convergence rates and improve learning stabil-
ity, particularly in environments where real-world
data collection is costly or time-consuming [23].

A big disadvantage of the algorithm is that it
is not void of the deadly triad mentioned before.
By partially relying on planning, the algorithm can
steer the agent onto a local minima, or even make
it prone to overestimation [15].

The Dyna-Q algorithm, although intricate, is
quite simple at its core. As mentioned before, it
maintains the core concept of Q-learning, but adds
the two extra components: model learning and
planning. For pseudocode of the algorithm, see Ap-
pendix A, specifically in Algorithm A.2.

3 Methods

By integrating the previously introduced PQN
(Section 2.2) with Dyna Q-learning (Section 2.3),
we arrive at the Parallelized Dyna Q-Network
(PDQN). The central motivation behind this algo-
rithm is to enhance both the convergence speed and

Vectorized
Environment
Learning
Batch
Batched
Interact
Agent Model Learning
Simulated)
Transitions Planning for
n Steps
After d Initial Steps
L
<«
Model

Figure 3.1: Diagram of PDQN: Inner (green)
loop represents already existing PQN logic,
while the Outer loop (blue) represents the new,
PDQN logic, which includes the model, model
learning and planning.

performance of PQN by leveraging the Dyna archi-
tecture’s planning component, which does not rely
on additional interactions with the environment to
update its Q function [8, 27].

3.1 PDQN

PDQN is thus an expanded version of PQN that
incorporates Dyna Q-learning. As depicted in Fig-
ure 3.1, the green loop (the inner loop) represents
the unaltered PQN framework, maintaining paral-
lelized interactions between the agent and multiple
vectorized environments. Meanwhile, the blue loop
(the outer loop) introduces the model component,
reflecting how the PQN algorithm is combined with
the Dyna-Q architecture’s planning mechanism.

3.1.1 Algorithm and Innovation

To better understand the inner workings of PDQN,
we will begin with its first component: the model
loss function. This function is central to model-
based learning methods, including the approach
used here. Immediately after PQN updates its net-
work weights and Q-function (see lines 10 and 11 in

Algorithm 3.1), the model My is updated by mini-
mizing the following mean-squared error (MSE) in-
spired loss (line 12 in Algorithm 3.1):

L = ||P} (si, ai) — 55
+ 1P (50, a) — 712
+ ||P$°“e(si7ai) — done; ||,

where P£7 Pf’, and Pgone denote the learned
model components for predicting the next state,
the reward, and whether the episode has ended,
respectively. By minimizing this squared error for
each transition sample (si, Ay S5, T4, donei), PDQN
refines its internal model without requiring addi-
tional interactions with the environment. The im-
plementation of the Pﬁone was done because we do
not have any direct information about the environ-
ment, thus predicting the end state helps with the
overall performance and stability of the model.

Once the loss L is computed, the parameters
¢ of the model network are updated via gradient
descent (line 13 in Algorithm 3.1):

¢~ ¢ — BVyLm,

where 3 is the learning rate. Notably, PDQN’s
model network follows the same general structure
as PQN’s network, ensuring compatibility and effi-
cient parameter updates.

After said updates on the model are done, the
planning can finally start. There are two hyperpa-
rameters that are specific to the planning phase,
namely Ugelay and n, both of which can be found
in Algorithm 3.1 line 15. The first of the two tells
the algorithm after how many update steps plan-
ning can start, which we also call planning delay
(or PD), whereas the second one, or planning steps
(or PS), tells the algorithm how many ”imaginary
steps in advance the algorithm can take”.

The purpose of this study is to find out whether
PDQN performs better in terms of convergence
speed and performance than the baseline, PQN. In
order to correctly assess the performance of PDQN,
we will compare it with PQN, the exact details of
which will be described in the upcoming section
(3.2).

Algorithm 3.1 (PDQN) (s,a,a’,r, target are B-
dim vectors)

0 < initialize Q-network parameters

¢ < initialize M parameters

s <+ initial state sqg ~ Py

set parameters: learning rate « for Qy, 8 for

My, discount <, exploration rate €, planning

steps n, planning delay updates ugclay

5: initialize environments B in parallel with initial
states s;, for each 1 € B

6: for each episode do

7. for each step ¢ in B (in parallel) do

a; ~ Unif(A), with prob. e,
8: a; < .
argmax, Qg(s;,a’), otherwise,
9: s}, 1, done; <—~ P(s;,a;)
10: target, — T +
5 1(—|d0nei) maxy Qo(sh,a’)
11: update 0: 0 — 0 -
a Vo ||StopGrad[target] — Qg(si7ai)’|2
12: update My: Lag ||Pf(si,ai) —sh)? +
[1Pf(si,ai) — rill® + PO (si,0i) —
done; ||?
13: P—d—BVyLm
14: i < s
15: if current update step > ugelay and n >0
then
16: for j = 1 to n (model-based planning
steps) do
17: a; «—
a; ~ Unif(A), with prob. e,
argmax, Qg(sj,a’), otherwise,
18: sl, 1j, donej <=~ Py(s;,a;)
19: target; — T +
v 1(—done;) maxa Qa(s},a’)
20: update 6: 0 — 0 -

a Vo ||StopGrad|target] — Qo (s;, a;) H2

21: sj ¢ 8
22: end for
23: end if

24: end for

25: end for

3.2 Experimental Setup

To maintain a proper ground for analysis of the
additions, we kept the structural PQN code and
algorithm unchanged. The only changes/additions
to the original code were made in regards to the
Dyna architecture i.e., the implementation of the
model network and the planning.

