
Predicting and Understanding Difficult Mask
Ventilation:

Classification and Generative Networks

Mı́caél McAuley



University of Groningen

Predicting and Understanding Difficult Mask Ventilation:
Classification and Generative Networks

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Computational Cognitive Science

at University of Groningen under the supervision of
Marleen Schippers, PhD (Lecturer AI/CCS, University of Groningen)

and
Christopher Gundler (Institute for Applied Medical Informatics, Universitätsklinikum
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Abstract
Mask ventilation is a vital aspect of airway management in clinical, emergency, and surgical settings,
yet unexpected difficulty in mask ventilation remains a significant cause of morbidity and mortality.
Current predictive methods for identifying at-risk patients are often insufficient, necessitating innova-
tive approaches. Recent research suggests that vocal acoustics, influenced by upper airway anatomy,
may offer a novel predictive tool.

This study explores human-centered artificial intelligence techniques, namely Convolutional Neu-
ral Networks and Variational Autoencoders, to improve the prediction and understanding of difficult
mask ventilation. By applying AI-driven analysis to vocal biomarkers, this study aims to convert anec-
dotal intuition-based observations about voice and airway difficulty into an evidence-based predictive
model. The first objective involves developing a predictive model using mel-frequency spectrograms,
a human-interpretable audio representation, to classify patients based on vocal patterns. The second
objective investigates the generation of synthetic voice samples simulating both high-risk and routine
patients, enhancing model interpretability and serving as a potential educational tool.

Moderate success in classification was achieved, with a model obtaining a slight but meaningful
ability to distinguish difficult mask ventilation from a patients voice alone. The generative model’s
computational requirements exceeded available resources, preventing successful synthesis of voice
samples.
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1 Introduction

Mask ventilation is a crucial component of airway management. It is a non-invasive technique
whereby a mask is placed over the nose and mouth of a patient and connected to an oxygen sup-
ply. It allows healthy blood oxygen levels to be maintained when an individual cannot breathe for
themselves. While it may occur in emergency situations, it is often necessary prior to endotracheal
intubation (the insertion of a breathing tube). Mask ventilation acts as a bridge between spontaneous
breathing (naturally) and the advanced airway management found in clinical practice and surgery
(Gupta & Raina, 2024).

Failure to maintain proper ventilation can rapidly lead to serious problems, such as hypoxemia (ab-
normally low blood oxygen) or hypercarbia (abnormally high carbon dioxide in the blood), and subse-
quent complications like hemodynamic instability (unstable blood pressure) and hypoxic brain injury
(where the brain is starved of oxygen) (Cao et al., 2021). This makes the efficacy of mask ventilation
vital for patient safety. As noted by Cao et al. (2021), difficult mask ventilation is a significant con-
tributor to neurological damage and death.

Despite its routine use, unexpected difficulty in mask ventilation remains a significant challenge, con-
tributing to morbidity and mortality. Identifying predictors of difficult mask ventilation is essential
for improving patient safety, however traditional methods have proven insufficient in their predictions
in a significant number of cases. This gap in predictive ability and the identification of difficult mask
ventilation opens the floor to innovative approaches.

Recent attempts to address this challenge with novel applications have highlighted promising avenues.
By utilising subtle acoustic features in a patient’s voice, which are influenced by the anatomy of the
mouth and throat, it may be possible to develop more accurate predictive models. Previous research,
such as that by Xia et al. (2021), has laid a foundation for this approach by demonstrating the feasi-
bility of voice-based prediction in a related clinical context (namely, difficult intubation). Building on
these insights, this study explores its application to ventilation. Notably, some experienced clinicians
also report, anecdotally, that certain voice characteristics can provide early indications of difficult
mask ventilation. This research aims to use the ground work of Xia et al. (2021)’s study to transform
these clinical intuitions into an evidence-based framework.

The first objective of this research is to build and test a predictive model of difficult mask ventila-
tion using mel-frequency spectrograms. These are image representations of sounds that highlight
the frequencies humans hear, allowing analysis to be done on the same perceptual data a physician
would hear. By treating audio as images, Convolutional Neural Networks can be employed to classify
patients based on their future risk of difficult mask ventilation. Secondly, the use of Variational Au-
toencoders to generate synthetic voice samples, simulating those of both at risk and routine patients,
is investigated. This is done with the goal to improve trust in the previous models classifications,
and to serve as a potential educational tool. If this intuition is correct but only obtainable through
practical experience, being able to generate examples of high-risk and routine voices could expedite
this process.
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1.1 Research Questions
To summarise, this thesis focuses on the following problems:

Q1. Can subtle but nevertheless perceptual acoustic features in the human voice be used to
predict future difficult mask ventilation by artificial intelligence models?

Q2. Can generative artificial intelligence models be used to create new examples that capture
these acoustic features?

1.2 Thesis Outline
This paper first presents the background literature on mask ventilation, human-centered audio repre-
sentations, artificial intelligence in healthcare, and the theoretical framework of Convolutional Neural
Networks and Variational Autoencoders. It then details the methodologies employed, beginning with
data preprocessing, moving through the specifics of the model architectures, and finishing with the
optimisation of the hyperparameters. Each models performance is then discussed, and finally a sum-
mary of the findings and future directions of research are given.
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2 Background Literature
This section defines, and reviews prior studies on, each of the key components of the research. It cov-
ers mask ventilation, human centered audio representations, and artificial intelligence (AI) in health-
care, as well as the two AI models used and their theoretical and mathematical foundations.

2.1 Ventilation
While mask ventilation is often routine, difficulty can arise due to a number of factors. Identifying
these factors in advance can allow for the prediction of difficult mask ventilation (DMV) and its mit-
igation. El-Orbany and Woehlck (2009) provide several predictors, such as presence of a beard, high
body-mass-index, missing teeth, age over 55, or a history of snoring. They do however note that in
previous studies, predictions based on physical and patient history findings failed to foresee DMV in
57% of patients who were difficult to ventilate. Thus while these factors are important, additional
predictive techniques would be advantageous, for example using ultrasounds of the mouth and throat
to predict DMV (Lin, Tzeng, Hsieh, Kao, & Huang, 2021).

