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Abstract

In this thesis we develop a theory of flats over matroids with coefficients in a tract, and
use them to give a novel cryptomorphism of T-matroids. We define T-representations for
flats of the underlying matroid. We then use this to show that modular triples of hyperplane
functions are linearly dependent if and only if there exists a T-matroid which is a quotient
of each of the hyperplane functions. Defining T-flats as the vectors of the T-representation
of the flats, we show that for a given T-matroid, the T-flats form a geometric lattice with
respect to inclusion, which in fact has the same lattice structure as the lattice of flats of the
underlying matroid. Using our previous results, we can give a cryptomorphic definition of
a T-matroid in terms of a lattice of T-flats. We conclude the thesis by showing that over a

field K, the notion of K-flats coincide with the notion of hyperplane arrangements.
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1 INTRODUCTION

1 Introduction

Matroids are a diverse and bountiful concept, lying in the intersection of different areas of
mathematics. Combinatorics, linear algebra, graph theory and algebraic geometry all have
direct links to matroid theory, just to name a few. Due to their many equivalent definitions, we
can take varying angles when studying matroids, which makes them very interesting.

Matroids first appeared in the 1930s. Although similar objects had already been studied at
the time, the first mentioning of a matroid was in Hassler Whitney’s paper “On the Abstract
Properties of Linear Dependence” [Whi35]. He observed that sets of linearly independent vectors
had specific combinatorial properties, giving rise to the notion of independent sets. Whitney
defined matroids as collections of sets which had such properties. Since then many equivalent
or so-called cryptomorphic definitions of matroids have been discovered. These equivalent defi-
nitions are a part of what makes matroid theory so interesting. On the other hand, it can also
make matroids difficult when coming across them for the first time. With most mathematical
objects, one only needs to learn a single definition, with matroids, one must learn ten.

Over time, matroid theory became more popular and different types of matroids started to
appear. This gave rise to a new unifying theory. In 2019, Matthew Baker and Nathan Bowler
published their paper “Matroids over Partial Hyperstructures” [BB19]. They define the notion
of matroids over tracts, which offers a generalisation of many different types of matroids. Tracts
are a generalisation of fields where instead of an abelian group structure over addition, we only
have a notion of an additive inverse. By construction of specific tracts, T-matroids take different
forms.

In this thesis, we aim to contribute to this theory by developing flats in the domain of
matroids over tracts. Flats in usual matroids can be seen as a generalisation of linear subspaces
and offer a cryptomorphic definition of matroids. It turns out that the concept of flats over
tracts developed in this thesis, also gives us a cryptomorphic definition of matroids over tracts.

In section 2.1 we introduce matroids and give the necessary background on matroid theory for
the rest of the text. This includes independent sets, bases, rank, closure, flats, duals and minors.
In section 2.2 we introduce matroids over tracts. We first look into tracts and their properties.
Then we define matroids over tracts, which we call T-matroids, using hyperplane functions.
This is a slightly different definition to that given by [BB19], which defines T-matroids using
circuit functions, however, we see that these definitions are similar. Next, we give an equivalent
definition of T-matroids as equivalence classes of Grassmann-Pliicker functions. We introduce
the idea of duality and minors in T-matroids. We also look into the vectors of T-matroids and
how they link to the notion of quotients.

In section 3, we start on the novel concepts developed in this thesis. We use the Grassmann-

Pliicker functions to define the new concept of T-representations of flats. This is closely linked
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to the contraction. However, to define T-representations of flats in a well defined manner we
first tackle a series of preliminary results, which are showcased in section 3.1. Then in section
3.2 we define T-representations of flats proper and consider their underlying matroids.

In section 4, we show one of the two novel cryptomorphism of T-matroids given in this thesis.
We define T-linear representations as a set of hyperplanes such that for every modular triple
there exists a rank two Grassmann-Pliicker function which is quotient to the triple. This gives
us a cryptomorphism of T-matroids which will be very useful in section 5.

In section 5, we introduce the main new concept of this thesis, that is T-flats. In 5.1, we
define a T-flat as the collection of vectors of the T-representation of a flat. It turns out that
the T-flats of a T-matroid form a geometric lattice, in fact this is exactly the lattice of flats of
the underlying matroid. We give an abstract definition of lattices of T-flats, separate from the
T-representations of the flats, using Anderson’s results on vectors [And19]. We show that this
gives another novel cryptomorphism of T-matroids.

In section 5.2, we give a study of T-flats over a field K. We show that there is a correspon-
dence between the orthogonal complement of lattices of K-flats and hyperplane arrangements.

In Section 6, we consider an example of a lattice of T-flats over R.
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2 Background

2.1 An Introduction to Matroids

This section is mainly based on Oxley’s book “Matroid Theory” [Ox192]. In this section we

discuss some of the definitions that are important to this text and how they are equivalent.

2.1.1 Independent Sets

One of the most standard definitions of a matroid is through independent sets. Indeed, this was
the definition given by Whitney when he first defined matroids [Whi35]. We define a matroid

as follows.

Definition 2.1. In terms of independent sets, a matroid M is a pair (F,Z), where F is a finite
set and Z C 2F is a family of subsets of E called the independent sets, such that

(I1) the empty set is in Z,

(I12) for all X C Y such that Y in Z, we have X in Z,

(I3) for any two sets X,Y in Z such that #Y < #X, there exists an element € X such
that Y U {z} in Z.

We call the subsets of F in Z independent and the subsets of E not in Z dependent. Here
our first parallel with linear algebra arises, namely we see that sets of linear independent vectors

form independent sets.

Example 2.2. Consider an m x n matrix A with entries in a field K. Let E be the multiset
(that is elements can be repeated) of the m column vectors in A. Then let Z be the collection of
subsets of E that are linearly independent in the vector space K™. Then (F,Z) forms a matroid

[Ox192, Proposition 1.1.1].

2.1.2 Circuits

In terms of independent sets, the circuits of a matroid M = (FE,Z) are the minimally® dependent
subsets of E. That is, a set S is a circuit if every proper subset of it is independent. The set
of circuits of a matroid characterise the matroid completely. This is clear if we notice that a
set is independent if and only if it does not contain a circuit. In this way independent sets and
circuits give equivalent definitions and so we can use circuits to define matroids. We say circuits
give a cryptomorphic description or cryptomorphism.

Let us first look at when sets form the circuits of a matroid:

1When we refer to something being maximal or minimal for some property then we mean that any proper
superset or subset does not have this property respectively.
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Proposition 2.3. Let M be a matroid with collection of circuits C. Then C is such that
(C1) the empty set is not in C,
(C2) for Cy,C5 in C, we have that if C; C Cs then Cy = Cy,
(C3) for distinet Cp, Cy in C and e in C1NCy, there exists Cs in C such that C3 C (C1UCy)—e.

Proof. See [0x192, Lemma 1.1.3]. O
The following theorem tells us that circuits give an equivalent definition of matroids.

Theorem 2.4. Let E be a set and C a set of subsets of E satisfying (C1)—(C3). Let Z be the
subsets of E which do not contain an element of C. Then (E,Z) forms a matroid with circuits

C.
Proof. See [0x192, Theorem 1.1.4]. O

Example 2.5. Let E be the edge set of a graph G, then the edge sets of the cycles in G form a
set of circuits. Therefore we can construct a matroid from any graph, by taking the independent
sets to be the sets not containing the edge sets of the cycles on the graph, that is exactly the

edge sets of spanning forests on the graph.

2.1.3 Bases

The bases of a matroid are the maximally independent sets, that is the independent sets such
that any proper superset is dependent. Bases are akin to bases of vector spaces and share many
properties. We notice that the independent sets are exactly the subsets of the bases and so
the bases characterise the matroid completely. Therefore bases give us another way of defining

matroids.

Proposition 2.6. Let M be a matroid and B be a set of bases of M. Then B is such that
(B1) we have B is non-empty,
(B2) for By, By € B and x € By — Bs, there exists y € By — By such that (B; —z) Uy € B.

Proof. See [0x192, Lemma 1.2.2]. O

Theorem 2.7. Let E be a set and B collection of subsets of E satisfying (B1)-(B2). Let Z be
the collection of subset of elements of B. Then (E,Z) forms a matroid for which the collection

of bases is B.
Proof. See [0x192, Theorem 1.2.3]. O

An interesting property of bases of a matroid is that they all have the same cardinality. This

is a neat similarity to the property the bases of a vector space always have the same cardinality.
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Example 2.8. Consider the matroid in Example 2.2. The bases of this matroid are exactly the
linearly independent sets of column vectors which span the linear subspace of K™ spanned by
the m column vectors of A. Let us aim for a contradiction and assume that we have two sets
of linearly independent sets of vectors V and W that span the space, but for  in V' — W there
exists no y in W — V such that V U {y} — {«} is also linearly independent and spanning the
space. This implies that there is no y in W such that y can be written as a linear combination
of elements of W containing . This implies that W is in the span of V' — {z} which contradicts

V and W both being bases.