We have chosen the MinAtar environment as
the test benchmark for the comparison between
the two algorithms, running the following environ-
ments: Asterix, Breakout, Freeway and Space In-
vaders. We ran both PQN and PDQN with the
same general hyperparameters (i.e., not PDQN spe-
cific) for a total of 10 runs and 3.0 x 107 steps on
each individual environment.

In order to find the best combination of values
for PD and PS, we performed a grid-style hyperpa-
rameter search of the following values seen in Table
3.1.

One such example of a run can be seen in Figure
3.2. After running this grid search for every envi-
ronment, we noticed that the most common occur-
rence of the best performing combination of hyper-
parameters is with PS = 2 and PD = 1000 for Space
Invaders and Freeway, PS = 5 and PD = 1000 for
Asterix and PS = 20 and PD = 500 for Breakout.
See Appendix B for the rest of the plots showing
the performed grid searches on their respective en-
vironments.

3.2.1 Reproductibility

All experiments are fully reproducible using
the code and data made publicly available at
https://github.com/stoianraresstefan/pdqn. Also
see the full list of hyperparameters found in Ap-
pendix C and the implementation details in Ap-
pendix D.

3.2.2 Hardware

The experiments were conducted on personal hard-
ware, being equipped with an NVIDIA GeForce

Table 3.1: Hyperparameter Search and Their
Values.

PS |25
PD | 0| 100

10
500

20
1000

5000

https://github.com/stoianraresstefan/pdqn

Hyperparameter Tuning for Behavior Policies in Freeway MinAtar

= Plan-20-Delay-5000
- 00

Return

env_step

5M 10M 15M 20M 25M

Figure 3.2: Diagram of hyperparameter grid-
search performed on Freeway for PDQN. Best
performing combination here is PS = 2 and PD
= 1000; Other combinations such as PS = 5 and
PD = 0 performed similarly.

RTX 4080 Mobile GPU and Intel Core 19-14900HX
CPU.

4 Results

In order to asses the performance of the algorithms,
we will compare the two given their mean and stan-
dard deviation to analyze the overall performance.
We will also look at the convergence speed that is
observable in the plots.

Inspecting the performance of PDQN versus the
baseline in Space Invaders, we observe that there is
an overlap in performance, PDQN having a mean
of 167.00 4 1.14 on the Target Policy and 125.39 +
2.06 on the behavior policy, whereas the PQN (i.e.,
the baseline) has a mean of 165.90 + 1.26 on the
target policy and 123.39 + 1.57 on the behavior pol-
icy. This tells us that model learning and planning
do work, but do not outperform PQN. For all the
results and plots of both results and world model
losses, see Appendix E.

The plots for behavior and target policies above
are found in Figures 4.1a and 4.1b.

Another example is PDQN versus baseline in As-
terix. Here, the results are quite similar, with the
PDQN having a mean of 72.96 4+ 0.21 on the tar-
get policy and 50.43 £ 0.49 on the behavior pol-
icy, while the PQN (i.e. the baseline) has a mean
of 73.10 £ 0.16 on the target policy and 49.39 +
0.59 on the behavior policy. The results tell us that
PDQN does not outperform or underperform com-
pared to PQN.

Target Policy (Greedy) in the SPACEINV_DATA Environment
175

oA el W

125

100

Return

50

25 |
/ Configurations

| —— Spacelnvaders-Baseline
0 - Spacelnvaders-PDQN

0 20
Environment Steps (Millions)

(a) Space Invaders Target Plot.

Behavior Policy (E-Greedy) in the SPACEINV_DATA Environment

120 /\/\/W
100 fW

or

60

Return

40 [

|
20 /

/ Configurations
/ —— Spacelnvaders-Baseline
of 1 Spacelnvaders-PDQN
0 20

Environment Steps (Millions)

(b) Space Invaders Behavior Plot.

Figure 4.1: Blue (full) line represents the base-
line (PQN), while the orange (dotted) line rep-
resents PDQN. The plots represent the learning
curves of both algorithms on the Space Invaders
environment averaged over 10 runs with PS =
2 and PD = 1000. Both see similar growth and
variance.

Looking at the plots of PDQN versus baseline in
Asterix (see Figures 4.2a and 4.2b), we notice simi-
lar performance in both, but a slight drop in perfor-
mance for PDQN;, caused by the delay in planning,
but it does reach back to peak performance quickly.

For a full statistical comparison between PDQN
and PQN, see Table E.3 in Appendix E.

5 Discussion

In this study, we investigated the effects of inte-
grating Dyna Q-learning into the Parallelized Q-
Network (PQN) framework, creating Parallelized
Dyna Q-Network (PDQN)—a fully online, GPU-
accelerated reinforcement learning algorithm. Our
primary goal was to assess whether incorporating a
planning component through the Dyna architecture
could improve convergence speed without compro-
mising performance. Given the limited research on
model-based learning in fully GPU-accelerated set-
tings, this work aimed to provide insight into how
parallelized model-based methods behave in such a
setting.

As highlighted in Section 1, end-to-end GPU
training in reinforcement learning (RL) remains
in its early stages, particularly regarding model
learning. Most existing research on world mod-
els and model-based RL has been conducted us-
ing CPU-based or hybrid CPU-GPU architectures
[11, 22, 43], leaving a gap in understanding how
these methods perform in a fully GPU-parallelized
context.

Motivated by this gap, one of the key questions
we explored was whether incorporating model-
based planning can provide significant advantages
in scenarios that leverage high parallelization. Tra-
ditional model-based RL algorithms such as Dyna-
Q [33], Dreamer [13], and MuZero [12]—all of which
have been extensively studied—rely on different ar-
chitectural training methods, with Dreamer and
MuZero in particular known for their high compu-
tational demands.