Xia et al. (2021) suggest a different approach. They attempted to use acoustic features, namely the
patients voice, to predict difficult intubation using logistic regression models. While an ultrasound
provides a visual representation of the oropharyngeal region, that information is also held in the
voice. Minute variations in pitch, timbre, strain, vibrato, and resonance across individuals depend
on the anatomy of the mouth and throat (Sataloff, Heman-Ackah, & Hawkshaw, 2007). Xia et al.
(2021) achieved moderately successful results, obtaining a model with a sensitivity of 86.7% and a
specificity of 63%, quite accurate at predicting difficulty when it was present but with a relatively high
false positive rate. Listening to a patient speak can, anecdotally, give physicians an impression of how
difficult they may be to ventilate or intubate. This gut feeling is an example of ’clinical intuition’, a
type of non-analytic perception. Research suggests it is an important part of how experienced physi-
cians process information, and can guide their decision making both consciously and subconsciously
(Vanstone et al., 2019; Woolley & Kostopoulou, 2013; Greenhalgh, 2002).

If subtle acoustic features in a patient’s voice can serve as predictors of DMV, then human-centered
AI techniques may offer a way to validate and enhance detection in the future. By using machine
learning approaches that compliment human perception, it may be possible to leverage these vocal
markers more systematically. In doing so, prediction models could be refined, clinical decision mak-
ing aided, and patient safety enhanced.

2.2 Human-Centered Audio Representations
To effectively capture and analyse these subtle acoustic features that physicians may be attuned to,
a human-centered audio representation is essential. A well established option is the mel-frequency
spectrogram (or mel spectrogram). A mel spectrogram is a visual representation of the frequency
content of a sound signal, specified to human perception of sound. Mel spectrograms are well suited
for machine learning models for several reasons. They reduce the dimensionality of audio data by
compressing high-frequencies, reducing the resources required for training. They also allow for the
treatment of audio as images, thus allowing for the use of the well established methodologies of com-
puter vision. Lastly, of particular relevance to this research, they highlight the perceptually relevant
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Figure 1: Waveform of audio of the word ”Nase”

features of the data, as they aim to represent how humans perceive sound (Gold, Morgan, & Ellis,
2011).

Raw audio signals represent amplitude over time, but don’t show information on the frequencies
present in the sound. Spectrograms on the other hand plot frequencies over time. A raw audio signal
can be converted to a spectrogram by taking small time windows of the signal and applying a Fourier
transform to each window. This results in a 2D representation with time on the x-axis, frequency on
the y-axis, and intensity represented by the value.

As the brain doesn’t perceive frequencies in sound linearly, being more sensitive to differences in
lower frequencies than higher frequencies, a spectrogram doesn’t quite capture the information as we
humans would experience it. The mel scale aims to approximate how humans hear pitch by com-
pressing higher frequencies and emphasising lower frequencies, leading to levels that are interpreted
as being uniform steps in pitch (O’shaughnessy, 1987). Frequency ( f ) is converted from a linear scale
to the mel scale (m) via the following:

m = 2595log10

(
1+ f

700

)
Next a series of overlapping triangular filters, or mel filter banks, are placed across the mel-scaled
frequency range. Each filter corresponds to a specific frequency band and has a peak response at its
centre frequency, tapering off to zero at the edges of adjacent filters. By passing a frequency spectrum
through these filters, each filter computes a weighted sum of the energy in its frequency band, bin-
ning the frequencies into mel-scaled bands. The result is a mel-scaled representation of the frequency
spectrum, where the y-axis is in mel bands instead of raw frequencies.

While mel spectrograms map frequencies to a scale that aligns with human hearing, the amplitude
values are still linear. Linear amplitude values can be dominated by high-energy components, mak-
ing it hard to see the lower-energy features. Converting to decibels (dB) further aligns the amplitude
representation with human perception. The dB scale compresses the audio range, making quieter
sounds more visible and easier to analyse alongside louder sounds. Additionally, when plotting spec-
trograms, the dB scale provides a clearer visualisation, highlighting details across the entire dynamic
range. Each amplitude value in the spectrogram (power) is converted to dB by the following:

dB = 10 · log10(power)
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Figure 2: Mel-frequency spectrogram of the word ”Nase”. Time on the x-axis given in seconds,
frequency on the y-axis in Hz and amplitude in decibels represented by colour intensity

Figure 1 shows the waveform of the raw audio of an individual saying the word ”Nase”, while Figure
2 shows the same audio converted to a mel-frequency spectrogram in the dB scale. With audio in
this human-centered visual format, we can apply machine-learning techniques as if analysing images,
while hopefully capturing what a person would hear if they listened to the raw audio.

2.3 Convolutional Neural Networks
One such technique is the Convolutional Neural Network (CNN). A CNN is a class of deep learning
model designed to process two dimensional (2D) data such as images. CNNs are foundational to
fields like computer vision due to their ability to learn hierarchical features from data. An example
of a CNN is seen in Figure 4. Unlike traditional fully connected neural networks, CNNs learn spatial
hierarchies and local patterns through specialised convolutional layers, making them highly efficient
for tasks involving structured data. They have proven to be effective in making predictions, particu-
larly in tasks involving image and pattern recognition (Wu, 2017). This could be used to detect the
subtle acoustic patterns that predict DMV if they are captured by a mel spectrogram.

The aforementioned convolutional layers consist of a set of filters called kernels, themselves a matrix
of a defined size m and n. Multiple kernels are used in a convolutional layer to capture different
features. Each kernel is passed over the input and performs a convolution operation, as seen in Figure
3. For a 2D input I and a kernel K, the convolution operation at position (i, j) of the input is given by:

(I ∗K)(i, j) = ∑m∑n I(i+m, j+n) ·K(m,n)

This operation captures local patterns, such as edges, textures, or spectral features, depending on the
input data. Additionally, A n by m kernel will only have n∗m weights associated with it, one for each
element of the kernel. These weights are shared across the entire input. The use of shared weights
in convolutional layers significantly reduces the number of parameters compared to fully connected
layers, making CNNs computationally efficient.

After convolution, an activation function is applied to introduce non-linearity into the model. The
Rectified Linear Unit (ReLU) is commonly used due to its simplicity and effectiveness in mitigating
the vanishing gradient problem (Fukushima, 1969). It is defined as:
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Figure 3: First convolution by a 3 by 3 kernel on a 5 by 5 input (Robinson, 2017)

ReLU(x) = max(0,x)

After the convolutional layers, the extracted features are passed through one or more fully connected
layers. These layers combine the high-level features to produce the final output, such as class proba-
bilities in a classification task.

A variety of additional layers and techniques may also be incorporated to improve performance. Fol-
lowing each convolutional layer a pooling layer may be added. These downsample the outputs of
the convolutional layers with the aim of reducing computational complexity while maintaining the
important feature information (Nagi et al., 2011). A common example is max pooling, which acts
like a kernel, passing over the output and selecting the maximum value from a small window.

Before the activation function is applied, batch normalisation may be performed. During training, this
technique standardises the outputs of a layer by subtracting the mean and dividing by the standard de-
viation of that layer. This helps mitigate issues like internal covariate shift, where the distribution of
layer inputs changes during training, causing slower convergence (Ioffe & Szegedy, 2015).