Example 2.9. Consider the matroid given in Example 2.5. The bases of this matroid are

exactly the edge sets which span G but do contain a cycle, that is the spanning forests of G.

Example 2.10. An important class of matroids are the uniform matroids. A uniform matroid
of rank r over E is the matroid U, r with collection bases exactly every subset of E with
cardinality 7. The matroid Uy g is the matroid over £ with empty bases, in other words for

every e in E, we have {e} a circuit of Uy g.

2.1.4 Rank

The rank of a set S C F is the cardinality of the maximal independent set contained in S.

If we have a matroid M then we find that the independent sets are exactly those whose ranks
are equal to their cardinality. In converse, if we have a rank function on E then the collection
of subsets that have rank equal to cardinality satisfy (I1)—(I3). Hence, again we have that the

rank function on a matroid characterises it completely. We have yet another cryptomorphism.

Proposition 2.11. Let M be a matroid and let r : 2 — Ny be the rank function on this
matroid. Then r is such that

(R1) if X C E, then we have 0 < r(X) < |X],

(R2) if X CY C E, then we that 0 < r(X) < r(Y),

(R3) for X,Y C E, we have that r(X) +r(Y) > r(XUY)+r(XNY).

Proof. See [0x192, Lemma 1.3.1]. O

Theorem 2.12. Let E be a set and let 7 : 2F — Ny be a function satisfying (R1)-(R3). Let Z
be the collection of X C FE such that r(X) = |X|. Then (F,Z) is a matroid with rank function

T
Proof. See [0x192, Theorem 1.3.2]. O

Remark 2.13. We say M = (E,r) is a rank n matroid if (F) = n. Sometimes this is written
as r(M) =n.
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2.1.5 Closure

The notion of the closure is similar to the notion of span in linear algebra. For a matroid M
with rank function r we define the closure of X C F as cl(X) ={z € E | r(zUX) = r(X)}.

Let us see what properties the closure operator has.

Proposition 2.14. Let (E,Z) be a matroid and let cl : 2F — 2F be the closure operator. Then
cl has the following properties.

(Cl1) if X C FE then X C cl(X)

(C12) if X C Y then cl(X) C cl(Y)

(C13) if X C E then cl(cl(X)) = cl(X)

(C4)if X CE,z€ Fandy € cl(XUxz)—cl(X) then z € cl(X Uy)

Proof. See [0x192, Lemma 1.4.3]. O

Example 2.15. Let (E,Z) be the matroid defined in Example 2.2. Then the closure of a subset

X of F is exactly the column vectors of A contained in the span of X .

Again we find that the closure operator allows us to define a matroid. We notice that for
a matroid (E,Z) with rank function r, the independent sets are exactly the sets X C E such
that for all z € X, x ¢ cl(X — ). The following theorem shows us that we can define a matroid

using a closure operator.

Theorem 2.16. Let E be a set and let cl : 2& — 2% satisfying (C11)-(Cl4). Then let Z be the
set of sets X C E such that for all z in X, « ¢ cl(X — {z}). Then (E,Z) forms a matroid with

closure operator cl.
Proof. See [0x192, Theorem 1.4.5]. O

Definition 2.17. Let E be a matroid with closure operator cl : 2 — 25, We say X C S spans
Sifel(X)=S.

Proposition 2.18. A set S spans a set X if and only if 7(S) = r(X) and cl(S) = S.

Proof. See [0x192, Proposition 1.4.10]. O

2.1.6 Flat and Hyperplanes

We can use the closure operator to define some more interesting sets in our matroid. For a
matroid M, a flat is a set X C E such that X = cl(X). A hyperplane is defined as a flats of
rank (M) — 1. Let us take a look at their properties.
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Proposition 2.19. Let A = {X € E | cl(X) = X} be the collection of flats of a matroid M
with closure operator cl: 27 — 2F. Then A is such that

(F1) E € A,

(F2) if Fi,Fy € A, then Fi N Fy € A,

(F3) if F' € A and {F1, ..., F,,} the set of minimal members of A properly containing F', then
F, —F,...,F, — F partition £ — F.

Proof. See [0x192, Page 31]. O

Theorem 2.20. Let E be a finite set and A a set of subsets of E satisfying (F1)—(F3). Let
p: 2 — 2F be such that p(X) = Nrea xcr - Then p satisfies (C11)—~(Cl4), in other words A

defines a matroid.
Proof. See [0x192, Page 31]. O

Theorem 2.21. A set H is the set of hyperplanes of a matroid if and only if
(H1) for all X,Y in H, X CY implies X =Y,
(H2) for all X,Y in H and e not in X UY, there is Z € H such that (X NY)U{e} C Z.

Proof. See [0x192, Proposition 2.1.21] O

Proposition 2.22. We say a set X C F is spanning if cI(X) = E. We have the following

properties:
e For all X C F, X is spanning if and only if r(X) = r(E).
e For all X C F, X is a basis if and only if X is independent and spanning.
e For all X C F, X is a basis if and only if X is minimally spanning.
e For all X C FE, X is a hyperplane if and only if X is maximally non-spanning.
Proof. See [0x192, Proposition 1.4.10]. O
The flats of a matroid have a nice property in that they form a special type of partially
ordered set (poset) called a lattice.
2.1.7 Lattice of Flats

Let us discuss posets and lattices.

Definition 2.23. A poset is a set X along with an ordering < satisfying the following properties:
(Pl)forallz € X,z <z
(P2) for all y,x € X, if x <y and y < x then z =y
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(P3) for z,y,z€ X,if x <yand y < z then x < 2z
We say that « > y if y <x. Wesay x <y if x <y and x # y. We say z covers y in a poset
X if y < x and there does not exist a z € X such that y < z < x.

A lattice is a poset such that for each pair x,y € X the least upper bound and greatest lower

bound exist.

Definition 2.24. A finite lattice £ is a finite poset such that:

(L1) for all z,y € L there exists z Vy € L such that for all z € £ such that z > z and z > y
we must also have z >z Vy

(L2) for all 2,y € L there exists z Ay € L such that for all z € £ such that z <z and 2z <y

we must also have z < x Ay

Lemma 2.25. The set of flats of a matroid M form a lattice L(E,Z) with X <Y if X C Y,
XAY=XNnYand X VY =cl(XUY).

Proof. See [0x192, Lemma 1.7.3] O

Definition 2.26. For a poset P, a chain from x; to x, is a collection x1,--- ,x, € P such that
21 < -+ < . The length of this chain is n — 1 and it is maximal if for every 0 < m < n, 2,11
covers x,,. If for all z,y € P we have that the length of all the maximal chains from x to y have
the same length then P is said to satisfy the Jordan-Dedekind chain condition. If there exists
a x € P such that x <y for all y € P then z is said to be the bottom for P. If there exists a
x € P such that y < x for all y € P then z is said to be the top for P. An element of P that
cover the bottom is said to be an atom. For x € P the height h(z) is defined as the length of
the chain from zero to x. A geometric lattice is a lattice satisfying the Jordan-Dedekind chain

condition such that h(z) 4+ h(y) > h(z Ay) + h(z V y) and every element is a join of atoms.
Theorem 2.27. A lattice is geometric if and only if it is the lattice of flats of a matroid
Proof. See [0x192, Theorem 1.7.5] O
Remark 2.28. Every flat is the intersection of hyperplanes[Ox192, Proposition 1.7.8].

Example 2.29. Consider the rank three flat over £ = 1234 (here we use lattice notation where
ijk refers to {4, j, k}) with hyperplanes 12,13, 14 and 234. Then the lattice of flats is as pictured
below. A line here represents inclusion. We have ) as the bottom and F as the top. Notice that
the chain between flats of different ranks is always the same. In fact the height of a flat in the

lattice of flats is exactly the rank of the flat.

10
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1234

=5

0

Figure 1: The rank three matroid over E = 1234 with hyperplanes 12,13, 14 and 234.

Example 2.30. The matroid over E = 12345 with bases all size three subset of E excluding
345,124 and 123.

12345
123 124 15 25 345
1 2 3 4 )

Figure 2: The lattice of flats of the matroid with ground set £ = 12345 and bases as all size
three subset of E excluding 345,124 and 123.

We should also touch on loops, parallel sets and simplified matroids.

Definition 2.31. A loop of a matroid M is an element of E which is not contained in any
basis of M, that is, {e} forms a single element circuit. A parallel set is a set of two elements
{z,y} C FE such that any for any basis B of M such that € B, we must have BU {y} — {z}

forms a basis. We call a matroid simple if it contains no loops or parallel sets.

Remark 2.32. It is possible to construct a simplification of a matroid, which rids us of loops
and parallel sets, however it is not necessary to discuss this here. For the interested reader,

please consult [Ox192, Page 49]. What is important is that the structure of the lattice of flats

11
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remains unchanged when the loops and parallel sets are removed. In fact, the abstract structure
of the lattice determines the matroid up to simplification. That is, the atoms of the lattice
correspond to the elements of E which are not loops and then the structure of the lattice gives

us the flats of the matroid.