In contrast, our PDQN algorithm adheres to the
fully online and parallelized approach introduced
by PQN. The advantages provided by the PQN
architecture naturally carry over into our imple-
mentation, including the high degree of paralleliza-
tion enabled by end-to-end GPU training and the
removal of the replay buffer. Building upon this

Target Policy (Greedy) in the ASTERIX_DATA Environment

70 WV

60

50

Return

30
20

10 Configurations

| —— Asterix-Baseline
N e Asterix-PDQN

0 20
Environment Steps (Millions)

(a) Asterix Target Plot.

Behavior Policy (E-Greedy) in the ASTERIX_DATA Environment

50

il

20

Return

10 |

Configurations
—— Asterix-Baseline
o < Asterix-PDQN

Environment Steps (Millions)

(b) Asterix Behavior Plot.

Figure 4.2: Blue (full) line represents the base-
line (PQN), while the orange (dotted) line rep-
resents PDQN. The plots represent the learning
curves of both algorithms on the Asterix envi-
ronment averaged over 10 runs with PS = 5 and
PD = 1000. At around 5 million steps, PDQN
has a drop in performance, but at 8 million steps
it stabilizes back. Both see the same consistent
growth in score up until 30 million steps.

foundation, we hypothesized that augmenting PQN
with Dyna Q-learning would either improve overall
performance or accelerate convergence, given the
known benefits of model-based learning. However,
considering the limited research specifically ex-
amining the interplay between parallelization and
model-based learning in deep RL, further investiga-
tion is necessary to fully understand the trade-offs
and potential benefits.

To answer the above questions, we chose four en-
vironments from the MinAtar benchmark suite to
conduct our research: Asterix, Breakout, Freeway,
and Space Invaders. These environments serve as
simplified versions of their ALE counterparts [4],
conveying significantly less data and requiring less
complex policies for learning. However, an impor-
tant limitation is that our study only explored a
subset of environments, meaning that we cannot
generalize PDQN’s effectiveness to more complex
or diverse benchmarks.

Our experimental results indicate that model-
based methods can function effectively in a par-
allelized GPU setting. Although the observed per-
formance remains on par with that of PQN (with
the exception of Breakout), they remain promis-
ing given the limited number of environments and
training runs performed. It is also worth consid-
ering whether this performance is influenced by
the simplicity of the MinAtar environments, which
might not fully leverage the benefits of model-
based planning. More extensive testing across dif-
ferent benchmarks would be necessary to establish
a stronger claim about PDQN’s promising results.

The results in Table E.3 provide statistical ev-
idence regarding the performance differences be-
tween PDQN and its baseline PQN across four Mi-
nAtar environments. Notably, PDQN demonstrates
a statistically significant and large improvement
in both target and behavior policies for Break-
out, with Cohen’s d values exceeding 2. In Free-
way, the results also indicate large effects for both
policy types, although the direction of the effect dif-
fers, with negative effect size for the target policy
and positive for the behavior policy. For Asterix
and Space Invaders, however, the differences are
not statistically significant, and the effect sizes are
small. These findings suggest that PDQN can out-
perform PQN in certain environments, particularly
those where planning provides an advantage, but
the benefits do not generalize consistently across

all tasks. Further analysis is required to understand
the environment-specific characteristics that influ-
ence the effectiveness of integrated planning in par-
allelized settings.

On a more pessimistic note, these results were
expected to some extent. A research performed by
Taher Jafferjee et. al [15] come up with Hallu-
cinated Value Hypothesis (HVH), which suggests
that when Dyna-style agents update value func-
tions using simulated experiences from imperfect
models, they may generate ”hallucinated” states.
The study further investigates this by running sev-
eral experiments, and some results, which are based
on Dyna variations, perform worse than normal
Q-learning. Aligning our results to this show that
PDQN performed as well as normal PQN and, in
the case of Breakout, worse, which should add cred-
ibility to their findings.

Our research also highlights the importance of
PDQN’s two distinct hyperparameters: planning
steps (PS) and planning delay (PD). These parame-
ters appear to be environment-dependent, influenc-
ing the overall performance and convergence speed.
This is particularly evident in the observed differ-
ences in optimal PS values between Asterix and
Space Invaders, as discussed in Section 4. A poten-
tial rule of thumb emerging from our results is that
short-horizon planning (lower PS values) tends to
perform better, while higher PD values allow the
model to stabilize before planning begins, leading
to more effective updates.

5.1 Future Work

Our results highlight an interesting trade-off be-
tween architectural simplicity and learning robust-
ness in model-based RL. Although PDQN success-
fully integrates planning into a parallelized GPU
setting, it does not outperform PQN. The bal-
ance between real and simulated experience re-
mains an open challenge in reinforcement learn-
ing, and further exploration of this aspect could
yield valuable insights for the development of next-
generation parallelized model-based algorithms.
To further validate the applicability of PDQN, a
natural extension of this work would be to evaluate
its performance across a wider range of environ-
ments, including larger-scale benchmarks such as
ALE [4], the DM Control Suite [35], or Mujoco-
based continuous control tasks [38]. Such an evalu-

ation would provide a clearer understanding of how
PDQN scales with task complexity and whether the
observed trends hold in more challenging and di-
verse settings.

In parallel, improvements in the model learn-
ing component itself present another promising re-
search direction. Future work could explore better
architectural designs for the learned world model,
incorporating techniques such as contrastive learn-
ing [17], transformer-based dynamics models [6],
or Bayesian uncertainty estimation [37]. Enhanc-
ing model accuracy in this way could mitigate the
risks associated with model errors, potentially lead-
ing to faster convergence and stronger final policy
performance.

