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Abstract

In this thesis we develop a theory of flats over matroids with coefficients in a tract, and

use them to give a novel cryptomorphism of T -matroids. We define T -representations for

flats of the underlying matroid. We then use this to show that modular triples of hyperplane

functions are linearly dependent if and only if there exists a T -matroid which is a quotient

of each of the hyperplane functions. Defining T -flats as the vectors of the T -representation

of the flats, we show that for a given T -matroid, the T -flats form a geometric lattice with

respect to inclusion, which in fact has the same lattice structure as the lattice of flats of the

underlying matroid. Using our previous results, we can give a cryptomorphic definition of

a T -matroid in terms of a lattice of T -flats. We conclude the thesis by showing that over a

field K, the notion of K-flats coincide with the notion of hyperplane arrangements.
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1 INTRODUCTION

1 Introduction

Matroids are a diverse and bountiful concept, lying in the intersection of different areas of

mathematics. Combinatorics, linear algebra, graph theory and algebraic geometry all have

direct links to matroid theory, just to name a few. Due to their many equivalent definitions, we

can take varying angles when studying matroids, which makes them very interesting.

Matroids first appeared in the 1930s. Although similar objects had already been studied at

the time, the first mentioning of a matroid was in Hassler Whitney’s paper “On the Abstract

Properties of Linear Dependence” [Whi35]. He observed that sets of linearly independent vectors

had specific combinatorial properties, giving rise to the notion of independent sets. Whitney

defined matroids as collections of sets which had such properties. Since then many equivalent

or so-called cryptomorphic definitions of matroids have been discovered. These equivalent defi-

nitions are a part of what makes matroid theory so interesting. On the other hand, it can also

make matroids difficult when coming across them for the first time. With most mathematical

objects, one only needs to learn a single definition, with matroids, one must learn ten.

Over time, matroid theory became more popular and different types of matroids started to

appear. This gave rise to a new unifying theory. In 2019, Matthew Baker and Nathan Bowler

published their paper “Matroids over Partial Hyperstructures” [BB19]. They define the notion

of matroids over tracts, which offers a generalisation of many different types of matroids. Tracts

are a generalisation of fields where instead of an abelian group structure over addition, we only

have a notion of an additive inverse. By construction of specific tracts, T -matroids take different

forms.

In this thesis, we aim to contribute to this theory by developing flats in the domain of

matroids over tracts. Flats in usual matroids can be seen as a generalisation of linear subspaces

and offer a cryptomorphic definition of matroids. It turns out that the concept of flats over

tracts developed in this thesis, also gives us a cryptomorphic definition of matroids over tracts.

In section 2.1 we introduce matroids and give the necessary background on matroid theory for

the rest of the text. This includes independent sets, bases, rank, closure, flats, duals and minors.

In section 2.2 we introduce matroids over tracts. We first look into tracts and their properties.

Then we define matroids over tracts, which we call T -matroids, using hyperplane functions.

This is a slightly different definition to that given by [BB19], which defines T -matroids using

circuit functions, however, we see that these definitions are similar. Next, we give an equivalent

definition of T -matroids as equivalence classes of Grassmann-Plücker functions. We introduce

the idea of duality and minors in T -matroids. We also look into the vectors of T -matroids and

how they link to the notion of quotients.

In section 3, we start on the novel concepts developed in this thesis. We use the Grassmann-

Plücker functions to define the new concept of T -representations of flats. This is closely linked
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1 INTRODUCTION

to the contraction. However, to define T -representations of flats in a well defined manner we

first tackle a series of preliminary results, which are showcased in section 3.1. Then in section

3.2 we define T -representations of flats proper and consider their underlying matroids.

In section 4, we show one of the two novel cryptomorphism of T -matroids given in this thesis.

We define T -linear representations as a set of hyperplanes such that for every modular triple

there exists a rank two Grassmann-Plücker function which is quotient to the triple. This gives

us a cryptomorphism of T -matroids which will be very useful in section 5.

In section 5, we introduce the main new concept of this thesis, that is T -flats. In 5.1, we

define a T -flat as the collection of vectors of the T -representation of a flat. It turns out that

the T -flats of a T -matroid form a geometric lattice, in fact this is exactly the lattice of flats of

the underlying matroid. We give an abstract definition of lattices of T -flats, separate from the

T -representations of the flats, using Anderson’s results on vectors [And19]. We show that this

gives another novel cryptomorphism of T -matroids.

In section 5.2, we give a study of T -flats over a field K. We show that there is a correspon-

dence between the orthogonal complement of lattices of K-flats and hyperplane arrangements.

In Section 6, we consider an example of a lattice of T -flats over R.
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2 Background

2.1 An Introduction to Matroids

This section is mainly based on Oxley’s book “Matroid Theory” [Oxl92]. In this section we

discuss some of the definitions that are important to this text and how they are equivalent.

2.1.1 Independent Sets

One of the most standard definitions of a matroid is through independent sets. Indeed, this was

the definition given by Whitney when he first defined matroids [Whi35]. We define a matroid

as follows.

Definition 2.1. In terms of independent sets, a matroid M is a pair (E, I), where E is a finite

set and I ⊆ 2E is a family of subsets of E called the independent sets, such that

(I1) the empty set is in I,
(I2) for all X ⊆ Y such that Y in I, we have X in I,
(I3) for any two sets X,Y in I such that #Y < #X, there exists an element x ∈ X such

that Y ∪ {x} in I.

We call the subsets of E in I independent and the subsets of E not in I dependent. Here

our first parallel with linear algebra arises, namely we see that sets of linear independent vectors

form independent sets.

Example 2.2. Consider an m × n matrix A with entries in a field K. Let E be the multiset

(that is elements can be repeated) of the m column vectors in A. Then let I be the collection of

subsets of E that are linearly independent in the vector space Kn. Then (E, I) forms a matroid

[Oxl92, Proposition 1.1.1].

2.1.2 Circuits

In terms of independent sets, the circuits of a matroid M = (E, I) are the minimally1 dependent

subsets of E. That is, a set S is a circuit if every proper subset of it is independent. The set

of circuits of a matroid characterise the matroid completely. This is clear if we notice that a

set is independent if and only if it does not contain a circuit. In this way independent sets and

circuits give equivalent definitions and so we can use circuits to define matroids. We say circuits

give a cryptomorphic description or cryptomorphism.

Let us first look at when sets form the circuits of a matroid:

1When we refer to something being maximal or minimal for some property then we mean that any proper
superset or subset does not have this property respectively.
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Proposition 2.3. Let M be a matroid with collection of circuits C. Then C is such that

(C1) the empty set is not in C,
(C2) for C1, C2 in C, we have that if C1 ⊆ C2 then C1 = C2,

(C3) for distinct C1, C2 in C and e in C1∩C2, there exists C3 in C such that C3 ⊆ (C1∪C2)−e.

Proof. See [Oxl92, Lemma 1.1.3].

The following theorem tells us that circuits give an equivalent definition of matroids.

Theorem 2.4. Let E be a set and C a set of subsets of E satisfying (C1)–(C3). Let I be the

subsets of E which do not contain an element of C. Then (E, I) forms a matroid with circuits

C.

Proof. See [Oxl92, Theorem 1.1.4].

Example 2.5. Let E be the edge set of a graph G, then the edge sets of the cycles in G form a

set of circuits. Therefore we can construct a matroid from any graph, by taking the independent

sets to be the sets not containing the edge sets of the cycles on the graph, that is exactly the

edge sets of spanning forests on the graph.

2.1.3 Bases

The bases of a matroid are the maximally independent sets, that is the independent sets such

that any proper superset is dependent. Bases are akin to bases of vector spaces and share many

properties. We notice that the independent sets are exactly the subsets of the bases and so

the bases characterise the matroid completely. Therefore bases give us another way of defining

matroids.

Proposition 2.6. Let M be a matroid and B be a set of bases of M . Then B is such that

(B1) we have B is non-empty,

(B2) for B1, B2 ∈ B and x ∈ B1 −B2, there exists y ∈ B2 −B1 such that (B1 − x) ∪ y ∈ B.

Proof. See [Oxl92, Lemma 1.2.2].

Theorem 2.7. Let E be a set and B collection of subsets of E satisfying (B1)–(B2). Let I be

the collection of subset of elements of B. Then (E, I) forms a matroid for which the collection

of bases is B.

Proof. See [Oxl92, Theorem 1.2.3].

An interesting property of bases of a matroid is that they all have the same cardinality. This

is a neat similarity to the property the bases of a vector space always have the same cardinality.
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Example 2.8. Consider the matroid in Example 2.2. The bases of this matroid are exactly the

linearly independent sets of column vectors which span the linear subspace of Kn spanned by

the m column vectors of A. Let us aim for a contradiction and assume that we have two sets

of linearly independent sets of vectors V and W that span the space, but for x in V −W there

exists no y in W − V such that V ∪ {y} − {x} is also linearly independent and spanning the

space. This implies that there is no y in W such that y can be written as a linear combination

of elements of W containing x. This implies that W is in the span of V −{x} which contradicts

V and W both being bases.

Example 2.9. Consider the matroid given in Example 2.5. The bases of this matroid are

exactly the edge sets which span G but do contain a cycle, that is the spanning forests of G.

Example 2.10. An important class of matroids are the uniform matroids. A uniform matroid

of rank r over E is the matroid Ur,E with collection bases exactly every subset of E with

cardinality r. The matroid U0,E is the matroid over E with empty bases, in other words for

every e in E, we have {e} a circuit of U0,E .

2.1.4 Rank

The rank of a set S ⊆ E is the cardinality of the maximal independent set contained in S.

If we have a matroid M then we find that the independent sets are exactly those whose ranks

are equal to their cardinality. In converse, if we have a rank function on E then the collection

of subsets that have rank equal to cardinality satisfy (I1)–(I3). Hence, again we have that the

rank function on a matroid characterises it completely. We have yet another cryptomorphism.