2.1.8 Duals

We define the dual of a matroid through its bases. The collection of bases of the dual of a
matroid is defined as B* = {E — B | B € B}. Note that this means the dual of the dual of the a
matroid is exactly the original matroid and that the dual of a matroid is unique. The bases of
the dual are called the cobases. In fact every term we defined on a matroid also has a equivalent
notion on the dual of the matroid. In this way we have cohyperplanes as the hyperplanes of the
dual, cocircuits as the circuits of the duals and so forth. We refer to the dual of a matroid M
as M*.
The sets of the dual has some important properties [0x192, Proposition 2.16]:

e For all X C F, X is independent if and only if £ — X it is cospanning. Due to the fact
that the dual of the dual is just the original matroid, this also works the other way as X

is coindependent if and only if F — X is spanning.

e For all X C E, X is a hyperplane if and only if F — X is a cocircuit and equivalently X

is a circuit if and only if F — X is cohyperplane.

Proposition 2.33. For M a matroid with rank function r : 2¢ — Ny, the rank function of the

dual is given as r*(X) =r(F — X) + | X| — r(E).

Proof. See [0x192, Proposition 2.19]. O

2.1.9 Minors

Minors give us a notion of a “sub-matroid”. They are obtained through sequences of two types
operation. We define the deletion of T' C F from a matroid M = (E,Z) as M\T = (E-T,Z\T)
where Z\T = {I C E—T | I € Z}. The contraction of M onto E — T is M/T = (M*\T)*.
Although a minor is any matroid obtained through a sequence of deletions or contractions, we

will here only focus on single contractions.

Proposition 2.34. Let M = (E,Z) be a matroid. Let Br be a basis of M\(F — T). Let
Z(M/T) be the collection of independent set of M/T. Then

I(M/T)={X CE-T|XUBr CT}
={X CFE—-T|M\(E—T) has a basis B such that X UB C T}.

12
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Proof. See [0x192, Proposition 3.1.7]. O

Proposition 2.35. Let M = (E,Z) be a matroid. Let By be a basis of M\(E—T) and B(M/T)
the collection of bases of M/T.

B(M/T)={B' CE—T|B UBrc B}
={B'CE-T|M\(E-T) has a basis B such that B'U B € B}

Proof. See [0x192, Corollary 3.1.8]. O
Proposition 2.36. For all X C T we have that cly;/p(X) = cly (X UT) - T.

Proof. See [0x192, Proposition 3.1.13]. O

2.2 Baker and Bowler Theory

In 2019 Matthew Baker and Nathan Bowler published a paper called “Matroids over Partial
Hyperstructures” [BB19]. In this paper they introduced the notion of a matroid over a tract,
which generalised both linear subspaces and many types of matroids. In this thesis we build on

the concepts discussed in this paper, therefore it is important to first give a overview.

2.2.1 Tracts

The central algebraic structure in this theory is a tract. Tracts are generalisations of fields.
Multiplicatively they are an abelian group, hence similar to fields, however, in terms of addition
they only allow for a notion of inverse. Since we only need to know when elements sum to zero
when considering matroids, tracts give us the most basic possible algebraic structure we can

work with.

Definition 2.37. A tract T = (G, Nr) is an abelian group G written multiplicatively with
identity element ¢, along with an additive relation structure on G. The additive relation structure
a subset Ny of the semi-ring? @geG Np such that

(T1) the zero element of P, No is in Nr,

(T2) the identity element 4 is not in® N,

(T3) there exists a unique element € € G such that i + € € Np,

(T4) Ny is closed under the natural group action of G.

Each element in the group semi-ring €, No can be viewed as an element of N(‘)G . This vector

represents a sum with each integer giving the number of times the related element occurs in the

2A semi-ring is a set R along with two binary operations 4+ and - such that (R, 4) forms a commutative
monoid and (R, -) forms a monoid.

3Here we immediately abuse notation. What is meant by 4 is actually the sum 3 gec dgi, where dg; = 1 if
g =t and ég; is 0 otherwise. This will be the notation used for the rest of the text.

13
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sum. This way P Nj gives all the possible sums of elements of G. Hence we can view Np as

geG
the sums of elements of G equal to 0. Note, we often refer to G as T™. Also note that the tract
also contains a zero element arising from the additive identity of @ gec No with g-0=0-g € Nr.

We sometimes say h = 0 instead of h € Nrp.
Let us state some important rules about tracts.

Proposition 2.38. Let T = (G, Nr) be a tract.
1) If z,y € G are such that z +y € Ny, then y =€ x.
2) The multiplicative inverse of e is itself, that is €2 = 1.

3) No single element of G is in the null set, that is G N Ny = ().
Proof. See [BB19, Lemma 1.1]. O

Note that this means that every element has a unique additive inverse and that no element

in our group is in Np. For ease of use, from now on we refer to ¢ as 1, e as —1 and ¢ - x as —zx.

Definition 2.39. A tract homomorphism f : (G,Nr) — (G', Ng/) is a group homomorphism
f*: G — G’ such that > a;g; € Nr implies Y a;f*(g;) € N for a; € Ny and g¢; € G.

Example 2.40. Any field K can be viewed as a tract. We let G be the elements of K* along

with its multiplicative structure. Then N7 is the set of sums equal to zero.

Example 2.41. An important example of a tract is the Krasner hyperfield K. The Krasner
hyperfield is constructed using the one element group G = {1} along with a zero element. Then

Nr = No\{1}, that is, every possible sum is in Nr other than the sum containing a single 1.

2.2.2 Matroids over Tracts

Before we define matroids over tracts, we first need to define some other notions.
Let E be a finite set and T a tract. Then we refer to the set of all possible functions from
E to T as TE. The support of X € T¥ is the set X = {e € E | X(e) # 0}, we define
supp(S) :={X | X € S}.
We say X1,..., X}, € TF are linearly dependent if there exists cy,...,c;, € T not all 0 such
that
aXi+-+c X, € NE

Here NE is the set of maps from E to Nr, in other words, evaluating X € N at any point
in E gives an element in N7 Sets of elements in T which are not linearly dependent are called
linearly independent.

We also have a notion of an inner product. For X,Y € T¥, we have
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XY =) X(e)-Y(e).

ecE

We say X,Y € TP are orthogonal if X -Y € Nr and we denote this by X 1 Y. For a set
W C TF| the orthogonal complement of W is the set Wt ={X € TP | X LY forall Y € W}.
For elements in TF, we also have a notion of span. The span of a set W = {Wy,..., W, } is

the set (W) ={X € TF | X — (aW;1 + -+ a,W,) € NE for some a1, ...a, € T*}.

Definition 2.42. Let F be a finite set and C a set of subsets of F such that for each pair of
elements Cj, C; in H we have that C; £ C; and C; € C;. Then C1,C5 € C form a modular pair
in C if C7 # Cy and C1 U Cs does not properly contain a union of 2 distinct elements of C.

Lemma 2.43. Let H be a collection of incomparable subset of a finite set E. The set H is
the set of hyperplanes of a matroid if and only if for every modular pair ¥ — X, EF — Y in
He={FE — X | X € H}, there exists Z € H such that (X NY)U{e} C Z.

Proof. We use the fact that the hyperplanes of a matroid are exactly the complements of the
cocircuits. Hence H is the set of hyperplanes of a matroid if and only if the complements of the
elements of H form a set of circuits. We note that if for every modular pair X,Y in H, there
exists Z € H such that (X NY) U {e} C Z, then the set of complements of the elements H
satisfies statement 2 of [BB19, Lemma 3.6]. Hence, the set of complements of H form a set of

circuits and so H is the set of hyperplanes of a matroid. O
We have all the knowledge to define T-matroids.

Definition 2.44. Let E be a finite set and let T be a tract. A subset n of T is called the set
of hyperplane functions of a weak T-matroid on E if it satisfies

(HEL) 0 ¢ n,

(Hf2) if X € pand o € T, then - X € n,

(Hf3) if X, Y € n and X C Y, then there exists « € T such that X =« Y,

(Hf4) if X,Y € n are such that X,Y are a modular pair in {E£ — X | X € n} and e € F such
that X (e) = —Y (e) # 0, then there exists Z € n such that X +Y — Z € NE.

Definition 2.45. A T-matroid is a set E along with a subset of T satisfying (H1)—(H4).

Remark 2.46. This definition is a rewording of the definition of T-circuits given in [BB19].
We use the fact that the complements of the cocircuits are hyperplanes. In fact, the set of
hyperplane functions of a weak T' matroid M is exactly a set of T-circuits of the dual of M (this
is introduced in Section 2.2.4). However, since the dual is unique, this also characterises M

completely. On anther note, although this definition uses hyperplane functions, it is different to
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the definition of modular systems of hyperplane functions given in [BL20]. This definition has
one hyperplane function for each hyperplane, whilst the definition given above is closed under

multiplication by 7.

Theorem 2.47. Let T be a tract and 1 a subset of TF satisfying (Hf1)-(Hf4). Then the set
H={F - X |X €n} forms a set of hyperplanes of a matroid over E.

