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Abstract

In this thesis we apply the modular method to show the non-existence of certain asymptotic solutions
to the equation Aap+Bbp = Cc3 over the ring of integers of a number field K. The modular method
uses the conjectured relation between modular forms and elliptic curves. To introduce these ideas
we cover the necessary details of elliptic curves and Galois theory. The latter is studied, in great
detail, using Galois representations. Finally, we specialize our number field K to imaginary quadratic
extensions of Q. This specialization requires a close study of S-units and S-unit equations over these
fields.
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Introduction

Fermat’s Last Theorem is one of the most monumental results of twentieth-century mathematics. It
states that an+ bn = cn has no non-trivial integer solutions for n ⩾ 3. This theorem was conjectured by
Fermat in 1637 and the final step of the proof was completed by Wiles in 1995 [62, Theorem 0.4]. In his
paper, Andrew Wiles proved that every semi-stable elliptic curve over Q is associated to some weight-two
cuspidal modular form. Showing this turned out to be enough to prove Fermat’s Last Theorem. This
is due to the level lowering theorem proven by Ribet in 1990 [43, Theorem 1.1]. The relation between
elliptic curves over Q and modular forms was already conjectured by Taniyama and Shimura in 1957.
In 2001, the collaborative efforts of Breuil, Conrad, Diamond, and Taylor proved this conjecture in [7,
Theorem A].

The ideas of exploiting the connection between modular forms and elliptic curves over Q to solve Dio-
phantine equations over Z is not limited to this particular equation. In the years after the proof of
Fermat’s Last Theorem, number theorists were able to show non-existence of solutions to specific Dio-
phantine equations over Z. Due to the usage of the modularity of elliptic curves, this way of solving
Diophantine equations is known as ‘the modular method’.

There is a conjectured relation between modular forms and elliptic curves over numbers fields. This
modularity can again be used to solve Diophantine equations, now over the ring of integers of a number
field. Replacing Q by a more general object introduces many difficulties and complications. In this thesis
we explore these hurdles and apply the modular method for a set of Diophantine equations over the ring
of integers of a number field.

Often, it is stated that there is a fundamental connection between elliptic curves and modular forms but
the bridge that connects these two objects is neglected: Galois representations. Galois representations
are fundamental objects in number theory and the conjectures relating modular forms and elliptic curves
are often stated in terms of these representations. In the third section of this thesis we explore, in
quite some detail, Galois representations and how they relate to elliptic curves. To do this, we cover
the necessary results in Galois theory and elliptic curves in the first two sections of this thesis. In the
final section we use the developed theory in order to asymptotically show non-existence of solutions to
a set of Diophantine equations of the form Aap +Bbp = Cc3. This means that we find some constant V
depending only on the number field and the constants A, B and C such that whenever p > V , there are
no solutions to Aap +Bbp = Cc3.

3



1 Algebraic number theory

In this section we fix some notation and state some results from algebraic number theory. In particular,
we are interested in Galois theory of local fields and of number fields (global fields). In this section,
and throughout the rest of this thesis, we usually state results in terms of local fields but we always do
this with a view on global fields via embedding a number field into its completion at a prime. Thus the
reader should always keep in mind that the local theory serves the global theory, despite the fact that
most of the results are stated in terms of local fields.

1.1 Inverse limits

In this section we give a somewhat formal introduction to inverse limits. This formal introduction proves
its usefulness as inverse limits show up in many different contexts throughout this thesis and they de-
scribe the structure of the absolute Galois group, one of the main object of study.

An inverse system of groups (Gα, φαβ)α∈I consists of:

1. A partially ordered set (I,⩽) such that for every α, β ∈ I there is some γ ∈ I with α ⩽ γ and
β ⩽ γ;

2. for every α ∈ I a group Gα;

3. for every α, β ∈ I such that α ⩽ β a group morphism φαβ : Gβ → Gα such that φαγ = φαβ ◦ φβγ
whenever α ⩽ β ⩽ γ.

The inverse limit of an inverse system (Gα, φαβ)α∈I is

lim←−
α

Gα =
{
(gα)α ∈

∏
α∈I

Gα : φαβ(gβ) = gα for all α ⩽ β
}
⊂

∏
α∈I

Gα.

When it is clear from the context that we are taking an inverse limit, we will often write limαGα
for the inverse limit of the system (Gα, φαβ)α∈I . The inverse limit limαGα inherits a group structure
from the product

∏
αGα and comes with natural projection morphisms φβ : limαGα → Gβ for all β ∈ I.

This construction is not restricted to groups only; we can replace the word ‘group’ with, for example,
‘ring’, ‘topological space’ or ‘module’. It may be worth noting that the inverse limit construction is a
particular case of limits in categories. In a general category these limits may not exist. For example, in
the category of fields, arbitrary products do not exist so the above construction may fail. The study of
arbitrary inverse limit’s is often far too broad. We are mostly interested in groups of the following form.

Definition 1.1. A profinite group G is a group which is the inverse limit of a inverse system consisting
of finite groups. ■

Example 1.2. 1. Every finite group is a profinite group. It is the inverse limit of the system (G, idG)α∈I
for any non-empty partially ordered set I satisfying condition 1.

2. LetK be a number field with ring of integers OK . Let p be a prime ideal inK. Then (OK/p
n, πn)n∈Z⩾0

is an inverse system of rings where πn : OK/p
n+1 → OK/p

n is the natural projection for every n ∈ Z⩾0.
Its inverse limit is the ring of integers of a local field.

3. Let (I,⩽) = (Z>0, | ) where the ordering is divisibility (i.e. n ⩽ m when n | m). Let Gm = Z/mZ and
for m | n, let φmn : Z/nZ → Z/mZ be the natural projection. The inverse limit limn Z/nZ is denoted

by Ẑ and is referred to as the profinite integers. ■

A profinite group G = limαGα carries a topology in a natural way: endow the finite groups Gα with the
discrete topology and let the topology on G be the smallest topology for which the projection morphisms
G→ Gα are continuous. In this topology the group law G×G→ G is continuous. It then follows that
the sets of the form ker(G→ Gα) form a fundamental system around the identity 1 ∈ G and that

{g · ker(G→ Gα)}g∈G,α∈I

forms a basis for the topology on G. This topology is called the profinite topology on G. The following
standard result reveals the interplay between the group structure and the topology of a profinite group.
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Proposition 1.3. Let G be a profinite group. Then a subgroup H of G is open in G if and only if H
is closed and of finite index in G. ■

Let (Aα, φαβ)α∈I and (Bα, ψαβ)α∈I be inverse inverse systems of groups. We say that a set of group
morphisms (fα : Aα → Bα)α is a morphism of inverse systems if for every α, β ∈ I such that α ⩽ β the
square

Aβ Bβ

Aα Bα

fβ

φαβ ψαβ

fα

commutes. It is then readily verified that a morphism of inverse systems induces a morphism of groups
f : limαAα → limαBα acting coordinate-wise. The next result is an abstract result regarding morphisms
of inverse systems and exact sequences. It is used in Section 1.3.

Proposition 1.4. Let (Aα, φαβ)α∈I , (Bα, ψαβ)α∈I and (Cα, σαβ)α∈I be inverse systems of groups and
let (fα : Aα → Bα)α∈I and (gα : Bα → Cα)α∈I be morphisms of inverse systems such that

1 Aα Bα Cα 1
fα gα

is exact. Suppose that I has a unique least element and that the transition maps Aβ → Aα are surjective
for all α ⩽ β. Then

1 limαAα limαBα limα Cα 1
f g

is exact. ■

Proof. It is generally true and fairly straightforward that

1 limαAα limαBα limα Cα
f g

is exact. Thus all that remains to be shown is that limαBα → limα Cα is surjective. Let (cα)α∈I ∈
limα Cα and suppose that α ⩽ β. We have a commutative diagram with exact rows of the form

1 Aβ Bβ Cβ 1

1 Aα Bα Cα 1

fβ

φαβ

gβ

ψαβ σαβ

fα gα

Suppose we are given that bα ∈ Bα such that gα(bα) = cα. We construct bβ ∈ Bβ such that ψαβ(bβ) = bα
and such that gβ(bβ) = cβ . By exactness, gβ is surjective. Let b̃β be such that gβ(b̃β) = cβ . Then

gα(ψαβ(b̃β)b
−1
α ) = σαβ(gβ(b̃β))gα(b

−1
α ) = cαc

−1
α = 1

and hence ψαβ(b̃β)b
−1
α ∈ ker gα = im fα. Since φβα is surjective, there is some aβ ∈ Aβ such that

ψαβ(b̃β)b
−1
α = fα(φαβ(aβ)) = ψαβ(fβ(aβ)) ⇐⇒ ψαβ(fβ(a

−1
β )b̃β) = bα.

Further,
gβ(fβ(a

−1
β )b̃β) = gβ(fβ(a

−1
β ))gβ(b̃β) = 1 · cβ = cβ .

Therefore, bβ := fβ(a
−1
β )b̃β satisfies the required properties. Let i ∈ I be the unique least element and

let bi ∈ Bi be such that gi(bi) = ci. Then via the above construction we inductively construct an element
b = (bα)α∈I ∈ limαBα such that g(b) = (cα)α∈I . It follows that g is surjective.

Remark 1.5. The conditions on (Aα, φαβ)α∈I in Proposition 1.4 is a specific case of a Mittag-Leffler
condition on a exact sequence of inverse systems. In the category of abelian groups or modules over a ring
it is more generally true that whenever an exact sequence of inverse systems satisfies the Mittag-Leffler
condition then the inverse limit of an exact sequence is exact (see [54, Tag 0594] or [5, Proposition 10.2]).
In the non-abelian case, some more care is required, as we did here. ■
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1.2 Finite Galois theory

In this section we briefly cover Galois theory of finite Galois extensions of local fields and of number
fields. We do this with a view on Galois theory of extensions of possibly infinite degree.

Definition 1.6. A field K is local if it is complete with respect to some discrete non-Archimedean
absolute value and if it has a finite residue field. ■

Let K be a local field which is complete with respect to the absolute value | · |. Then since | · | is discrete
and non-Archimedean, the ring of integers or valuation ring

OK = {x ∈ K : |x| < 1}

is a discrete valuation ring with finite residue field.

Example 1.7. Let K be a number field with ring of integers OK and let p be a prime of K. Then the
completion of K with respect to the absolute value

| · |p : K → R≥0
x 7→ (OK : p)−vp(x)

where vp : x 7→ max{n ∈ Z : x ∈ (p)n} is denoted by Kp and is called the p-adic completion of K or
the p-adic numbers. Its valuation ring OKp

is isomorphic to the inverse limit as in Example 1.2. In the
special case where K = Q and p = (p) for some rational prime p we write Kp = Qp and OKp

= Zp. ■

Let K be a local field and let L/K be a finite extension of degree n. Then there is a unique extension
of the absolute value of K to L and L is local with respect to this absolute value. Let ℓ and k denote
the residue field of L and K respectively. Then ℓ/k is an extension of degree f ⩽ n, this value is the
residue class degree. Further, let P and p denote the maximal ideals of the valuation rings OL and OK ,
respectively. Then there is some integer e ⩽ n called the ramification index such that

pOL = Pe.

We have n = ef . We call L/K unramified if e = 1, totally ramified if e = n, tamely ramified if char k ∤ e
and wildy ramified if char k | e.

Example 1.8. Let L/K be an extension of number fields and let P be a prime in L lying above a prime
p in K. If f denotes the residue field degree of P/p and e denotes the ramification index of P/p, then
LP/Kp is a finite extension with residue field degree f and ramification index e. ■

Let L/K be a finite Galois extension of local fields with Galois group G. Let | · | denote the absolute value
on L which extends the absolute value on K and let σ ∈ G. Define the absolute value | · |σ : x 7→ |σ(x)|.
Then, since σ fixes K, | · |σ extends the absolute value on K. By uniqueness of this extension it follows
that | · | = | · |σ and hence |σ(x)| = |x| for all x ∈ L. It follows that G preserves the absolute value on L
and in particular, G preserves

OL = {x ∈ L : |x| ⩽ 1} and P = {x ∈ L : |x| < 1}.

Let Π ∈ OL be such that P = ΠOL.

Definition 1.9. Let i be non-negative integer. The ith ramification subgroup Gi = Gi(L/K) is the
subgroup of G defined by

Gi = {σ ∈ G : |σ(α)− α| < |Π|i for all α ∈ OL}.

The group G0 is called the inertia group and G1 is called the wild inertia group. ■

We thus get a filtration G ⊃ G0 ⊃ G1 ⊃ . . . of subgroups. Let σ ∈ G \ {1}, then there is some α ∈ B
such that σ(α) ̸= α. It follows that for i large enough, |σ(α)− α| ⩾ |Π|i and hence σ ̸∈ Gi. This shows
the following.

Lemma 1.10. The filtration G ⊃ G0 ⊃ G1 ⊃ . . . terminates. ■
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Proposition 1.11. The Gi are normal subgroups of G. Let k and ℓ be the residue fields of K and L,
respectively. Then the fixed field of G0 is the largest unramified extension K0 of K in L and the fixed
field of G1 is the largest tamely ramified extension Kt of K in L. Further,

G/G0
∼= Gal(K0/K) ∼= Gal(ℓ/k). ■

Next we switch from the local situation to the global situation and connect the two.

Let L/K be a finite Galois extension of number fields and let G denote the Galois group of this extension.
Let OL and OK denote the ring of integers of L and K, respectively. Let p be a prime in K and let P
be a prime in L extending p. Let σ ∈ G, then σ(P) is again a prime extending p. Indeed, since σ fixes
K, we find that p ⊂ σ(P) so σ(P) ∩ OK = p. Therefore, we have a well-defined group action of G on
the set of primes in L which extend p. An application of the Chinese remainder theorem shows that this
action is transitive. Since this action is transitive it follows that all primes above p are isomorphic and
hence their ramification indexes and residue class degrees are equal. Let e and f denote these common
values, respectively. Then if g is the amount of primes above p, the fundamental formula shows

[L : K] = gef. (1.1)

For a prime P above p, we define the decomposition subgroup DP ⊂ G of P over K as

DP = {σ ∈ G : σ(P) = P}.