Finally, a technique called dropout can be applied to prevent overfitting (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). A small fraction of neurons are deactivated randomly each train-
ing iteration, preventing the network from becoming overly reliant on any particular set of neurons
encouraging more robust learning.

CNNs ability to automatically extract hierarchical features from data makes them well-suited for com-
plex prediction tasks found in clinical settings, such as diagnosing medical conditions from imaging
data like X-rays or MRIs (Kayalibay, Jensen, & van der Smagt, 2017). These hierarchical features
range from simple shapes, edges, or textures in an image at the low level, to complex emergent pat-
terns at the higher levels, like the presence of a lesion in an MRI, or a subtle frequency change in a
spectrogram. This demonstrates strong potential for predicting DMV from a patients voice once it
has been represented as an image via a mel spectrogram.
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Figure 4: Example of a Convolutional Neural Network classifier for vehicles, with ReLU activation
and pooling layers (MathWorks, 2017)

2.4 Applied AI in Healthcare

AI systems, including predictive models, must be designed to assist healthcare professionals rather
than replace them. As noted in their roadmap to building safe, reliable, and effective AI systems in
healthcare, Bajwa, Munir, Nori, and Williams (2021) espouse the view that AI should amplify and
augment, rather than supplant human intelligence. By providing data-driven insights, AI can help
doctors focus their expertise on critical aspects of patient care, however, the human element remains
irreplaceable, as patient care involves empathy, ethical considerations, and complex decision-making
that goes beyond algorithmic predictions. AI should therefore only ever be considered a tool to en-
hance the work of healthcare professionals.

AI systems face some major barriers to their adoption in healthcare, particularly their lack of inter-
pretability (Frasca, La Torre, Pravettoni, & Cutica, 2024). While in some tasks, particularly analytical
in nature, AI systems can outperform doctors, their ”black-box” aspect limits their use in actual med-
ical contexts. Frasca et al. (2024) found in their review of AI in the medical field, that doctors and
patients alike need to have some understanding of how and why a prediction was made in order to
trust it. This poses a challenge to complex models like CNNs, whose complex deep learning designs
are opaque in their classification.

An approach to improve interpretability in this domain is to use generative models. In this case these
models can, potentially, create synthetic examples of voices that simulate what a patient at risk of
DMV may sound like. This may help doctors to grasp the reasoning behind a model’s output. While
a predictive model simply presents its result, a generative model can give concrete demonstrations of
those results. This effectively allows one to hear what the model is hearing. By producing at risk
and routine examples they, if accurate, can increase confidence in the black-box predictive models
and grant better understanding of the acoustic features influencing the AI’s predictions. This would
not only support model validation, but could also serve as an educational tool. If varied examples of
comparable at risk and routine voices can be reliably generated, novices can have the opportunity to
refine that intuitive sense of potential difficulty, that otherwise can only be gained through practical
experience. A good generative model then can both increase trust in the predictive model, and help
more junior practitioners gain the skills of said predictive model. Thus achieving the goal of aiding
medical practitioners, rather than usurping them.
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Figure 5: Structure of a Variational Autoencoder (Otten, 2023)

2.5 Variational Autoencoders

Variational Autoencoders (VAEs) are a type of generative model that are designed to learn a latent
representation of data and generate new data samples that are similar to the training data. VAEs
are particularly useful for tasks like image generation, data compression, and unsupervised learning
(Kingma & Welling, 2022). In the context of DMV, they could be well suited to learn from the same
mel spectrograms used to train a CNN classifier, and generate new examples that can be converted
back into audible speech.

In an ordinary autoencoder model, input data is mapped to a latent space representation by an encoder.
A decoder then maps the latent space representation back to the original data space. The goal is to
minimise the reconstruction error, ensuring that the output is as close as possible to the input (Bank,
Koenigstein, & Giryes, 2023).

In VAEs (Figure 5), the latent space is probabilistic. Instead of mapping an input to a single point
in the latent space, the encoder maps it to a distribution over the latent space. This is typically a
Gaussian distribution, characterised by a mean µ, and a variance σ.

VAEs use variational inference to approximate the posterior distribution of the latent variables given
the input data. This variational inference is necessary because the posterior distribution of the latent
variables is intractable, being computationally infeasible to compute directly, as explained mathemat-
ically below.
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Let x be the observed data and z be the latent variables. The joint probability, the likelihood of
observing data x and latent variables z together, is:

p(x,z) = p(x|z)p(z)
Where p(z) is the prior distribution over the latent variables z, and p(x|z) is the likelihood, how the
data x is generated from the latent variables z. The goal is to then infer the posterior p(z|x), which is
given by Bayes’ theorem as:

p(z|x) = p(x|z)p(z)
p(x)

Where p(x) is the marginal likelihood of the observed data x. It is obtained by integrating the joint
probability p(x,z) over all possible values of the latent variables z. It represents the total probability
of the data x under the model, considering all possible configurations of z:

p(x) =
∫

p(x|z)p(z)dz

This integral is often intractable, as the dimensionality of the latent space may be large and the likeli-
hood, being modelled by a neural network, may be complex and highly non-linear.

To get around this we introduce a variational distribution q(z|x) to approximate the true posterior p(z).
The distribution q(z|x) is chosen to be a Gaussian distribution with parameters (µ,σ) output by the
encoder. The difference between these distributions is called the Kullback-Leibler (KL) divergence:

DKL(q(z|x)||p(z)) = Ex∼P

[
log q(z|x)

p(z)

]
For a VAE with a Gaussian encoder q(z|x) = N (z;µ(x),σ2(x)) and a standard normal prior p(z) =
N (z;0, I), the KL divergence can be computed as:

DKL(q(z|x)∥p(z)) = 1
2 ∑

d
i=1

(
σ2

i +µ2
i −1− log(σ2

i )
)

With d the dimensionality of the latent space, and µi and σi the mean and standard deviation of the
encoder’s output for the i-th latent dimension.

By combining the KL-divergence with the reconstruction loss (that is a measure of how closely the
decoder recreates the input), we obtain a tractable objective that can be minimised to obtain a model
that encodes latent variables into a normal distribution, creating a latent space where any random
point can be interpolated into a new example of the input data.

The final issue is the aforementioned randomness. A neural network relying on random sampling
cannot be optimised through backpropagation. A vector of random values has no derivative, and thus
no gradient from which patterns in the models outputs can be gleaned. VAEs avoid this problem
by using a reparameterisation trick. A random value ε is drawn from a standard normal distribution
(between 0 and 1). The latent variable z is then redefined as

z = µx + ε∗σx

Where µx and σx are outputs of the encoder for input x. As ε is independent of the autoencoders
parameters, it can be ignored during backpropagation, allowing the models parameters to be updated
with gradient descent (Kingma & Welling, 2022).