Beyond model refinement, modifications to the
algorithmic framework of PDQN could also be ex-
plored. One promising avenue would be testing
variations of the Dyna algorithm itself, such as
the Multi-step Predecessor Dyna, which has been
proposed to alleviate issues related to hallucinated
value updates (HVH) [15]. Alternatively, transi-
tioning to different model-based families, such as
the state-of-the-art Dreamer [13] or MuZero [12]
algorithms, could offer further performance gains,
especially in environments where Dyna-style meth-
ods are known to have limitations [3, 41].

Finally, while the current implementation of
PDQN ensures reproducibility through a container-
ized Docker setup, it also introduces deployment
constraints. Future work could aim to enhance flexi-
bility by enabling execution outside of Docker while
preserving the benefits of an end-to-end parallelized
GPU architecture.

6 Conclusions

In conclusion, our exploration of the Parallelized
Dyna Q-Network (PDQN) demonstrates that in-
tegrating a model-based planning component into
a purely online, GPU-accelerated reinforcement
learning framework is both feasible and potentially
beneficial. Across the selected MinAtar environ-
ments, PDQN maintained comparable performance
to the baseline Parallelized Q-Network (PQN). Al-
though there are no significant gains or losses, the
results suggest that short-horizon planning—with a
learned model refined over time—can help stabilize
learning in a fully online setting. Notably, the two

hyperparameters specific to PDQN, planning steps
(PS) and planning delay (PD), were shown to be
environment-dependent, hinting that tuning these
carefully is key to enhancing performance.

At the same time, the study highlights several av-
enues for future work. Extending PDQN to larger-
scale benchmarks, such as the full Atari suite or
more complex continuous-control domains, would
clarify how well its advantages transfer beyond
simplified environments. Moreover, experimenting
with alternative model architectures could mitigate
model inaccuracies, particularly when faced with
more complex dynamics or longer-horizon tasks.
By pursuing these directions, researchers can fur-
ther evaluate and refine the balance between com-
putational efficiency, sample efficiency, and stabil-
ity when employing model-based planning in par-
allelized, end-to-end GPU reinforcement learning.

References

[1] A. Andres, L. Schéafer, S. V. Albrecht, and
J. Del Ser. Using offline data to speed up
reinforcement learning in procedurally gen-
erated environments. Neurocomputing, 618:
129079, 2025. ISSN 0925-2312. doi: https:
//doi.org/10.1016/j.neucom.2024.129079.
URL https://www.sciencedirect.com/
science/article/pii/S0925231224018502.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer
normalization, 2016. URL https://arxiv.
org/abs/1607.06450.

[3] B. Barkley and D. Fridovich-Keil. Steal-
ing that free lunch: Exposing the limits of
dyna-style reinforcement learning, 2024. URL
https://arxiv.org/abs/2412.14312.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and
M. Bowling. The arcade learning environment:
An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:
253-279, June 2013. ISSN 1076-9757. doi:
10.1613/jair.3912. URL http://dx.doi.org/
10.1613/jair.3912.

[5] R. Bellman. A markovian decision pro-
cess. Journal of Mathematics and Mechan-

ics, 6(5):679-684, 1957. ISSN 00959057,

10

https://www.sciencedirect.com/science/article/pii/S0925231224018502
https://www.sciencedirect.com/science/article/pii/S0925231224018502
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2412.14312
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912

[10]

[11]

19435274. URL http://www. jstor.org/
stable/24900506.

P. Bera and J. Mondal. Predicting future ki-
netic states of physicochemical systems using
generative pre-trained transformer. bioRxiv,
2024. doi: 10.1101/2024.05.22.595440. URL
https://www.biorxiv.org/content/early/
2024/06/19/2024.05.22.595440.

J. Bradbury, R. Frostig, P. Hawkins, M. J.
Johnson, C. Leary, D. Maclaurin, G. Nec-
ula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang. Jax: Composable
transformations of python+numpy programs.
http://github.com/google/jax, 2018. Ac-
cessed: 2025-03-25.

K. Farooghi, M. Samadi, and H. Khaloozadeh.
Tabular dyna-q algorithm for online calcu-
lation of Iqr gains: A simulation study. In
2023 International Conference on Engineering
and Emerging Technologies (ICEET), pages
1-6, 2023. doi: 10.1109/ICEET60227.2023.
10525853.

R. Figueiredo Prudencio, M. R. O. A. Max-
imo, and E. L. Colombini. A survey on of-
fline reinforcement learning: Taxonomy, re-
view, and open problems. IEFE Transactions
on Neural Networks and Learning Systems, 35
(8):10237-10257, 2024. doi: 10.1109/TNNLS.
2023.32502609.

M. Gallici, M. Fellows, B. Ellis, B. Pou, I. Mas-
mitja, J. N. Foerster, and M. Martin. Simpli-
fying deep temporal difference learning, 2024.
URL https://arxiv.org/abs/2407.04811.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine.
Continuous deep g-learning with model-based
acceleration. In M. F. Balcan and K. Q.
Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine
Learning Research, pages 2829-2838, New
York, New York, USA, 20-22 Jun 2016.
PMLR. URL https://proceedings.mlr.
press/v48/gul6.html.

H. Guei, Y.-R. Ju, W.-Y. Chen, and T.-R. Wu.
Interpreting the learned model in muzero plan-

[13]

[14]

[18]

[20]

ning, 2024. URL https://arxiv.org/abs/
2411.04580.

D. Hafner, J. Pasukonis, J. Ba, and T. Lil-
licrap. Mastering diverse domains through
world models, 2024. URL https://arxiv.
org/abs/2301.04104.