Proposition 2.11. Let M be a matroid and let r : 2E → N0 be the rank function on this

matroid. Then r is such that

(R1) if X ⊆ E, then we have 0 ≤ r(X) ≤ |X|,
(R2) if X ⊆ Y ⊆ E, then we that 0 ≤ r(X) ≤ r(Y ),

(R3) for X,Y ⊆ E, we have that r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

Proof. See [Oxl92, Lemma 1.3.1].

Theorem 2.12. Let E be a set and let r : 2E → N0 be a function satisfying (R1)–(R3). Let I
be the collection of X ⊆ E such that r(X) = |X|. Then (E, I) is a matroid with rank function

r.

Proof. See [Oxl92, Theorem 1.3.2].

Remark 2.13. We say M = (E, r) is a rank n matroid if r(E) = n. Sometimes this is written

as r(M) = n.
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2.1.5 Closure

The notion of the closure is similar to the notion of span in linear algebra. For a matroid M

with rank function r we define the closure of X ⊆ E as cl(X) = {x ∈ E | r(x ∪ X) = r(X)}.
Let us see what properties the closure operator has.

Proposition 2.14. Let (E, I) be a matroid and let cl : 2E → 2E be the closure operator. Then

cl has the following properties.

(Cl1) if X ⊆ E then X ⊆ cl(X)

(Cl2) if X ⊆ Y then cl(X) ⊆ cl(Y )

(Cl3) if X ⊆ E then cl(cl(X)) = cl(X)

(Cl4) if X ⊆ E, x ∈ E and y ∈ cl(X ∪ x)− cl(X) then x ∈ cl(X ∪ y)

Proof. See [Oxl92, Lemma 1.4.3].

Example 2.15. Let (E, I) be the matroid defined in Example 2.2. Then the closure of a subset

X of E is exactly the column vectors of A contained in the span of X .

Again we find that the closure operator allows us to define a matroid. We notice that for

a matroid (E, I) with rank function r, the independent sets are exactly the sets X ⊆ E such

that for all x ∈ X, x /∈ cl(X −x). The following theorem shows us that we can define a matroid

using a closure operator.

Theorem 2.16. Let E be a set and let cl : 2E → 2E satisfying (Cl1)–(Cl4). Then let I be the

set of sets X ⊆ E such that for all x in X, x /∈ cl(X − {x}). Then (E, I) forms a matroid with

closure operator cl.

Proof. See [Oxl92, Theorem 1.4.5].

Definition 2.17. Let E be a matroid with closure operator cl : 2E → 2E . We say X ⊆ S spans

S if cl(X) = S.

Proposition 2.18. A set S spans a set X if and only if r(S) = r(X) and cl(S) = S.

Proof. See [Oxl92, Proposition 1.4.10].

2.1.6 Flat and Hyperplanes

We can use the closure operator to define some more interesting sets in our matroid. For a

matroid M , a flat is a set X ⊆ E such that X = cl(X). A hyperplane is defined as a flats of

rank r(M)− 1. Let us take a look at their properties.
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Proposition 2.19. Let Λ = {X ∈ E | cl(X) = X} be the collection of flats of a matroid M

with closure operator cl : 2E → 2E . Then Λ is such that

(F1) E ∈ Λ,

(F2) if F1, F2 ∈ Λ, then F1 ∩ F2 ∈ Λ,

(F3) if F ∈ Λ and {F1, ..., Fn} the set of minimal members of Λ properly containing F , then

F1 − F, ..., Fn − F partition E − F .

Proof. See [Oxl92, Page 31].

Theorem 2.20. Let E be a finite set and Λ a set of subsets of E satisfying (F1)–(F3). Let

p : 2E → 2E be such that p(X) =
⋂

F∈Λ,X⊆F F . Then p satisfies (Cl1)–(Cl4), in other words Λ

defines a matroid.

Proof. See [Oxl92, Page 31].

Theorem 2.21. A set H is the set of hyperplanes of a matroid if and only if

(H1) for all X,Y in H, X ⊆ Y implies X = Y ,

(H2) for all X,Y in H and e not in X ∪ Y , there is Z ∈ H such that (X ∩ Y ) ∪ {e} ⊆ Z.

Proof. See [Oxl92, Proposition 2.1.21]

Proposition 2.22. We say a set X ⊆ E is spanning if cl(X) = E. We have the following

properties:

• For all X ⊆ E, X is spanning if and only if r(X) = r(E).

• For all X ⊆ E, X is a basis if and only if X is independent and spanning.

• For all X ⊆ E, X is a basis if and only if X is minimally spanning.

• For all X ⊆ E, X is a hyperplane if and only if X is maximally non-spanning.

Proof. See [Oxl92, Proposition 1.4.10].

The flats of a matroid have a nice property in that they form a special type of partially

ordered set (poset) called a lattice.

2.1.7 Lattice of Flats

Let us discuss posets and lattices.

Definition 2.23. A poset is a setX along with an ordering ≤ satisfying the following properties:

(P1) for all x ∈ X, x ≤ x

(P2) for all y, x ∈ X, if x ≤ y and y ≤ x then x = y

9
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(P3) for x, y, z ∈ X, if x ≤ y and y ≤ z then x ≤ z

We say that x ≥ y if y ≤ x. We say x < y if x ≤ y and x ̸= y. We say x covers y in a poset

X if y < x and there does not exist a z ∈ X such that y < z < x.

A lattice is a poset such that for each pair x, y ∈ X the least upper bound and greatest lower

bound exist.

Definition 2.24. A finite lattice L is a finite poset such that:

(L1) for all x, y ∈ L there exists x∨ y ∈ L such that for all z ∈ L such that z ≥ x and z ≥ y

we must also have z ≥ x ∨ y

(L2) for all x, y ∈ L there exists x∧ y ∈ L such that for all z ∈ L such that z ≤ x and z ≤ y

we must also have z ≤ x ∧ y

Lemma 2.25. The set of flats of a matroid M form a lattice L(E, I) with X ≤ Y if X ⊆ Y ,

X ∧ Y = X ∩ Y and X ∨ Y = cl(X ∪ Y ).

Proof. See [Oxl92, Lemma 1.7.3]

Definition 2.26. For a poset P , a chain from x1 to xn is a collection x1, · · · , xn ∈ P such that

x1 < · · · < xn. The length of this chain is n− 1 and it is maximal if for every 0 ≤ m < n, xm+1

covers xm. If for all x, y ∈ P we have that the length of all the maximal chains from x to y have

the same length then P is said to satisfy the Jordan-Dedekind chain condition. If there exists

a x ∈ P such that x ≤ y for all y ∈ P then x is said to be the bottom for P . If there exists a

x ∈ P such that y ≤ x for all y ∈ P then x is said to be the top for P . An element of P that

cover the bottom is said to be an atom. For x ∈ P the height h(x) is defined as the length of

the chain from zero to x. A geometric lattice is a lattice satisfying the Jordan-Dedekind chain

condition such that h(x) + h(y) ≥ h(x ∧ y) + h(x ∨ y) and every element is a join of atoms.

Theorem 2.27. A lattice is geometric if and only if it is the lattice of flats of a matroid

Proof. See [Oxl92, Theorem 1.7.5]

Remark 2.28. Every flat is the intersection of hyperplanes[Oxl92, Proposition 1.7.8].

Example 2.29. Consider the rank three flat over E = 1234 (here we use lattice notation where

ijk refers to {i, j, k}) with hyperplanes 12, 13, 14 and 234. Then the lattice of flats is as pictured

below. A line here represents inclusion. We have ∅ as the bottom and E as the top. Notice that

the chain between flats of different ranks is always the same. In fact the height of a flat in the

lattice of flats is exactly the rank of the flat.
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∅

1 2 3 4

12 13 14 234

1234

Figure 1: The rank three matroid over E = 1234 with hyperplanes 12, 13, 14 and 234.

Example 2.30. The matroid over E = 12345 with bases all size three subset of E excluding

345, 124 and 123.

∅

1 2 3 4 5

123 124 15 25 345

12345

Figure 2: The lattice of flats of the matroid with ground set E = 12345 and bases as all size
three subset of E excluding 345, 124 and 123.

We should also touch on loops, parallel sets and simplified matroids.

Definition 2.31. A loop of a matroid M is an element of E which is not contained in any

basis of M , that is, {e} forms a single element circuit. A parallel set is a set of two elements

{x, y} ⊆ E such that any for any basis B of M such that x ∈ B, we must have B ∪ {y} − {x}
forms a basis. We call a matroid simple if it contains no loops or parallel sets.

Remark 2.32. It is possible to construct a simplification of a matroid, which rids us of loops

and parallel sets, however it is not necessary to discuss this here. For the interested reader,

please consult [Oxl92, Page 49]. What is important is that the structure of the lattice of flats
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remains unchanged when the loops and parallel sets are removed. In fact, the abstract structure

of the lattice determines the matroid up to simplification. That is, the atoms of the lattice

correspond to the elements of E which are not loops and then the structure of the lattice gives

us the flats of the matroid.

2.1.8 Duals

We define the dual of a matroid through its bases. The collection of bases of the dual of a

matroid is defined as B∗ = {E−B | B ∈ B}. Note that this means the dual of the dual of the a

matroid is exactly the original matroid and that the dual of a matroid is unique. The bases of

the dual are called the cobases. In fact every term we defined on a matroid also has a equivalent

notion on the dual of the matroid. In this way we have cohyperplanes as the hyperplanes of the

dual, cocircuits as the circuits of the duals and so forth. We refer to the dual of a matroid M

as M∗.

The sets of the dual has some important properties [Oxl92, Proposition 2.16]:

• For all X ⊆ E, X is independent if and only if E −X it is cospanning. Due to the fact

that the dual of the dual is just the original matroid, this also works the other way as X

is coindependent if and only if E −X is spanning.

• For all X ⊆ E, X is a hyperplane if and only if E −X is a cocircuit and equivalently X

is a circuit if and only if E −X is cohyperplane.