Proof. We need H to satisfy (H1)—-(H2). By (Hfl) and (Hf3), H satisfies (H1). By (Hf4) if
X,Y € n are such that £ — X, F — Y are a complementary modular pair in H and there is
e ¢ (F—X)U(F -Y), then there is Z € n such that Z(e) ¢ Np, that is e € F — Z, and
Z(f) € Np if X(f) € Np and Y(f) € Ny, that is (E - X)N(E -Y) C E — Z. Hence, H
satisfies (H2). O

This implies that if we take 1 to be the set of hyperplane functions of a weak T-matroid M
over E, then there exists an underlying matroid M over E with {E— X | X € n} as hyperplanes.
We define the rank of M as the rank of M.

We can also define an equivalence class of hyperplane functions. That is X; ~ X5 if X7 =
a- X, for some o € T*. We notice that for a T-matroid, there is a bijection between hyperplanes

of the underlying matroid and the equivalence classes of the hyperplane functions.

Remark 2.48. In [BB19], strong T-matroids are also defined, however for the novel work done

in this thesis, we do not need this concept and so we do not define it here.

2.2.3 Grassmann-Pliicker Functions

In this section we define the so called Grassmann-Pliicker functions. This allows us to give a

cryptomorphic definition of T-matroids.

Definition 2.49. Let E be a finite set, let T = (N7, G) be a tract and r any positive integer. A
weak Grassmann-Pliicker function of rank r on E with coefficients in T is a function ¢ : E" — T
such that the support ¢ form a collection of bases of a matroid and
(GP1) the function ¢ does not map everything to 0,
(GP2) the map ¢ is alternating, in other words ¢(z1, ..., T4, ..., Zj, .oy Tp) = —@(X1, ooy Tjy ooy Tiy ooy Tp)
and so ¢(z1,...,z,) = 0 if z; = x; for some i # j,
(GP3) for any two tuples I = {x1,...,2,41} and J = {y1,...,yr—1} of elements in FE such
that |[I\J| = 3 we have,
r+1
Z(—l)kgp(xl,xg, ooy By ooy Trg1) - 0(Thy Y1y oy Yr—1) € N, (1)

k=1

where Z means the element x is excluded.
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We say 1 and @9 equivalent if 1 = a - o for some o € T*.
By definition, a Grassmann-Pliicker function also has an underlying matroid, just like the

sets of hyperplanes of a weak T-matroid.

Theorem 2.50. Let E be a finite set, let T" be a tract and let r be a positive integer. There is
a natural bijection between equivalence classes of weak Grassmann-Pliicker functions of rank r

on F with coefficients in T and sets of hyperplane functions of a weak T-matroid.

Proof. We note that hyperplane functions are equivalent to the circuit function used to define

T-matroids in [BB19]. Then the result follows from [BB19, Theorem 3.17]. O

Remark 2.51. An important note on notation. We use square brackets to refer to the equiv-
alence class under multiplication by T of any function. If f: A — T for A any set and T a
tract, then [f : A — T] or simply [f] is the equivalence class of f. By Theorem 2.50, we can
view T-matroids as equivalence classes of Grassmann-Pliicker functions. This is the standard

view we take in this paper.

Definition 2.52. Given a usual matroid M of rank r, a Grassmann-Pliicker function ¢ : E" — T
is said to be a T'-representation of M, if the underlying matroid of ¢ is M. That is, if the sets
{z1,...,x,} such that ¢(x1,...,x,) # 0 are exactly the bases of M.

Example 2.53. A weak T-matroid over the Krasner hyperfield K is exactly a usual matroid,
that is there exists a bijection between K-matroids and usual matroids. For a given matroid, the
function from E to K, which maps to 1 if and only if the input is a basis, gives a Grassmann-
Pliicker function. This function satisfies (GP1) due to the fact that every matroid has some
basis. It satisfies (GP2) due to the fact that a basis must contain r distinct elements, for r the
rank of the matroid and by the fact that —1 = 1 in K. The function satisfies (GP3) by the
fact that any sum 1+ ---+ 1 # 1 is in Ng. We note that if we have two tuples I and J in E"
such that I/J = {z;,2;, 2}, then if some I — {x;} and J U {z;} form a basis, we must have by
(B2) that there is some x4 such that I — {z,} and J U {z,} form a basis. Hence, for any tuples
I and J such that |I/J| = 3, we have that equation (1) is some sum containing 1 more than
once, hence it must be in Ng. Therefore the basis indicator function is a Grassmann-Pliicker
function. This function is unique for every matroid and by definition every Grassmann-Pliicker

function with coefficients in K is of this form. Hence, there exists a bijection.

2.2.4 Duality and Minors
Just like there is a notion of duality in usual matroids, there is also a dual for T-matroids.

Definition 2.54. Let E be a finite set such that |E| = m, let T be a tract and M a weak T-

matroid of rank r represented by the weak Grassmann-Pliicker function ¢. Then there is a weak
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T-matroid M* of rank m — r called the dual matroid represented by the Grassmann-Pliicker

function ¢* such that:

O (X1, oy Ty ) = SIEN(T1, ooy Ty, Ty ooy T )0 (2] oy L),

/

' is any ordering of E — {x1,...,xm—_r}. Here sign(xy, ..., Tm—r, 21, ...,z.) is the

cey L

where ..., x
sign of the permuation that gives the elements of F in this order with respect to the original
order of E.

The dual has some nice properties [BB19, Theorem 3.24]:
e The underlying matroid of M™* is the dual of the underlying matroid of M.
e The dual of the dual of M is M itself.

Remark 2.55. It is important to note that the hyperplane functions of a T-matroid are exactly
the T-circuits (defined in [BB19]) of the dual. We can now explain the bijection in Theorem
2.50. The result [BB19, Theorem 3.17] gives a bijection between T-circuits and equivalence

classes of Grassmann-Pliicker functions. This bijection is given by

Y(zk) e P(T0s s Thoy e T)
= (1) (1, ey )

Where {z1,...,2,} forms a basis for the underlying matroid containing the X. Since, the

hyperplane functions of a T-matroid are exactly the T-circuits of the dual we have

Y(xk) _ (71)k; w*(xO,N-ai'ka “'axmfr) _ (71)]@ @(xkvyla "'ayrfl)
Y(JUO) ¢*<x17"'7$m—7‘) So(yla"'ay’r—l)

)

where {y1,...,yr—1} must form a basis for the hyperplane £ — X and z¢p ¢ E — X fixed.

Hence,
X(e) _ (<) (21, ey Tp_1,€)
X(e) o(x1, ey Tp_1,€’)

gives a bijection between equivalence classes of weak Grassmann-Pliicker functions of rank r on

FE with coefficients in T" and sets of hyperplane functions of a weak T-matroid.

Another aspect of usual matroids that carries over to T-matroids are minors. We formulate
this in terms of Grassmann-Pliicker functions. Here we only define contraction, since deletion
is not of importance to this text, however a similar definition exists and is given in [BB19,

Definition 4.3].

Definition 2.56. Let T be a tract ¢ : E” — T be a Grassmann-Pliicker function defining a
T-matroid M, with underlying matroid M. Let A be a rank [ subset of M with a maximal
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independent set {ay,...,a;}. Then the contraction of p to E — A is the function (p/A) : (E —
A)' =t — T such that (0/A)(21,..; Tr_) := QX1 ooy Tpq, A1, -y A1)
The contraction ¢/A is always a Grassmann-Pliicker function if ¢ is so and so the contraction

also defines a T-matroid. The underlying matroid of this T-matroid has the desired properties.

That is if M,/4 = [p/A] and M = [p], then M, 4 = M /A [BB19, Lemma 4.4].

2.2.5 Vectors of T-Matroids

The vectors of a T-matroid are central to this thesis. In later sections we will use them to
give a novel cryptomorphic description of T-matroids. An important reference for vectors of
T-matroids is [And19] which gives a set of vector axioms. We do not discuss this here, however

it is important to note that this exists.

Definition 2.57. Let M be a T-matroid with hyperplane function set 1. Let M* be the dual
of M with hyperplane function set n*. The set of vectors of M is V = n*. The set of covectors
of M is V* = (n*)*.

Let us touch on perfect T-matroids, which are key when considering vectors.
Definition 2.58. A T-matroid is perfect if V* 1 V.
Definition 2.59. A perfect tract P is a tract such that every T-matroid is perfect.

Remark 2.60. An important implication of a tract being perfect is that every weak T-matroid
over the tract is also strong [BB19, Theorem 3.46]. Hence, over perfect tracts, we can use

properties of weak and strong matroids interchangeably.

2.2.6 Quotients

Let us also introduce the notion of quotients in T-matroids which we take from [JL24].