S. Ioffe and C. Szegedy. Batch normal-
ization: Accelerating deep network train-
ing by reducing internal covariate shift.
In F. Bach and D. Blei, editors, Pro-
ceedings of the 32nd International Confer-
ence on Machine Learning, volume 37 of
Proceedings of Machine Learning Research,
pages 448-456, Lille, France, 07-09 Jul 2015.
PMLR. URL https://proceedings.mlr.
press/v37/ioffel5.html.

T. Jafferjee, E. Imani, E. Talvitie, M. White,
and M. Bowling. Hallucinating value: A pit-
fall of dyna-style planning with imperfect envi-
ronment models, 2020. URL https://arxiv.
org/abs/2006.04363.

L. P. Kaelbling, M. L. Littman, and A. W.

Moore. Reinforcement learning: A survey,
1996. URL https://arxiv.org/abs/cs/
9605103.

P. H. Le-Khac, G. Healy, and A. F. Smeaton.
Contrastive representation learning: A frame-
work and review. I[FEEE Access, 8:193907—

193934, 2020. doi: 10.1109/ACCESS.2020.
3031549.
Y. LeCun, Y. Bengio, and G. Hinton.

Deep learning. Nature, 521(7553):436-444,

2015. ISSN 1476-4687. doi: 10.1038/
naturel4539. URL https://doi.org/10.
1038/nature14539.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Of-
fline reinforcement learning: Tutorial, review,
and perspectives on open problems, 2020. URL
https://arxiv.org/abs/2005.01643.

C. Li, R. Jia, J. Liu, Y. Zhang, Y. Niu,
Y. Yang, Y. Liu, and W. Ouyang. Theo-
retically guaranteed policy improvement dis-
tilled from model-based planning, 2023. URL
https://arxiv.org/abs/2307.12933.

11

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://www.biorxiv.org/content/early/2024/06/19/2024.05.22.595440
https://www.biorxiv.org/content/early/2024/06/19/2024.05.22.595440
http://github.com/google/jax
https://arxiv.org/abs/2407.04811
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v48/gu16.html
https://arxiv.org/abs/2411.04580
https://arxiv.org/abs/2411.04580
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/2301.04104
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/2006.04363
https://arxiv.org/abs/2006.04363
https://arxiv.org/abs/cs/9605103
https://arxiv.org/abs/cs/9605103
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2307.12933

[21]

[22]

[23]

[25]

[27]

L.-J. Lin. Self-improving reactive agents
based on reinforcement learning, planning
and teaching. Machine Learning, 8(3):293—

321, 1992. ISSN 1573-0565. doi: 10.1007/
BF00992699. URL https://doi.org/10.
1007/BF00992699.

Z. Liu, X. Xu, P. Qiao, and D. Li. Accel-
eration for deep reinforcement learning us-
ing parallel and distributed computing: A
survey. ACM Comput. Surv., 57(4), Dec.
2024. ISSN 0360-0300. doi: 10.1145/
3703453. URL https://doi-org.proxy-ub.
rug.nl/10.1145/3703453.

F.-M. Luo, T. Xu, H. Lai, X.-H. Chen,
W. Zhang, and Y. Yu. A survey on model-
based reinforcement learning, 2022. URL
https://arxiv.org/abs/2206.09328.

U. A. Mishra, S. R. Samineni, P. Goel, C. Kun-
jeti, H. Lodha, A. Singh, A. Sagi, S. Bhatna-
gar, and S. Kolathaya. Dynamic mirror de-
scent based model predictive control for ac-
celerating robot learning, 2021. URL https:
//arxiv.org/abs/2112.02999.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Os-
trovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wier-
stra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning.
Nature, 518(7540):529-533, 2015. ISSN 1476-
4687. doi: 10.1038/naturel4236. URL https:
//doi.org/10.1038/nature14236.

J. S. Obando-Ceron and P. S. Castro. Revis-
iting rainbow: Promoting more insightful and
inclusive deep reinforcement learning research,
2021. URL https://arxiv.org/abs/2011.
14826.

M. Pei, H. An, B. Liu, and C. Wang. An im-
proved dyna-q algorithm for mobile robot path
planning in unknown dynamic environment.
IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 52(7):4415-4425, 2022.
doi: 10.1109/TSMC.2021.3096935.

B. Peng, X. Li, J. Gao, J. Liu, K.-F. Wong, and
S.-Y. Su. Deep dyna-q: Integrating planning

[29]

[31]

for task-completion dialogue policy learning,
2018. URL https://arxiv.org/abs/1801.
06176.

B. Peng, Y. Mu, Y. Guan, S. E. Li, Y. Yin, and
J. Chen. Model-based actor-critic with chance
constraint for stochastic system, 2021. URL
https://arxiv.org/abs/2012.10716.

A. Rutherford, B. Ellis, M. Gallici, J. Cook,
A. Lupu, G. Ingvarsson, T. Willi, A. Khan,
C. S. de Witt, A. Souly, et al. Jaxmarl:
Multi-agent rl environments in jax. arXiv
preprint arXiv:2311.10090, 2023. URL https:
//arxiv.org/abs/2311.10090.

J. Schulman, F. Wolski, P. Dhariwal, A. Rad-
ford, and O. Klimov. Proximal policy opti-
mization algorithms, 2017. URL https://
arxiv.org/abs/1707.06347.

S. Sujit, P. H. M. Braga, J. Bornschein, and
S. E. Kahou. Bridging the gap between offline
and online reinforcement learning evaluation
methodologies, 2023. URL https://arxiv.
org/abs/2212.08131.