In summary, VAEs provide a way to potentially generate new examples of voices that indicate a
high risk of DMV. These example can be used as an educational aid, but also to build trust in the
predictive ability of a classifier model like a CNN. With a trustworthy and accurate classification
model, physicians would have another useful tool available to them in the perioperative period.



Chapter 3 METHODS 15

Figure 6: Experimental Setup

3 Methods

The following section is divided into three parts. The first covers the shared data preprocessing step
both methodologies utilise, while the latter two cover said methodologies respectively.

3.1 Data

Data was recorded for 395 participants, prior to general anaesthetic for non throat related procedures,
by medical students at the Universitätsklinikum Hamburg-Eppendorf. Participants ranged from 18
to 88 years old (µ = 52.6,σ = 20.25), with 54% being male. Following their procedures, the anaes-
thesiologist filled in a survey on each participant including a yes/no question on whether or not they
believed this patient would be difficult to ventilate in the future. This created two classes, routine and
DMV, with 43 participants in the DMV class, just over 10% of the total.

3.1.1 Audio

Audio was recorded in a physician’s office, using commercially available recording equipment, from
a distance of approximately 50 cm (Fig 6). Each participant was recorded repeating a set of 5 words
3 times. The set consisted of the words “Nase”, “Segel”, “Biber”, “Dose”, and “Blume”. The first
syllable of each of these words contains a vocal vowel (a, e, i, o, or u). The audio of each recording
was then cut to obtain 15 recordings per participant, covering these vowel sounds, for a total of 5925
audio snippets. Vowels are used as they involve steady resonant frequencies of the vocal tract and
mouth, and last longer than consonants, providing more useful data for analyses (Moon, Chung, Park,
& Kim, 2012). All processing was performed with Audacity version 3.7.1, snippets were exported as
.wav files (Audacity-Team, 2023).
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3.1.2 Preprocessing

The .wav files were labelled based on the future prediction of difficult mask ventilation, 1 for yes, 0
for no. The dataset was then augmented using random oversampling of the minority group (in this
case that was the yes group). For the generative model the vowel being demonstrated, and gender of
speaker, was also added to the label.

The dataset was randomly split by participant into balanced training, testing, and validation sets with
20% of data in the testing set, 20% in validation set, and the remainder in training set. A standard
duration was found based on the mean length of all audio snippets plus one standard deviation. Each
audio snippet was padded with leading silence up to this ideal length, or trimmed down to it, to ensure
consistent duration for training.

Each audio snippet was finally converted to a mel-frequency spectrogram. Fourier Transform win-
dows were set to 2048 samples for higher quality, with the default 128 mel filter banks. All audio had
a sample rate of 44100 Hz. Each mel spectrogram was then normalised based on the range of values
in the training dataset. This was done to avoid exploding or vanishing gradients while also improving
the gradient descent efficiency. Only the training data was used, to both prevent any information from
the test or validation sets contaminating the training process, and to simulate real world conditions of
unseen new data.

3.2 Convolutional Neural Network (CNN)

The model was configured via a config dictionary, allowing flexibility in, and optimisation of, the
hyperparameters. These can be found in Table 1. Where multiple values are given, each value was
possible and later refined during optimisation. The model was implemented using PyTorch version
2.2.2 (Ansel et al., 2024) and Pytorch Lightning version 2.2.3 (Falcon & The PyTorch Lightning team,
2019).

3.2.1 Architecture

An example diagram of the architecture of the CNN can be found in Figure 7. Each component is
further explained below:

Input Layer: The input to the model is expected to be a 2D tensor representing mel spectrograms
with a single channel (standard for black and white or intensity based images like mel spectrograms).

Convolutional Layers: The model consists of a configurable number of convolutional layers, n layers,
each with an adjustable kernel size of kernel size, and followed by a ReLU activation function
and max-pooling. The number of output channels (kernels) in the first convolutional layer is set by
n kernels and is doubled for each subsequent layer. This is done to capture more subtle features as
the complexity of the learned representation increases with depth. It also preserves the information
capacity of the model as each convolutional layer reduces the spatial dimensions of the input. Max-
Pooling is performed with a kernel size and stride of two. This decreases the dimensions of the input
to the next layer helping with computational complexity and the prevention of overfitting.
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Parameter Description Value(s)

num workers
The number of subprocesses used for data load-
ing. Higher values can speed up data process-
ing but require more memory

4

batch size

The number of training samples processed in
one forward/backwards pass or gradient up-
date. Higher values can increase stability dur-
ing training but use more memory.

64

criterion
The loss function used to measure the difference
between predicted and actual outputs

Cross Entropy
Loss

max epochs
The maximum number of times the model will
iterate over the entire training dataset

1000

n classes
The number of distinct labels in the classifica-
tion task

2

input shape
The dimensions of the input data, a mel spectro-
gram (channels, height, width)

(1,128,260)

n layers
The number of convolutional layers in the net-
work, determining its depth and complexity

1, 2, 3, 4

n kernels
The number of kernels (feature detecting filters)
in the first convolutional layer

8, 16, 24, 32

kernel size
The size n of the kernels (n × n) affecting the
feature extraction and receptive field

2, 3, 4, 5

dropout rate
The probability of randomly dropping neurons
during training to prevent over fitting

0 to 0.5 in steps
of 0.1

learning rate
The step size at which the model updates its
weights during optimisation

0.0001 to 0.01

f pos penalty
The multiplicative weight of the penalty applied
to false positives in the loss function

0 to 5 in steps of
0.1

Table 1: config dictionary of arguments and parameters passed to CNN model

Batch Normalisation: After the final convolutional layer, batch normalisation is applied to stabilise
and accelerate training. Testing without this layer resulted in inconsistent results with the model oc-
casionally failing to converge at all.

Dropout: A dropout layer is applied after batch normalisation to regularise the model and prevent
overfitting, with the dropout rate configurable via dropout rate.

Fully Connected Layer: The output of the former is flattened and passed through a fully connected
dense layer. The size of the fully connected layer is dynamically calculated by passing a dummy ten-
sor of input shape through the model when initialised. This dense layer maps the features learned
by the kernels to the number of n classes, which for the binary classifier is two.

Output Layer: This final output corresponds to the raw predictions (logits) for each class. These
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Figure 7: Simplified diagram of CNN with 2 convolutional layers, a kernel size of 2, 8 initial kernels,
a single mel spectrogram as input, and a vector of raw class probabilities as output. Dimensions of
elements of each layer are shown above, with operations labelled below in the order performed.

logits can be passed through a softmax function to then obtain class probabilities.