Definition 2.61. Let T be a tract and E a finite set. Let M and N be two T-matroids over
E. Let nps be the set of hyperplanes of M and Vj; the covectors of N. Then M is a quotient of
N if gy C VR

Theorem 2.62. Let E be a finite set, T' be a perfect tract and let M and N be T-matroids
over F of respective ranks r and w. Then M is a quotient of N if and only if for some choice of

Grassmannn-Pliicker functions p and v such that M = [u] and N = [v], respectively, satisfies

the Pliicker flag relations

w41

Z(—l)kv(yl, Gy ooy Ywt1) - 1(Yks T1,5 oo, Tr—1) € N,
k=1

for each choice of y1, ..., Ywt1, 1, ..., Tr—1 € E.
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Proof. In [JL24] this is given as the definition of quotients and the definition we give is given
as an equivalence. We take T to be perfect here, since this definition only holds for strong
matroids. Since the cocircuits of a matroid are equivalent to the set of hyperplane functions,

the equivalence follows from [JL24, Theorem 2.4]. O
Covectors give a useful equivalence to quotients.

Theorem 2.63. Let T be a perfect tract and F a finite set. Let M and N be two T-matroids
over E with covectors V3, and VJ respectively. Then M is a quotient of N if and only if
Vir € Vi

Proof. See [JL24, Theorem 2.17]. O

3 T-representations of Flats

The goal of this section is to introduce the novel notion of a T-representation of a flat. However,

to show that this is well defined, we need some preliminary results.

3.1 Preliminary Results

Let T be a tract and E a finite set. In this section we assume ¢ : E” — T to be a weak
Grassmann-Pliicker function. We let M = [¢ : E” — T be the weak T-matroid with underlying
matroid M. For a flat F of rank s of M and J = {j1,...,js} an independent set spanning F,

we consider the function ¢; : E* — T such that

@J(mlv"th) :@(jlﬂ"sza'rlv"th)

where t + s = r.

Proposition 3.1. The function ¢;(x1,...,2¢) # 0 if and only if zy,...,2; € E — F and
{z1,..., 2z} forms a basis for M /F.

Proof. Let us first show the backwards direction We have x1,...,2; € F — F and {z1,...,2¢}
forms a basis for M/F. By definition of M/F, if {x1,...,2:} forms a basis for M/F then
for every basis Bp of F, {z1,...,2:} U Bp is a basis for M. By assumption, {ji,...,Js} is
independent and spans F, hence it forms a basis for F. Therefore, {j1,...,Js, 1, .., ¢} must
form a basis for M. The bases of M are exactly the support of ¢. Hence, ¢j(z1,...,21) =
©(J1s-+ s s T1y -5 m) # 0.

Now let us attempt the forward direction. If we have pj(x1,...,x¢) # 0, then by definition

©(J1s-+ydss 1y .. x¢) # 0 and so {j1,...,7s,&1,...,2¢ must form a basis for M. Let us show
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that {z1,...,z:} forms a basis for M/F. We have that {j1,...,js} must form a basis for F'
and {j1,...,Js, %1, .., 2} must form a basis for M. Then by definition of M /F we have that
{z1,...,z} forms a basis for M /F and that z1,...,2; € E — F. O

Proposition 3.2. If ¢ is a weak Grassmann-Pliicker function on E, then ¢; : Bt — T is a

weak Grassmann-Pliicker function on E and so [¢;] is a weak T-matroid.

Proof. For ¢; to be a weak Grassmann-Pliicker function, we need its support to be the bases
of a matroid and it must satisfy (GP1), (GP2) and (GP3) from Definition 2.49. By Proposition
3.1, we have that the supports of ¢ form the bases of M/F. We now show that ¢ satisfies
(GP1), (GP2) and (GP3).

(GP1) From claim 1 we have ¢ (z1,...,2¢) # 0 if and ounly if zq,...,2; € E — F and
{z1,...,z} forms a basis for M /F. Such a set must exist, hence ¢ ; cannot be identically zero.
Hence, ¢ satisfies (GP1).

(GP2) We notice that

a1, Ty Ty, ) = P(J1s ey Jer Ty ey Ty ey Ty vy Tt
= =015y Jss Ty ey Ty e ey Ty ooy Tt)
=—pi(@1,. . Ty, Ty, Ty,

Hence, ¢ satisfies (GP2).
(GP3) We know that ¢ satisfies (GP3). Let I = {z1,...,x¢4+1} and J = {y1, ..., y+—1} be two
tuples of elements in E such that |I\J| = 3. Since, ¢ satisfies (GP3), we have

S

Z(*l)k@(]la s ajAka s 7jsa‘r17 s 7It) : Qa(jkvjh cee 7jsay13 s ayt—l)

k=1
t+1
+Z(_1)S+k<p(jl? yoe - 7j8ax17 o 7'%7% s ’xt) . @(xka.jlv s 7jsvy1a cee aytfl) € Nr.
k=1
We notice that ji, j1,...,Js, 1, ..., 2 is never independent and so cannot be a basis. Hence,

Ok, J1s- -5 Jss @15, x¢) =0 forall 1 <k < s and so

t+1
Z(_l)kSD(JlM .. 7j57x17' .. 7‘%]67 cee 7xt) : So(xkajlv' .. 7j57y17 s 7%—1) € NT7
k=1
implying
t+1
Z(il)kgo(](xlw . 'a‘%kv cee 7xt) ' @J(xkayl,- .. 7yt—1) € NT~
k=1

We conclude ¢ satisfies (GP3).
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Hence, ¢ ; must be a weak Grassmann-Pliicker function and [¢ ;] must be a weak T-matroid.

O

Proposition 3.3. Let J be an independent set of . Let I = {iy,...,i5} be an independent set
in E* such that I # J. Then I spans F if and only if ¢; € [p;], in other words ¢; = a - ¢y for

some a € T*.

Proof. First the backwards direction. We have ¢; € [p;], in other words ¢; and ¢; have the
same support. By Lemma 3.1 we have that the support of ¢ is exactly the set of bases of M /F'.
Hence we have for {1, ..., 2:} a basis of M /F, that ¢r(x1, ..., 2¢) # 0. However, this also means
©(J1y ey Jss 1, o, 2¢) # 0 and so that {ji,...,Js, @1, ..., ¢} forms a basis for E. Aiming for a
contradiction, let us assume that I spans a rank s flat F’ # F. Then, {z1,...,z;} form a basis
for M /F'. However this would imply that M/F = M /F’, which implies F = F’ contradicting
our assumption. Hence, I spans F.

Now for the forward direction. For this direction we use the notion of a basis graph. For a
matroid N with bases B, the basis graph is the graph with vertex set given by the collection of
bases B such that two bases are neighbours if they differ by one element, in other words, one
can be obtained from the other through basis exchange. We denote the basis graph of N by
BG(N).

We use [Mau73, Theorem 2.1], which states that for any matroid, the basis graph is con-
nected.

Consider the set of independent spanning sets of F'. These are exactly the bases of M\ (E—F).
We know that BG(M\(F — F)) is connected, hence, for any two bases I and J we can find a
path from I to J on BG(M\(E — F)). If we show that for any two neighbours I and I’ on
BG(M\(E — F)) that o1 = - ¢ for some o € T, then with an induction argument it must
hold for any two bases in general.

Let T = {1, 9n—1,0n,int1s--tsp and I' = {i1,...,in—1,%0,9n41, ..., 45, such that i, #
ir,, be two bases of F', hence, neighbours on BG(M\(E — F)). Let B = {z1,...,2,} be a basis
for M/F and let C be the circuit contained in TU {i’,} UB = I’ U{i,} U B. Since C is both
the fundamental circuit of 4/, with respect to I U B (that is the unique circuit contained in
I'uBU{i} [0x192, Corollary 1.2.6]) and the fundamental circuit of 4,, with respect to I’ U B,
we have that i, and 4/, in C. We also have I U B forms a basis for M containing C' — {i] }.

Therefore, by [BB19, Lemma 4.5] we have that the quantity

o . .
o L G S TR P T S R
- . N 2 . ’
Oy 81y e vyl e vy sy Ty e vy Ty)

is independent of choice of i1,...,%n,...,%s, X1, ..,Z, such that 4,,%1,...,%,...,%s,T1,..., Ty
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forms a basis for M containing C' — {i/, }.

This implies the quantity is independent of choice of basis for M /F and so we have that

g . - . 0. 2 .
o= W(Znazla-"aan"a?’valw"?zt) _ w(lnvlla"'azna'"a7'87y1a"'7yt)

.. A . .. 2 B )
@(Znazla"'aznv"-;stxl,-“,xt) @(vazla"'7Zna"'azs>yla"'7yt)

for y1,...,y, any basis for M /F. We note that, by definition, this means

o e (x1,...,x¢) _ gop(yl,...,yt).

or(w1,...,m) e1(Y1,-- -1 Yt)
Hence o1/ (y1,...,9t) = o @r(y1,...,y:) for any basis for M /F. By Proposition 3.1 we know
that the support of ¢; and ;. are equal and are exactly the set of bases of M /F. Hence we
have that for every {y1,...,y:} in the support ¢ (y1,...,9:) = a - @r(y1,...,y-). Therefore,
we must have that o = «a - ¢y.