It follows from the orbit stabilizer theorem and (1.1) that DP has order ef . Since the elements of DP

fix P they define an action on OL/P fixing OK/p. In this way we get a morphism of groups

πP : DP → Gal
(
(OL/P)/(OK/p)

)
.

Another application of the Chinese remainder theorem shows that this map is surjective. The inertia
group IP of P over K is the kernel of πP. Thus we have an exact sequence

1 IP DP Gal
(
(OL/P)/(OK/p)

)
1.

πP

From this we see that IP has order e and hence IP is non-trivial if and only if P is ramified over K.
The Galois group Gal

(
(OL/P)/(OK/p)

)
is finite, cyclic of order f , and is generated by the Frobenius

automorphism which sends x 7→ xq with q = [OK : p]. Since πP is surjective, there is some element of
DP which is mapped to the Frobenius automorphism under πP. Such an element is called a Frobenius
element for P. Such an element is unique if IP is trivial i.e. when p is unramified. In this case we can
speak of the Frobenius element.

The following proposition connects the global and local Galois theory and serves as a foundation for
when we move to the infinite case.

Proposition 1.12. Let L/K be a finite Galois extension of number fields. Let p be a prime in K and
P a prime in L extending p. Then the extension LP/Kp is Galois and the restriction morphism

φ : Gal(LP/Kp)→ DP

is an isomorphism of groups. Furthermore, the restriction of φ to the inertia group G0 = G0(LP/Kp) is
an isomorphism G0 → IP. ■

1.3 Infinite Galois theory

In this section we take a closer look at Galois extensions of possibly infinite degree. We then combine this
with the theory of the previous sections to define decomposition groups, inertia groups and Frobenius
elements for Gal(K/K) where K is a number field. For the second part we draw great inspiration from
[61, Section 1.2].

Let L/K be a (possibly infinite) Galois extension with Galois group Gal(L/K). The goal of this section
is to get a slightly better grasp on Gal(L/K) and to define the objects of the previous section in the case
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where K is a number field and L is the algebraic closure K of K.

To try and understand Gal(L/K) we may start by studying the finite Galois sub-extensions L/M/K. For
two finite Galois extensionsM/K andM ′/K in L such thatM ⊂M ′, we have a natural group morphism
φMM ′ : Gal(M ′/K) → Gal(M/K) defined by restriction. If we have three finite Galois extensions M ,
M ′, and M ′′ of K contained in L such that M ⊂M ′ ⊂M ′′, then the composition

Gal(M ′′/K) Gal(M ′/K) Gal(M/K)
φM′M′′ φMM′

is equal to φMM ′′ : Gal(M ′′/K)→ Gal(M/K). Let I denote the set of fields M such that M/K is finite
Galois and M ⊂ L. Then I is a partially ordered set with respect to inclusion. The partially ordered set
(I,⊂) satisfies condition 1 of Section 1.1. To see this, let M and M ′ be fields in I, then the compositum
MM ′ in L is Galois andM,M ′ ⊂MM ′ ⊂ L. It follows that (Gal(M/K), φMM ′)M∈I is a inverse system.
Let

G = lim←−
K⊂M⊂L

finite Galois

Gal(M/K)

denote the inverse limit. For an element σ ∈ Gal(L/K) we can construct a well-defined element (σ|M )M
of G. This gives a group morphism Gal(L/K)→ G. In this sense, G can be viewed as the group which
contains all the data of elements of Gal(L/K) on every finite Galois sub-extension L/M/K. As it turns
out, this perfectly describes Gal(L/K).

Proposition 1.13. Let L/K be a (possibly infinite) Galois extension. Then Gal(L/K) is a profinite
group and

Gal(L/K) −→ lim←−
K⊂M⊂L

finite Galois

Gal(M/K)

sending σ 7→ (σ|M )M is an isomorphism of groups. ■

Example 1.14. Let Fq be a finite field with q elements. Let k/Fq be a finite Galois extension of Fq of
degree n. Then Gal(k/Fq) is cyclic and generated by the Frobenius endomorphism x 7→ xq. It follows

that Gal(k/Fq) ∼= Z/nZ. Then by Proposition 1.13, Gal(Fq/Fq) ∼= limn Z/nZ = Ẑ. ■

By the isomorphism in Proposition 1.13 it follows that there is a natural topology on Gal(L/K) induced
from the profinite topology. By section 1.1, the topology is generated by the sets

σ · ker(Gal(L/K)→ Gal(M/K))

where M/K is a finite Galois extension of K in L and σ ∈ Gal(L/K). The Galois correspondence for
finite extensions extends to infinite extensions but it takes into account the topology on Gal(L/K).

Theorem 1.15 (Galois correspondence). Let L/K be a (possibly infinite) Galois extension with Galois
group G. Then there is an inclusion reversing bijection

Intermediate

extensions

K ⊂M ⊂ L

←→


Closed

subgroups

H ⩽ G


M 7−→ Gal(L/M)

LH 7−→H.

Further, an intermediate extension M/K is Galois if and only if Gal(L/M) is normal in G. In this case
we have Gal(M/K) ∼= G/Gal(L/M). ■

For an arbitrary subgroup H ⩽ G, the proof of Theorem 1.15 shows that LH corresponds to the closure
H of H in G via the Galois correspondence.

Example 1.16. Let Fq be a finite field with q elements. The Galois group Gal(Fq/Fq) has an element
Fr: x 7→ xq called the Frobenius automorphism. For any finite Galois extension k/Fq, Fr|k generates
Gal(k/Fq). The element Fr has infinite order in Gal(Fq/Fq) and hence ⟨Fr⟩ ∼= Z. We have

F⟨Fr⟩q = {x ∈ Fq : xq = x} = Fq = FGal(Fq/Fq)

q .

In Example 1.14 we saw that Gal(Fq/Fq) ∼= Ẑ. Thus Z and Ẑ have the same fixed field. This shows that

Z is dense in Ẑ and that the topology of Gal(Fq/Fq) indeed needs to be taken into account. ■
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Let L/K be a possibly infinite extension of local fields in characteristic 0 and let k be the residue field
of K. For every finite Galois extension M/K in L let G0(M/K) ⊂ Gal(M/K) be the inertia subgroup
and let k(M) denote the residue field of M . Then, by Proposition 1.11, we have an exact sequence

1 G0(M/K) Gal(M/K) Gal(k(M)/k) 1.

Now let M,N be finite Galois extensions of K in L such that N ⊂ M . Then we have a commutative
diagram with exact rows of the form

1 G0(M/K) Gal(M/K) Gal(k(M)/k) 1

1 G0(N/K) Gal(N/K) Gal(k(N)/k) 1.

(1.2)

By Proposition 1.4, we have that Gal(L/K) arises as the inverse limit over the finite Galois extensions
of K in L. Define the inertia group G0(L/K) ⊂ Gal(L/K) of L/K to be

G0(L/K) = lim←−
K⊂M⊂L

finite Galois

G0(M/K).

Let ℓ denote the residue field of L. Then Gal(ℓ/k) is isomorphic to the inverse limit of the fields
Gal(k(M)/k) whereM is a finite Galois extension ofK in L. Then by Proposition 1.4 and commutativity
of (1.2) we get an exact sequence

1 G0(L/K) Gal(L/K) Gal(ℓ/k) 1.

By Proposition 1.11, for a finite extension M of K in L, we have that the fixed field MG0(M/K) is the
largest unramified extension of K in M . From this it follows that the fixed field LG0(L/K) is the largest
extension of K in L which is such that if M ⊂ LG0(L/K) is a finite extension of K then M/K is unram-
ified. We call the field LG0(L/K) is the largest unramified extension of K in L.

In particular, in the case where L = K we get an exact sequence

1 G0(K/K) Gal(K/K) Gal(k/k) 1. (1.3)

We simply call the largest unramified extension K̄G0(K̄/K) of K in K the largest unramified extension of
K and we denote it by Knr. Considering the exact sequence (1.3), we have proven the following.

Proposition 1.17. Let K be a local field of characteristic zero. Then the maximal unramified extension
Knr is a Galois extension of K. We have G0(K/K) = Gal(K/Knr) and

Gal(Knr/K) ∼= Gal(k/k). ■

Now we move to the global case. Let K be a number field and let p be a prime in K. Let L/K be
a finite Galois extension of K and let P be a prime above p. By, Proposition 1.12 we have that the
decomposition group DP is isomorphic to the Galois group Gal(LP/Kp). By taking the inverse limit,
we see that Gal(Kp/Kp) is, in a canonical way, a subgroup of Gal(K/K). We define the decomposition
group Dp ⊂ Gal(K/K) of p to be the subgroup isomorphic to Gal(Kp/Kp) in this way. By abuse of
language, we often say that Gal(Kp/Kp) is the decomposition subgroup of p. The inertia group Ip of
p is the group G0(Kp/Kp). Let kp denote the residue field of K at p (equivalently, the residue field of
Kp). Thus we have an exact sequence

1 Ip Gal(Kp/Kp) Gal(kp/kp) 1
πp

A Frobenius element of p is an element Frobp ∈ Dp = Gal(Kp/Kp) which maps to the Frobenius
automorphism of Gal(kp/kp) under πp (see example 1.16). We have the following theorem regarding the
density of Frobenius elements due to Cheboratev.

Theorem 1.18. (Cheboratev) Let K be a number field and S a finite set of primes of K. Then the set
of elements

{Frobp ∈ Gal(K/K) : p ̸∈ S}.
Is dense in Gal(K/K) with respect to the profinite topology. ■
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1.4 Class field theory

To conclude this section, we cover some standard results from class field theory regarding unramified
extensions of number fields. Further, we state a fundamental result in Kummer theory which is relevant
in multiple occasions throughout this thesis.

Let K be a field. A place of K is an equivalence class of absolute values on K. If L/K is an extension
of fields and v is a place of K then we say that a place w of L extends v if there is an absolute value in
w which restricts to an absolute value which is in v. The following theorem classifies places of number
fields.

Theorem 1.19. (Ostrowski) Let K be a number field. Then K has exactly one place for
(i) Every prime p of K;
(ii) Every real embedding K ↪→ R;
(iii) Every conjugate pair of totally complex embeddings σ : K ↪→ C (so σ(K) ̸⊂ R). ■

Let K be a number field. A place of K is called a finite place (or finite prime) if it corresponds to a
prime, otherwise it is called a infinite place (or infinite prime). If L/K is an extension of number fields
and p is a prime of K corresponding to the place vp, then the places of L extending vp are precisely those
places that correspond to primes of L extending p.

We call a finite place of K ramified if the corresponding prime ramifies in L/K. If v is an infinite prime of
K which corresponds to a real embedding σ : K ↪→ R then we call v ramified if σ extends to a conjugate
pair of totally complex embeddings σ : L ↪→ C. We call v unramified if the extension of σ to L remains
a real embedding or if σ is complex.

Proposition 1.20. Let K be a number field with class group Cl(K). Then there exists a finite maximal
abelian extension L of K such that every finite and infinite place in K is unramified in L/K. The
extension L/K has Galois group Gal(L/K) ∼= Cl(K). ■

Example 1.21. The field K = Q(
√
3) has class number 1 so it does not have a non-trivial extension

which is unramified at every place. The extension L = Q(
√
3, i) is an abelian extension of K such that

no prime of K is ramified in L/K. The infinite places do ramify in L/K since K has 2 real embeddings
whilst L has 2 conjugate pairs of totally complex embeddings. ■

In Example 1.21 we see that the condition on the infinite places is strictly necessary. However, if we
relax the condition on the infinite places, we still get something tangible in this case. This turns out to
be more generally true.

Proposition 1.22. Let K be a number field. There exists a finite maximal abelian extension L of K
such that every finite prime in K is unramified in L/K. ■

Definition 1.23. Let K be a number field and let L/K be the finite maximal abelian extension of K
such that every finite prime is unramified. The narrow class number h+K of K is the degree of L/K. ■

Example 1.24. Let L/K be as in Example 1.21. Then, h+K is at least 2 since L/K is unramified outside
of the infinite places. Using a description of the narrow class number in terms of the class group of K
it can be shown that h+K = 2. Hence, L/K is the largest abelian extension of K which is unramified at
every prime in K. ■

Finally, we state without proof a fundamental result from Kummer Theory.

Proposition 1.25. Let K be a field such that ζn ∈ K. If L/K is a Galois extension of K such that
Gal(L/K) = Z/nZ. Then L = K(α1/n) where α ∈ K is such that α1/d ̸∈ K for any proper divisor d of
n. ■
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2 Elliptic curves

The modular method makes heavy use of elliptic curves and the body of known results related to them.
The first two parts of this section we recall and state the standard definitions and results which are
relevant to us. The second part is about the reduction of elliptic curves over local fields. The last part
of this section connects the local and global theory and defines the conductor of an elliptic curve.

2.1 Basic definitions

We briefly recall some definitions and results relating to elliptic curves. We are mostly working over a
general field K but for the purposes of this thesis, K is usually a number field, a finite field or local field
of characteristic 0. By a variety V over K we mean all the points in K satisfying the equations defining
V and for an extension L/K we let V (L) denote the L-points of V . By a curve we mean a variety of
dimension 1.

Definition 2.1. Let K be a field. A non-singular projective curve E/K is called an elliptic curve if its
genus is 1 and if E has a K-rational point. ■

We can construct an elliptic curve from a Weierstrass equation as follows. Given elements a1, . . . , a6 ∈ K
we define a projective curve in P2

K given by the Weierstrass equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

This projective curve has a K-rational point O = [0 : 1 : 0] and has no other points where Z = 0 so we
often write a Weierstrass equation in the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Note that E has genus 1 so E is an elliptic curve if and only if it is non-singular. Define the quantities
associated to E,

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

The value ∆ is called the discriminant of E and j is called the j-invariant of E.

Proposition 2.2. Let E be a curve given by a Weierstrass equation with discriminant ∆ and c4 as
above. Then
(a) E is non-singular if ∆ ̸= 0;
(b) E has a nodal singularity if and only if ∆ = 0 and c4 ̸= 0;
(c) E has a cuspidal singularity if and only if ∆ = c4 = 0.
In any case, E has at most one singular point. ■

We see that a curve defined by a Weierstrass equation is an elliptic curve if and only if its discriminant
∆ ̸= 0. In fact, the converse is also true, given an Elliptic curve E/K with K-rational point P then
there exists a K-isomorphism from E to a curve defined by a Weierstrass equation which sends P to
O = [0 : 1 : 0].