Proposition 2.33. For M a matroid with rank function r : 2E → N0, the rank function of the

dual is given as r∗(X) = r(E −X) + |X| − r(E).

Proof. See [Oxl92, Proposition 2.19].

2.1.9 Minors

Minors give us a notion of a “sub-matroid”. They are obtained through sequences of two types

operation. We define the deletion of T ⊆ E from a matroid M = (E, I) as M\T = (E−T, I\T )
where I\T = {I ⊆ E − T | I ∈ I}. The contraction of M onto E − T is M/T = (M∗\T )∗.
Although a minor is any matroid obtained through a sequence of deletions or contractions, we

will here only focus on single contractions.

Proposition 2.34. Let M = (E, I) be a matroid. Let BT be a basis of M\(E − T ). Let

I(M/T ) be the collection of independent set of M/T . Then

I(M/T ) = {X ⊆ E − T | X ∪BT ⊆ I}

= {X ⊆ E − T | M\(E − T ) has a basis B such that X ∪B ⊆ I}.

12
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Proof. See [Oxl92, Proposition 3.1.7].

Proposition 2.35. Let M = (E, I) be a matroid. Let BT be a basis of M\(E−T ) and B(M/T )

the collection of bases of M/T .

B(M/T ) = {B′ ⊆ E − T | B′ ∪BT ∈ B}

= {B′ ⊆ E − T | M\(E − T ) has a basis B such that B′ ∪B ∈ B}

Proof. See [Oxl92, Corollary 3.1.8].

Proposition 2.36. For all X ⊆ T we have that clM/T (X) = clM (X ∪ T )− T .

Proof. See [Oxl92, Proposition 3.1.13].

2.2 Baker and Bowler Theory

In 2019 Matthew Baker and Nathan Bowler published a paper called “Matroids over Partial

Hyperstructures” [BB19]. In this paper they introduced the notion of a matroid over a tract,

which generalised both linear subspaces and many types of matroids. In this thesis we build on

the concepts discussed in this paper, therefore it is important to first give a overview.

2.2.1 Tracts

The central algebraic structure in this theory is a tract. Tracts are generalisations of fields.

Multiplicatively they are an abelian group, hence similar to fields, however, in terms of addition

they only allow for a notion of inverse. Since we only need to know when elements sum to zero

when considering matroids, tracts give us the most basic possible algebraic structure we can

work with.

Definition 2.37. A tract T = (G,NT ) is an abelian group G written multiplicatively with

identity element i, along with an additive relation structure onG. The additive relation structure

a subset NT of the semi-ring2
⊕

g∈G N0 such that

(T1) the zero element of
⊕

g∈G N0 is in NT ,

(T2) the identity element i is not in3 NT ,

(T3) there exists a unique element ϵ ∈ G such that i+ ϵ ∈ NT ,

(T4) NT is closed under the natural group action of G.

Each element in the group semi-ring
⊕

g∈G N0 can be viewed as an element of N|G|
0 . This vector

represents a sum with each integer giving the number of times the related element occurs in the

2A semi-ring is a set R along with two binary operations + and · such that (R,+) forms a commutative
monoid and (R, ·) forms a monoid.

3Here we immediately abuse notation. What is meant by i is actually the sum
∑

g∈G δgi, where δgi = 1 if
g = i and δgi is 0 otherwise. This will be the notation used for the rest of the text.

13
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sum. This way
⊕

g∈G N0 gives all the possible sums of elements of G. Hence we can view NT as

the sums of elements of G equal to 0. Note, we often refer to G as T×. Also note that the tract

also contains a zero element arising from the additive identity of
⊕

g∈G N0 with g ·0 = 0·g ∈ NT .

We sometimes say h = 0 instead of h ∈ NT .

Let us state some important rules about tracts.

Proposition 2.38. Let T = (G,NT ) be a tract.

1) If x, y ∈ G are such that x+ y ∈ NT , then y = ϵ · x.
2) The multiplicative inverse of ϵ is itself, that is ϵ2 = i.

3) No single element of G is in the null set, that is G ∩NT = ∅.

Proof. See [BB19, Lemma 1.1].

Note that this means that every element has a unique additive inverse and that no element

in our group is in NT . For ease of use, from now on we refer to i as 1, ϵ as −1 and ϵ · x as −x.

Definition 2.39. A tract homomorphism f : (G,NT ) → (G′, NG′) is a group homomorphism

f∗ : G → G′ such that
∑

aigi ∈ NT implies
∑

aif
∗(gi) ∈ NT ′ for ai ∈ N0 and gi ∈ G.

Example 2.40. Any field K can be viewed as a tract. We let G be the elements of K× along

with its multiplicative structure. Then NT is the set of sums equal to zero.

Example 2.41. An important example of a tract is the Krasner hyperfield K. The Krasner

hyperfield is constructed using the one element group G = {1} along with a zero element. Then

NT = N0\{1}, that is, every possible sum is in NT other than the sum containing a single 1.

2.2.2 Matroids over Tracts

Before we define matroids over tracts, we first need to define some other notions.

Let E be a finite set and T a tract. Then we refer to the set of all possible functions from

E to T as TE . The support of X ∈ TE is the set X = {e ∈ E | X(e) ̸= 0}, we define

supp(S) := {X | X ∈ S}.
We say X1, ..., Xk ∈ TE are linearly dependent if there exists c1, ..., ck ∈ T not all 0 such

that

c1X1 + · · ·+ cnXk ∈ NE
T .

Here NE
T is the set of maps from E to NT , in other words, evaluating X ∈ NE

T at any point

in E gives an element in NT . Sets of elements in TE which are not linearly dependent are called

linearly independent.

We also have a notion of an inner product. For X,Y ∈ TE , we have

14
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X · Y :=
∑
e∈E

X(e) · Y (e).

We say X,Y ∈ TE are orthogonal if X · Y ∈ NT and we denote this by X ⊥ Y . For a set

W ⊆ TE , the orthogonal complement of W is the set W⊥ = {X ∈ TE | X ⊥ Y for all Y ∈ W}.
For elements in TE , we also have a notion of span. The span of a set W = {W1, ...,Wn} is

the set ⟨W ⟩ = {X ∈ TE | X − (a1W1 + · · ·+ anWn) ∈ NE
T , for some a1, ...an ∈ T×}.

Definition 2.42. Let E be a finite set and C a set of subsets of E such that for each pair of

elements Ci, Cj in H we have that Ci ̸⊆ Cj and Cj ̸⊆ Ci. Then C1, C2 ∈ C form a modular pair

in C if C1 ̸= C2 and C1 ∪ C2 does not properly contain a union of 2 distinct elements of C.

Lemma 2.43. Let H be a collection of incomparable subset of a finite set E. The set H is

the set of hyperplanes of a matroid if and only if for every modular pair E − X,E − Y in

Hc = {E −X | X ∈ H}, there exists Z ∈ H such that (X ∩ Y ) ∪ {e} ⊆ Z.

Proof. We use the fact that the hyperplanes of a matroid are exactly the complements of the

cocircuits. Hence H is the set of hyperplanes of a matroid if and only if the complements of the

elements of H form a set of circuits. We note that if for every modular pair X,Y in H, there

exists Z ∈ H such that (X ∩ Y ) ∪ {e} ⊆ Z, then the set of complements of the elements H
satisfies statement 2 of [BB19, Lemma 3.6]. Hence, the set of complements of H form a set of

circuits and so H is the set of hyperplanes of a matroid.

We have all the knowledge to define T -matroids.

Definition 2.44. Let E be a finite set and let T be a tract. A subset η of TE is called the set

of hyperplane functions of a weak T -matroid on E if it satisfies

(Hf1) 0 /∈ η,

(Hf2) if X ∈ η and α ∈ T×, then α ·X ∈ η,

(Hf3) if X,Y ∈ η and X ⊆ Y , then there exists α ∈ T× such that X = α · Y ,

(Hf4) if X,Y ∈ η are such that X,Y are a modular pair in {E−X | X ∈ η} and e ∈ E such

that X(e) = −Y (e) ̸= 0, then there exists Z ∈ η such that X + Y − Z ∈ NE
T .

Definition 2.45. A T -matroid is a set E along with a subset of TE satisfying (H1)–(H4).

Remark 2.46. This definition is a rewording of the definition of T -circuits given in [BB19].

We use the fact that the complements of the cocircuits are hyperplanes. In fact, the set of

hyperplane functions of a weak T matroid M is exactly a set of T -circuits of the dual of M (this

is introduced in Section 2.2.4). However, since the dual is unique, this also characterises M

completely. On anther note, although this definition uses hyperplane functions, it is different to

15
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the definition of modular systems of hyperplane functions given in [BL20]. This definition has

one hyperplane function for each hyperplane, whilst the definition given above is closed under

multiplication by T×.

Theorem 2.47. Let T be a tract and η a subset of TE satisfying (Hf1)–(Hf4). Then the set

H = {E −X | X ∈ η} forms a set of hyperplanes of a matroid over E.

Proof. We need H to satisfy (H1)–(H2). By (Hf1) and (Hf3), H satisfies (H1). By (Hf4) if

X,Y ∈ η are such that E − X,E − Y are a complementary modular pair in H and there is

e /∈ (E − X) ∪ (E − Y ), then there is Z ∈ η such that Z(e) /∈ NT , that is e ∈ E − Z, and

Z(f) ∈ NT if X(f) ∈ NT and Y (f) ∈ NT , that is (E − X) ∩ (E − Y ) ⊆ E − Z. Hence, H

satisfies (H2).

This implies that if we take η to be the set of hyperplane functions of a weak T -matroid M

over E, then there exists an underlying matroid M over E with {E−X | X ∈ η} as hyperplanes.

We define the rank of M as the rank of M .

We can also define an equivalence class of hyperplane functions. That is X1 ∼ X2 if X1 =

α·X2 for some α ∈ T×. We notice that for a T -matroid, there is a bijection between hyperplanes

of the underlying matroid and the equivalence classes of the hyperplane functions.