Loss Function: The model uses a custom loss function, combining the method supplied by criterion;
Cross Entropy Loss, with a weighted penalty for false positives, given by f pos penalty. Cross
Entropy Loss measures the difference between the predicted probability distribution, or the models
output, y, and the true probability distribution, or ground truth labels, p. For binary classification it is
calculated as follows:

Cross Entropy Loss =−(y log(p)+(1− y)log(1− p))

This function is commonly used in image classification tasks. It penalises confidently incorrect pre-
dictions heavily and encourages the model to output high probabilities for the correct class (Goodfellow,
Bengio, & Courville, 2016b). In the case of a false positive a penalty is added to the loss. During the
development of the model, much like with the model of Xia et al. (2021), false positive results were
quite common in early tests. This additional hyperparameter was added to attempt to mitigate this by
further penalising false positives.

Optimiser and Learning Rate Scheduler: The model uses a configurable learning rate (learning rate)
and the Adaptive Moment Estimation (Adam) optimiser. Adam adjusts the learning rate for each pa-
rameter individually using estimates of the mean and variance of the gradients, effectively combining
two well established optimisation techniques, Momentum and RMSProp (Kingma & Ba, 2014). Ad-
ditionally a learning rate scheduler is used to reduce the learning rate when the validation loss plateaus
as this can avoid oscillations and divergence (Goodfellow, Bengio, & Courville, 2016c). Specifically
the ReduceLRonPlateau scheduler with a patience of ten was implemented, reducing the learning rate
by a factor of 0.1 if the validation loss hasn’t changed by more than 0.0001 within the last ten epochs.

3.2.2 Hyperparameters

Hyperparameter optimisation was performed using optuna (Akiba, Sano, Yanase, Ohta, & Koyama,
2019). With optuna a range of values for specific hyperparameters can be defined, as seen in the con-
fig dictionary. An objective is then set, for example to minimise the validation loss, and optuna will
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sample the search space of all possible hyperparameter combinations training the model and evaluat-
ing it’s performance by the objective for a set number of trials.

The objective for the CNN was defined as minimising the validation loss, that is the output of the
loss function when the model after each epoch is passed over the validation set to simulate its current
performance on unseen data.

The sampling method chosen was the Tree-structured Parzen Estimator Sampler (TPESampler). This
is a Bayesian optimisation algorithm designed to efficiently explore the hyperparameter space (Watanabe,
2023). It begins by first randomly sampling the search space for a number of trials, in this case ten. It
then takes the best performing trials and models the distribution of those hyperparameters l(x) using
a Gaussian Mixture Model (GMM). GMMs consist of several overlapping bell curve distributions,
the hyperparameters are assumed to belong to these distributions, with the mean and variance of the
well performing hyperparameters defining the parameters of each curve. The hyperparameters of the
remaining trials are also modelled with a GMM g(x). When selecting the next set of hyperparameters
to test, rather than randomly sampling the entire search space, hyperparameters that maximise the
ratio of l(x)

g(x) are chosen, as based on the past trials these are more likely to do well.

In total 100 trials were performed to optimise the n layers, n kernels, kernel size, dropout rate,
learning rate, and f pos penalty hyperparameters. Early stopping with a patience of twenty was
used, ending trials if the validation loss did not change for that many epochs, allowing an arbitrarily
large max epochs. Median Pruning was also used to end poorly performing trials early. This func-
tions by tracking the objective functions result at each epoch of each trial. When this value for a trial is
worse than the median value of the preceding trials at that epoch, that trial is cut short as it is unlikely
to yield better than average results. Several trials are completed first to generate a median value in
this case five. An example of this process is presented in Figure 8. The parameters num workers and
batch size were chosen based on available hardware. The intermediate results of the optimisation
process are shown in Figure 10.

The optimal set of hyperparameters were found on trial 31, the validation loss over this trial is shown
in figure 9. These optimal hyperparameters are shown in Table 2.

Hyper Parameter Tuned Value
n layers 2
n kernels 8
kernel size 2
dropout rate 0.1
learning rate 0.00284
f pos penalty 0

Table 2: Optimised values of hyperparameters for CNN model
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Figure 8: An illustration of Median Pruning for validation loss minimisation. Trials in grey are
warm-up trials, values are the validation loss returned by the objective function. As the objective is
to minimise this loss, trial 3 is pruned as a loss of 0.91 is worse than the median of the previous trials
at that epoch (median(0.88,0.92) = 0.9 < 0.91). (Medium, 2023)

Figure 9: Validation loss of best performing trial over time. Minimum validation achieved before
triggering early stopping indicated on graph with a value of 0.6686
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Figure 10: Values tested for optimisation of hyperparameters of CNN model over trials

3.3 Variational Autoencoder (VAE)

Similarly to the CNN, this model was configured with a config dictionary, found in Table 3. It was
built using the same packages as the CNN, and its structure and hyperparameters are treated below:

3.3.1 Architecture

The components of the architecture unique to the VAE are treated below:

Input Layer: The input is the same as the CNN with the addition of label information. As this model
is trying to construct a latent space rather than classify, the label information (the vowel being repre-
sented and the class to which the example belongs) is concatenated with the input. This will condition
the VAE on these class labels, allowing a specific label to be requested when generating new samples.

Encoder: The encoder resembles the previously described CNN very similarly with a few changes
detailed here. Batch normalisation is applied after each layer to aid stability. A LeakyReLU activation
function is used instead of ReLU. This function acts the same as ReLU but applies a small multiplier
to values the ReLU would set to 0. This allows for small gradients for negative inputs rather than
shutting those neurons down. It can help mitigate the ’dying ReLU’ problem where too many neurons
are deactivated and the model fails to converge, an issue that occurred while building this model.
Dropout is also performed after each convolutional layer rather than at the end as this was found to
help with overfitting more in this model. Finally once the output is flattened, it is passed through two
separate fully connected layers to produce the mean and log variance.

Latent Space: The latent space is defined by a Gaussian distribution with mean and log variance
output by the encoder. The reparametrisation trick is used to sample from this distribution during
training, allowing backpropagation through the stochastic sampling process.