Given a curve E/K defined by a Weierstrass equation with coefficients a1, . . . , a6 ∈ K. By making a
coordinate transformation x = u2X and y = u3Y for some u ∈ K× we obtain a new Weierstrass equation
with coefficients

a′i = u−iai

c′i = u−ici

∆′ = u−12∆

j′ = j.

11



Let E be a curve given by a Weierstrass equation and let Ens denote all the non-singular points of E.
By the paragraph above, if the discriminant ∆ of E is non-zero then Ens = E and E is an elliptic curve,
otherwise Ens is E with a point removed. It is well known that Ens has the structure of an abelian group,
this can be seen from the fact that the embedding of Ens into its Jacobian Pic0(Ens) via P 7→ [P − O]
is surjective. Alternatively, the group law on E is given geometrically by rational equations over K, i.e.
the group law Ens × Ens → Ens and inversion Ens → Ens are morphism over K. This turns Ens into an
abelian variety. If E has a singular point, then the structure of Ens is quite simple.

Proposition 2.3. Let E/K be given by a Weierstrass equation and suppose that E has a singular
point. Then if E has a nodal singularty we have an isomorphism Ens

∼= K̄× of abelian groups. If E has
a cuspidal singularity then Ens

∼= K̄+ as abelian groups. ■

Let E/K be an elliptic curve, then E is not only an abelian group but also carries the structure of a
Gal(K/K)-module, that is, there is an action of Gal(K/K) on E which is compatible with the group
law on E. Fix some Weierstrass coordinates for E, let P = (x, y) ∈ E and let σ ∈ Gal(K/K). Then
the action of σ on P is Pσ = (σ(x), σ(y)). This is well defined since E is defined over K and this is
compatible with the group law on E since the group law is defined over K.

Definition 2.4. Let E1/K and E2/K be elliptic curves with distinguished K-rational points O1 and O2,
an isogeny E1 → E2 is a morphism E1 → E2 sending O1 to O2. We say that two elliptic curves defined
over K are isogenous if there exists and isogeny between them. An isogeny is a K-rational isogeny if it
is an defined over K. ■

An isogeny φ : E1 → E2 of elliptic curves induces a homomorphism between the Jacobians Pic0(E1) →
Pic0(E2) compatible with the isomorphisms identifying E1 and E2 with their Jacobian. From this it
follows that φ is a group homomorphism. We define the degree degφ of φ to be the degree of the
extension of function fields K(E1)/φ

∗K(E2). We say that φ is an m-isogeny if its degree is equal to m.
If φ : E1 → E2 is an m-isogeny, then

φ−1(O2) = kerφ

has at most degφ = m elements. If the extension K(E1)/φ
∗K(E2) is separable, then we say that φ is

separable. In this case, kerφ has exactly m elements.

Example 2.5. 1. Let E/K be an elliptic curve. Let m > 0 be a positive integer and let [m] : E → E
denote the morphism that takes a point P ∈ E and sends it to P summed to itself m times. Define
[−m] to be the morphism which sends P to [m](−P ). Since the inversion and addition laws on E are
defined over K, the map [m] : E → E is a K-rational isogeny for every m ∈ Z where we define [0] to be
the constant isogeny.

2. Let Fq be a finite field and let E/Fq be an elliptic curve. The Fq-rational isogeny φ : E → E sending
(x, y) 7→ (xq, yq) is called the Frobenius morphism and has degree q. The Frobenius morphism indeed
maps to E since the coefficients of E are fixed under x 7→ xq. Since Gal(Fq/Fq) is topologically generated
by x 7→ xq (i.e. it generates a dense subgroup of Gal(Fp/Fp)), a point P ∈ E is defined over Fq if and
only if φ(P ) = P . ■

Every isogeny φ : E1 → E2 of degree d has a dual isogeny φ̂ : E2 → E1 such that φφ̂ = φ̂φ = [d], this
can be used to show that the isogeny [m] : E → E has degree m2. If in addition [m] is separable then
#ker[m] = m2. Note that ker[m] is simply the m-torsion of E which we denote by E[m]. For every d
dividing m we have #E[d] = d2. Some group theory then shows that

E[m] ∼= Z/mZ× Z/mZ. (2.1)

The precise characterization of the kernel of [m] is as follows.

Proposition 2.6. Let m be a positive integer and E/K an elliptic curve, if the characteristic of K is
0 or coprime to m then [m] is separable and we have (2.1). If the characteristic of K is equal to p > 0,
then E[pe] is equal to {O} or isomorphic to Z/peZ for all positive integers e. ■

For a positive integer m coprime to char K, it is tempting to think of E[m] as the abstract group
(Z/mZ)2, however, E[m] carries the structure of a Gal(K/K)-module. Indeed, for a point P ∈ E[m] we
have

[m](Pσ) = ([m]P )σ = Oσ = O
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so Gal(K/K) acts on E[m]. Let ℓ be a prime different from the characteristic of K and let n be a
positive integer. We have a surjective homomorphism [ℓ] : E[ℓn+1]→ E[ℓ] which is compatible with the
Gal(K/K)-action on E[ℓn+1] and E[ℓn]. We have that

E[ℓn+1] (Z/ℓn+1Z)2

E[ℓn] (Z/ℓnZ)2

∼

[ℓ]

∼

commutes. Here, the horizontal maps are the isomorphisms in (2.1). Thus we have an inverse system

. . . E[ℓ3] E[ℓ2] E[ℓ]

which is isomorphic to the inverse system defined by the (Z/ℓnZ)2. We call the inverse limit of this
system the Tate module which we denote by Tℓ(E). Since E[ℓn] has the structure of an Z/ℓnZ-module
for every n, it follows from Example 1.7 that the Tate module Tℓ(E) has the structure of a Zℓ-module.
We also obtain the isomorphism

Tℓ(E) ∼= Zℓ × Zℓ (2.2)

of Zℓ-modules. Since the action of Gal(K/K) on Tℓ(E) is compatible with the transition maps of the
E[ℓn], the abelian group Tℓ(E) is a Gal(K/K)-module.

Let E1/K and E2/K be elliptic curves over K and let φ : E1 → E2 be an isogeny, since φ is a homo-
morphism of groups, we can restrict φ as φ : E1[m]→ E2[m] for every m ∈ Z>0 from this it follows that
for a prime ℓ, φ induces a Zℓ-module homomorphism φℓ : Tℓ(E1) → Tℓ(E2). In the special case where
E = E1 = E2, we can take the trace and determinant of φℓ. To get a proper grip on these quantities we
need the Weil pairing (see Proposition 3.14). With such a gadget we get the following result.

Proposition 2.7. Let E/K be an elliptic curve, φ : E → E an isogeny and ℓ a prime distinct from the
characteristic of K. The trace and determinant of the induced map φℓ : Tℓ(E) → Tℓ(E) on the Tate
modules are given by

detφℓ = degφ and Trφℓ = 1 + degφ− deg(1− φ).

In particular, the trace and determinant of φℓ are independent of ℓ. ■

Example 2.8. Let E/Fq be an elliptic curve over a finite field of characteristic p. Let φ : E → E be
the Frobenius endomorphism. In Example 2.5 it is shown that φ has degree q and that a point P ∈ E
is defined over Fq if and only if φ(P ) = P , this is equivalent to asking P ∈ ker(1 − φ). The map 1 − φ
is separable and hence

#ker(1− φ) = deg(1− φ) = #E(Fq).
Let ℓ be a prime distinct from p, then by the previous proposition,

Trφℓ = 1 + q −#E(Fq).

This quantity is called the trace of Frobenius and is of significance when studying the Galois representa-
tion associated to Tℓ(E) as in Section 3.3. ■

We finish this section by explaining complex multiplication. Given two isogenies φ and ψ mapping
E → E, we can add φ and ψ to obtain a new isogeny φ + ψ defined by sending P 7→ φ(P ) + ψ(P ).
We can also compose isogenies E → E to obtain a new isogeny. Addition and composition gives a
ring structure on the set of endomorphisms End(E) of E (i.e. the isogenies E → E). The isogenies
[m] : E → E with m ∈ Z are elements of End(E). These elements are such that they give an embedding
Z ↪→ End(E) of rings. Very often this embedding is an isomorphism. In the cases where it is not we
say that E has complex multiplication. The following is a way to detect when an elliptic curve does not
have complex multiplication when K is a number field. This is useful when we are trying to apply, for
example, Serre’s irreducibility theorem. This theorem requires the elliptic curve it describes to not have
complex multiplication. We use this result in Section 4.3.

Proposition 2.9. Let E/K be an elliptic curve over a number field with ring of integers OK , then if E
has complex multiplication then the j-invariant of E is an element of OK . ■
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2.2 Reduction of Elliptic curves

Let K be a local field of characteristic 0 with valuation v, valuation ring OK , residue field k and
uniformizer π, i.e. v(π) = 1. Let E/K be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with associated constants c4, c6 and ∆. By making a coordinate transformation

(x, y) 7→
(
(πk)2x, (πk)3y

)
the discriminant ∆ changes as ∆ 7→ π−12k∆. We say that a Weierstrass equation for E is minimal if
ai ∈ OK for all i and v(∆) is minimized. Via coordinate transformations, v(∆) can only be changed by
multiples of 12, therefore, if the ai are elements of OK and v(∆) < 12, it follows that the equation is
minimal. Similarly, if the ai are elements of OK , it follows that the constants c4 and c6 are elements of
OK . Similarly, under the coordinate transformation above, the associated quantities c4 and c6 change as
c4 7→ π−4kc4 and c6 7→ π−6kc6. By a similar argument we get the following result.

Proposition 2.10. Let E/K be an elliptic curve given by a Weierstrass equation with coefficients
ai ∈ K. Then E is minimal if the ai are elements of OK and either v(c4) < 4, v(c6) < 6 or v(∆) < 12.
Further, a minimal Weierstrass equation for E/K is unique up to isomorphism. ■

Given a minimal Weierstrass equation for E/K, we can reduce the coefficients of E to obtain a new curve
Ẽ/k given by a Weierstrass equation over k with associated quantities given by reducing the associated
quantities of E. It follows from Proposition 2.2 that Ẽ/k is an elliptic curve if and only if v(∆) = 0.
Inspecting Proposition 2.2 and Proposition 2.3 we obtain the following.

Proposition 2.11. Let E/K be an elliptic curve with associated quantities ∆ and c4. Let Ẽ/k denote
the reduction of E.
(a) Ẽ is an elliptic curve if and only if v(∆) = 0;
(b) Ẽ has a nodal singularity if and only if v(∆) > 0 and v(c4) = 0. In this case, we have

Ẽns(k̄) ∼= k̄×;

(c) Ẽ has a cuspidal singularity if and only if v(∆) > 0 and v(c4) > 0. In this case,

Ẽns(k̄) ∼= k̄+. ■

In case (a), we say that E/K has good reduction and in case (b) and (c) we say that E has bad reduction.
More specifically, in case (b) we say that E has multiplicative reduction and if, in addition, the slopes
of E at the singularity of Ẽ are in k we say that E has split multiplicative reduction. In case (c) we say
that E has additive reduction.

Though less standard, in the case of multiplicative reduction, it can be read off from the coefficient c6
whether or not the reduction is split or not.

Proposition 2.12. [11, Lemma 2.2] Let E/K be an elliptic curve with multiplicative reduction and
suppose char k ̸= 2. Then E/K has split multiplicative reduction if and only if −c6 is a square in K×

(or, equivalently, the reduction of −c6 in k× is a square). ■

Example 2.13. 1. Let K be a local field with odd residue characteristic. The elliptic curve E1/K given
by Weierstrass equation

E1 : y
2 = x3 + x2 + a

with a ∈ OK has multiplicative reduction if and only if v(a) > 0 and good reduction otherwise.

2. The elliptic curve E2/K given by Weierstrass equation

E2 : y
2 = x3 + π.

has has additive reduction. ■

Given an extension L/K of local fields, we can consider an elliptic curve E/K as an elliptic curve E/L.
A natural question arises: how does the reduction of E/L relate to the reduction E/K?
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Proposition 2.14. Let E/K be an elliptic curve and let L/K be a finite extension. Then
(a) If L/K is unramified then the reduction type of E/L is the same as that of E/K.
(b) If E/K has good or multiplicative reduction then so does E/L.
(c) There is a finite extensionM/K of K such that E/K has either good or multiplicative reduction. ■

From Proposition 2.14 it follows that the reduction type an elliptic curve E/K can only change under field
extensions if E/K has additive reduction. Moreover, if E/K has additive reduction then the reduction
type is guaranteed to change under some field extension. If the reduction of E/K becomes good over some
field extension we say that E/K has potentially good reduction. Similarly, if E/K attains multiplicative
reduction over some extension of K we say that E/K has potentially multiplicative reduction.

Proposition 2.15. Let E/K be an elliptic curve with j-invariant j. Then E/K has potentially good
reduction if and only if v(j) ⩾ 0. ■

Since E/K either has potential good or potentially multiplicative reduction, it follows immediately from
Proposition 2.15 that E/K has potential multiplicative reduction if and only if v(j) < 0.

Example 2.16. Let E2/K be as in example 2.13.2 and let L = K( 6
√
π). Then E2/L has good reduction.

Indeed, the coordinate transformation

(x, y) 7→ ( 3
√
π x,
√
π y)

gives a minimal Weierstrass equation for E2/L with good reduction. Thus, E2/K has potentially good
reduction. ■

Due to the ‘stable’ nature of good and multiplicative reduction under field extensions, this type of re-
duction is referred to as semi-stable reduction.

Consider a point P = (x : y : z) ∈ P2
K(K). There is a unique representative of P such that x, y and z are

all elements of OK and such that at least one of them is an element of O×K . Given such a representative

(x0 : y0 : z0) of P , we can reduce x0, y0 and z0 modulo π to get a point P̃ = (x̃0 : ỹ0 : z̃0) in P2
k(k). In

this way we get a map
P2
K(K)→ P2

k(k).