Remark 2.48. In [BB19], strong T -matroids are also defined, however for the novel work done

in this thesis, we do not need this concept and so we do not define it here.

2.2.3 Grassmann-Plücker Functions

In this section we define the so called Grassmann-Plücker functions. This allows us to give a

cryptomorphic definition of T -matroids.

Definition 2.49. Let E be a finite set, let T = (NT , G) be a tract and r any positive integer. A

weak Grassmann-Plücker function of rank r on E with coefficients in T is a function φ : Er → T

such that the support φ form a collection of bases of a matroid and

(GP1) the function φ does not map everything to 0,

(GP2) the map φ is alternating, in other words φ(x1, ..., xi, ..., xj , ..., xr) = −φ(x1, ..., xj , ..., xi, ..., xr)

and so φ(x1, ..., xr) = 0 if xi = xj for some i ̸= j,

(GP3) for any two tuples I = {x1, ..., xr+1} and J = {y1, ..., yr−1} of elements in E such

that |I\J | = 3 we have,

r+1∑
k=1

(−1)kφ(x1, x2, ...., x̂k, ..., xr+1) · φ(xk, y1, ..., yr−1) ∈ NT , (1)

where x̂ means the element x is excluded.
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We say φ1 and φ2 equivalent if φ1 = α · φ2 for some α ∈ T×.

By definition, a Grassmann-Plücker function also has an underlying matroid, just like the

sets of hyperplanes of a weak T -matroid.

Theorem 2.50. Let E be a finite set, let T be a tract and let r be a positive integer. There is

a natural bijection between equivalence classes of weak Grassmann-Plücker functions of rank r

on E with coefficients in T and sets of hyperplane functions of a weak T -matroid.

Proof. We note that hyperplane functions are equivalent to the circuit function used to define

T -matroids in [BB19]. Then the result follows from [BB19, Theorem 3.17].

Remark 2.51. An important note on notation. We use square brackets to refer to the equiv-

alence class under multiplication by T× of any function. If f : A → T for A any set and T a

tract, then [f : A → T ] or simply [f ] is the equivalence class of f . By Theorem 2.50, we can

view T -matroids as equivalence classes of Grassmann-Plücker functions. This is the standard

view we take in this paper.

Definition 2.52. Given a usual matroidM of rank r, a Grassmann-Plücker function φ : Er → T

is said to be a T -representation of M , if the underlying matroid of φ is M . That is, if the sets

{x1, ..., xr} such that φ(x1, ..., xr) ̸= 0 are exactly the bases of M .

Example 2.53. A weak T -matroid over the Krasner hyperfield K is exactly a usual matroid,

that is there exists a bijection between K-matroids and usual matroids. For a given matroid, the

function from E to K, which maps to 1 if and only if the input is a basis, gives a Grassmann-

Plücker function. This function satisfies (GP1) due to the fact that every matroid has some

basis. It satisfies (GP2) due to the fact that a basis must contain r distinct elements, for r the

rank of the matroid and by the fact that −1 = 1 in K. The function satisfies (GP3) by the

fact that any sum 1 + · · · + 1 ̸= 1 is in NK. We note that if we have two tuples I and J in Er

such that I/J = {xi, xj , xk}, then if some I − {xt} and J ∪ {xt} form a basis, we must have by

(B2) that there is some xs such that I − {xs} and J ∪ {xs} form a basis. Hence, for any tuples

I and J such that |I/J | = 3, we have that equation (1) is some sum containing 1 more than

once, hence it must be in NK. Therefore the basis indicator function is a Grassmann-Plücker

function. This function is unique for every matroid and by definition every Grassmann-Plücker

function with coefficients in K is of this form. Hence, there exists a bijection.

2.2.4 Duality and Minors

Just like there is a notion of duality in usual matroids, there is also a dual for T -matroids.

Definition 2.54. Let E be a finite set such that |E| = m, let T be a tract and M a weak T -

matroid of rank r represented by the weak Grassmann-Plücker function φ. Then there is a weak
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T -matroid M∗ of rank m − r called the dual matroid represented by the Grassmann-Plücker

function φ∗ such that:

φ∗(x1, ..., xm−r) = sign(x1, ..., xm−r, x
′
1, ..., x

′
r)φ(x

′
1, ..., x

′
r),

where x′
1, ..., x

′
r is any ordering of E − {x1, ..., xm−r}. Here sign(x1, ..., xm−r, x

′
1, ..., x

′
r) is the

sign of the permuation that gives the elements of E in this order with respect to the original

order of E.

The dual has some nice properties [BB19, Theorem 3.24]:

• The underlying matroid of M∗ is the dual of the underlying matroid of M .

• The dual of the dual of M is M itself.

Remark 2.55. It is important to note that the hyperplane functions of a T -matroid are exactly

the T -circuits (defined in [BB19]) of the dual. We can now explain the bijection in Theorem

2.50. The result [BB19, Theorem 3.17] gives a bijection between T -circuits and equivalence

classes of Grassmann-Plücker functions. This bijection is given by

Y (xk)

Y (x0)
= (−1)k

φ(x0, ..., x̂k, ..., xr)

φ(x1, ..., xr)

Where {x1, ..., xr} forms a basis for the underlying matroid containing the X. Since, the

hyperplane functions of a T -matroid are exactly the T -circuits of the dual we have

Y (xk)

Y (x0)
= (−1)k

φ∗(x0, ..., x̂k, ..., xm−r)

φ∗(x1, ..., xm−r)
= (−1)k

φ(xk, y1, ..., yr−1)

φ(y1, ..., yr−1)
,

where {y1, ..., yr−1} must form a basis for the hyperplane E − X and x0 /∈ E − X fixed.

Hence,
X(e)

X(e′)
= (−1)k

φ(x1, ..., xr−1, e)

φ(x1, ..., xr−1, e′)

gives a bijection between equivalence classes of weak Grassmann-Plücker functions of rank r on

E with coefficients in T and sets of hyperplane functions of a weak T -matroid.

Another aspect of usual matroids that carries over to T -matroids are minors. We formulate

this in terms of Grassmann-Plücker functions. Here we only define contraction, since deletion

is not of importance to this text, however a similar definition exists and is given in [BB19,

Definition 4.3].

Definition 2.56. Let T be a tract φ : Er → T be a Grassmann-Plücker function defining a

T -matroid M , with underlying matroid M . Let A be a rank l subset of M with a maximal

18
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independent set {a1, ..., al}. Then the contraction of φ to E − A is the function (φ/A) : (E −
A)r−l → T such that (φ/A)(x1, ..., xr−l) := φ(x1, ..., xr−l, a1, ..., al).

The contraction φ/A is always a Grassmann-Plücker function if φ is so and so the contraction

also defines a T -matroid. The underlying matroid of this T -matroid has the desired properties.

That is if Mφ/A = [φ/A] and M = [φ], then Mφ/A = M/A [BB19, Lemma 4.4].

2.2.5 Vectors of T -Matroids

The vectors of a T -matroid are central to this thesis. In later sections we will use them to

give a novel cryptomorphic description of T -matroids. An important reference for vectors of

T -matroids is [And19] which gives a set of vector axioms. We do not discuss this here, however

it is important to note that this exists.

Definition 2.57. Let M be a T -matroid with hyperplane function set η. Let M∗ be the dual

of M with hyperplane function set η∗. The set of vectors of M is V = η⊥. The set of covectors

of M is V∗ = (η∗)⊥.

Let us touch on perfect T -matroids, which are key when considering vectors.

Definition 2.58. A T -matroid is perfect if V∗ ⊥ V.

Definition 2.59. A perfect tract P is a tract such that every T -matroid is perfect.

Remark 2.60. An important implication of a tract being perfect is that every weak T -matroid

over the tract is also strong [BB19, Theorem 3.46]. Hence, over perfect tracts, we can use

properties of weak and strong matroids interchangeably.

2.2.6 Quotients

Let us also introduce the notion of quotients in T -matroids which we take from [JL24].

Definition 2.61. Let T be a tract and E a finite set. Let M and N be two T -matroids over

E. Let ηM be the set of hyperplanes of M and V∗
N the covectors of N . Then M is a quotient of

N if ηM ⊆ V∗
N .

Theorem 2.62. Let E be a finite set, T be a perfect tract and let M and N be T -matroids

over E of respective ranks r and w. Then M is a quotient of N if and only if for some choice of

Grassmannn-Plücker functions µ and υ such that M = [µ] and N = [υ], respectively, satisfies

the Plücker flag relations

w+1∑
k=1

(−1)kυ(y1, ...ŷk, ..., yw+1) · µ(yk, x1, ..., xr−1) ∈ NT ,

for each choice of y1, ..., yw+1, x1, ..., xr−1 ∈ E.
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Proof. In [JL24] this is given as the definition of quotients and the definition we give is given

as an equivalence. We take T to be perfect here, since this definition only holds for strong

matroids. Since the cocircuits of a matroid are equivalent to the set of hyperplane functions,

the equivalence follows from [JL24, Theorem 2.4].

Covectors give a useful equivalence to quotients.

Theorem 2.63. Let T be a perfect tract and E a finite set. Let M and N be two T -matroids

over E with covectors V∗
M and V∗

N respectively. Then M is a quotient of N if and only if

V∗
M ⊆ V∗

N .

Proof. See [JL24, Theorem 2.17].

3 T -representations of Flats

The goal of this section is to introduce the novel notion of a T -representation of a flat. However,

to show that this is well defined, we need some preliminary results.

3.1 Preliminary Results

Let T be a tract and E a finite set. In this section we assume φ : Er → T to be a weak

Grassmann-Plücker function. We let M = [φ : Er → T ] be the weak T -matroid with underlying

matroid M . For a flat F of rank s of M and J = {j1, . . . , js} an independent set spanning F ,

we consider the function φJ : Et → T such that

φJ(x1, . . . , xt) = φ(j1, . . . , js, x1, . . . , xt)

where t+ s = r.