Decoder: The decoder consists of a series of transposed convolutional layers that progressively up-
sample the latent representation to reconstruct a mel spectrogram. It mirrors the encoder but inversely
with batch normalisation, LeakyReLU, and dropout being applied after each transposed convolutional
layer. The final output is passed through a hyperbolic tangent (tanh) function. This ensures the output
is in the same range [-1,1] as the normalised mel spectrograms used as inputs (Goodfellow, Bengio,
& Courville, 2016a). It is defined as:
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tanh(x) = ex−e−x

ex+e−x

Loss Function: The loss function consists of two components, the reconstruction loss and the KL-
divergence. The reconstruction loss is computed using the supplied criterion, in this case Mean
Squared Error (MSE) Loss. This measures the the average distance between the input mel spectro-
gram and the reconstructed one. It is well suited for continuous data and pushes the model to minimise
pixel-wise differences, while also being differentiable and aligning with the Gaussian assumptions of
VAEs (Goodfellow et al., 2016a). In this case the reduction parameter of the MSE loss is set to ’sum’,
providing the sum of squared differences rather than the mean. As the total loss is a combination of
the reduction and KL-divergence, summing rather than taking the mean ensures both components are
on similar scales, balancing their contributions (Kingma & Welling, 2022). MSEsum is given by:

MSEsum(x, x̂) =
N

∑
i=1

(xi − x̂i)
2

where xi is the true value, x̂i is the predicted value, and N is the total number of elements.
The KL-divergence measures the difference between the learned latent distribution and a standard
Gaussian prior. Its weight is controlled by the beta parameter. The sum of these two components is
the total loss.

Optimiser and Learning Rate Scheduler: Once again the Adam optimiser and ReduceLROnPlateau
scheduler are used.

3.3.2 Hyperparameters

Hyperparameter optimisation was again performed with optuna. The objective function was defined
as minimising the validation loss. The sampling method was once again TPESample. 100 trials were
attempted to optimise the n layers, n kernels, kernel size, dropout rate, learning rate, and
relu rate hyperparameters. As the input data could be noisy, a beta of 0.1 was used to maximise
reconstruction accuracy, for higher quality audio inputs a larger value may be more useful. Early
stopping and median pruning are used again, this time with a patience of just 10, to minimise com-
putational load at the cost of a higher risk of not finding the global minimum of validation loss.
Additionally the num workers is set to 0, slowing down training but once more reducing resource
demands. Finally the batch size is reduced to the minimum, risking poorer stability during training
for less computational demands. These changes were implemented to optimise memory use as the
more complex VAE is significantly more resource intensive.
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Parameter Description Value(s)

num workers
The number of subprocesses used for data load-
ing Higher values can speed up data processing
but require more memory

0

batch size

The number of training samples processed in
one forward/backwards pass or gradient up-
date. Higher values can increase stability dur-
ing training but use more memory.

1

criterion
The loss function used to measure the difference
between predicted and actual outputs

Mean Squared
Error Loss

max epochs
The maximum number of times the model will
iterate over the entire training dataset

1000

n classes
The number of distinct labels of the input data.
Two classification labels, by each of the five
vowel sounds, for both recorded sexes

20

example
A tuple containing a mel spectrogram and
waveform, to access the dimensions of the in-
put data, (channels, height, width)

(mel,wave)

n layers
The number of convolutional layers in the net-
work, determining its depth and complexity

1, 2, 3, 4

latent dim

Size of the latent space learned by the model for
generating new examples. Higher values may
capture more subtle features but increases risks
of overfitting

16 to 400 in steps
of 48

n kernels
The number of kernels (feature detecting filters)
in the first convolutional layer

8, 16, 24, 32

kernel size
The size n of the kernels (n × n) affecting the
feature extraction and receptive field

2, 3, 4, 5

dropout rate
The probability of randomly dropping neurons
during training to prevent over fitting

0 to 0.5 in steps
of 0.1

learning rate
The step size at which the model updates its
weights during optimisation

0.0001 to 0.01

relu rate

A multiplicative weight applied to negative in-
puts of the ReLU function allowing a small gra-
dient rather than 0. Can address the problem of
ReLU setting deactivating too many neurons

0 to 0.1 in steps
of 0.01

beta

The multiplicative weight applied to the KL-
divergence in the loss function. Higher values
increase divergence giving a more structured
latent space while lower values can improve re-
construction accuracy

0.1 to 1 in steps
of 0.1, then 1 to
10 in steps of 1

Table 3: config dictionary of arguments and parameters passed to VAE model
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4 Results
With defined architecture and tuned hyperparameters, results can be generated. This section presents
the results of the models, evaluating their performance through several metrics discussed below, first
treating the CNN, then the VAE.

4.1 CNN

All results were obtained from the sequestered training dataset, using the optimal model found during
training trials. The broader performance of the model is presented, as well as its results at a tuned
classification threshold, and its comparison to arbitrary guesswork.

4.1.1 Precision and Recall Curve

The precision-recall curve plots the model’s precision (the fraction of correct positive predictions)
against its sensitivity or recall (the fraction of actual positives detected) across different classification
thresholds (at what output value the model will label an input as belonging to the positive DMV class).
It is presented in Fig 11. By analysing this curve, the threshold that maximises both precision and
recall can be found (around the ’knee’ of the curve, or the point closest to (1,1) on the graph). This
is represented by an F1 score, the harmonic mean of precision and recall, which balances the two
metrics for optimal decision-making. A high F1 score (closer to 1) indicates that the model achieves
both high precision and high recall, while a low score (closer to 0) reveals a trade-off between the
two, such as excessive false positives undermining precision or missed true positives reducing recall.
It is given by:

F1 = 2× Precision×Recall
Precision+Recall+ c

where c is some small constant (1× 10−9) to prevent division by zero should the model completely
fail in precision or recall. This is a useful metric as it penalises missed positives and false alarms
(which are costly in a medical context) more harshly then just looking at the overall accuracy. The
F1 score was found to be 0.695 (95% CI [0.676, 0.715]) with 0.355 as the associated classification
threshold.

4.1.2 Threshold Dependent Metrics

With an ideal threshold found, more general metrics can be investigated, like accuracy. As previ-
ously stated, sensitivity (or recall) indicates how well the model identifies true positive cases, while
specificity measures the model’s ability to correctly identify negative cases. These are presented in
Table 4. A confusion matrix visually presents these metrics together, showing the distribution of true
positives, false positives, true negatives, and false negatives. It is presented in Figure 12.

4.1.3 Area Under the Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve is obtained by plotting the sensitivity of the model
against the false positive rate (1 - specificity) for different thresholds of classification. The area under
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Figure 11: Precision Recall Curve for CNN. Knee point (red) best balance between precision and
recall (F1 = 0.695, threshold 0.355), with shaded region showing 95% confidence interval across
bootstrap resamples (N = 104)

Metric Value
Accuracy 61.12%
Sensitivity 89.61%
Specificity 33.21%

Table 4: Threshold Dependent Metrics of CNN Model Performance

this curve (AUROC) represents the degree of separability, or how capable the model is of distinguish-
ing between classes. This AUROC value ranges between 0 and 1 with 1 being a perfect model, 0.5
being equivalent to random guessing, and anything less being worse than random guessing. As the
AUROC covers all possible classification thresholds, it provides a comprehensive measure of model
performance. For this model an AUROC of 0.648 was obtained, the ROC curve is shown in Fig 13.