Let E/K be an elliptic curve given by a Weierstrass equation and suppose that P ∈ E(K) ⊂ P2
K(K).

Then the point P̃ satisfies the reduced Weierstrass equation of Ẽ/k and hence P̃ ∈ Ẽ(k). We obtain a
map

E(K)→ Ẽ(k). (2.3)

If Ẽ is non-singular then Ẽ(k) is a group and the reduction map (2.3) is a group homomorphism. More
generally, define

E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)}
E1(K) = {P ∈ E(K) : P̃ = Õ}.

Then we have the following result.

Proposition 2.17. The sequence

0 E1(K) E0(K) Ẽns(k) 0

is exact sequence of abelian groups. ■

The final result we cover is the criterion of Néron-Ogg-Shafarevich. Let G0(K/K) = Gal(K/Knr) be the
inertia subgroup of Gal(K/K) and let Ω be a set on which Gal(K/K) acts. We say that Ω is unramified
if G0(K/K) acts trivially on Ω.

Theorem 2.18. (Criterion of Néron-Ogg-Shafarevich) Let E/K be an elliptic curve. The following are
equivalent:
(a) E has good reduction;
(b) E[m] is unramified for all integers m ⩾ 1 relatively prime to char k;
(c) The Tate module Tℓ(E) is unramified for all primes ℓ ̸= char k. ■
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Let m ⩾ 1 be an integer and let L = K(E[m]) be the field obtained by adjoining all coordinates of points
in E[m] to K. Then L/K is Galois. Indeed, L/K is separable and L/K is normal. To see that L/K is
normal note that this is equivalent to requiring that every field morphism σ : L → K with σ|K = idK
is such that σ(K(E[m])) ⊂ K(E[m]). This requirement is satisfied since Gal(K/K) defines a group
action on E[m]. Therefore L/K is Galois. The action of Gal(K/K) on E[m] factors through Gal(L/K)
and hence the action of the inertia group G0(K/K) factors through the inertia group G0(L/K). If
E/K has good reduction then it follows from Proposition 2.18 that the action of G0(K/K) on E[m] is
trivial. Therefore, the action of G0(L/K) is trivial on E[m] and hence also on L/K. It follows that
G0(L/K) = 1 and L/K is unramified. Studying this extension L/K may seem artificial but this turns
out to be a beneficial way to look at the reduction of an elliptic curve, even when there is bad reduction.

The study of elliptic curves and their reduction over local fields is mainly to study elliptic curves over
global fields. The connection between the two is as follows. Let K be a number field (a global field in
characteristic 0) and let E/K be an elliptic curve over K. For every prime p of K we form the completion
Kp of K at p. Then via the inclusion K ↪→ Kp we can view E as an elliptic curve defined over Kp. The
field Kp is local so all the theory in this section applies. For any property that E/Kp satisfies (good
reduction, for example) we say that E/K satisfies this property at p (good reduction at p, for example).

2.3 The conductor of an elliptic curve

Let K be a number field with ring of integers OK and let E/K be an elliptic curve given by a Weierstrass
equation with coefficients in OK . There are only finitely many primes p of K such that E/Kp has bad
reduction. Indeed, by Proposition 2.11, if there is bad reduction at p then p necessarily divides the
discriminant of E. It is often convenient to record the primes of bad reduction and which reduction type
occurs at this prime. The conductor captures this idea. The following definition of the conductor often
occurs in the literature.

‘Definition’ 2.19. Let E/K be an elliptic curve over a number field K. The conductor NE of E is the
ideal

NE =
∏
p

pf(p)

where, if E/K does not have additive reduction at p or if p does not divide 2 or 3,

f(p) =


0 if E has good reduction at p

1 if E has multiplicative reduction at p

2 if E has additive reduction at p

and when p lies above 2 or 3 and E has additive reduction, f(p) is some integer such that 2 ⩽ f(p) ⩽
2 + 3vp(3) + 6vp(2). ■

This definition of the conductor does a good job of recording what kind of reduction occurs at the primes.
However, when p lies above 2 or 3, there is some mystery as to what power of p occurs in NE . This
allures to the idea that the conductor of an elliptic curve has some deeper meaning. In the next two
sections we aim to explain this mystery, both in an arithmetic and geometric way, and we define the
conductor of an elliptic curve properly.

2.3.1 Minimal proper regular model for curves

Let K be a number field with ring of integers OK and let E/K be an elliptic curve. For any prime
p of K we can reduce E modulo p to obtain a new curve over OK/p. A natural question arises: is
there an object which stores the data of E and of all the reductions of E? A well-chosen equation of E
with coefficients in OK defines a scheme E → SpecOK over OK such that its generic fiber is E/K and
its special fibers are the reductions. There are many ways of choosing this scheme, we wish to have a
‘minimal’, or, ‘canonical’ choice of E. In this section we aim to define such an object. As a result we
obtain more insight on the reduction of an elliptic curve.

In this section we introduce the required technical definitions and we introduce this ‘minimal’ choice for
curves over the field of fractions of a Dedekind domain. Finally we write down the classification done
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by Kodaira and Néron of the special fiber of the minimal model of an elliptic curve. The abstract the-
ory covered in this section comes back in Section 3.5 when discussing the Néron model of an elliptic curve.

A Noetherian scheme X over a ring A such that X → SpecA is of finite type is proper if for every
valuation ring R with field of fractions K and morphisms

SpecK X

SpecR SpecA

there exists a unique morphism SpecR → X making the diagram commute. The notion of properness
tries to capture completeness of a scheme X. In the definition we have a inclusion of a point SpecK → X
over A which is dense in the two point space SpecR. Being proper then means that there is a unique
way of extending SpecK → X to a morphism SpecR→ X.

Let X be a scheme and x ∈ X be a point. Let OX,x denote the local ring at x and mx the maximal ideal
of OX,x. A scheme X is said to be regular at x if the dimension of mx/m

2
x as a OX,x/mx-vector space

is equal to the Krull dimension of the local ring OX,x. A scheme X is said to be regular if it is regular
at every point x ∈ X. Considering [22, Theorem I.5.1], the notion of a scheme being regular at a point
extends the idea of being non-singular at a point of a variety. An example of a regular scheme is the
affine scheme X = SpecR where R is a Dedekind domain. Indeed, for closed points p of X, the local
rings Rp are discrete valuation rings and hence have Krull dimension equal to 1. Further, if mp ⊂ Rp is
the maximal ideal at p, then a characterization of being a discrete valuation ring is that the dimension
of mp/m

2
p is equal to 1 as an Rp/mp-vector space.

Let φ : X → S be a morphism of finite type, let x ∈ X and set s = φ(x) ∈ S. The map φ is smooth at a
point x ∈ X if there are affine open neighborhoods

s ∈ SpecR ⊂ S and x ∈ SpecA ⊂ X

with A = R[t1, . . . , tn+r]/(f1, . . . , fn) for some fi ∈ R[t1, . . . , tn+r] so that the n× n minors of the Jaco-
bian (∂fi/∂tj) generate the unit ideal in A. We say that φ is smooth if it is smooth at every point x ∈ X.
The most important application of smooth morphism is the case where S = SpecR. By considering the
definition of a non-singular variety it follows that if X → SpecR is smooth, then for any maximal ideal
p ∈ SpecR, the variety Xp is non-singular.

The next definition is somewhat imprecise since the proper definition requires some technical definitions
which would lead us too far astray from our purposes. The definition we give here is more than sufficient
for what we wish to cover. For the full definition, we refer the reader to the very expansive source [35,
Definition 8.3.14].

Definition 2.20. Let R be Dedekind domain with field of fractions K. An arithmetic surface over R
is a scheme C over R satisfying a handful of technical conditions, whose generic fiber is a non-singular
projective curve C/K and whose special fibers are unions of curves over the corresponding residue
field. ■

An arithmetic surface C over a Dedekind domain R need not be smooth; it is not required that a special
fiber of C is non-singular. In other words, for p ∈ SpecR, there may be points of Cp ⊂ C which are not
smooth (i.e. non-singular).

Example 2.21. Define the arithmetic surface C ⊂ P2
Z as the closed subscheme defined by the minimal

Weierstrass equation
C : y2 + xy + y = x3 − x2 − x.

Then the generic fiber of C is the elliptic curve E/Q defined by the same equation and with discriminant
∆E = 17. By Proposition 2.11 it follows that the fibers Cp are non-singular and hence elliptic curves for
primes p ̸= 17. For the prime p = 17 we find that Cp is a curve with a nodal singular point. ■
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The definition of an arithmetic surface ensures that, in general, an arithmetic surface only has finitely
many points which are not regular. It follows that an arithmetic surface is regular in codimension one as
in [22, Chapter II.6]. Therefore, we have a notion of Weil divisors on C and for every irreducible curve
F ⊂ C with generic point η, we have that the local ring OC,η is a discrete valuation ring with field of frac-
tions equal to the function field of C. We denote the corresponding normalized discrete valuation by ordF .

Following [51, Section IV.4], let π : C→ SpecR be an arithmetic surface over a Dedekind domain R. Let
p ∈ SpecR be a maximal ideal and let kp = Rp/pRp denote the residue field. Then as seen in Example
2.21, the fiber Cp/kp may be singular. We can write Cp as a union of irreducible curves and multiplicities.
This is done as follows. Let u ∈ R be such that vp(u) = 1. Then u ◦ π is a rational function on C and

Cp =
⋃

F⊂Cp

ordF (u ◦ π)F

where the union is taken over the irreducible curves F ⊂ Cp.

Let K be the field of fractions of a Dedekind domain R. Given a curve C/K and an arithmetic surface
C/R with generic fiber C/K. We want C/R to be large enough such that no information gets lost, i.e.
we want the R-valued points of C to correspond to the K-valued points of C. More generally, if C0 ⊂ C

is the largest subscheme of C such that C0 → SpecR is smooth, then in some situations (as in Section
3.5, for example) we might want the R-valued points of C0 to be equal to the R-valued points of C. The
technical restrictions we have to put on C to ensure this are as follows.

Proposition 2.22. [51, Corollary IV.4.4] Let R be a Dedekind domain and let K be its field of fractions.
Let C/R be an arithmetic surface with generic fiber C/K. If C is proper over R, then C(K) = C(R). If
C is regular, then C(R) = C0(R) ■

Proof. Suppose that C is proper over R. Then by taking the fiber product we get an injective map
C(R) ↪→ C(K). This map is injective since if two maps agree on the dense subset SpecK ⊂ SpecR then
they agree on SpecR. Suppose we are given a point P ∈ C(K). Then for any maximal ideal p ∈ SpecR
we get that Rp is a discrete valuation ring. Using the projection C → C we get a commutative diagram

SpecK C C

SpecRp SpecR.

P

Since C is assumed to be proper over R, this gives a unique map σP,p : SpecRp → C. Gluing then gives a
unique map SpecR→ C. It follows that the natural map C(R) ↪→ C(K) is a bijection. Secondly, let C/R
be regular. By Proposition IV.4.3 of [51], if C/R is regular and P ∈ C(R) then Cp ⊂ C is non-singular at
P (p) (note that P is a morphism over SpecR where SpecR → SpecR is understood to be the identity,
so P (p) indeed lies in Cp). This concludes the proof.

Let R be a Dedekind domain with field of fractions K. The previous paragraph motivates the following
result which states that for a given non-singular projective curve C/K there exists a arithmetic surface
which is proper and regular whose generic fiber is equal to C/K. Further, there exists an optimal such
arithmetic surface. Néron investigated this result for the specific case where the genus of C is equal
to one in [39]. The higher genus cases were proven by Lichtenbaum and Shafarevich in [32] and [48].
Combining these results with the theory of resolutions of singularities developed by Abhyankar [1, 2] and
Lipman [34, 33] gives the following result.

Theorem 2.23. [51, Theorem IV.4.5] Let R be a Dedekind domain with field of fractions K, and let
C/K be a non-singular projective curve of genus g.
(a) There exists a regular arithmetic surface C/R which is proper over R and whose generic fiber is
isomorphic to C/K. We call C a proper regular model for C/K
(b) Assume that g ⩾ 1. Then there exists a proper regular model Cmin/R for C/K which is minimal
in the following sense: every R-birational morphism Cmin → C over R to another proper regular model
C/R is an R-isomorphism. We call Cmin/R the minimal proper regular model for C/K. ■
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Via the usual argument, Cmin is unique up to unique isomorphism over R. For the purpose of this thesis
we use the minimal regular model to study the reduction of an elliptic curve more closely. To make this
precise, let R be a discrete valuation ring with field of fractions K and residue field k. Let E/K be an
elliptic curve over K. Let C/R be a minimal proper regular model for E/K. Then the special fiber Cp

over k can be written as

Cp =

n⋃
i=1

niFi

where the Fi are irreducible curves in Cp and the ni are the multiplicities. All the possibilities for this
decomposition of the special fiber over k are classified as follows by the work of Kodaira [27] and Néron
[39].

Theorem 2.24. [51, Theorem IV.8.2] Let R be a discrete valuation ring with maximal ideal p, field of
fractions K, and residue field k. Let E/K be an elliptic curve and let C/R be a minimal proper regular
model for E/K. Then the special fiber Cp considered as a curve over k has one of the following forms.

Type I0. Cp is a non-singular curve of genus 1.
Type I1. Cp is a curve with a node.
Type In. Cp consists of n non-singular curves arranged in the shape of an n-gon with n ⩾ 2.
Type II. Cp is a curve with a cusp.
Type III. Cp consists of two non-singular curves which intersect tangentially at a single point.
Type IV. Cp consists of three non-singular curves which intersect at a single point.
Type I∗0. Cp is a non-singular curve of multiplicity 2 with four non-singular curves of

multiplicity 1 attached.
Type I∗n. Cp consists of a chain of n+ 1 non-singular curves of multiplicity 2 with two non-singular

curves of multiplicity 1 at either end.
Type IV∗. Cp consists of seven non-singular curves.
Type III∗. Cp consists of eight non-singular curves.
Type II∗. Cp consists of nine non-singular curves.