Proposition 3.1. The function φJ(x1, . . . , xt) ̸= 0 if and only if x1, . . . , xt ∈ E − F and

{x1, . . . , xt} forms a basis for M/F .

Proof. Let us first show the backwards direction We have x1, . . . , xt ∈ E − F and {x1, . . . , xt}
forms a basis for M/F . By definition of M/F , if {x1, . . . , xt} forms a basis for M/F then

for every basis BF of F , {x1, . . . , xt} ∪ BF is a basis for M . By assumption, {j1, . . . , js} is

independent and spans F , hence it forms a basis for F . Therefore, {j1, . . . , js, x1, . . . , xt} must

form a basis for M . The bases of M are exactly the support of φ. Hence, φJ(x1, . . . , xt) =

φ(j1, . . . , js, x1, . . . , xt) ̸= 0.

Now let us attempt the forward direction. If we have φJ(x1, . . . , xt) ̸= 0, then by definition

φ(j1, . . . , js, x1, . . . , xt) ̸= 0 and so {j1, . . . , js, x1, . . . , xt} must form a basis for M . Let us show
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that {x1, . . . , xt} forms a basis for M/F . We have that {j1, . . . , js} must form a basis for F

and {j1, . . . , js, x1, . . . , xt} must form a basis for M . Then by definition of M/F we have that

{x1, . . . , xt} forms a basis for M/F and that x1, . . . , xt ∈ E − F .

Proposition 3.2. If φ is a weak Grassmann-Plücker function on E, then φJ : Et → T is a

weak Grassmann-Plücker function on E and so [φJ ] is a weak T -matroid.

Proof. For φJ to be a weak Grassmann-Plücker function, we need its support to be the bases

of a matroid and it must satisfy (GP1), (GP2) and (GP3) from Definition 2.49. By Proposition

3.1, we have that the supports of φ form the bases of M/F . We now show that φJ satisfies

(GP1), (GP2) and (GP3).

(GP1) From claim 1 we have φJ(x1, . . . , xt) ̸= 0 if and only if x1, . . . , xt ∈ E − F and

{x1, . . . , xt} forms a basis for M/F . Such a set must exist, hence φJ cannot be identically zero.

Hence, φJ satisfies (GP1).

(GP2) We notice that

φJ(x1, . . . , xi, . . . , xj , . . . , xt) = φ(j1, . . . , js, x1, . . . , xi, . . . , xj , . . . , xt)

= −φ(j1, . . . , js, x1, . . . , xj , . . . , xi, . . . , xt)

= −φJ(x1, . . . , xj , . . . , xi, . . . , xt).

Hence, φJ satisfies (GP2).

(GP3) We know that φ satisfies (GP3). Let I = {x1, ..., xt+1} and J = {y1, ..., yt−1} be two

tuples of elements in E such that |I\J | = 3. Since, φ satisfies (GP3), we have

s∑
k=1

(−1)kφ(j1, . . . , ĵk, . . . , js, x1, . . . , xt) · φ(jk, j1, . . . , js, y1, . . . , yt−1)

+
t+1∑
k=1

(−1)s+kφ(j1, , . . . , js, x1, . . . , x̂k, . . . , xt) · φ(xk, j1, . . . , js, y1, . . . , yt−1) ∈ NT .

We notice that jk, j1, . . . , js, x1, . . . , xt is never independent and so cannot be a basis. Hence,

φ(jk, j1, . . . , js, x1, . . . , xt) = 0 for all 1 ≤ k ≤ s and so

t+1∑
k=1

(−1)kφ(j1, , . . . , js, x1, . . . , x̂k, . . . , xt) · φ(xk, j1, . . . , js, y1, . . . , yt−1) ∈ NT ,

implying
t+1∑
k=1

(−1)kφJ(x1, . . . , x̂k, . . . , xt) · φJ(xk, y1, . . . , yt−1) ∈ NT .

We conclude φJ satisfies (GP3).

21



3.1 Preliminary Results 3 T -REPRESENTATIONS OF FLATS

Hence, φJ must be a weak Grassmann-Plücker function and [φJ ] must be a weak T-matroid.

Proposition 3.3. Let J be an independent set of . Let I = {i1, . . . , is} be an independent set

in Es such that I ̸= J . Then I spans F if and only if φI ∈ [φJ ], in other words φJ = a · φI for

some a ∈ T×.

Proof. First the backwards direction. We have φI ∈ [φJ ], in other words φI and φJ have the

same support. By Lemma 3.1 we have that the support of φJ is exactly the set of bases of M/F .

Hence we have for {x1, ..., xt} a basis of M/F , that φI(x1, ..., xt) ̸= 0. However, this also means

φ(j1, ..., js, x1, ..., xt) ̸= 0 and so that {j1, ..., js, x1, ..., xt} forms a basis for E. Aiming for a

contradiction, let us assume that I spans a rank s flat F ′ ̸= F . Then, {x1, ..., xt} form a basis

for M/F ′. However this would imply that M/F = M/F ′, which implies F = F ′ contradicting

our assumption. Hence, I spans F.

Now for the forward direction. For this direction we use the notion of a basis graph. For a

matroid N with bases B, the basis graph is the graph with vertex set given by the collection of

bases B such that two bases are neighbours if they differ by one element, in other words, one

can be obtained from the other through basis exchange. We denote the basis graph of N by

BG(N).

We use [Mau73, Theorem 2.1], which states that for any matroid, the basis graph is con-

nected.

Consider the set of independent spanning sets of F . These are exactly the bases ofM\(E−F ).

We know that BG(M\(E − F )) is connected, hence, for any two bases I and J we can find a

path from I to J on BG(M\(E − F )). If we show that for any two neighbours I and I ′ on

BG(M\(E − F )) that φI = α · φI′ for some α ∈ T×, then with an induction argument it must

hold for any two bases in general.

Let I = {i1, . . . , in−1, in, in+1, ..., is} and I ′ = {i1, . . . , in−1, i
′
n, in+1, ..., is}, such that in ̸=

i′n, be two bases of F , hence, neighbours on BG(M\(E − F )). Let B = {x1, . . . , xr} be a basis

for M/F and let C be the circuit contained in I ∪ {i′n} ∪ B = I ′ ∪ {in} ∪ B. Since C is both

the fundamental circuit of i′n with respect to I ∪ B (that is the unique circuit contained in

I ∪B ∪ {i′n} [Oxl92, Corollary 1.2.6]) and the fundamental circuit of in with respect to I ′ ∪B,

we have that in and i′n in C. We also have I ∪ B forms a basis for M containing C − {i′n}.
Therefore, by [BB19, Lemma 4.5] we have that the quantity

α =
φ(i′n, i1, . . . , în, . . . , is, x1, . . . , xr)

φ(in, i1, . . . , în, . . . , is, x1, . . . , xr)
,

is independent of choice of i1, . . . , în, . . . , is, x1, . . . , xr such that in, i1, . . . , în, . . . , is, x1, . . . , xr
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forms a basis for M containing C − {i′n}.
This implies the quantity is independent of choice of basis for M/F and so we have that

α =
φ(i′n, i1, . . . , în, . . . , is, x1, . . . , xt)

φ(in, i1, . . . , în, . . . , is, x1, . . . , xt)
=

φ(i′n, i1, . . . , în, . . . , is, y1, . . . , yt)

φ(in, i1, . . . , în, . . . , is, y1, . . . , yt)
,

for y1, . . . , yr any basis for M/F . We note that, by definition, this means

α =
φI′(x1, . . . , xt)

φI(x1, . . . , xt)
=

φI′(y1, . . . , yt)

φI(y1, . . . , yt)
.

Hence φI′(y1, . . . , yt) = α · φI(y1, . . . , yt) for any basis for M/F . By Proposition 3.1 we know

that the support of φI and φI′ are equal and are exactly the set of bases of M/F . Hence we

have that for every {y1, . . . , yt} in the support φI′(y1, . . . , yt) = α · φI(y1, . . . , yr). Therefore,

we must have that φI′ = α · φI .

Since our basis graph is connected and for every two neighbours I and I ′ we have exactly

that φI′ = α · φI , it follows from induction that we must have that the same holds for any two

arbitrary bases of F .

3.2 T -representations of Flats

With these results, we can define T -representations of flats.

Definition 3.4. Let T be a tract, E a finite set and φ : Er → T a weak Grassmann-Plücker

function. Let M = [φ] be a T -matroid with underlying matroid M . Let F be a rank s flat of M .

Then the T -representation of F with respect to M is the T -matroid MF = [φF ] where φF = φI

for some I ⊆ E independent in M and spanning F .

We note that, by Proposition 3.3, it does not matter which set spanning set I we choose.

We can also consider MF from a different perspective which allows us to easily uncover the

underlying matroid of MF . To do so we need to introduce the direct sum of matroids and of

T -matroids.

Definition 3.5. Let E and A be disjoint finite sets and M and N matroids with ground sets

E and A and rank r and t respectively. Then the direct sum of M and N is the matroid M ⊕N

with ground set E ∪A such that a set {i1, ..., ir, j1, ..., jt} forms a basis for M ⊕N if {i1, ..., ir}
forms a basis for M and {j1, ..., js} forms a basis for N .

By [Oxl92, Page 124], this does actually form a matroid.

Definition 3.6. Let T be a tract and E and A be disjoint finite sets. Let φ : Er → T

and ε : At → T be two weak Grassmann-Plücker functions with Mφ = [φ : Er → T ] and

23



4 T -LINEAR REPRESENTATIONS

Mε = [ε : At → T ]. Then the direct sum of Mφ and Mε is the T -matroid Mφ ⊕Mε such that

Mφ ⊕Mε = [φ⊕ ε : Er ×At → T ] where φ⊕ ε(i1, ..., ir, j1, ..., jt) = φ(i1, ..., 1r) · ε(j1, ..., jt).