Since our basis graph is connected and for every two neighbours I and I’ we have exactly

that ¢ = a - ¢y, it follows from induction that we must have that the same holds for any two

arbitrary bases of F'. O

3.2 T-representations of Flats

With these results, we can define T-representations of flats.

Definition 3.4. Let T be a tract, F a finite set and ¢ : E” — T a weak Grassmann-Pliicker
function. Let M = [¢] be a T-matroid with underlying matroid M. Let F be a rank s flat of M.
Then the T-representation of F with respect to M is the T-matroid Mp = [pr] where pr = @7
for some I C F independent in M and spanning F.

We note that, by Proposition 3.3, it does not matter which set spanning set I we choose.
We can also consider My from a different perspective which allows us to easily uncover the
underlying matroid of Mpr. To do so we need to introduce the direct sum of matroids and of

T-matroids.

Definition 3.5. Let F and A be disjoint finite sets and M and N matroids with ground sets
FE and A and rank r and t respectively. Then the direct sum of M and N is the matroid M & N
with ground set F'U A such that a set {i1, ..., %5, J1, ..., jt } forms a basis for M & N if {i1,..., 4.}

forms a basis for M and {j1, ..., js} forms a basis for N.
By [Ox192, Page 124], this does actually form a matroid.

Definition 3.6. Let T be a tract and F and A be disjoint finite sets. Let ¢ : E" — T

and € : A" — T be two weak Grassmann-Pliicker functions with M, = [¢ : E™ — T| and
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M. = [e: A — T]. Then the direct sum of M, and M. is the T-matroid M, & M. such that
My,® M. =[pDe: E" x At = T| where ¢ ® £(i1, ..., i, j1,-s jt) = P(i1, oy 1) - €(J1, oouy Jit)-

Proposition 3.7. Let T be a tract and E and A be finite sets. Let ¢ : E* — T and e : A* = T
be Grassmann-Pliicker functions. Let M, be the underlying matroid of M, = [¢p : E" — T]
and let M_ be the underlying matroid of M, = [¢ : A®* — T)]. Then the underlying matroid of
My, ® M, is M, ® M..

Proof. The underlying matroid of M, = [¢ : E" — T] is the matroid over E with bases
exactly the support of ¢, the same holds for M.. The supports of M, ® M. must therefore
be the disjoint union of bases of Mw and M,. This is exactly the bases of Mso @® M,.. Hence
M,doM.=M,® M, O

The next result shows an interesting link between T-representations of flats and contractions

of T-matroids. It also lets us find the underlying matroids of T-representations easily.

Theorem 3.8. Let T be a tract, E a finite set and ¢ : E" — T a weak Grassmann-Pliicker
function. Let M = [¢] be a T-matroid with underlying matroid M. Let ¢o  : F° — T be the
function that maps all elements of F' to zero. Let F' be a rank s flat of M and let [¢pr] be the
T-representation of F with respect to M. Then [pr| = [¢/F] & [0, F)-

Proof. If 1,...,x, are in E — F then pp(z1,...,2t) = ¢/F(x1,...,2¢) and so

(¢/F @ por)(x1,....,m) = ¢/F(x1,...,2). U z1,...,2¢ ¢ E—F, then ¢/F is undefined,
but in this case (¢/F & vo,r)(z1,...,2¢) = 0. For z1,...,2, ¢ E — F, we must also have
wy(x1,...,2¢) = 0 since z1,...,z; cannot form a basis of F. Hence, we have that (¢/F @

©0.F)(®1, -, %) = pr(z1,...,2¢). Hence, [pr] = [p/F] @ [po,F]- [

Theorem 3.9. Let T be a tract, E a finite set and ¢ : E” — T a Grassmann-Pliicker function.
Let F be a rank s flat of M, the underlying matroid of M = [p]. Then the underlying matroid
of Mg = [pr], the T-representation of F' with respect to M, is M /F & Uy, g, where Up p is the

uniform matroid of rank 0 over F.

Proof. This follows directly from Proposition 3.7 and Theorem 3.8. O

4 T-linear Representations

The goal of this section is to introduce a new cryptomorphism of T-matroids using T-representations
of flats. Here a modular triple of hyperplanes of M is a triple of hyperplanes such that
F = Hy N Hy N Hy is a corank 2 (that is, of rank r — 2, for r rank of M) flat. A modular
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triple of hyperplane functions is a triple of hyperplane functions in 7% such that the comple-
ments of the supports of the functions form a modular triple of hyperplanes. A modular system
for a matroid M is a collection of functions in T#, one for each H € H u such that whenever
Hy, Hy, Hs is a modular triple of hyperplanes in H ), the corresponding functions are linearly

dependent.

Theorem 4.1. Let M be a matroid. A modular triple fu,, fu,, fu, of hyperplane functions
of M is linearly dependent if and only if there exists a T-matroid [p : E? — T] such that
[fu, : E — T) for i = 1,2,3 is a quotient of [ : E? — T].

Proof. First the forward direction. We notice that since fu,, fr, and fg, are linearly dependent,
{a- fu, |laeT*}U{a: fu, |a e T*}U{a- fu, | o € T*} satisfy (Hf1)—-(Hf4) and so form
a set of hyperplane functions, defining a T-matroid N. Let N be the underlying matroid from
this T-matroid, with hyperplanes exactly the supports of fm,, fu, and fm,, in other words N
has as hyperplanes exactly Hy, Ho, Hs.

Since fu,, fu, and fg, form a modular triple, we have F' = H; N Hy N H3 forms a corank 2
flat, so this implies that [V is a rank 2 matroid.

Consider the rank 2 Grassmann-Pliicker function ¢ : E2 — T representing N. We note
f,, fu, and fp, are also Grassmann-Pliicker functions with T-matroids Ny = [f,], N2 = [fm,]
and N3 = [fu,] respectively. Then the set of hyperplane functions of N; is going to be exactly
[fu,] for i =1,2,3. We also remember that the covectors of N are orthogonal to the vectors of
N. Since the vectors of N are themselves orthogonal to the hyperplanes of N, we have that the
hyperplane functions of N are contained in the covectors. This implies that ny, € V*(N). We
use Definition 2.61 and conclude that N = [¢] is a quotient of N; = [fg,] for i = 1,2, 3.

For the backward direction, we want to show that fm,, fg, and fg, are part of a modular

system of [p : E2 — T]. If we show for each fg, that for x € H; and y, z ¢ H;

then we have by [BL20, Theorem 2.16] that fr,, fi, and fp, are a modular triple and so are
linearly dependent.

Take x € H; and y, z ¢ H;. By ¢ being quotient to fg,, we must have by Theorem 2.62 that

Since x € H;, we have that fy,(z) = 0, hence

(p(x’y)in(Z) - (p(.’L‘,Z)in(y) € NT-
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This gives exactly the result we want. Since this hold for ¢ = 1,2, 3 we must have that fu,, fu,

and fg, are part of a modular system for ¢ : E? — T and so are linearly dependent. O
Using this result we can give a cryptomorphic description of weak T-matroids.

Definition 4.2. Let T be a tract and E a finite set. Let M be a usual matroid over E with
collection hyperplanes H. A T-linear representation of M is a family of hyperplane functions R
with one hyperplane function for each H € H and F — fy = H for each fy € R such that for
each modular triple of hyperplanes Hy, Hy and H3 in H, there exists a T-matroid [¢ : B2 — T]
such that [fy, : E — T)] is a quotient of [p : E? — T for i = 1,2, 3.

Theorem 4.3. Let T be a tract and E a finite set. Let M be a usual matroid of rank r
over F with hyperplanes H. There exists a bijection between weak T-matroids with underlying
matroids M and equivalence classes by multiplication over T of T-linear representations of M,

that is the collection of equivalence classes of the functions in the T-linear representation.

Proof. By [BL20, Theorem 2.16], there exists a bijection between weak T-representations of M
and modular systems of hyperplanes of M. By Theorem 4.1 modular systems of hyperplanes
of M are equivalent to a T-linear representation. Hence, there exists a bijection between weak
T-representations of M and T-linear representations of M. Since a T-matroid with underlying
matroids M is just an equivalence class of T-representations of M, we have that there is a
bijection between weak T-matroids with underlying matroids M and equivalence classes by

multiplication of T of T-linear representations of M. O

5 T-Flats

In this section we define the notion of a T-flat and discuss its properties. We also show that we
can use T-flats to give a cryptomorphism of a T-matroid. When 7' is a field, T-flats are strongly
linked to hyperplane arrangements. In this section we assume that T is a perfect tract and so

we view every T-matroid as weak.

5.1 T-flats and Their Properties

Definition 5.1. Let E be a finite set. Let ¢ : E” — T be a T-representation of M a usual
matroid over E. Let F be a flat of M. The T-flat of F with respect to  is the set Ve = V([pF]),
with Vy = V([¢]) and Vg = V([¢Er]), that is, the vectors of the T-representation of F'. The lattice
of T-flats of a T-representation ¢ is the set {Vr | F € A}, where A is the lattice of flats of M.