■

The proof of Theorem 2.24 is proven in an exhaustive case-by-case fashion. It uses the theory of inter-
sections on surfaces and the theory of blow-ups. The types IV∗, III∗ and II∗ require a picture to fully
describe the multiplicities of the components and how these components intersect. For our purposes,
only the amount of components are relevant but the interested reader is referred to [51, Figure IV.4.4].

Let K be a local field. Tate’s algorithm [57] is a twelve step algorithm which takes an elliptic curve
E/K and produces the reduction type from Theorem 2.24 along with the number of components of the
special fiber over the residue field of K, the valuation of the minimal discriminant of E and one more
quantity which we encounter in the next section. Additionally, Tate’s algorithm finds the reduction type
of E. It turns out that type I0 corresponds to good reduction and type In (with n ⩾ 1) corresponds to
multiplicative reduction. All the other types correspond to additive reduction. Tate’s algorithm and a
proof of its termination can be found in [51, Section IV.9].

2.3.2 The conductor

In this section we introduce the (proper) definition of the conductor of an elliptic curve over a local field
and relate it to the reduction type. We then state Ogg’s formula which relates the (exponent of the)
conductor to the theory of the previous section.

Let K be a local field of characteristic 0 whose residue field k has characteristic ℓ. Let E/K be an
elliptic curve. We define the conductor of E in two parts. Let p be a prime distinct from ℓ and Tp(E)
be the Tate module of E and let Vp(E) = Tp(E)⊗Zp

Qp be the p-adic tate module. The Qp-vector space
Vp(E) has dimension 2 by (2.2) and is a Gal(K/K)-module via the action of Gal(K/K) on Tp(E). Let

G0(K/K) ⊂ Gal(K/K) be the inertia subgroup and let Vp(E)G0(K/K) be the Qp-subspace of Vp(E)
which is fixed by the action of G0(K/K) on Vp(E). The tame part of the conductor ε(E/K) of E is

ε(E/K) = dimQp

(
Vp(E)/Vp(E)G0(K/K)

)
= 2− dimQp

(
Vp(E)G0(K/K)

)
.
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Let L = K(E[p]) be the Galois extension of K obtained by adjoining the coordinates of the elements of
E[p]. Let Gi denote the ramification groups of L/K. The wild part of the conductor δ(E/K) of E/K is

δ(E/K) =

∞∑
i=1

1

[G0 : Gi]
dimFp

(
E[p]/E[p]Gi

)
.

Note that the sum defining δ(E/K) is finite by Lemma 1.10. The exponent of the conductor f(E/K) is
defined to be the sum of ε(E/K) and δ(E/K).

Note that ε(E/K) only takes three distinct values depending on how it is fixed by G0(K/K). In what
follows we aim to more precisely characterize which one of these three values are attained (following [51,
Section IV.10]). Let Knr be the maximal unramified extension of K. Then Knr has residue field k. Let
Ẽns(k) be the set of non-singular points of the reduction of E(Knr). Further, let E0(K

nr) and E1(K
nr)

be the points of E(Knr) which reduce to non-singular points and the Knr-points which reduce to the
unit element of Ẽns(k), respectively. We have exact sequences of Gal(K/K)-modules

0 E0(K
nr) E(Knr) E(Knr)/E0(K

nr) 0

0 E1(K
nr) E0(K

nr) Ẽns(k) 0

(2.4)

where the second sequence is exact by Proposition 2.17. For an abelian group A, let

Tp(A) = lim←−
n

A[pn] (2.5)

and let Vp(A) = Tp(A) ⊗Zp
Qp. Since p ̸= ℓ, it follows from [52, Proposition VII.3.1] that E1(K

nr) has
no p-torsion. It follows from [51, Corollary IV.9.2d] that E(Knr)/E0(K

nr) is finite. And hence

Tp(E1(K
nr)) = 0 and Tp(E(Knr)/E0(K

nr)) = 0.

By taking the inverse limits of (2.4) and then tensoring with the (flat) Zℓ-module Qℓ it follows from
Proposition 1.4 that we get exact sequences

0 Vp(E0(K
nr)) Vp(E(Knr)) Vp(E(Knr)/E0(K

nr)) 0

0 Vp(E1(K
nr)) Vp(E0(K

nr)) Vp(Ẽns(k)) 0.

And hence we get isomorphisms

Vp(E(Knr)) ∼= Vp(E0(K
nr)) ∼= Vp(Ẽns(k)).

By Proposition 1.17 and the Galois correspondence it follows that

Vp(E(Knr)) = Vp(E(K))Gal(K/Knr) = Vp(E(K))G0(K/K).

By putting this all together, and by using Proposition 2.11, we get

Vp(E)G0(K/K) = Vp(E(K))G0(K/K) ∼= Vp(Ẽns(k)) =


Vp(Ẽ) if E has good reduction

Vp(k̄
×) if E has multiplicative reduction

Vp(k̄
+) if E has additive reduction.

Since p ̸= ℓ, it follows from Proposition 2.6 that

ε(E/K) = 2− dimQp

(
Vp(E)G0(K/K)

)
=


0 if E has good reduction

1 if E has multiplicative reduction

2 if E has additive reduction.

If E has good reduction, then by the Criterion of Néron-Ogg-Shafarevich (Theorem 2.18) it follows that
L = K(E[p]) is an unramified extension of K. It follows that Gi(L/K) = 0 for all i ⩾ 0. Therefore
δ(E/K) = 0 in this case. In [51, Section IV.10] it is shown using more advanced techniques that if E/K
has multiplicative reduction or if ℓ ⩾ 5 then δ(E/K) = 0. Further, if the reduction of E/K is additive,
then δ(E/K) is an integer. To summarize, we have the following.
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Theorem 2.25. [51, Theorem IV.10.2] Let K be a local field whose residue field has characteristic p and
let E/K be an elliptic curve. If p ⩾ 5, E/K has good reduction, or if E/K has multiplicative reduction,
then

f(E/K) =


0 if E has good reduction

1 if E has multiplicative reduction

2 if E has additive reduction.

In any case, the exponent of the conductor is an integer and independent of the choice of ℓ. ■

The description of f(E/K) is rather simple when the characteristic of the residue field of K is not equal
to 2 or 3 or if E/K does not have additive reduction. The only trouble which arises is when trying to
calculate f(E/K) when E/K has additive reduction and p = 2 or 3. Luckily a result by Lockhart, Rosen
and Silverman shows that f(E/K) does not get unreasonably large in this case.

Theorem 2.26. [36] Let K be a local field of characteristic 0 with normalized valuation v. Let E/K
be an elliptic curve. Then

f(E/K) ⩽ 2 + 3v(3) + 6v(2). ■

Theorem 2.26 only says something about local fields of characteristic 0. This is sufficient for our pur-
poses. However, the same statement is true for Henselian fields with perfect residue field fields. A proof
can be found in [8].

The conductor and the exponent f(E/K) is often introduced and considered as in ‘Definition’ 2.19. In
this sense, it is a quantity of an elliptic curve storing the arithmetic data of how it reduces. In the
previous section we mostly considered the geometry of (elliptic) curves. Ogg’s formula is the bridge that
connects these two concepts.

Theorem 2.27. (Ogg’s formula) [40, Theorem 2], [51, IV.11.1] Let K be a local field with normalized
valuation v, valuation ring OK and maximal ideal p. Let E/K be an elliptic curve with minimal dis-
criminant ∆, let C/OK be a minimal proper regular model for E/K. Let m(E/K) denote the amount
of components of the fiber Cp (see Theorem 2.24). Then

v(∆) = f(E/K) +m(E/K)− 1. ■

Tate’s algorithm calculates the reduction type (see Theorem 2.24) of E/K rather easily. It is also fairly
straightforward to compute the valuation of the minimal discriminant of E/K. Ogg’s formula is therefore
used in Tate’s algorithm [57] to compute f(E/K).

In the global case, the conductor is given by passing to the local case for every prime.

Definition 2.28. Let K be a number field and E/K an elliptic curve. The conductor NE of E over K
is the ideal

NE =
∏
p

pf(E/Kp)

where the product runs over all the primes in K. ■

Note that NE is well defined and the product in the definition can be replaced by a product which only
runs over the primes p dividing the discriminant of E/K by Proposition 2.11.
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3 Galois representations

The absolute Galois group is a very mysterious and central object in number theory. Many problems
in number theory are solved by studying this object and this thesis is no exception. A common way to
study an object which is hard to grasp is to study how it acts on other objects. This is precisely the
idea that Galois representations try to capture. In this section we introduce Galois representations, and
in particular we study Galois representations that arise from elliptic curves and ramification of these.
Finally, we relate representations to a certain type of group scheme.

3.1 Definitions

In this section we state some standard definitions and results relating to Galois representations. Through-
out this section, let K be a field of characteristic 0.

Definition 3.1. Let R be a commutative topological ring. A Galois representation (or, representation)
is a continuous homomorphism

ρ : Gal(K/K)→ GLn(R)

where GLn(R) denotes the group of n by n invertible matrices over R. Two Galois representations ρ1
and ρ2 are said to be equivalent if there is some M ∈ GLn(R) such that ρ1 =Mρ2M

−1. In this case we
write ρ1 ∼ ρ2. A representation ρ is said to be trivial if ρ(Gal(K/K)) = {1}. ■

More generally, one can define Galois representations to be a continuous homomorphism Gal(K/K) →
Aut(M) where M is some topological abelian group. In more general contexts we sometimes use this
definition.

Barring a few cases, the Galois representations considered in this thesis will mostly be those which
have R = Fℓ (with the discrete topology) for some prime ℓ and n = 2. Consider a Galois representation
ρ : Gal(K/K)→ GLn(R) where R is a ring with the discrete topology. Then the singleton {1} ⊂ GLn(R)
is open. Since ρ is continuous, it follows that ker ρ = ρ−1(1) is open. By Proposition 1.3, ker ρ is closed
in Gal(K/K) and has finite index. By the Galois correspondence, the field M = K̄ker ρ is a Galois
extension of K. Its Galois group Gal(M/K) is isomorphic to

Gal(K/K)/ ker ρ ∼= im ρ

which is a finite group. Therefore, the extension M/K is finite and ρ factors through Gal(M/K).

Example 3.2. 1. Let E/K be an elliptic curve and let m be a positive integer. In Section 2.1 we saw
that E[m] ∼= Z/mZ× Z/mZ. Pick an ordered basis (P,Q) of E[m] and let σ ∈ Gal(K/K), then

Pσ = aP + bQ

Qσ = cP + dQ

for some a, b, c, d ∈ Z/mZ. It follows that σ acts on E[m] via the matrix(
a b
c d

)
∈ GL2(Z/mZ).

In this way we get a group homomorphism

ρE,m : Gal(K/K)→ GL2(Z/mZ).

To show that ρE,m is a Galois representation, we show that ρE,m is continuous. Since GL2(Z/mZ) has
the discrete topology, it follows that it is sufficient to show that ker ρ = ρ−1(1) is open. The subgroup
ker ρ consists precisely of those automorphisms σ ∈ Gal(K/K) such that σ acts trivially on E[m] i.e. σ
acts trivially on K(E[m]). It follows that

ker ρ = ker
(
Gal(K/K)→ Gal(K(E[m])/K)

)
which is open in Gal(K/K) as seen in Section 1.1. It follows that ρE,m is a representation. We call ρE,m
the mod-m Galois representation attached to E (or simply mod-m representation). By the above and by
the Galois correspondence it also follows that

Gal(K(E[m])/K) = Gal(K/K)/ ker ρ ∼= im ρ ⊂ GL2(Z/mZ).
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The construction of ρE,m is dependent of the basis we pick for E[m]. A different basis for E[m] gives a
representation equivalent to ρE,m.

2. Let ℓ be a prime. In section 2.1 we saw that the Tate module Tℓ(E) of an elliptic curve E/K is
isomorphic to Zℓ × Zℓ. A similar construction to the above gives a homomorphism

ρE,ℓ : Gal(K/K)→ GL2(Zℓ).

By composing ρE,ℓ with the projection GL2(Zℓ) → GL2(Z/ℓnZ) we retrieve the mod-ℓn representation
ρE,ℓn . The homomorphism ρE,ℓ is continuous since

GL2(Zℓ) = lim←−
n

GL2(Z/ℓnZ)

and ρE,ℓ is equal to ρE,ℓn in every component, which is continuous. We call ρE,ℓ the ℓ-adic representation
associated to E. ■

Definition 3.3. Let R be a commutative ring. A Galois representation ρ : Gal(K/K) → GLn(R) is
reducible if there is some proper, nontrivial R-submodule M of Rn such that ρ(Gal(K/K))(M) ⊂ M .
This occurs if and only if ρ is equivalent to a representation of the form(

ρ1 ∗
0 ρ2

)
for some representations ρ1 and ρ2. A representation is said to be irreducible if it is not reducible. ■

Proposition 3.4. Let E/K be an elliptic curve and let ℓ be a prime. If E admits to a K-rational
ℓ-isgeony, then the mod-ℓ Galois representation ρE,ℓ is reducible. ■

Proof. Let φ : E → E′ be a K-rational ℓ-isogeny. Then #kerφ = ℓ and hence is cyclic. Let P be a
generator of kerφ ⊂ E[ℓ] and let σ ∈ Gal(K/K). An arbitrary element of kerφ has the form nP for
some integer n. Then, since addition on E and φ are defined over K, we have,

φ((nP )σ) = φ(nPσ) = φσ(nPσ) = nφσ(Pσ) = n(φ(P ))σ = OE .

It follows that (nP )σ ∈ kerφ. Since σ and n were taken to be arbitrary, it follows that

ρE,ℓ(Gal(K/K))(kerφ) ⊂ kerφ.

This completes the proof.

Definition 3.5. Let k be a field. A Galois representation ρ : Gal(K/K) → GLn(k) is absolutely irre-
ducible if the composition

Gal(K/K) GLn(k) GLn(k)
ρ

is an irreducible representation. ■

Clearly, if a representation is absolutely irreducible, then it is irreducible. A sufficient condition for the
converse is as follows.