R. S. Sutton. Dyna, an integrated ar-
chitecture for learning, planning, and re-
acting. SIGART Bull., 2(4):160-163, July
1991. ISSN 0163-5719. doi: 10.1145/122344.
122377. URL https://doi-org.proxy-ub.
rug.nl/10.1145/122344.122377.

R. S. Sutton and A. G. Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Y. Tassa, Y. Doron, A. Muldal, T. Erez,
Y. Li, D. de Las Casas, D. Budden, A. Abdol-
maleki, J. Merel, A. Lefrancq, T. Lillicrap, and
M. Riedmiller. Deepmind control suite, 2018.
URL https://arxiv.org/abs/1801.00690.

T. Tateyama, S. Kawata, and T. Shimomura.
Parallel reinforcement learning systems using
exploration agents and dyna-q algorithm. In
SICE Annual Conference 2007, pages 2774—
2778, 2007. doi: 10.1109/SICE.2007.4421460.

M. Teye, H. Azizpour, and K. Smith. Bayesian
uncertainty estimation for batch normalized
deep networks. In J. Dy and A. Krause,

12

https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi-org.proxy-ub.rug.nl/10.1145/3703453
https://doi-org.proxy-ub.rug.nl/10.1145/3703453
https://arxiv.org/abs/2206.09328
https://arxiv.org/abs/2112.02999
https://arxiv.org/abs/2112.02999
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2011.14826
https://arxiv.org/abs/2011.14826
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/2012.10716
https://arxiv.org/abs/2311.10090
https://arxiv.org/abs/2311.10090
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2212.08131
https://arxiv.org/abs/2212.08131
https://doi-org.proxy-ub.rug.nl/10.1145/122344.122377
https://doi-org.proxy-ub.rug.nl/10.1145/122344.122377
https://arxiv.org/abs/1801.00690

[38]

editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learn-
ing Research, pages 4907-4916. PMLR, 10-15
Jul 2018. URL https://proceedings.mlr.
press/v80/teyel8a.html.

E. Todorov, T. Erez, and Y. Tassa. Mujoco:
A physics engine for model-based control. In
2012 IEFEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5026—
5033, 2012. doi: 10.1109/IR0OS.2012.6386109.

J. Tsitsiklis and B. Van Roy. Analy-
sis of temporal-diffference learning with
function approximation. In M. Mozer,

M. Jordan, and T. Petsche, editors, Ad-
vances n Neural Information Processing
Systems, volume 9. MIT Press, 1996.
URL https://proceedings.neurips.
cc/paper_files/paper/1996/file/

€00406144cle7e35240afed70f34166a-Paper.

pdf.

H. van Hasselt, Y. Doron, F. Strub, M. Hessel,
N. Sonnerat, and J. Modayil. Deep reinforce-
ment learning and the deadly triad, 2018. URL
https://arxiv.org/abs/1812.02648.

Y. Wan, A. Rahimi-Kalahroudi, J. Rajendran,
I. Momennejad, S. Chandar, and H. van Seijen.
Towards evaluating adaptivity of model-based
reinforcement learning methods, 2022. URL
https://arxiv.org/abs/2204.11464.

C. J. C. H. Watkins. Learning with Delayed
Rewards. Phd thesis, Cambridge University
Psychology Department, 1989.

Z. Yang, L. Xing, Z. Gu, Y. Xiao, Y. Zhou,
Z. Huang, and L. Xue. Model-based rein-
forcement learning and neural-network-based
policy compression for spacecraft rendezvous
on resource-constrained embedded systems.
IEEE Transactions on Industrial Informatics,
19(1):1107-1116, 2023. doi: 10.1109/T11.2022.
3192085.

K. Young and T. Tian. Minatar: An atari-
inspired testbed for thorough and repro-
ducible reinforcement learning experiments,
2019. URL https://arxiv.org/abs/1903.
03176.

[45] L. Zou, L. Xia, P. Du, Z. Zhang, T. Bai,

W. Liu, J.-Y. Nie, and D. Yin. Pseudo
dyna-q: A reinforcement learning framework
for interactive recommendation. In Pro-
ceedings of the 13th International Conference
on Web Search and Data Mining, WSDM
20, page 816-824, New York, NY, USA,
2020. Association for Computing Machinery.
ISBN 9781450368223. doi: 10.1145/3336191.
3371801. URL https://doi-org.proxy-ub.
rug.nl/10.1145/3336191.3371801.

13

https://proceedings.mlr.press/v80/teye18a.html
https://proceedings.mlr.press/v80/teye18a.html
https://proceedings.neurips.cc/paper_files/paper/1996/file/e00406144c1e7e35240afed70f34166a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/e00406144c1e7e35240afed70f34166a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/e00406144c1e7e35240afed70f34166a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/e00406144c1e7e35240afed70f34166a-Paper.pdf
https://arxiv.org/abs/1812.02648
https://arxiv.org/abs/2204.11464
https://arxiv.org/abs/1903.03176
https://arxiv.org/abs/1903.03176
https://doi-org.proxy-ub.rug.nl/10.1145/3336191.3371801
https://doi-org.proxy-ub.rug.nl/10.1145/3336191.3371801

A Pseudocodes

Algorithm A.1 PQN (s,a,s’,r target are B-dim vectors)

AN A

10:

: ¢ < initialize regularized Q-network parameters
s < initial state sqg ~ Py
: for each episode do
for each i € B (in parallel) do
L Unif(A), with prob. e,
a
’ arg max, Qs(s;,a’), otherwise,
8i,Ti < sy~ Ps(si, a;), i ~ Pp(si,a;)
target; <— r; + vy 1(not terminal) max, Qg4(s},a’)
end for)
¢+ ¢ —aVy Y, p[StopGrad(target;) — Qq(si,a;)]
end for