Remark 5.2. The T-matroid [pg] is the T-matroid over E with underlying matroid Uy g. It

can also be viewed as having Grassmann-Pliicker function ¢ : E® — T.
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5.1 T-flats and Their Properties 5 T-FLATS

We discuss the properties of the lattice of T-flats. To do this we prove this useful result.

Lemma 5.3. Let E be a finite set. Let ¢ : E” — T be a T-representation of M a usual matroid
over E. Let n be the set of hyperplane functions of [¢ : E" — T]. Let F be a flat of M. Then
nrp={X €n| F CE— X} is the set of hyperplane functions of [pF].

Proof. By the bijection given in Remark 2.55, we have that for all X € 7,

Y(@) _ (_1 k <PF(1'17~'~7173—17€) _ (—l)k 90(2.17 "77;7“—33'1:1’ "'axs—he)
Y(e) (1, ...y Ts—1,€") O(i1y ey b sT1y ooy Ts—1, €')

Hence, for every X € np, we have X € 1. We know that [pp| has underlying matroid
M/F & Uy r. The hyperplanes of this are exactly the hyperplanes of M, such that F' contained
in H. Since np and [¢r] must have the same underlying matroid, we must have the np = {X €
np | FCE— X}

O

Proposition 5.4. Let E be a finite set and let ¢ : E” — T be a T-representation of M a usual
matroid over E. Let {Vr | F' € A} be the lattice of T-flats for [¢]. Then Vp = (gcy Vu for
S C FE such that cl(S) = F.

Proof. We have that Vi = nf by Definition 2.57, where np is the set of hyperplane functions
of [pr]. Since the only hyperplane that contains a hyperplane, is the hyperplane itself, we have
by Lemma 5.3 that Vg = {X € n| H = E — X}*. Hence

(N Va=({XenH=E-X}'=| |J{Xen|H=E-X}
SCH SCH SCH

We note that a hyperplane is such that S C H if and only F' C H, hence

UxXenlE=E-X}=|J{Xen|H=E-X}
SCH FCH

—{Xen|FCE-X}=np.

Hence,

m VH = 77?5 = VF.
SCH

O

Theorem 5.5. Let E be a finite set and T a perfect tract. The lattice of T-flats of a T-matroid
over F with underlying matroid M has the same abstract lattice as the lattice of flats of M.
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5.1 T-flats and Their Properties 5 T-FLATS

Proof. We have Vg = ﬂng Vg if and only if F = ﬂng H. Since there is also a bijection
between the hyperplanes of the lattice of flats of M and the hyperplanes of the lattice of T-flats,

this means that they have the same lattice structure. O

Let us give an abstract definition of a lattice of T-flats.

Definition 5.6. Let E be a finite set. Let V = {V; | k € L} be a collection of subset of T,
partially ordered by inclusion. Then we say V is a lattice of T-flats over E if

(LT1) we have V forms a geometric lattice with respect to inclusion with |E| = n atoms,
such that the top is 7™ and the bottom is {0},

(LT2) let A be the lattice with the same structure as V but atoms given by the elements
of E. Then the corank 1 elements of V are of the form Vg = (fg)* where fy is such that
E — fg = H for H C E a hyperplane of A with atoms F,

(LT3) the elements of the lattice with corank 2 or corank 1 form a set of vectors in the sense
of [And19],

(LT4) every element of V is the intersection of corank 1 elements of V.

In [And19], necessary conditions are given for a subset of T to be a set of vectors of a

T-matroid. Here we assume the sets of corank 1 or 2 satisfy these conditions.

Theorem 5.7. Let E be a finite set. There exists a bijection between T-matroids over E and

lattices of T-flats over E.

Proof. We show that there exists a bijection between T-matroids and lattices of T-flats. This
is the map that sends a T-matroid to its respective lattice of T-flats. We show injectivity and
then surjectivity.

Let M be a T-matroid. Then by Theorem 5.5, the lattice of T-flats of M forms a geometric
lattice and each Vg in the lattice are vectors for a T-matroid. Hence, lattice of T-flats of M
is a lattice of T-flats in the sense of Definition 5.6. Since the lattice of T-flats of a matroid
characterizes it completely (its top is the set of vectors of the matroid which characterizes the
matroid completely by [And19, Theorem 2.18]), we have that every T-matroid has a unique
lattice of T-flats and so the map is injective.

Let us consider the inverse map. Let V be a lattice of T-flats. We claim the functions fg
form a T-linear representation. Consider a modular triple of hyperplanes Hy, Ho, H3 in A with
atoms E. Then Vy,,VH,, VH, and Vg = Vy, N Vg, N Vu, are of corank 1 or 2 and so forms a
set of vectors for T-matroids My, , Mp,, Mg, and Mg respectively. Since Vg C Vy, for every
i =1,2,3, MF is quotient to each My,. Since the T-representation of My, is exactly fp, for
each i = 1,2, 3, we have that the set of functions fg form a T-linear representation. By Theorem
4.3, this is equivalent to a T-matroid over E. Hence, the forward map is also surjective and so

a bijection. O
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5.2 K-flats and Hyperplane Arrangements

We note that fields are perfect tracts. For a field K and a K-vector space V;; ~ K", a hyperplane
arrangement is a set of hyperplanes (that is r —1 dimensional subspace of V and not hyperplanes
in the matroid sense), such that the intersection of all the hyperplanes is exactly 0. Hyperplane
arrangements give rise to matroids. If we have £ = {1,...,n} and we have V;,...,V,, CVy ~ K"
hyperplanes, then we can define a rank function r : £ — Ny such that r(X) = codim([,c x Vi)

This satisfies the axioms of a rank function and so defines a matroid.

Lemma 5.8. Let K be a field and M = [¢] a K-matroid with lattice of T-flats {Vp | F' € A},
hyperplane functions 7. Then
V; = Vé'_ = <77F>a

where 7 is the collection hyperplane functions of [¢r] and (nr) its span. Further,

Vio = Viiy-
icS
Proof. By [And19, Proposition 2.19], we have that for any K-matroid with vectors V, it holds
that V1 = V*. Hence, we also have V} = V. Since Vp = 15, we have that Vi = (np).

We have np = {X €n | FC E— X} andsongy ={X €n|ic E— X}. We notice that

Vipg=({XenlicE-X})=({Xen|lic E-X, forallicF})
i€S €S

=({Xen|FCE-X}) =V
O

Theorem 5.9. Let K be a field. The orthogonal complements of the K-flats of a K-matroid
M over E form a hyperplane arrangement in the space of covectors of M. Furthermore, the

matroid defined by the hyperplane arrangement is exactly M, the underlying matroid of M.

Proof. 1t is a known fact that the covectors of a rank r K-matroids form r-dimensional linear
subspaces of K" for #F = n [And19, Proposition 2.19]. This implies that for a rank ¢ flat of
M, the vectors of K-matroid given by [pr] form an r — ¢ dimensional subspace of K™. Let us
define Vi as the covectors of [pr]. Then Vj are the covectors of M, isomorphic to K", and Vf{i}
for i € I are the covectors of [¢y;;], which is isomorphic to K "=1. Hence, Vf{i} are hyperplanes
in V5. We also have that ;. VEZ.} = Vi = {0}. Hence, we have a hyperplane arrangement.
By Lemma 5.8 we have V. = ;e V{;-

We consider the matroid formed by the hyperplane arrangement. It has ground set {Vz‘i} li €
E} and we have that codim((;cg V{;y) = codim(Vf) = rar(F) = ru(S). Hence the matroid
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given by the hyperplane arrangement is exactly M. O

Theorem 5.10. Let K be a field and let {V; C Vy|i = 1,...,n} be a set of » — 1 dimensional

hyperplanes such that Vj an r-dimensional subspace of K™ and (,_; , Vi = {0}. Let M be

the matroid of the hyperplane arrangement of {V; C Vy|i = 1,...,n}. Then there exists an
embedding ¢ : Vj — K™ and a K-matroid M with lattice of K-flats {V}. C K"|F € A} such

that ¢ (N,ep Vi) = Vi and 6(Vy) = V.

Proof. Let vy, ...,v, a basis of V. For each V; let w; = Elgjgr a;;v; be a vector orthogonal to
Vi. Let A be an r x n dimensional matrix over K such that As;; = ass. Then we claim this
matrix represents M in the sense that a set I is independent in M if and only if the vectors
{w;|i € I'} form a linear independent set of vectors in Vj.

Let us prove this claim. We know a set I is independent in M if #I = r — dim(;¢; Vi)-
Consider ((;¢; Vi)' = U,e; Vit We note V& = span(w;). Hence |J;¢; Vit = span({w;li € I}).
Notice r — dim((;¢; Vi) = dim(U,c; Vi*). Since dim(U,;c; Vit) = #I if and only if {w;|i € I}
forms a set of linear independent vectors, we have shown that A represents M.