Proposition 3.6. Let k be a field and let ρ : Gal(K/K) → GLn(k) be a Galois representation. If ρ is
surjective, then ρ is absolutely irreducible. ■

Proof. Let V ⊂ k̄n be a proper, non-trivial k̄-subspace. Let v ∈ V be non-zero. Since V ⊂ k̄n is
proper, there is an element A ∈ GLn(k) ⊂ GLn(k) such that Av ̸∈ V . By assumption, there is some
σ ∈ Gal(K/K) such that ρ(σ) = A. It follows that ρ(σ)(V ) ̸⊂ V .

Finally, we discuss the notion of ramification of Galois representations.

Definition 3.7. Suppose K is a local field with inertia group G0(K/K) ⊂ Gal(K/K). Let R be
a commutative ring, we say that a Galois representation ρ : Gal(K/K) → GLn(R) is unramified if
ρ(G0(K/K)) = {1}. We say that ρ is ramified otherwise. ■
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Example 3.8. 1. Let K be a local field with residue characteristic p. Let E/K be an elliptic curve. For
an integer m coprime to p consider the Galois representation ρE,m attached to E. By the Criterion of
Néron-Ogg-Shafaravich, the Galois representation ρE,m is unramified if E/K has good reduction. The
converse is in general not true. That is, if ρE,m is unramified, then this does not imply that E/K has
good reduction. This is more thoroughly explored in Section 3.3.

2. Let ρ : Gal(K/K) → GLn(R) be a representation and suppose that {1} is open in GLn(R). Then,
the kernel of ρ corresponds to a finite Galois extension L/K with Galois group im ρ. If K is a local field
and IK = G0(K/K) then the inertia group of L/K is ρ(IK). Therefore, since L/K is unramified if and
only if the inertia group is trivial. It follows that ρ is unramified if and only if L/K is unramified. ■

If K is a number field and p is a prime in K. Consider the decomposition group

Dp = Gal(Kp/Kp) ⊂ Gal(K/K).

Given a Galois representation ρ : Gal(K/K)→ GLn(R), we can consider the restriction

ρ|Dp
: Gal(Kp/Kp)→ GLn(R)

and ramification of ρ|Dp
. We say that ρ is unramified at p if ρ|Dp

is unramified. Otherwise we say that
ρ is ramified at p.

Similarly to elliptic curves, we would like to define an invariant which stores the information of rami-
fication at the primes. As we are mostly interested in Galois representations to GL2(Fℓ), we consider
representations to GL2(Fℓ) where Fℓ has the discrete topology.

Let K be a local field of characteristic 0 and let ρ : Gal(K/K) → GL2(Fℓ) be a representation. We
saw that the fixed field M = K̄ker ρ is a finite Galois extension of K. Let Gi = Gi(M/K) denote the
higher ramification groups of M/K. Set V = F̄nℓ considered with its Gal(K/K) action. For a subgroup
H ⩽ Gal(K/K), let V H ⊂ V denote the subspace of V fixed by the action of H. Define

f(ρ/K) =
∑
i⩾0

1

[G0 : Gi]
dimFℓ

(V/V Gi).

It follows immediately that if ρ is unramified, then f(ρ/K) = 0. Further, the value f(ρ/K) is an integer
by [46]. Now let K be a number field, and let ρ : Gal(K/K) → GL2(Fℓ) be a representation which is
ramified at only finitely many primes p of K. The Artin conductor N of ρ is the ideal

Nρ =
∏
p

pf(ρ/Kp)

where the product is over all primes inK. This product is finite since we assume that ρ is ramified at only
finitely many primes, and so f(ρ/Kp) is non-zero for all but finitely many primes p. The representation
ρ : Gal(K/K) → GL2(Fℓ) is often ramified at the primes above ℓ. Therefore, it makes sense to ignore
these primes and only consider the prime-to-ℓ part of Nρ. The prime-to-ℓ part Nρ of the Artin conductor
is called the Serre conductor. Thus, the Serre conductor Nρ is the ideal

Nρ =
∏
p∤ℓ

pf(ρ/Kp)

where the product is over the primes in K not lying above ℓ.

Remark 3.9. The naming convention of the conductors in the literature is not consistent. For example,
in [23] and [20] the naming of the conductors is the same as here. However, in, for example, [46] or [43]
they call what we call the Serre conductor the Artin conductor. ■

Example 3.10. Let K be a number field and let E/K be an elliptic curve. Consider the representation
ρE,ℓ : Gal(K/K)→ GL2(Fℓ). If E/K has good reduction at a prime p ∤ ℓ, then, as seen in Example 3.8.1,
ρE,ℓ is unramified at p. It follows that the Artin conductor NE := NρE,ℓ

is supported on the primes
dividing the conductor NE of E and the primes above ℓ. Even when ignoring the primes above ℓ in NE
and NE , the conductors NE and NE are, in general, not equal. To see this, we need the theory of the
Tate curve. This is explored more in Section 3.3. In fact, the reason why the modular method works in
the first place is due to the fact that these two ideals are not equal. ■
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3.2 Galois characters

Galois characters are Galois representations which act on a ring. Despite characters being less general
than representations, they still serve to reveal intrinsic properties of objects found in number theory. In
this section we cover cyclotomic characters and quadratic characters. Throughout this section K is a
field of characteristic 0.

Recall that a representation is a continuous homomorphism ρ : Gal(K/K) → GLn(R) where R is a
topological ring. In the case where n = 1 we have an isomorphism GLn(R) ∼= R×.

Definition 3.11. Let R be a ring. A Galois character (or, character) is a continuous homomorphism
ψ : Gal(K/K) → R×. A character ψ is called trivial if ψ(Gal(K/K)) = {1} and non-trivial otherwise.

■

Thus, Galois characters are simply Galois representations with n = 1.

Example 3.12. 1. Let ρ : Gal(K/K)→ GLn(R) be a representation then the composition

Gal(K/K) GLn(R) R×
ρ det

is a Galois character.

2. Let m be an integer and let ζm ∈ K be a primitive mth root of unity. Then, for σ ∈ Gal(K/K),
we have σ(ζm) = ζnm where n ∈ Z is coprime to m and determined uniquely modulo m. This defines a
unique homomorphism

χm : Gal(K/K)→ (Z/mZ)×

such that σ(ζm) = ζ
χm(σ)
m , independent of the choice of ζm. The kernel kerχm consists precisely of the

elements of Gal(K/K) which fix ζm, i.e.

kerχm = Gal(K/K(ζm)) = ker(Gal(K/K)→ Gal(K(ζm)/K)),

which is open in Gal(K/K). It follows that χm is continuous and hence a Galois character. We call χm
the mth cyclotomic character.

3. For a positive integer m, let µm(K) ∼= Z/mZ denote the set of mth roots of unity of m. There is a
Galois action on µm(K) which gives rise to the representation of the previous example. Let ℓ be a prime,
then, for positive integer n, the map µℓn+1(K)→ µℓn(K) sending ζ 7→ ζℓ is compatible with the Galois
action and hence we get an inverse system

. . . µℓ3(K) µℓ2(K) µℓ(K)

of Gal(K/K)-modules. The inverse limit of this system is called the ℓ-adic Tate module of K and is
denoted by Tℓ(µ). The ℓ-adic Tate module is a Zℓ-module and a Gal(K/K)-module. Alternatively, one
defines the ℓ-adic tate module of K via Tℓ(µ) = Tℓ(K̄

×) as in (2.5). Since µℓn(K) ∼= Z/ℓnZ as abelian
groups, it follows that Tℓ(µ) ∼= Zℓ. Via this isomorphism, the Galois action on Tℓ(µ) gives rise to a
unique homomorphism

χℓ∞ : Gal(K/K)→ GL1(Zℓ) ∼= Z×ℓ
such that

Gal(K/K) Z×ℓ

(Z/ℓnZ)×

χ
ℓ∞

χ
ℓn

commutes for every positive integer n. The homomorphism χℓ∞ is a representation since χℓ∞ is contin-
uous in every coordinate. We call χℓ∞ the ℓ-adic cyclotomic character. ■
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Let E/K be an elliptic curve. For every positive integer m we have a representation ρE,m : Gal(K/K)→
GL2(Z/mZ) and by Example 3.12.1, a character det ρE,m. The Weil pairing (Proposition 3.14 below)
gives us a precise description of this character.

Proposition 3.13. Let m be a positive integer and E/K an elliptic curve. Then det ρE,m = χm ■

To prove this we need to following well-known result.

Proposition 3.14. (Weil) There exists a bilinear, alternating, nondegenrate, Galois invariant pairing

em : E[m]× E[m]→ µm(K) ■

Proof of Proposition 3.13. By Proposition 2.6, E[m] is a Z/mZ-module of rank 2. Let P and Q be a basis
of E[m]. Then, since em is non-degenerate, em(P,Q) is a primitive mth root of unity. Let σ ∈ Gal(K/K)
and suppose that

Pσ = aP + bQ

Qσ = cP + dQ
(3.1)

for some a, b, c, d ∈ Z/mZ. Then ρE,m(σ) =
(
a b
c d

)
and

em(P,Q)
χm(σ) = σ(em(P,Q)) definition of χm

= em(Pσ, Qσ) em is Galois invariant

= em(aP + bQ, cP + dQ) (3.1)

= em(P,Q)adem(Q,P )bc em is bilinear

= em(P,Q)adem(P,Q)−bc em is alternating

= em(P,Q)ad−bc

= em(P,Q)det ρE,m(σ)

Since em is non-degenerate, it follows that det ρE,m(σ) = χm(σ).

Corollary 3.15. Let ℓ be a prime and E/K an elliptic curve. Then det ρE,ℓ = χℓ∞ . ■

In the rest of this section we study quadratic characters. These characters are the simplest kind of
characters aside from the trivial character and have a straightforward description. Further, we study
quadratic twists of elliptic curves and how the corresponding representations relate.

Definition 3.16. A quadratic character is a non-trivial character ψ : Gal(K/K)→ {±1}. ■

Let ψ be a quadratic character. Since ψ is non-trivial and its target is {±1}, it follows that ψ is surjective.
In Section 3.1 we saw that the fixed field L := K̄kerψ is a finite extension with Galois group isomorphic
to imψ = {±1}. It follows that L = K(

√
d) for some d ∈ K× \K×2. Then ψ factors as

Gal(K/K) Gal(L/K) {±1}∼

where the last isomorphism is given by

Gal(L/K)→ {±1}

(
√
d 7→

√
d) 7→ 1

(
√
d 7→ −

√
d) 7→ −1.

It follows that, for every σ ∈ Gal(K/K),

ψ(σ) =

{
1 if σ(

√
d) =

√
d

−1 if σ(
√
d) = −

√
d.

(3.2)

Conversely, every quadratic extension L/K defines a quadratic character defined as in (3.2). We are
interested in quadratic characters because of the following construction.
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Definition 3.17. Let E/K be an elliptic curve given by a Weierstrass equation of the form

E : y2 = x3 + c4x+ c6

(recall that charK = 0). Let d ∈ K× \K×2, then the quadratic twist by d of E is the elliptic curve Ed

given by the equation
Ed : dy2 = x3 + c4x+ c6. ■

Let E/K be an elliptic curve and let d ∈ K× \K×2. The elliptic curves E and Ed are not isomorphic
over K but they are isomorphic over L = K(

√
d), indeed, the map

g : Ed → E

(x, y) 7→ (x,
√
d · y)

OEd 7→ OE

is an isomorphism (of elliptic curves) defined over L. Let ψd : Gal(K/K) → {±1} be the quadratic
character defined by L/K. Let P ∈ E. Choose Weierstrass coordinates for E and write P = (x, y).
Then −P = (x,−y). Let σ ∈ Gal(K/K), then

g(P )σ = (σ(x), σ(
√
d · y)) = (σ(x), ψd(σ)

√
d · σ(y)) = [ψd(σ)](σ(x),

√
d · σ(y)) = [ψd(σ)]g(P

σ) (3.3)

where [m] (with m ∈ Z) denotes the multiplication by m isogeny, i.e. [ψd(σ)] is the identity or the
inversion homomorphism E → E. The isomorphism g restricts to a group isomorphism Ed[m]→ E[m].
From this and from (3.3) it follows that the mod-m representations attached to E and Ed are related
via

ρE,m(σ) ∼ ψd(σ) · ρEd(σ)

for every σ ∈ Gal(K/K). Since ψd(σ)
2 = 1 it also follows that

ρEd,m(σ) ∼ ψd(σ) · ρE,m(σ)

for every σ ∈ Gal(K/K). For a representation ρ and a character ψ, let ψ ⊗ ρ denote the representation
σ 7→ ψ(σ) · ρ(σ). Then the above proves the following.

Proposition 3.18. Let E/K be an elliptic curve and let Ed/K denote the quadratic twist of E by
d ∈ K× \K×2. Then for every positive integer m,

ρEd,m ∼ ρE,m ⊗ ψd and ρE,m ∼ ρEd,m ⊗ ψd

where ψd is the quadratic character associated to K(
√
d)/K. ■

Let E/K be an elliptic curve and let ψ be a quadratic character. Let d ∈ K×/K×2 be such that ψ is
associated to K(

√
d)/K. Then we also let E ⊗ ψ denote the quadratic twist Ed. In Section 3.3 we use

the theory of the Tate curve to show that for an elliptic curve E with potential multiplicative reduction,
there is some quadratic twist E ⊗ ψ of E such that E ⊗ ψ has split multiplicative reduction. Then
Proposition 3.18 allows us to study representations attached to elliptic curves in the general case when
there is potentially multiplicative reduction.

3.3 Galois representations from elliptic curves

In Section 3.1 we covered some general theory for Galois representations with as our main example the
mod-m Galois representation ρE,m : Gal(K/K)→ GL2(Z/mZ) associated to some elliptic curve E over
a field K. In this section we examine more closely how the representation ρE,m relates to E, i.e. what
properties of ρE,m can we deduce by only looking at E. A mayor tool in this study is the Tate curve; an
analytic construction of an elliptic curve over a local field. It may seem counterintuitive that an analytic
construction gives information about the inherently arithmetic object ρE,m, however, the structure of
the Tate curve as a Galois module bridges the gap and makes this theory crucial.