Algorithm A.2 Dyna-Q

1: @ < initialize Q-function

2: M < initialize model (empty or parametric)
3: s sg~PF

4: for each episode do

5: for each real step do
6:
random action from A, with prob. e,
arg max, Q(s,a’), otherwise,
7: s, r <« environment dynamics from (s, a)
8:
Qs,0) Qs,0) + alr + ymaxQ(s',a’) — Q(s,a)]
9: M~ MU{(s,a,r,s)} /* Update the model */
10: for k =1to K do
11: (8,a) + sample from M
12: (7,8) « M(38,a)
13:
Q) « Q5,8) + ali + ymaxQ(F,a) — Q(5.4)]
14: end for
15: s+ s
16: end for
17: end for

14

B More Hyperparameter Search Plots

50

Return

40

30

20

10

5M 10M

Figure B.1: Diagram of hyperparameter grid search performed on

PS = 5 and PD = 1000.

50

Return

40

30

20

10

5M 10M

Hyperparameter Tuning for Asterix MinAtar

15M

Hyperparameter Tuning for Breakout MinAtar

15M

20M

20M

25M

25M

env_step

env_step

Plan-20-Delay-5000
Plan-20-Delay-1000
Plan-20-Delay-500
Plan-20-Delay-100
Plan-20-Delay-0
Plan-10-Delay-5000
Plan-10-Delay-1000
Plan-10-Delay-500
Plan-10-Delay-100
Plan-10-Delay-0
Plan-5-Delay-5000
Plan-5-Delay-1000
Plan-5-Delay-500
Plan-5-Delay-100
Plan-5-Delay-0
Plan-2-Delay-5000
Plan-2-Delay-1000
Plan-2-Delay-500
Plan-2-Delay-100
Plan-2-Delay-0

Asterix. Chosen parameters:

Plan-20-Delay-2000
Plan-20-Delay-1000
Plan-20-Delay-500
Plan-20-Delay-100
Plan-20-Delay-0
Plan-10-Delay-2000
Plan-10-Delay-1000
Plan-10-Delay-500
Plan-10-Delay-100
Plan-10-Delay-0
Plan-5-Delay-2000
Plan-5-Delay-1000
Plan-5-Delay-500
Plan-5-Delay-100
Plan-5-Delay-0
Plan-2-Delay-2000
Plan-2-Delay-1000
Plan-2-Delay-500
Plan-2-Delay-100
Plan-2-Delay-0

Figure B.2: Diagram of hyperparameter grid search performed on Breakout. Chosen parameters:

PS = 20 and PD = 500.

15

Hyperparameter Tuning for Space Invaders MinAtar

120
100
80
60
40

20

env_step

5M 10M 15M 20M 25M -

Plan-20-Delay-2000
Plan-20-Delay-1000
Plan-20-Delay-500
Plan-20-Delay-100
Plan-20-Delay-0
Plan-10-Delay-2000
Plan-10-Delay-1000
Plan-10-Delay-500
Plan-10-Delay-100
Plan-10-Delay-0
Plan-5-Delay-2000
Plan-5-Delay-1000
Plan-5-Delay-500
Plan-5-Delay-100
Plan-5-Delay-0
Plan-2-Delay-2000
Plan-2-Delay-1000
Plan-2-Delay-500
Plan-2-Delay-100
Plan-2-Delay-0

Figure B.3: Diagram of hyperparameter grid search performed on Space Invaders. Chosen param-

eters: PS = 2 and PD = 1000.

16

C Hyperparameters

Table C.1: Hyperparameters used for the PDQN experiments on MinAtar environments.

Hyperparameter Value
Algorithm (ALG_NAME) PDQN
Total timesteps 3 x 107
Timesteps for decay 3 x 107
Number of environments (NUM_ENVS) 128
Number of steps per update (NUM_STEPS) 32
Exploration ¢ start (EPS_START) 1.0
Exploration € finish (EPS_FINISH) 0.05
Exploration € decay (EPS_DECAY) 0.1
Planning steps (PLANNING_STEPS) 2, 5,10 or 20
Planning delay updates (PLANNING_DELAY_UPDATES) 0, 100, 500, 1000 or 5000
Use planning-specific e (USE_PLANNING_EPS) False
Planning e start (EPS_START_PLAN) 1.0
Planning € finish (EPS_FINISH_PLAN) 0.05
Planning € decay (EPS_DECAY_PLAN) 0.1
Number of minibatches (NUM_MINIBATCHES) 32
Number of epochs per update (NUM_EPOCHS) 2
Normalization type (NORM_TYPE) layer_norm
Learning rate (LR) 5x107*
Learning rate linear decay (LR-LINEAR_DECAY) True
Maximum gradient norm (MAX_GRAD_NORM) 10
Discount factor (7) 0.99

GAE parameter (\) 0.65

Environment (ENV_NAME)

Environment arguments (ENV_KWARGS)

Test during training

Test interval (TEST_INTERVAL)

Test number of environments (TEST_NUM_ENVS)
Test ¢ (EPS_TEST)

Number of seeds (NUM_SEEDS)

Random seed (SEED)

One of: Asterix-MinAtar,
Breakout-MinAtar,
Freeway-MinAtar,
Spacelnvaders-MinAtar

{}

True

0.05

128

0.0 (greedy policy)

1 (specified in config.yaml)
0 (specified in config.yaml)

17

D Implementation Details

Python is used as the main programming language, and the main library used is JAX. MinAtar is loaded
through the Gymnax library. WandB (or Weights and Biases) tool was used as the main empirical testing,
but also for doing the hyperparameter grid search and plotting of said hyperparameter searches. Pandas
and Numpy were used to read the CSV’s of the runs and make the plots and get the means and standard
deviations.