Proposition 3.7. Let T be a tract and E and A be finite sets. Let φ : Er → T and ε : At → T

be Grassmann-Plücker functions. Let Mφ be the underlying matroid of Mφ = [φ : Er → T ]

and let Mε be the underlying matroid of Mε = [ε : At → T ]. Then the underlying matroid of

Mφ ⊕Mε is Mφ ⊕Mε.

Proof. The underlying matroid of Mφ = [φ : Er → T ] is the matroid over E with bases

exactly the support of φ, the same holds for Mε. The supports of Mφ ⊕ Mε must therefore

be the disjoint union of bases of Mφ and Mε. This is exactly the bases of Mφ ⊕ Mε. Hence

Mφ ⊕Mε = Mφ ⊕Mε

The next result shows an interesting link between T -representations of flats and contractions

of T -matroids. It also lets us find the underlying matroids of T -representations easily.

Theorem 3.8. Let T be a tract, E a finite set and φ : Er → T a weak Grassmann-Plücker

function. Let M = [φ] be a T -matroid with underlying matroid M . Let φ0,F : F 0 → T be the

function that maps all elements of F to zero. Let F be a rank s flat of M and let [φF ] be the

T -representation of F with respect to M . Then [φF ] = [φ/F ]⊕ [φ0,F ].

Proof. If x1, . . . , xn are in E − F then φF (x1, . . . , xt) = φ/F (x1, . . . , xt) and so

(φ/F ⊕ φ0,F )(x1, . . . , xt) = φ/F (x1, . . . , xt). If x1, . . . , xt /∈ E − F , then φ/F is undefined,

but in this case (φ/F ⊕ φ0,F )(x1, . . . , xt) = 0. For x1, . . . , xt /∈ E − F , we must also have

φJ(x1, . . . , xt) = 0 since x1, . . . , xt cannot form a basis of F . Hence, we have that (φ/F ⊕
φ0,F )(x1, . . . , xt) = φF (x1, . . . , xt). Hence, [φF ] = [φ/F ]⊕ [φ0,F ].

Theorem 3.9. Let T be a tract, E a finite set and φ : Er → T a Grassmann-Plücker function.

Let F be a rank s flat of M , the underlying matroid of M = [φ]. Then the underlying matroid

of MF = [φF ], the T -representation of F with respect to M , is M/F ⊕ U0,F , where U0,F is the

uniform matroid of rank 0 over F .

Proof. This follows directly from Proposition 3.7 and Theorem 3.8.

4 T -linear Representations

The goal of this section is to introduce a new cryptomorphism of T -matroids using T -representations

of flats. Here a modular triple of hyperplanes of M is a triple of hyperplanes such that

F = H1 ∩ H2 ∩ H3 is a corank 2 (that is, of rank r − 2, for r rank of M) flat. A modular
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triple of hyperplane functions is a triple of hyperplane functions in TE such that the comple-

ments of the supports of the functions form a modular triple of hyperplanes. A modular system

for a matroid M is a collection of functions in TE , one for each H ∈ HM such that whenever

H1, H2, H3 is a modular triple of hyperplanes in HM , the corresponding functions are linearly

dependent.

Theorem 4.1. Let M be a matroid. A modular triple fH1
, fH2

, fH3
of hyperplane functions

of M is linearly dependent if and only if there exists a T-matroid [φ : E2 → T ] such that

[fHi
: E → T ] for i = 1, 2, 3 is a quotient of [φ : E2 → T ].

Proof. First the forward direction. We notice that since fH1 , fH2 and fH3 are linearly dependent,

{α · fH1 | α ∈ T×} ∪ {α · fH2 | α ∈ T×} ∪ {α · fH3 | α ∈ T×} satisfy (Hf1)–(Hf4) and so form

a set of hyperplane functions, defining a T -matroid N . Let N be the underlying matroid from

this T -matroid, with hyperplanes exactly the supports of fH1
, fH2

and fH3
, in other words N

has as hyperplanes exactly H1, H2, H3.

Since fH1
, fH2

and fH3
form a modular triple, we have F = H1 ∩H2 ∩H3 forms a corank 2

flat, so this implies that N is a rank 2 matroid.

Consider the rank 2 Grassmann-Plücker function φ : E2 → T representing N . We note

fH1 , fH2 and fH3 are also Grassmann-Plücker functions with T -matroids N1 = [fH1 ], N2 = [fH2 ]

and N3 = [fH3
] respectively. Then the set of hyperplane functions of Ni is going to be exactly

[fHi
] for i = 1, 2, 3. We also remember that the covectors of N are orthogonal to the vectors of

N . Since the vectors of N are themselves orthogonal to the hyperplanes of N , we have that the

hyperplane functions of N are contained in the covectors. This implies that ηNi
⊆ V∗(N). We

use Definition 2.61 and conclude that N = [φ] is a quotient of Ni = [fHi ] for i = 1, 2, 3.

For the backward direction, we want to show that fH1 , fH2 and fH3 are part of a modular

system of [φ : E2 → T ]. If we show for each fHi
that for x ∈ Hi and y, z /∈ Hi

fHi
(y)

fHi(z)
=

φ(x, y)

φ(x, z)
,

then we have by [BL20, Theorem 2.16] that fH1
, fH2

and fH3
are a modular triple and so are

linearly dependent.

Take x ∈ Hi and y, z /∈ Hi. By φ being quotient to fHi , we must have by Theorem 2.62 that

φ(x, y)fHi
(z)− φ(x, z)fHi

(y) + φ(y, z)fHi
(x) ∈ NT .

Since x ∈ Hi, we have that fHi
(x) = 0, hence

φ(x, y)fHi
(z)− φ(x, z)fHi

(y) ∈ NT .
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5 T -FLATS

This gives exactly the result we want. Since this hold for i = 1, 2, 3 we must have that fH1
, fH2

and fH3
are part of a modular system for φ : E2 → T and so are linearly dependent.

Using this result we can give a cryptomorphic description of weak T -matroids.

Definition 4.2. Let T be a tract and E a finite set. Let M be a usual matroid over E with

collection hyperplanes H. A T -linear representation of M is a family of hyperplane functions R
with one hyperplane function for each H ∈ H and E − fH = H for each fH ∈ R such that for

each modular triple of hyperplanes H1, H2 and H3 in H, there exists a T -matroid [φ : E2 → T ]

such that [fHi
: E → T ] is a quotient of [φ : E2 → T ] for i = 1, 2, 3.

Theorem 4.3. Let T be a tract and E a finite set. Let M be a usual matroid of rank r

over E with hyperplanes H. There exists a bijection between weak T -matroids with underlying

matroids M and equivalence classes by multiplication over T× of T -linear representations of M ,

that is the collection of equivalence classes of the functions in the T -linear representation.

Proof. By [BL20, Theorem 2.16], there exists a bijection between weak T -representations of M

and modular systems of hyperplanes of M . By Theorem 4.1 modular systems of hyperplanes

of M are equivalent to a T -linear representation. Hence, there exists a bijection between weak

T -representations of M and T -linear representations of M . Since a T -matroid with underlying

matroids M is just an equivalence class of T -representations of M , we have that there is a

bijection between weak T -matroids with underlying matroids M and equivalence classes by

multiplication of T× of T -linear representations of M .

5 T -Flats

In this section we define the notion of a T -flat and discuss its properties. We also show that we

can use T -flats to give a cryptomorphism of a T -matroid. When T is a field, T -flats are strongly

linked to hyperplane arrangements. In this section we assume that T is a perfect tract and so

we view every T -matroid as weak.

5.1 T -flats and Their Properties

Definition 5.1. Let E be a finite set. Let φ : Er → T be a T -representation of M a usual

matroid over E. Let F be a flat of M . The T -flat of F with respect to φ is the set VF = V([φF ]),

with V∅ = V([φ]) and VE = V([φE ]), that is, the vectors of the T -representation of F . The lattice

of T -flats of a T -representation φ is the set {VF | F ∈ Λ}, where Λ is the lattice of flats of M .

Remark 5.2. The T -matroid [φE ] is the T -matroid over E with underlying matroid U0,E . It

can also be viewed as having Grassmann-Plücker function φE : E0 → T .
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We discuss the properties of the lattice of T -flats. To do this we prove this useful result.

Lemma 5.3. Let E be a finite set. Let φ : Er → T be a T -representation of M a usual matroid

over E. Let η be the set of hyperplane functions of [φ : Er → T ]. Let F be a flat of M . Then

ηF = {X ∈ η | F ⊆ E −X} is the set of hyperplane functions of [φF ].

Proof. By the bijection given in Remark 2.55, we have that for all X ∈ η,

Y (e)

Y (e′)
= (−1)k

φF (x1, ..., xs−1, e)

φF (x1, ..., xs−1, e′)
= (−1)k

φ(i1, .., ir−s, x1, ..., xs−1, e)

φ(i1, .., ir−sx1, ..., xs−1, e′)
.

Hence, for every X ∈ ηF , we have X ∈ η. We know that [φF ] has underlying matroid

M/F ⊕U0,F . The hyperplanes of this are exactly the hyperplanes of M , such that F contained

in H. Since ηF and [φF ] must have the same underlying matroid, we must have the ηF = {X ∈
ηF | F ⊆ E −X}.

Proposition 5.4. Let E be a finite set and let φ : Er → T be a T -representation of M a usual

matroid over E. Let {VF | F ∈ Λ} be the lattice of T -flats for [φ]. Then VF =
⋂

S⊆H VH for

S ⊆ E such that cl(S) = F .

Proof. We have that VF = η⊥F by Definition 2.57, where ηF is the set of hyperplane functions

of [φF ]. Since the only hyperplane that contains a hyperplane, is the hyperplane itself, we have

by Lemma 5.3 that VH = {X ∈ η | H = E −X}⊥. Hence

⋂
S⊆H

VH =
⋂

S⊆H

{X ∈ η | H = E −X}⊥ =

 ⋃
S⊆H

{X ∈ η | H = E −X}

⊥

.