Let E/C be an elliptic curve over the complex numbers. Then there is some lattice Λ ⊂ C such that
E is isomorphic to C/Λ as complex Lie groups. Further, there is a unique τ in the upper half complex
plane such that Λ can be chosen to be the lattice τZ⊕ Z. Let q = e2πiτ and

qZ = {qn : n ∈ Z}.
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Then there is a complex Lie group isomorphism C/Λ → C×/qZ sending z 7→ e2πiz. Given a local field
K, an analogous construction to C/Λ does not exists as the discrete subgroups of K are trivial. An
analogous construction to C×/qZ does exist. This is known as the Tate curve.

Theorem 3.19. (Tate) Let K be a local field of characteristic 0 with absolute value | · |. Let q ∈ K×
be such that |q| < 1, and let

sk(q) =
∑
n≥1

nkqn

1− qn
, a4(q) = −5s3(q) a6(q) = −

5s3(q) + 7s5(q)

12
.

Then
(a) The series a4(q) and a6(q) converge in K and the Tate curve

Eq : y
2 + xy = x3 + a4(q)x+ a6(q)

is an elliptic curve with j-invariant

jEq =
1

q
+ 744 + 196884q + . . .

and discriminant
∆ = q

∏
n⩾1

(1− qn)24.

(b) There is a surjective homomorphism of groups

ϕ : K̄× → Eq(K)

with kernel qZ = {qn : n ∈ Z}.
(c) The map ϕ in (b) is a Gal(K/K)-module homomorphism in the sense that

ϕ(σ(u)) = ϕ(u)σ for all u ∈ K̄× and σ ∈ Gal(K/K).

In particular, for every algebraic extension L/K, there is an isomorphism L×/qZ ∼= Eq(L). ■

Proof. See [59] or [51, Section V] for full, in-depth proofs.

Given an elliptic curve E over a local field K, one might wonder, as in the case of elliptic curves over
C, when is E isomorphic to Eq for some q ∈ K× with |q| < 1? And over what field are E and Eq
isomorphic? By Theorem 3.19, the j-invariant of Eq is equal to

j(q) =
1

q
+ 744 + 19884q + . . .

If | · | denotes the absolute value on K, it follows that |j(q)| = |q|−1 > 1. Therefore, a necessary condition
is that the j invariant of E absolute value > 1. This turns out to be sufficient to be isomorphic over K
by Theorem 3.20 below. To state over which finite extension of K the curves E and Eq are isomorphic,
choose a Weierstrass equation for E and let c4 and c6 be the associated quantities of E. Then define the
class

γ(E/K) = −c4
c6
∈ K×/K×2. (3.4)

This choice is well defined since any other choice of Weierstrass equation for E replaces c4 and c6 by
u4c4 and u6c6 for some u ∈ K×. Then

−u
4c4
u6c6

= −u−2 c4
c6
≡ −c4

c6
mod K×2 = γ(E/K).

The statement is then as follows.

Theorem 3.20. (Tate) Let K be a local field with absolute value | · |, let E/K be an elliptic curve with
j-invariant jE satisfying |jE | > 1, and let γ(E/K) ∈ K×/K×2 be as in (3.4). Then
(a) There is a unique q ∈ K× with |q| < 1 such that E is isomorphic over K to the Tate curve Eq.
(b) Let q be as in (a). Then the following three conditions are equivalent:
(i) E is isomorphic to Eq over K.
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(ii) γ(E/K) = 1.
(iii) E has split multiplicative reduction. ■

Proof. This is a straightforward computation and follows from Theorem 3.19. For the precise details,
see [51, Theorem V.5.4]

Let E/K be an elliptic curve with j-invariant jE . Suppose that E/K has potentially multiplicative
reduction i.e. |jE | > 1 by Proposition 2.15. Consider the (possibly trivial) extension L = K(

√
γ(E/K))

of K. Then γ(E/L) = 1 and by Theorem 3.20, E/L has split multiplicative reduction. We have proven
the following.

Corollary 3.21. Let K be a local field and let E/K be an elliptic curve with potentially multiplicative
reduction. Then E attains split multiplicative reduction over an at most quadratic extension of K. ■

Let E be an elliptic curve over a local field K. Let ρE,p be the mod-ℓ Galois representation. From the
criterion of Néron-Ogg-Shafaravich (Theorem 2.18) we know that if E has bad reduction, then ρE,p is
possibly ramified. In the case where E/K has potentially multiplicative reduction, the Tate curve gives
a better description of the image of the inertia subgroup of Gal(K/K) under ρE,p. The proof we present
here is essentially the same as in [51, Proposition V.6.1] and is repeated here to show the effectiveness
of the Tate curve.

Proposition 3.22. Let E be an elliptic curve over a local field K with absolute value | · | and normalized
valuation v. Let jE be the j-invariant of E and suppose that |jE | > 1. Let ℓ be an odd prime such that
ℓ ∤ v(jE). Then there is an element σ in the inertia subgroup of Gal(K/K) such that

ρE,ℓ(σ) =

(
1 1
0 1

)
i.e. such that σ acts as a transvection on E[ℓ]. ■

Proof. If L/K is a finite extension of degree prime to ℓ. Then if Proposition 3.22 holds for E/L then
it holds for E/K. Indeed, if vL is the normalized valuation of L, then vL(jE) = e(L/K)v(jE) where
e(L/K) is the ramification index which is coprime to ℓ, by assumption. If ℓ is coprime to v(jE) then it
is coprime to vL(j(E)) and hence there is an element σ in the inertia group G0(L/L) ⊂ G0(K/K) which
acts as a transvection on E[ℓ].
By Theorem 3.20, there is some q ∈ K such that the E/K is isomorphic to Eq over at most a quadratic
extension (by Corollary 3.21). Since ℓ is odd we may, by the previous paragraph, replace K by this
quadratic extension and assume that E = Eq. Similarly, we may assume that K contains a primitive ℓth

root of unity ζℓ since [K(ζℓ) : K] is strictly less than ℓ and hence coprime to ℓ. Let q1/ℓ be a ℓth root of
q. Then since v(q) = −v(jE) is not divisible by ℓ, it follows that K(q1/ℓ)/K is an extension of degree ℓ.
Further, K(q1/ℓ)/K is totally ramified and hence there is some σ ∈ Gal(K/Knr) = G0(K/K) such that
σ(q1/ℓ) = ζℓq

1/ℓ. We have
(K̄×/qZ)[ℓ] = ⟨q1/ℓ⟩ × ⟨ζℓ⟩.

And since ϕ : K̄/qZ → E(K) is an isomorphism of groups, it follows that P = ϕ(ζℓ) and Q = ϕ(q1/ℓ)
form a basis for E[m]. Then, since ϕ is a Gal(K/K)-module homomorphism,

Pσ = ϕ(ζℓ)
σ = ϕ(σ(ζℓ)) = ϕ(ζℓ) = P

Qσ = ϕ(q1/ℓ)σ = ϕ(σ(q1/ℓ)) = ϕ(ζℓq
1/ℓ) = ϕ(ζℓ) + ϕ(q1/ℓ) = P +Q

which concludes the proof.

Proposition 3.23. Let K be a local field and let E/K be an elliptic curve with split multiplicative
reduction. Let ℓ be a prime, then there is an exact sequence of Gal(K/K)-modules

1 Tℓ(µ) Tℓ(E) Zℓ 0

where Gal(K/K) acts trivially on Zℓ. ■

Proof. Since E/K has split multiplicative reduction, we may assume that E = Eq for some q ∈ K× with
|q| < 1. The isomorphism ϕ : K̄×/qZ → Eq(K) of Gal(K/K)-modules induces an inclusion µℓn(K) ↪→
Eq[ℓ

n] of Gal(K/K)-modules for all positive integers n. Let z ∈ (K̄×/qZ)[ℓn] ∼= Eq[ℓ
n], then zℓ

n

= qm
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for some m ∈ Z which is uniquely determined modulo ℓn. Then f : z 7→ m is a surjective group
homomorphism (K̄×/qZ)[ℓn]→ Z/ℓnZ. This is a Gal(K/K)-module homomorphism (with the action on
Z/ℓnZ being trivial) since, for z as above and σ ∈ Gal(K/K),

σ(z)ℓ
n

= σ(zℓ
n

) = σ(qm) = qm

so f(z) = f(σ(z)). Let z ∈ ker f , then zℓ
n

= qf(z) = 1 and hence z ∈ µℓn(K). Since ϕ : K̄×/qZ → E(K)
is compatible with the Galois action, we get an exact sequence

1 µℓn(K) E[ℓn] Z/ℓnZ 0
f

for every positive integer n. Taking the inverse limit and using Proposition 1.4 concludes the proof.

Corollary 3.24. Let K be a local field with residue characteristic p, ℓ a prime and let E/K be an
elliptic curve with split multiplicative reduction. Then

ρE,ℓ ∼
(
χℓ∞ ∗
0 1

)
where χℓ∞ denotes the ℓ-adic cyclotomic character. ■

Proof. The action of Gal(K/K) on Tℓ(µ) is given as χℓ∞ on Tℓ(µ). By the exact sequence in Proposition
3.23, it follows that Tℓ(E)/Tℓ(µ) ∼= Zℓ with the trivial Galois action. Thus, a generator of Tℓ(µ) and Zℓ
as Zℓ-modules gives the desired representation equivalent to ρE,ℓ.

Remark 3.25. In [44, A.1.2], Serre proves that the exact sequence of Proposition 3.23 does not split.
In other words, there is no σ ∈ Gal(K/K), such that the the matrix ρE,ℓ(σ) is equivalent to a matrix as
in Corollary 3.24 where the top-right entry is zero. ■

Let K be a number field. In Section 3.1 we defined the (Artin and Serre) conductor of a representation.
In Example 3.10 we compared the conductor of ρE,ℓ to the conductor of E and deduced that if E has
good reduction at a prime in K not dividing ℓ, then ρE,ℓ is unramified. The converse is in general not
true. That is, it is possible for ρE,ℓ to be unramified at a prime p ∤ ℓ whilst E has bad reduction at p. If
E has potential multiplicative reduction at p, then the Tate curve allows us to classify the ramification
behavior of ρE,ℓ. The proof presented here is an adaption of the sketch presented in [42, Proposition
3.4].

Proposition 3.26. Let ℓ be a prime, K a local field with normalized valuation v and residue charac-
teristic p. Let E/K an elliptic curve with minimal discriminant ∆ and let ℓ ̸= p be a prime. Suppose
that E/K has potential multiplicative reduction. Then the mod-ℓ representation ρE,ℓ is unramified if
and only if v(∆) ≡ 0 mod ℓ. ■

Proof. Let IK = G0(K/K) = Gal(K/Knr) be the inertia group of K/K. Then ρE,ℓ is unramified if
and only if IK acts trivially on E[ℓ] i.e. if and only if all points of E[ℓ] are defined over Knr. Since E
has potentially multiplicative reduction, it follows from Proposition 2.15 that the j-invariant of E has
absolute value > 1 and hence, by 3.20, there is some q ∈ K× such that E(K) ∼= K̄/qZ. From this it
follows that

K(E[ℓ]) = K(q1/ℓ, ζℓ)

where ζℓ is an ℓ
th root of unity. Since ℓ ̸= p it follows that ζℓ ∈ Knr. We have q1/ℓ ∈ Knr if and only if

v(q) is a multiple of ℓ, i.e. if and only if v(q) ≡ 0 mod ℓ. By Theorem 3.20, we have

v(∆) = v
(
q
∏
n⩾1

(1− qn)24
)
= v(q).

To conclude, we have that K(E[ℓ]) ⊂ Knr if an only if v(∆) ≡ 0 mod ℓ.

If an elliptic curve E over a local field has good reduction, then both of the results of Proposition 3.26 are
satisfied according to Proposition 2.11 and Theorem 2.18. Thus we can enlarge the criteria of Proposition
3.26 and we obtain the following.
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Corollary 3.27. Let ℓ be a prime, K a local field with normalized valuation v and residue characteristic
p. Let E/K an elliptic curve with minimal discriminant ∆ and let ℓ ̸= p be a prime. Suppose that E/K
has good or potentially multiplicative reduction. Then the mod-ℓ representation ρE,ℓ is unramified if
and only if v(∆) ≡ 0 mod ℓ. ■

Corollary 3.27 covers a lot of scenarios, but we are still in the dark when there is additive reduction and
no potential multiplicative reduction (i.e. potential good reduction) or if ℓ = p. Luckily, we do not have
to deal with the former case in this thesis. In the latter case, the representation is often ramified when
ℓ = p, unrelated to E. For this reason, the right question to ask is not whether the mod-p representation
is unramified but rather: ‘Does ρE,p arise from a finite flat group scheme?’ It turns out that this idea
of finite flatness is equivalent to the notion of being unramified at the primes which do not lie above
p. In this sense, finite flatness extends the notion of ρE,p being unramified. We delve deeper into these
concepts in Section 3.4 and Section 3.5.

We finish this section by proving two results which relate elliptic curves with their representations. These
results do not directly involve the theory of the Tate curve but are stated here for lack of a better place.

Proposition 3.28. Let K be a local field with residue field k, p the characteristic of k, FrobK ∈
Gal(K/K) a Frobenius element and ℓ ̸= p a prime. Let E/K be an elliptic curve with good reduction.
Then

Tr(ρE,ℓ(FrobK)) = 1 +#k −#Ẽ(k)

where Ẽ is the reduction of E. In other words, Tr(ρE,ℓ(FrobK)) is equal to the trace of Frobenius (see
example 2.8). ■

Proof. By Proposition 2.6, we have that Ẽ[ℓn] is a Z/ℓnZ-module of rank 2. By considering E as an
elliptic curve over K(E[ℓn]), it follows from Proposition 2.17 that there is an isomorphism E[ℓn]→ Ẽ[ℓn]
of Gal(K/K)-modules. Taking the inverse limit, gives an isomorphism

Tℓ(E) ∼= Tℓ(Ẽ) (3.5)

of Gal(K/K)-modules. Let ψ : Ẽ → Ẽ denote the Frobenius endomorphism. Then the action of the
Frobenius element FrobK on Ẽ[ℓn] acts as ψ for all n. Take a matrix representation of the induced
morphism ψℓ : Tℓ(Ẽ)→ Tℓ(Ẽ). Then, via the isomorphism (3.5), we see that the matrix representing ψℓ
is equivalent to ρE,ℓ(FrobK). Taking traces and using Example 2.8 concludes the proof.