Consider the function ¢ : E” — K for E = {1, ...,n} such that (i1, ...,3,) = det [4;, - - - A;,]
where A; is the i-th row of A. It is well known that ¢ is a Grassmann-Pliicker function [BB19,
Page 16] and so defines a K-matroid M. We note that, since det [4;,, ..., A;.] # 0 if and only if
w;, - - -w;j,. linearly independent, the support of ¢ are exactly the sets indexing sets of r linearly
independent vectors. Hence M, the underlying matroid of M, is exactly M. This implies [¢] is
a K-matroid with underlying matroid M.

Let {Vr|F € A} be the K-flats of M. Let us define a map f : Vjy — K™ such that

1
v= Z civ; = AT
r
We claim that f(Vy) = V.
C1 w1 -V
AT =
Cr Wy,

Evidently, f is a linear transformation. We claim that it is injective, in other words, the
kernel is 0. For an element v to be in the kernel of f, we must have w; - v for every 1 < i < n.
This would mean v is in every V; which by assumption means that v = 0.

Let eq, ..., e, be the natural basis for K™. An important observation is that for w; orthogonal

to Vi, we have that w; - v = 0 if and only if v € V;. We have that Vj = (fg|H € A,_1) that
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is that Vj is spanned by the hyperplane functions of M. We will show that each hyperplane
function of M is contained in f(Vy), implying that the span is also contained in f(V}).

Consider X € f((N;epy Vi — U;gp Vi) for some hyperplane H. Then we must have that
X (i) =0 if and only if i € H, hence X is a K-hyperplane of H. Since such an X must exist for
every H, we have that V; C f(V)).

Consider = € Vy. We have z € (;,cp Vi — U;¢p Vi, for some F in M. Then f(z)(i) = 0 if
and only if ¢ € F. Since the hyperplanes contain F intersect exactly at F, f(x) can be written
as the sum of hyperplane functions of the hyperplanes containing F. Hence f(x) € Vj and so
f(Vo) € V. Hence f(Vo) = V.

We claim f(V;) = V};;. Recall that for some x € Vy, f(x)(i) = 0 if and only if € V;. Hence,
for all X € f(V;), X(i) = 0 and so f(Vi) C (es)= N V.

Consider X € (e;)= NV;. Since f(Vy) =V, we have X € f(Vp). Since X € (e;)*, we must
have X (i) = 0, hence we must have X € f(V;y).

We claim Vi, = (ei)= NV;. First we show Vi € (i) NV; and then (e;)* C Vi;- Note
Viy = (fuli € H) and fg(x) = 0 if and only if x € H. Hence, for all X € V{;;, we have
X(i) = 0 and so X L (e;). We obtain V;, C (ei)t N'V;. For the other direction, we show
that X € (e;)* NV implies X € Vin- X € (i) N'V; then X is a linear combination of
hyperplanes such that fg (i) = 0, in other words, such that i € H. Therefore X € sz‘}' Hence,
(e)t NV C Viy-

We have shown f(V;) = (e;)= NV} = V{;)- Let us show that it follows that Vi, = f((;cp Vi)-
Since f is injective, we must have that f((;cp Vi) = Nicp f(Vi) = Nicp Viiy = Vr. Hence,

there exists embedding ¢ and K-matroid M as we claim. O

6 Example

We finish of with an example of T-flats. We shall use the rank three matroid M over four
elements which was described in Example 2.29. We consider the problem over the real numbers
R. We describe an R-matroid with underlying matroid M. We then look at the R-representations
of each of the flats, the lattice of R-flats and the hyperplane arrangement described by it.
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1234

0

Figure 3: The rank three matroid M over E = 1234 with hyperplanes 12,13,14 and 234.

Let us consider what such an R-matroid would look like in terms of Grassmann-Pliicker
functions. The bases of M are 123,124 and 134. We can construct a Grassmann-Pliicker

function as the determinant of a minor of a matrix [BB19, Page 16]. Consider the vectors

1 0 0 0
vy = |0]| ,v2=|1|,v3=[1]|,v4= |0},
0 1 0

then defining ¢ : 3 — R as ¢(i,5,k) = det (A;jx), where A;jp is the 3 x 3 matrix with
columns v;,v; and vk, will give us a Grassmann-Pliicker function. We have det (A;jx) # 0 if
and only if v;,v; and vy are linearly independent. Hence, (i, j, k) # 0 if and only if ijk = 123,
ijk = 124 or ijk = 134. Hence, [¢] has underlying matroid M.

Now let us look at the R-representations of different flats. We see that

01(4,7) = det (A145) , p2(i, j) = det (Aaij) , w3(4, 5) = det (Asij) , @a(i, j) = det (Auij)

p12(i) = det (A12;) , p13(7) = det (A13:) , p14(i) = det (A144)
(,0234(i) = det (A231‘) = det (A24i) = —det (A34i) .
We see that in M, 234 is spanned by 23, 24 and 34. This is paralleled by span(vs,vs) =
span(ve, v4) = span(vs, vy).
Let us now describe a new R-matroid using hyperplane functions. We consider the definition

of hyperplane functions again. We need to find four vectors (note we view functions from F to

R as vectors in RIP |), one for each of our hyperplanes, such that their zero elements correspond
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with the hyperplanes of M. Our vectors should therefore be of the form

ol fo] [o
0 0
"ol -] (o
ol o

Next to this, if we have two vectors which share an element e € F in the support (this would
both have a non-zero entry in the same position, in the vector sense), then we need a Z such

that X,Y and Z are linearly dependent. We see that the vectors

w1 = y W2 =

_ = O O
_ o = O
—_
—
o o O =

satisfy this property. Hence the set n = {a-w; | for a € R and i € {1,2,3,4}} forms a set
of hyperplanes of an R-matroid M with underlying matroid M. We can deduce that the vector
set of M is spanned by only the vector [0 1 1 -1 !

We can find the collection of hyperplanes of the R-representation of the flats. By Lemma
5.3, the hyperplane functions of the R-representation of a flat are the hyperplane functions in 7

for which the vanishing set contains the flats. Hence we have,
7712:{(1~w1 ‘CLER}, 7713:{(1'602 |(IGR},

mae={a -ws|a€R} mss={a -ws|acR}
m={a w;|foracRand e {1,2,3}}, no={a-w; |for a € Rand i€ {1,4}},
n3={a-w;|foraeRand i€ {2,4}}, ny ={a w;|for a € R and i € {3,4}}.

Now that we have the hyperplane functions for each flat, we can find the R-flats. Remem-
bering the definition of an R-flat, we have Vr = ng. We use (v1,..,v,) to be the span of the

vectors v1, ..., v,. We deduce that

o
e}
e
o

=
I
—
o O
| |
— =
\/
>
I
T
(e
_ o O
~o_—
&
Il
—
_ O
=
—
\/
=
I
T
— =
o O
\/

o
—_
e}
|
—_
o
—_
)
—_

33



6 EXAMPLE

<

S

™)

\
/\
o o = o
— o o
—_——
<

S

w

I
/\
o o o ~
o = o o
o |

_
—~—

0 —1 1
1 0 0 0 0 0
1 0 0 0 1
Via = ; ) ,Vozg = , ) .
1 0 0 1 0
0 0 1 1 0 0

Let us put the T-flats into lattice and see its structure, see Figure 6. We notice that it has
the same structure as the lattice of flats in Figure 6, and so is an example of Theorem 5.5. Since
we are working over a field, we should have that the orthogonal complements of the R-flats form

a hyperplane arrangement in the space V;;. We have that

<

=

Il

—
o O
_ O = O
\/

—_

0 0 1 0 0 1 1 0
1 0 0 0 1 0 0 1
Vi = : , Vi = : Vi = : Vi = :
0 0 1 0 0 —1
1 1 0 1 1 0 0 0
0 0 0 1
0 1 1 0
1 1 0 0

We see that the Vi*-s form two dimensional subspaces of the three dimensional space Vj;.
We also notice that for every ¢ and j we have that Vi# =Vt ﬁVjL and that Vi3, = V3 NV NV
Further, Vi N Vi N V3 N Vi = (. Hence, we see that the Vi--s form a hyperplane arrangement

in VJJ\Z. Also notice how the Vf‘Q,Vf‘g,,Vf;l and VQJ;M, correspond exactly with the hyperplane

functions of M.
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),
/

/\
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= o O
\/
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/\
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—
~—
/\
O~ = O
_ o O O
\/

Figure 4: The lattice of T-flats of 7. We can clearly see the same lattice structure here as the
lattice of flats of the underlying matroid.

7 Conclusion

In conclusion, we develop a theory of flats over matroids with coefficients in a tract. We define
T-representations of flats and find their underlying matroid. Then we define T-linear represen-
tations and show that these give an equivalent definition for T-matroids. We define T-flats as
the vectors of the T-representations and show that they form the same lattice structure with
respect to inclusion as the lattice of flats of the underlying matroid. We give an abstract defi-
nition of a lattice of T-flats and show this gives an equivalent definition of T-matroids. Finally,
we show that for a field K there is a correspondence between lattices of K-flats and hyperplane
arrangements. Further research suggestions would be to see when the lattice of T-flats gives a

more workable definition of T-matroid. Next to this, it could also be interesting to see what
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