4.2 VAE
At the time of writing no VAE results are available, as no VAE model was able to successfully con-
verge and produce an output of more than noise. This was due to the models computational re-
quirements during training exceeding available resources. More details are provided in the following
section.
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Figure 12: Confusion matrix for binary classification at threshold 0.355, showing model performance
distinguishing Routine (negative class) and DMV (positive class) cases. Colour intensity represents
count frequency in each cell
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Figure 13: Receiver operating characteristic curve for CNN model showing classification perfor-
mance. Red line shows models performance against grey-dashed line representing random guessing.
Area under the curve (AUC) quantifies performance across all classification thresholds
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Figure 14: Mel-frequency spectrogram of the word ”Nase”. Time on the x-axis given in seconds,
frequency on the y-axis in Hz and amplitude in decibels represented by colour intensity. Onset and
offset of the ”a” in ”Nase” indicated by blue vertical lines, with its duration highlighted on the x-axis

5 Conclusion
With these results, this section presents the key findings, discussing their implications in the context
of model performance. Limitations of the study, including noise in audio recordings and dataset
constraints, are also explored, followed by an assessment of each model’s results. Finally, directions
for future research are proposed, emphasising improvements in audio representations and possible
hybrid models.

5.1 Discussion
Before discussing the results of the individual models, the main limiting factor affecting both, the
audio recordings themselves, needs to be addressed. The data is very noisy. While this can be useful
for a classifier to help it distinguish noise from the start, it may take longer for a model to learn signif-
icant patterns in the data and usually requires larger training sets to achieve good results. The audio
recordings were gathered in an uninsulated doctor’s office. The distance to the microphone was not
always consistent, and occasionally major background noise was picked up (examples include some-
one coughing in the next room, and on more than one occasion a nurse entering to speak to someone).

Furthermore, the segmentation of the data was not optimal. The audio was originally recorded in one
continuous file for each patient, each about 2 minutes long, consisting of the vowel containing words
used in this study and other audio for different applications. Each file was then annotated by hand by
one of the medical students marking the start and end of each word on the recording. Looking back
at Figure 2, the actual vowel in the word ”Nase” is captured from time 0.2 to 1.25, recognisable in the
spectrogram by the long horizontal bands indicative of a vowel. Before this we see background noise
followed by a vertical artifact of a consonant (”N”), and afterwards the high frequency of the sibilant
”S” and another shorter vowel sound (”E”). As it is not expected to obtain much useful anatomical
information from the consonants, these areas are functionally additional noise (Moon et al., 2012).
While all audio files were trimmed down to an optimal length that still adds a large amount of noise
to the data. An example of the spectrogram with the useful vowel highlighted is provided in Figure 14.

Ideally the models would only be trained on the actual vowels extracted from the overall word. While
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this would be interesting for the CNN to compare its performance on noisy data, it would be very
beneficial for the VAE. These models can be quite susceptible to noise, encoding it into the latent
space and making it difficult for the decoder to recreate meaningful patterns. Extracting just the vow-
els from the recordings is practically feasible, however it would require either the precise and tedious
work of noting the exact start and end point of each vowel in the thousands of spectrograms, or train-
ing an additional unsupervised model to detect and extract the vowels from the spectrograms, beyond
the scope of this study.

Noise aside, the sample size was well constructed, with a representative distribution of ages and gen-
ders, and multiple recordings per participant strengthened the dataset’s robustness. A larger test group
would be preferable as only around 10% of the patients are in the DMV group, and while oversam-
pling of the group was performed to balance the data a larger starting pool is always preferred. It is
difficult to say what effect this had on performance.

5.1.1 CNN

With an accuracy of 60%, the CNN exhibited suboptimal discriminatory power. That being said, it
does perform better than guessing, suggesting there may in fact be something to the clinical intuition.
Looking at the F1 score (0.695), the model achieves moderate balance between precision and recall,
though not optimal. At the corresponding threshold, there is a clear trade off in favour of sensitivity.
At 89.61% the model rarely misses a DMV case, outperforming the sensitivity of Xia et al. (2021)’s
difficult intubation model in this metric. That is coming at the cost of a much lower specificity how-
ever. At 33.21% (almost half that of the aforementioned study) this model will generate a lot of false
positives.

Turning to the confusion matrix in Figure 12, there is nothing immediately distinctive about the four
groups in terms of constitution. All four consist of almost half male and female patients with roughly
equivalent spreads of age. These can be seen in Figure 15. This is positive for the model as there is no
one population it seems biased towards, but also doesn’t reveal any useful avenues for improvement.

Investigating the proportion of vowels found in each group within the confusion matrix tells a slightly
different story. As can be seen in Figure 16, the vowel ’i’ is overrepresented in the false negative, and
to a lesser extent, true negative groups. Furthermore the vowel ’a’ is under-represented in the same
groups, while the vowel ’e’ is completely absent from the false negative group. What this tells us
in practice though is that the model is simply biased in different directions towards different letters,
leaning towards a negative prediction for ’i’ and for ’a’ and ’e’ a positive one, stemming from the
different resonant frequencies of the vowels. The ’i’ for example is often characterised by higher
frequencies than the other vowels (Moon et al., 2012).

Across thresholds the AUROC of 0.648 is suboptimal. As stated, this is better than guessing, sug-
gesting the model is picking up on some quantifiable pattern in the voice that indicates DMV, but
not effectively enough to confirm the validity of the clinical intuition, nor to be of use diagnostically,
particularly with its propensity for false positives. In its current state, it is of questionable usefulness
for clinical settings, and without a solid interpretable model (discussed shortly) to back up its classi-
fications, its acceptance by physicians is doubtful.
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Figure 15: Age and gender spreads for groups in confusion matrix at threshold 0.355, with mean
and standard deviation of ages as well as percentages of male and female (m/f). Groups cover true
negatives (TN), false positives (FP), false negatives (FN), and true positives (TP)

Figure 16: Proportion of vowels contained within each group of confusion matrix. Groups cover true
negatives (TN), false positives (FP), false negatives (FN), and true positives (TP)
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That being said, the slight but meaningful ability to identify some DMV cases from voice alone is
of note. Though difficult to make a direct comparison, El-Orbany and Woehlck (2009) state in their
review that physical and patient history findings failed to predict unexpected DMV in 57% of patients
in previous studies. That equates to a sensitivity of 43%. The sensitivity achieved here is more than
double that, though with a high false positive rate that does not necessarily mean it is a superior model.
With a specificity of 33.21% this model will give false alarms at a rate likely to trigger the ’cry wolf’
effect, where systems who repeatedly give false alarms begin to be ignored (Breznitz, 2013).