18

E More Results and Performance Plots

Table E.1: Results: Baseline vs PDQN (Target)

Asterix Breakout Freeway Space Invaders
Baseline | 73.10 £ 0.16 | 98.99 + 1.33 | 39.72 + 7.89 | 165.90 + 1.26
PDQN 72.96 £ 0.21 | 63.41 £+ 6.76 | 65.80 + 0.25 | 167.00 &+ 1.14

Table E.2: Results: Baseline vs PDQN (Behavior)

Asterix Breakout Freeway Space Invaders
Baseline | 9.39 + 0.59 | 42.73 + 1.66 | 60.75 + 0.15 | 123.39 + 1.57
PDQN 50.43 £+ 0.49 | 28.42 + 1.11 | 60.23 + 0.07 | 125.39 £+ 2.06

Table E.3: Statistical comparison between PDQN and PQN across MinAtar environments using
p-values and Cohen’s d effect sizes.

Environment | Policy Type | p-value | Cohen’s d | Effect Size
Asterix Target 0.6095 0.23 Small
Behavior 0.2120 -0.58 Medium
Target 0.0007 2.19 Large
Breakout Behavior | 4.740-06 3.04 Large
Freeway Target 0.0120 -1.40 Large
Behavior 0.0128 1.29 Large
Space Tnvaders Target 0.5470 -0.27 Small
Behavior 0.4300 -0.36 Small

E.1 Model Loss Plots

To enhance clarity and interpretability, the Y-axes of all model loss plots are displayed on a logarithmic
scale.

19

Target Policy (Greedy) in the BREAKOUT _DATA Environment Behavior Policy (E-Greedy) in the BREAKOUT_DATA Environment

100

40

80

30

60

Return
Return

40

20 10

Configurations Configurations
/ —— Breakout-Baseline —— Breakout-Baseline
o Breakout-PDQN Y e S N p Breakout-PDQN
0 20 0 20
Environment Steps (Millions) Environment Steps (Millions)
(a) Breakout Target Plot. (b) Breakout Behavior Plot.

Figure E.1: Blue (full) line represents the baseline (PQN), while the orange (dotted) line represents
PDQN. The plots represent the learning curves of both algorithms on the Breakout environment
averaged over 10 runs with PS = 20 and PD = 500. Here we notice that PDQN performs much
worse than PQN, and at around 24 million steps, PDQN seems to have reached a plateau, whereas
PQN shows signs of improvement.

20

Behavior Policy (E-Greedy) in the FREEWAY DATA Environment

PN St

Target Policy (Greedy) in the FREEWAY DATA Environment

P

60

i

40

60

50

40

£ £ |
& 39 o«
|
20
20 |
10 10 |
Configurations | Configurations
’ —— Freeway-Baseline / —— Freeway-Baseline
ol m e Freeway-PDQN o < Freeway-PDQN
0 20 0 20
Environment Steps (Millions)

Environment Steps (Millions)

(a) Freeway Target Plot. (b) Freeway Behavior Plot.
Figure E.2: Blue (full) line represents the baseline (PQN), while the orange (dotted) line represents
PDQN. The plots represent the learning curves of both algorithms on the Freeway environment
averaged over 10 runs with PS = 2 and PD = 1000. After 4 million steps, PDQN has a drastic
drop in performance, but it adjusts itself back within approximately 1 million steps. At 8 million
steps, both algorithms show slow, but steady increase in performance. PQN, however, shows signs
of runs with bad updates, leading to a sudden drop in performance, at around 27 million steps

(observable in plot a).

21

o ooo
o ~ 0=

o o
E)|

e
w

e
[N}

0.1

0.08
0.07
0.06

0.05
0.04

model_loss

5M

10M

Model Loss Plot for Asterix
— pdgn_Asterix-MinAtar

15M

20M

25M

env_step

Figure E.3: Model Loss (Y axis) over Environment Time steps (X axis) plot for Asterix MinAtar

22

Model Loss Plot for Breakout
— pdgn_Breakout-MinAtar

model_loss

0.1

0.01
env_step

5M 10M 15M 20M 25M

Figure E.4: Model Loss plot (Y axis) over Environment Time steps (X axis) for Breakout MinAtar

23

Model Loss Plot for Freeway
— pdgn_Freeway-MinAtar

O oo
o) ~l 0O
model_loss

0.4
0.3

0.2

env_step

5M 10M 15M 20M 25M

Figure E.5: Model Loss plot (Y axis) over Environment Time steps (X axis) for Freeway MinAtar

24

Model Loss Plot for Space Invaders
— pdqgn_Spacelnvaders-MinAtar

N

~ model_loss

S0 L oeoo
w B 1o N

e
[N}

0.03 e

5M 10M 15M 20M 25M

Figure E.6: Model Loss plot (Y axis) over Environment Time steps (X axis) for Space Invaders
MinAtar

25

	Introduction
	Theoretical Background
	Reinforcement Learning
	Temporal Difference (TD) Methods

	Parallelized Q-Network (PQN)
	PQN Algorithm

	Dyna Q-learning

	Methods
	PDQN
	Algorithm and Innovation

	Experimental Setup
	Reproductibility
	Hardware

	Results
	Discussion
	Future Work

	Conclusions
	Pseudocodes
	More Hyperparameter Search Plots
	Hyperparameters
	Implementation Details
	More Results and Performance Plots
	Model Loss Plots