We note that a hyperplane is such that S ⊆ H if and only F ⊆ H, hence

⋃
S⊆H

{X ∈ η | H = E −X} =
⋃

F⊆H

{X ∈ η | H = E −X}

= {X ∈ η | F ⊆ E −X} = ηF .

Hence, ⋂
S⊆H

VH = η⊥F = VF .

Theorem 5.5. Let E be a finite set and T a perfect tract. The lattice of T -flats of a T -matroid

over E with underlying matroid M has the same abstract lattice as the lattice of flats of M .
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Proof. We have VF =
⋂

S⊆H VH if and only if F =
⋂

S⊆H H. Since there is also a bijection

between the hyperplanes of the lattice of flats of M and the hyperplanes of the lattice of T -flats,

this means that they have the same lattice structure.

Let us give an abstract definition of a lattice of T -flats.

Definition 5.6. Let E be a finite set. Let V = {Vk | k ∈ L} be a collection of subset of TE ,

partially ordered by inclusion. Then we say V is a lattice of T -flats over E if

(LT1) we have V forms a geometric lattice with respect to inclusion with |E| = n atoms,

such that the top is Tn and the bottom is {0},
(LT2) let Λ be the lattice with the same structure as V but atoms given by the elements

of E. Then the corank 1 elements of V are of the form VH = (fH)⊥ where fH is such that

E − fH = H for H ⊆ E a hyperplane of Λ with atoms E,

(LT3) the elements of the lattice with corank 2 or corank 1 form a set of vectors in the sense

of [And19],

(LT4) every element of V is the intersection of corank 1 elements of V .

In [And19], necessary conditions are given for a subset of TE to be a set of vectors of a

T -matroid. Here we assume the sets of corank 1 or 2 satisfy these conditions.

Theorem 5.7. Let E be a finite set. There exists a bijection between T -matroids over E and

lattices of T -flats over E.

Proof. We show that there exists a bijection between T -matroids and lattices of T -flats. This

is the map that sends a T -matroid to its respective lattice of T -flats. We show injectivity and

then surjectivity.

Let M be a T -matroid. Then by Theorem 5.5, the lattice of T -flats of M forms a geometric

lattice and each VF in the lattice are vectors for a T -matroid. Hence, lattice of T -flats of M

is a lattice of T -flats in the sense of Definition 5.6. Since the lattice of T -flats of a matroid

characterizes it completely (its top is the set of vectors of the matroid which characterizes the

matroid completely by [And19, Theorem 2.18]), we have that every T -matroid has a unique

lattice of T -flats and so the map is injective.

Let us consider the inverse map. Let V be a lattice of T -flats. We claim the functions fH

form a T -linear representation. Consider a modular triple of hyperplanes H1, H2, H3 in Λ with

atoms E. Then VH1 ,VH2 ,VH3 and VF = VH1 ∩ VH2 ∩ VH3 are of corank 1 or 2 and so forms a

set of vectors for T -matroids MH1 ,MH2 ,MH3 and MF respectively. Since VF ⊆ VHi for every

i = 1, 2, 3, MF is quotient to each MHi
. Since the T -representation of MHi

is exactly fHi
for

each i = 1, 2, 3, we have that the set of functions fH form a T -linear representation. By Theorem

4.3, this is equivalent to a T -matroid over E. Hence, the forward map is also surjective and so

a bijection.
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5.2 K-flats and Hyperplane Arrangements

We note that fields are perfect tracts. For a field K and a K-vector space V0 ≃ Kr, a hyperplane

arrangement is a set of hyperplanes (that is r−1 dimensional subspace of V0 and not hyperplanes

in the matroid sense), such that the intersection of all the hyperplanes is exactly 0. Hyperplane

arrangements give rise to matroids. If we have E = {1, ..., n} and we have V1, ..., Vn ⊆ V0 ≃ Kr

hyperplanes, then we can define a rank function r : E → N0 such that r(X) = codim(
⋂

i∈X Vi).

This satisfies the axioms of a rank function and so defines a matroid.

Lemma 5.8. Let K be a field and M = [φ] a K-matroid with lattice of T -flats {VF | F ∈ Λ},
hyperplane functions η. Then

V∗
F = V⊥

F = ⟨ηF ⟩,

where ηF is the collection hyperplane functions of [φF ] and ⟨ηF ⟩ its span. Further,

V∗
F =

⋂
i∈S

V∗
{i}.

Proof. By [And19, Proposition 2.19], we have that for any K-matroid with vectors V, it holds
that V⊥ = V∗. Hence, we also have V∗

F = V⊥
F . Since VF = η⊥F , we have that V∗

F = ⟨ηF ⟩.
We have ηF = {X ∈ η | F ⊆ E −X} and so η{i} = {X ∈ η | i ∈ E −X}. We notice that

⋂
i∈S

V∗
{i} =

⋂
i∈S

⟨{X ∈ η | i ∈ E −X}⟩ = ⟨{X ∈ η | i ∈ E −X, for all i ∈ F}⟩

= ⟨{X ∈ η | F ⊆ E −X}⟩ = V∗
F .

Theorem 5.9. Let K be a field. The orthogonal complements of the K-flats of a K-matroid

M over E form a hyperplane arrangement in the space of covectors of M . Furthermore, the

matroid defined by the hyperplane arrangement is exactly M , the underlying matroid of M .

Proof. It is a known fact that the covectors of a rank r K-matroids form r-dimensional linear

subspaces of Kn for #E = n [And19, Proposition 2.19]. This implies that for a rank t flat of

M , the vectors of K-matroid given by [φF ] form an r − t dimensional subspace of Kn. Let us

define V∗
F as the covectors of [φF ]. Then V∗

∅ are the covectors of M , isomorphic to Kr, and V∗
{i}

for i ∈ E are the covectors of [φ{i}], which is isomorphic to Kr−1. Hence, V∗
{i} are hyperplanes

in V∗
∅ . We also have that

⋂
i∈E V∗

{i} = V∗
E = {0}. Hence, we have a hyperplane arrangement.

By Lemma 5.8 we have V∗
F =

⋂
i∈S V∗

{i}.

We consider the matroid formed by the hyperplane arrangement. It has ground set {V∗
{i}|i ∈

E} and we have that codim(
⋂

i∈S V∗
{i}) = codim(V∗

F ) = rM (F ) = rM (S). Hence the matroid
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given by the hyperplane arrangement is exactly M .

Theorem 5.10. Let K be a field and let {Vi ⊆ V∅|i = 1, ..., n} be a set of r − 1 dimensional

hyperplanes such that V∅ an r-dimensional subspace of Kn and
⋂

i=1,...,n Vi = {0}. Let M̃ be

the matroid of the hyperplane arrangement of {Vi ⊆ V∅|i = 1, ..., n}. Then there exists an

embedding ϕ : V∅ → Kn and a K-matroid M with lattice of K-flats {V∗
F ⊆ Kn|F ∈ Λ} such

that ϕ
(⋂

i∈F Vi

)
= V∗

F and ϕ(V∅) = V∗
∅ .

Proof. Let v1, ..., vr a basis of V∅. For each Vi let ωi =
∑

1≤j≤r aj,ivj be a vector orthogonal to

Vi. Let A be an r × n dimensional matrix over K such that As,t = as,t. Then we claim this

matrix represents M̃ in the sense that a set I is independent in M̃ if and only if the vectors

{ωi|i ∈ I} form a linear independent set of vectors in V∅.

Let us prove this claim. We know a set I is independent in M̃ if #I = r − dim(
⋂

i∈I Vi).

Consider (
⋂

i∈I Vi)
⊥ =

⋃
i∈I V

⊥
i . We note V ⊥

i = span(ωi). Hence
⋃

i∈I V
⊥
i = span({ωi|i ∈ I}).

Notice r − dim(
⋂

i∈I Vi) = dim(
⋃

i∈I V
⊥
i ). Since dim(

⋃
i∈I V

⊥
i ) = #I if and only if {ωi|i ∈ I}

forms a set of linear independent vectors, we have shown that A represents M̃ .

Consider the function φ : Er → K for E = {1, ..., n} such that φ(i1, ..., ir) = det [Ai1 · · ·Air ]

where Ai is the i-th row of A. It is well known that φ is a Grassmann-Plücker function [BB19,

Page 16] and so defines a K-matroid M . We note that, since det [Ai1 , ..., Air ] ̸= 0 if and only if

ωi1 · · ·ωir linearly independent, the support of φ are exactly the sets indexing sets of r linearly

independent vectors. Hence M , the underlying matroid of M , is exactly M̃ . This implies [φ] is

a K-matroid with underlying matroid M̃ .

Let {VF |F ∈ Λ} be the K-flats of M . Let us define a map f : V∅ → Kn such that

v =
∑

civi 7→ AT


c1
...

cr

 .

We claim that f(V∅) = V∗
∅ .

AT


c1
...

cr

 =


ω1 · v

...

ωn · v

 .

Evidently, f is a linear transformation. We claim that it is injective, in other words, the

kernel is 0. For an element v to be in the kernel of f , we must have ωi · v for every 1 ≤ i ≤ n.

This would mean v is in every Vi which by assumption means that v = 0.

Let e1, ..., en be the natural basis for Kn. An important observation is that for ωi orthogonal

to V{i}, we have that ωi · v = 0 if and only if v ∈ Vi. We have that V∗
∅ = ⟨fH |H ∈ Λr−1⟩ that
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is that V∗
∅ is spanned by the hyperplane functions of M . We will show that each hyperplane

function of M is contained in f(V0), implying that the span is also contained in f(V0).

Consider X ∈ f(
⋂

i∈H Vi −
⋃

i/∈H Vi) for some hyperplane H. Then we must have that

X(i) = 0 if and only if i ∈ H, hence X is a K-hyperplane of H. Since such an X must exist for

every H, we have that V∗
∅ ⊆ f(V0).