While, as discussed shortly, further research is certainly necessary, this model adds evidence to the
hypothesis that subtle acoustic features can be used diagnostically, and that there may be something
to this clinical intuition.

5.1.2 VAE

As stated previously, a working VAE was not achieved. Despite measures to minimise the computa-
tional demands, the models requirements were beyond what was available for this project. The bigger
a model, and the longer it takes to train, the more memory is required. No promising VAE was able
to train long enough to start producing usable results. This is in part due to the general complexity
of a VAE. Having twice the layers of the average CNNs tested here, they will simply require more
resources to train. The VAE outputs an image which is compared pixel wise to the input image. The
relative complexity of these outputs translates to a significant time and resource increase, as to effec-
tively learn the latent space to then recreate an image takes many epochs, considerably more than the
CNN required to output a classification.

The size of the mel-spectrograms themselves is also a contributing factor. In their paper, Ntalampiras
and Potamitis (2021) were able to produce synthetic bird calls using a VAE with similar architecture
and methodology as used here. An example of their input and output is shown in Figure 17, the x-axis
is given in frames, but corresponds roughly to a fraction of a second. Comparing their input to the
mel-spectrograms used here (such as in Figure 2), the discrepancy in size and complexity is immedi-
ately apparent.

The bird call spectrograms are an order of magnitude shorter, the audio for the mels here last around
3 seconds, while the bird calls last around 0.3 seconds. The number of mel-bands used (shown on
the y-axis) also differs. Given in Hz in this paper, the bird calls use around half as many. This has
an effect on reconstruction, when a mel-spectrogram is converted back to audio. A high number of
mel-bands was necessary here as early testing found that fewer bands in the mel-spectrogram resulted
in poorer, more robotic sounding audio when converted back into a playable sound wave. As the
goal was to create usable examples a large number of bands is necessary, however once again this
has a computational and resource cost associated with it. Of note is a comment in Ntalampiras and
Potamitis (2021)’s paper that while visually their VAE was successful in generating new bird calls, the
quality of the audio generated was less than desired, often sounding robotic, distorted, or unnatural.

Lastly, the somewhat underwhelming performance of the CNN will have also carried over into the
VAE. As discussed, the initial encoder of a VAE is essentially a CNN itself. If the CNN is having
trouble identifying clear patterns, the VAE may struggle to separate clear features in its compact la-
tent space representation. This will lead to blurrier, less distinct images being generated, and a longer
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Figure 17: Example of mel spectrograms from Ntalampiras and Potamitis (2021), showing input
spectrograms on the left, and those output by a VAE trained on bird calls on the right

training time as it requires more epochs to create a meaningful latent space.

In short, large highly detailed images, that have proven to be difficult to classify accurately, in com-
bination with a complex model architecture, lead to a VAE model that required more computational
resources than were available for this project.

5.2 Summary of Main Contributions

Despite lacklustre generative results, this research has found that DMV can be predicted from a pa-
tients voice alone at a rate better than guessing. It expands on and supports the findings of previous
audio based predictions of difficult intubation, and contributes to the exploration of novel, low cost,
and non-intrusive, diagnostic techniques. In its shortcomings, this study also highlights the challenges
of interpretable AI within medical applications. These findings may serve as a starting point for fu-
ture methodologies aimed at improving model transparency and reliability. The issues encountered
here provide a case study demonstrating potential difficulties in applied AI in healthcare, hopefully
offering valuable insights for the refinement of future approaches.
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5.3 Future Work
To close this paper out, several potential next steps are discussed, including adjustments to the models,
the audio itself and how it is represented, and finally some adjacent research that may shed more light
on the results found here.

5.3.1 Augmented Models

As previously mentioned, there are some pre-existing predictors of DMV, such as presence of beard,
high BMI, history of snoring (El-Orbany & Woehlck, 2009). These measurements could be combined
with a patients audio data to train a hybrid model for classification. This could involve encoding this
information into the mel-spectrograms, similar to how the VAE handles conditional label information,
or with a multi branch approach, analysing the images with a CNN and using another architecture to
make predictions from the additional information, with both branches being combined to produce a
prediction. These predictors are recorded for all patients prior to mask ventilation, making the data
readily available.

5.3.2 Audio Representations

It may be possible to acquire the useful physiological information from the voice without relying on
vowel sounds. An electrolarynx is a handheld device often used in cases where an individual has
lost their voice box (for example due to cancer of the larynx). Exhaling while holding the device
against the throat creates vibrations that resonate through the upper airways, which can be shaped
with the lips and tongue to create a robotic sounding voice. Simply exhaling with the mouth and jaw
slack creates a monotone buzz that may also capture information about the anatomy of the mouth and
throat. Using these buzzes rather than vowels could provide a more homogenous dataset, eliminat-
ing the variance of the words used here and reducing noise, as the monotone audio would be much
easier to crop without losing information. An electrolarynx is also a simple battery operated device
present already in many clinical settings, meaning if classification (and generation) is possible with
this data, the barrier to clinical use is vastly smaller than with say ultrasounds. Electrolarynx audio
was recorded for the patients of this study, making this the next logical step in future.

Regardless of the exact audio, this research focussed on human-centered audio representation, train-
ing models on what a human brain would detect when hearing the voice recordings. While this was
done to explore the validity of clinical intuition, there may be acoustic features that predict DMV
outside of human perception. To investigate this further, alternative representations of the audio could
be experimented with, such as full spectrograms. This may require new recordings however, as low
frequencies may be lost in the background noise of this slightly messy dataset. A model that is able
to achieve success with more general audio representations will have to contend with its own set of
interpretability issues, being further removed from human perception.

5.3.3 Clinical Intuition

Finally, on that human perception, this research was partly inspired by the anecdotal evidence of expe-
rienced physicians and their clinical intuition. To better understand the results of this paper, it would
be beneficial to test this intuition. By having experienced physicians listen only to the same inputs that
the models receive and make a prediction of DMV based on that, the models results can be put into
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a clearer context. The augmented hybrid model would also be interesting to compare to physicians
predictions when they have access to the audio and this meta data. Lastly, this would also shed some
light on the often contentious topic of clinical intuition, perhaps broadening our understanding of it,
at least in the context of DMV.
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