Consider x ∈ V0. We have x ∈
⋂

i∈F Vi −
⋃

i/∈F Vi, for some F in M̃ . Then f(x)(i) = 0 if

and only if i ∈ F . Since the hyperplanes contain F intersect exactly at F , f(x) can be written

as the sum of hyperplane functions of the hyperplanes containing F . Hence f(x) ∈ V∗
∅ and so

f(V0) ⊆ V∗
∅ . Hence f(V0) = V∗

∅ .

We claim f(Vi) = V∗
{i}. Recall that for some x ∈ V0, f(x)(i) = 0 if and only if x ∈ Vi. Hence,

for all X ∈ f(Vi), X(i) = 0 and so f(Vi) ⊆ ⟨ei⟩⊥ ∩ V∗
∅ .

Consider X ∈ ⟨ei⟩⊥ ∩ V∗
∅ . Since f(V0) = V∗

∅ , we have X ∈ f(V0). Since X ∈ ⟨ei⟩⊥, we must

have X(i) = 0, hence we must have X ∈ f(V{i}).

We claim V∗
{i} = ⟨ei⟩⊥ ∩ V∗

∅ . First we show V∗
{i} ⊆ ⟨ei⟩⊥ ∩ V∗

∅ and then ⟨ei⟩⊥ ⊆ V∗
{i}. Note

V∗
{i} = ⟨fH |i ∈ H⟩ and fH(x) = 0 if and only if x ∈ H. Hence, for all X ∈ V{i}, we have

X(i) = 0 and so X ⊥ ⟨ei⟩. We obtain V∗
{i} ⊆ ⟨ei⟩⊥ ∩ V∗

∅ . For the other direction, we show

that X ∈ ⟨ei⟩⊥ ∩ V∗
∅ implies X ∈ V∗

{i}. If X ∈ ⟨ei⟩⊥ ∩ V∗
∅ then X is a linear combination of

hyperplanes such that fH(i) = 0, in other words, such that i ∈ H. Therefore X ∈ V∗
{i}. Hence,

⟨ei⟩⊥ ∩ V∗
∅ ⊆ V∗

{i}.

We have shown f(Vi) = ⟨ei⟩⊥∩V∗
∅ = V∗

{i}. Let us show that it follows that V∗
F = f(

⋂
i∈F Vi).

Since f is injective, we must have that f(
⋂

i∈F Vi) =
⋂

i∈F f(Vi) =
⋂

i∈F V{i} = VF . Hence,

there exists embedding ϕ and K-matroid M as we claim.

6 Example

We finish of with an example of T -flats. We shall use the rank three matroid M over four

elements which was described in Example 2.29. We consider the problem over the real numbers

R. We describe an R-matroid with underlying matroidM . We then look at the R-representations

of each of the flats, the lattice of R-flats and the hyperplane arrangement described by it.
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∅

1 2 3 4

12 13 14 234

1234

Figure 3: The rank three matroid M over E = 1234 with hyperplanes 12, 13, 14 and 234.

Let us consider what such an R-matroid would look like in terms of Grassmann-Plücker

functions. The bases of M are 123, 124 and 134. We can construct a Grassmann-Plücker

function as the determinant of a minor of a matrix [BB19, Page 16]. Consider the vectors

v1 =


1

0

0

 , v2 =


0

1

1

 , v3 =


0

1

0

 , v4 =


0

0

1

 ,

then defining φ : E3 → R as φ(i, j, k) = det (Aijk), where Aijk is the 3 × 3 matrix with

columns vi, vj and vk, will give us a Grassmann-Plücker function. We have det (Aijk) ̸= 0 if

and only if vi, vj and vk are linearly independent. Hence, φ(i, j, k) ̸= 0 if and only if ijk = 123,

ijk = 124 or ijk = 134. Hence, [φ] has underlying matroid M .

Now let us look at the R-representations of different flats. We see that

φ1(i, j) = det (A1ij) , φ2(i, j) = det (A2ij) , φ3(i, j) = det (A3ij) , φ4(i, j) = det (A4ij)

φ12(i) = det (A12i) , φ13(i) = det (A13i) , φ14(i) = det (A14i) ,

φ234(i) = det (A23i) = det (A24i) = −det (A34i) .

We see that in M , 234 is spanned by 23, 24 and 34. This is paralleled by span(v2, v3) =

span(v2, v4) = span(v3, v4).

Let us now describe a new R-matroid using hyperplane functions. We consider the definition

of hyperplane functions again. We need to find four vectors (note we view functions from E to

R as vectors in R|E|), one for each of our hyperplanes, such that their zero elements correspond
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with the hyperplanes of M . Our vectors should therefore be of the form


0

0

·
·

 ,


0

·
0

·

 ,


0

·
·
0

 ,


·
0

0

0

 .

Next to this, if we have two vectors which share an element e ∈ E in the support (this would

both have a non-zero entry in the same position, in the vector sense), then we need a Z such

that X,Y and Z are linearly dependent. We see that the vectors

ω1 =


0

0

1

1

 , ω2 =


0

1

0

1

 , ω3 =


0

−1

1

0

 , ω4 =


1

0

0

0

 ,

satisfy this property. Hence the set η = {a · ωi | for a ∈ R and i ∈ {1, 2, 3, 4}} forms a set

of hyperplanes of an R-matroid M with underlying matroid M . We can deduce that the vector

set of M is spanned by only the vector
[
0 1 1 −1

]T
.

We can find the collection of hyperplanes of the R-representation of the flats. By Lemma

5.3, the hyperplane functions of the R-representation of a flat are the hyperplane functions in η

for which the vanishing set contains the flats. Hence we have,

η12 = {a · ω1 | a ∈ R}, η13 = {a · ω2 | a ∈ R},

η14 = {a · ω3 | a ∈ R}, η234 = {a · ω4 | a ∈ R},

η1 = {a · ωi | for a ∈ R and i ∈ {1, 2, 3}}, η2 = {a · ωi | for a ∈ R and i ∈ {1, 4}},

η3 = {a · ωi | for a ∈ R and i ∈ {2, 4}}, η4 = {a · ωi | for a ∈ R and i ∈ {3, 4}}.

Now that we have the hyperplane functions for each flat, we can find the R-flats. Remem-

bering the definition of an R-flat, we have VF = η⊥F . We use ⟨v1, .., vn⟩ to be the span of the

vectors v1, ..., vn. We deduce that

V1 =

〈
1

0

0

0

 ,


0

−1

−1

1


〉
,V2 =

〈
0

1

0

0

 ,


0

0

1

−1


〉
,V3 =

〈
0

0

1

0

 ,


0

−1

0

1


〉
,V4 =

〈
0

1

1

0

 ,


0

0

0

1


〉
,
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V12 =

〈
1

0

0

0

 ,


0

1

0

0

 ,


0

0

1

−1


〉
,V13 =

〈
1

0

0

0

 ,


0

0

1

0

 ,


0

−1

0

1


〉
,

V14 =

〈
1

0

0

0

 ,


0

1

1

0

 ,


0

0

0

1


〉
,V234 =

〈
0

0

0

1

 ,


0

0

1

0

 ,


0

1

0

0


〉
.

Let us put the T -flats into lattice and see its structure, see Figure 6. We notice that it has

the same structure as the lattice of flats in Figure 6, and so is an example of Theorem 5.5. Since

we are working over a field, we should have that the orthogonal complements of the R-flats form

a hyperplane arrangement in the space V⊥
M . We have that

V⊥
M =

〈
1

0

0

0

 ,


0

1

0

1

 ,


0

0

1

1


〉

V⊥
1 =

〈
0

1

0

1

 ,


0

0

1

1


〉
, V⊥

2 =

〈
1

0

0

0

 ,


0

0

1

1


〉
,V⊥

3 =

〈
0

1

0

1

 ,


1

0

0

0


〉
, V⊥

4 =

〈
1

0

0

0

 ,


0

1

−1

0


〉

V⊥
12 =

〈
0

0

1

1


〉
, V⊥

13 =

〈
0

1

0

1


〉
,V⊥

14 =

〈
0

−1

1

0


〉
, V⊥

234 =

〈
1

0

0

0


〉

We see that the V⊥
i -s form two dimensional subspaces of the three dimensional space V⊥

M .

We also notice that for every i and j we have that V⊥
ij = V⊥

i ∩V⊥
j and that V⊥

234 = V⊥
2 ∩V⊥

3 ∩V⊥
4 .

Further, V⊥
1 ∩ V⊥

2 ∩ V⊥
3 ∩ V⊥

4 = ∅. Hence, we see that the V⊥
i -s form a hyperplane arrangement

in V⊥
M . Also notice how the V⊥

12,V⊥
13,V⊥

14 and V⊥
234, correspond exactly with the hyperplane

functions of M .
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VM =

〈
0
1
1
−1


〉

〈
1
0
0
0

 ,


0
1
1
−1


〉 〈

0
1
0
0

 ,


0
0
1
−1


〉 〈

0
0
1
0

 ,


0
−1
0
1


〉 〈

0
1
1
0

 ,


0
0
0
1


〉

〈
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
−1


〉 〈

1
0
0
0

 ,


0
0
1
0

 ,


0
−1
0
1


〉 〈

1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1


〉 〈

0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0


〉

R4

Figure 4: The lattice of T -flats of η. We can clearly see the same lattice structure here as the
lattice of flats of the underlying matroid.

7 Conclusion

In conclusion, we develop a theory of flats over matroids with coefficients in a tract. We define

T -representations of flats and find their underlying matroid. Then we define T -linear represen-

tations and show that these give an equivalent definition for T -matroids. We define T -flats as

the vectors of the T -representations and show that they form the same lattice structure with

respect to inclusion as the lattice of flats of the underlying matroid. We give an abstract defi-

nition of a lattice of T -flats and show this gives an equivalent definition of T -matroids. Finally,

we show that for a field K there is a correspondence between lattices of K-flats and hyperplane

arrangements. Further research suggestions would be to see when the lattice of T -flats gives a

more workable definition of T -matroid. Next to this, it could also be interesting to see what
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