Remark 3.29. From the proof of Proposition 3.28, Proposition 2.7 and Corollary 3.15 we see that

χℓ(FrobK) = det(ρE,ℓ(FrobK)) = det(ψℓ) = deg(ψ) = #k.

This fact is not needed in this thesis, but does appear often in the study of Galois representations. ■

Proposition 3.30. Let E be an elliptic curve over a local field and suppose that E has potential multi-
plicative reduction. Then there is a quadratic twist Ed/K of E such that Ed/K has split multiplicative
reduction. ■

Proof. Suppose we are given a short Weierstrass equation with associated coefficients c4 and c6 for E.
For any d ∈ K× \K×2 the quadratic twist Ed of E by d is given by

Ed : dy2 = x3 + c4x+ c6.

Via the coordinate transformation X = dx and Y = d−2y we obtain the equation

Ed : Y 2 = X3 + d2c4X + d3c6 (3.6)

for Ed. Consider the quantity γ(E/K) ∈ K̄×/K̄×2 as in (3.4). By Theorem 3.20, if γ(E/K) = 1 then
E/K has split multiplicative reduction and we are done. If γ(E/K) ̸= 1, then the quadratic twist Ed

of E by d ∈ K̄× \ K̄×2 has associated coefficients d2c4 and d3c6 according to (3.6). Since E and Ed

are isomorphic over K(
√
d) they have the same j-invariant and hence Ed has potentially multiplicative

reduction, too. Then

γ(Ed/K) = −d
2c4
d3c6

mod K×2 = d−1γ(E/K).

Choose d as γ(E/K)−1. For this choice of d, it follows from Theorem 3.20 that Ed has split multiplicative
reduction.
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3.4 Group schemes

In the previous section it was alluded to that the idea of ramification of the mod-p Galois representation
ρE,p over a local field K of residue characteristic p is often independent of a properties of the elliptic
curve E/K. A Galois representation being finite flat extends the notion of being unramified and gives
us something meaningful to say about what happens at the primes above p. To introduce what it means
for a Galois representation to be finite flat we require the language of group schemes. In this section
we introduce group schemes and introduce what it means to be finite flat. In the next section we relate
properties of E to the finite flatness of ρE,p.

In the category Sch of schemes, every scheme X represents a contravariant functor Schop → Set sending
T 7→ X(T ) := HomSch(T,X). For example, the scheme SpecZ[Y, Y −1] represents the covariant functor

T 7→ HomSch(T, SpecZ[Y, Y −1]) ∼= HomRing(Z[Y, Y −1],OT (T )) ∼= OT (T )
×,

where OT denotes the structure sheaf of T . We consider the functor represented by SpecZ[Y, Y −1] as a
functor to Set. However, for a given scheme T , the set OT (T )

× has additional structure, namely, that
of a group. We would like to harness this group structure so we need to restrict our study to a certain
type of scheme. These schemes are precisely group schemes; those objects of Sch that represent functors
from Schop to the category Grp of groups.

Definition 3.31. Let S be a scheme. A group scheme over S is an S-scheme G → S along with
morphisms

ε : S → G , i : G → G and µ : G ×S G → G

such that the following diagrams commute.
(i) (identity)

G ×S G

S ×S G G G ×S S

µ
ε×1 1×ε

(ii) (inverse)

G ×S G G ×S G G ×S G

G S G S G

1×i

µ

i×1

∆G

ε ε

∆G

where ∆G : G → G ×S G is the diagonal map.
(iii) (assocativity)

G ×S G ×S G G ×S G

G ×S G G .

µ×1

1×µ µ

µ

We call G a commutative group scheme over S if in addition to (i)-(iii), the diagram (iv) (commutativity)

G ×S G G ×S G

G

p2×p1

µ µ

commutes. A morphism f : G →H of S-group schemes is an S-scheme morphism such that

G ×S G G

H ×S H H

µG

f×f f

µH
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commutes. Here, µG and µH denote the multiplications on G and H respectively. ■

Example 3.32. 1. The affine scheme SpecZ[Y, Y −1] is a group scheme over Z. The associated mor-
phisms ε : SpecZ → SpecZ[Y, Y −1] and i : SpecZ[Y, Y −1] → SpecZ[Y, Y −1] are induced by ring mor-
phisms

ε̃ : Z[Y, Y −1]→ Z
Y 7→ 1

and ĩ : Z[Y, Y −1]→ Z[Y, Y −1]
Y 7→ Y −1.

For the multiplication morphism µ, we have

SpecZ[Y, Y −1]×Z SpecZ[Y, Y −1] ∼= Spec (Z[Y, Y −1]⊗Z Z[Y, Y −1]) ∼= SpecZ[Y1, Y −11 , Y2, Y
−1
2 ].

The morphism µ is then induced by the ring morphism µ̃ : Z[Y, Y −1] → Z[Y1, Y −11 , Y2, Y
−1
2 ] sending

Y 7→ Y1Y2. Commutativity of the diagrams in Definition 3.31 can be checked in the category of com-
mutative rings. The group scheme SpecZ[T, T−1] is denoted by Gm. For a scheme S, the scheme
Gm,S = Gm ×Z S is a group scheme over S.

2. Let n be a positive integer and let µn denote the affine scheme SpecZ[X]/(Xn − 1). The scheme
µn is a closed subscheme of Gm and it turns out that µn inherits the group structure from Gm. This
can be verified directly or can be seen from Example 3.35. The group scheme µn represents the functor
T 7→ µn(OT (T )) where, for a ring R, µn(R) denotes the n

th roots of unity of R. For a scheme S, let µn,S
denote the base change µn ×Z S

3. Let G be a group. Consider the scheme

GZ =
∐
g∈G

SpecZ.

Define a multiplication µ : GZ ×Z GZ → GZ via sending the component corresponding to (g, h) to the
component corresponding to gh. Similarly define an inversion and identity on GZ. In this way GZ defines
a group scheme over Z. For an arbitrary scheme S, let GS denote the group scheme GZ ×Z S over S.
The scheme GS represents the functor sending a scheme T over S to the set of locally constant functions
T → G where G has the discrete topology. In particular, if T is non-empty and connected, GS(T ) ∼= G.
In the literature, GS is sometimes denoted by G.

4. Let E/K be an elliptic curve over a field (or more generally, let E/K be an abelian variety). Then the
group law on E defines a group scheme structure on E. The morphism SpecK → E sending the generic
point of SpecK to the distinguished K-rational point of E that serves as the identity is the identity
morphism ε. In this way, E defines a group scheme over K. The group scheme E represents the functor
sending a scheme T over K to E(T ) in such a way that if T = SpecL with L/K an algebraic extension,
the group E(T ) is the group of L-rational points of E. ■

It is apparent that the group schemes in Example 3.32 represent functors Schop → Grp. It is not clear
that an arbitrary group scheme G over a fixed base scheme S represents such a functor. Let T be a
scheme over S and, if SchS denotes the category of S-schemes, let G (T ) := HomSchS (T,G ). For two
elements φ and ψ of G (T ), define the element φ ⋆ ψ ∈ G (T ) as the map making

T ×S T G ×S G

T G

φ×ψ

∆T µ

φ⋆ψ

commute. This assignment G (T ) × G (T ) → G (T ), (φ,ψ) 7→ φ ⋆ ψ defines a group structure on G (T )

where the identity is the morphism T → S
ε→ G . In fact, it defines a group structure on G (T ) compatible

with the morphisms in SchS .
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Proposition 3.33. [51, Proposition 3.2] Let G be a group scheme over S. Let T be an S-scheme. Then
G (T ) is group where the composition is defined by ⋆. Further, if f : T → T ′ is a morphism of S-schemes,
then f induces a group homomorphism f∗ : G (T ′)→ G (T ′) sending φ 7→ φ ◦ f . ■

If G is a commutative group scheme over S, then G (T ) is an abelian group. Indeed, for arbitrary
φ,ψ ∈ G (T ),

φ ⋆ ψ = µ(φ× ψ)∆T = µ(p2 × p1)(φ× ψ)∆T = µ(ψ × φ)∆T = ψ ⋆ φ.

We now have that group schemes represent functors Schop → Grp. Tate shows in [58, Section 1.6] that
the converse is also true. That is, if an S-scheme G such that G (T ) is a group for every S-scheme T
and such that any S-morphism f : T → T ′ induces a group homomorphism f∗ : G (T ′) → G (T ), then
there there is a unique way of making G a group scheme. With this equivalence, group schemes not only
induce representable functors Schop → Grp but are precisely such functors.

Example 3.34. 1. The S-scheme S is trivially a group scheme over S. Further, since S is a terminal
object in SchS , it follows that S represents the functor sending T 7→ {1}, the trivial group.

2. Let f : G → H be a moprhism of group schemes over a base scheme S. We aim to define the kernel
of f . Following [12, Section III.2] we can define the kernel as the fibered product ker f := G ×H S fitting
in the pull-back diagram

G ×H S S

G H

p2

εH

f

Then ker f is again a group scheme over S with p2 : ker f → S. The inverse and multiplication on

ker f are induced from G . The group scheme ker f represents the functor T 7→ ker(G (T )
f∗→ H (T ))

where f∗ : σ 7→ fσ. Indeed, (ker f)(T ) is the fibred product G (T ) ×H (T ) {1} in Grp. According to the
preceding paragraph, defining ker f to be the scheme representing this functor would be sufficient. The
construction above shows that such a representing object exists in SchS .

3. More generally, if G is a group scheme over S and T → S is a morphism. Then G ×S T is a group
scheme. ■

Example 3.34.3 shows that a group scheme over S is a collection of group schemes over fields; for every
element s ∈ S we get a group scheme Gs over the residue field at s. This interpretation is used as a
foundation in [51, Chapter IV].

Let G be a group scheme over a scheme S and let m be a positive integer. Define the multiplication by
[m] recursively as

[1] = idG and [m] = µ(idG ×S [m− 1]).

Let G [m] denote ker[m].

Example 3.35. Let Gm be as in Example 3.32 and let n be a positive integer. Then the multiplication
by n morphism [n] : Gm → Gm is induced from the ring morphism Z[Y, Y −1] → Z[Y, Y −1] sending
Y 7→ Y n. The kernel of [n] is µn. Indeed, Gm[n] is the group scheme representing the functor sending a
scheme T to the n-torsion of OT (T )

×, which is precisely the functor representing µn and hence they are
equal, by Yoneda’s lemma. ■

Let R be a Dedekind domain with field of fractions K, a perfect field. Further, and let G → SpecR be a
commutative group scheme. Then by Proposition 3.33 the set G (K) forms an abelian group. In fact, it
carries the structure of a Gal(K/K)-module in the following sense. Let φ ∈ G (K) be a K-valued point
and let σ ∈ Gal(K/K). Then σ induces a morphism SpecK → SpecK over K. Then let the action of
σ on φ be

φσ = φ ◦ σ

This is again a morphism over R and it is compatible with the group law on G .
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So far we covered some general theory of group schemes. Our main reason for the study of group schemes
is to study the mod-m representations ρE,m associated to an elliptic curve. These representations act

on a finite Gal(K/K)-module. Thus we need to subject the group schemes we study to some finiteness
condition. This condition is as follows.

Definition 3.36. Let f : X → S be a morphism of X to a locally Noetherian scheme S and let OX
and OS denote the structure sheaves. We say that f is finite flat if there is a covering of open affine
subsets U of S such that the morphisms f−1(U) → U are of the form SpecA → SpecR where A is a
free R-module of finite rank. If X is a scheme over S then we say that X is finite flat if the structure
morphism X → S is. ■

For Definition 3.36 we require the existence of an open cover of the base scheme with the given property,
however, this condition is equivalent to asking that this property holds for every open affine of the base
(see [54, Tag 01wg] and [54, Tag 01U2]). If X is a finite flat scheme over a locally Noetherian base S,
then the rank of X → S is a locally constant function. If X is connected then we call this value the
order of X (over S).

Example 3.37. 1. The group scheme µn = SpecZ[X]/(Xn−1) over Z is a finite flat group scheme over
Z. Its order is n.

2. Given a group G, the group scheme GZ over Z is a finite flat group scheme if and only if the group G
is finite. In this case, the order of GZ is #G.

3. The group scheme Gm = SpecZ[Y, Y −1] over Z is not finite flat. Indeed, Z[Y, Y −1] is free as a
Z-module, but not of finite rank. ■

The next proposition gives some idea to why Definition 3.36 is the ‘correct’ finiteness condition.

Proposition 3.38. Let R be a Dedekind domain and let K be its field of fractions. Let X → SpecR be
a finite flat scheme over R of order n. Suppose that K has characteristic 0 and let L/K be an algebraic
extension. Then X(L) is finite of order at most n with equality if L = K and if X is reduced. ■

Proof. Since SpecR is affine and X → SpecR is finite flat, it follows that X = SpecA for some R-algebra
A which is of finite rank as an R-module. Let A → L correspond to an L valued point of X. Then
A→ L factors as

A A⊗R K L

Let AK = A⊗RK. Then AK is a K-algebra of dimension n. A well known fact is that finite dimensional
K-algebra’s are Artinian and hence, by the structure theorem of Artinian rings,

AK =

r∏
i=1

Ai

with Ai an Artinian local ring. Note that n =
∑r
i=1 dimK Ai. What remains to be shown is that there

are only finitely many K-algebra morphisms Ai → L for all i. Let mi denote the maximal ideal of
Ai. Then mi is the set of nilpotent elements of Ai and hence the morphism Ai → L factors through
Ai/mi → L. Since L is an algebraic extension of K, the amount of morphisms Ai/mi → L does not
exceed [Ai/mi : K]. Therefore, there are only finitely many of such morphisms which proves the first
assertion. For the second assertion, if A is reduced, then the mi are trivial and hence Ai/K are finite
extensions such that n =

∑r
i=1[Ai : K]. If L = K, then the number of morphisms Ai → L equals

[Ai : K].

Finally, we connect the theory of finite flat commutative group schemes to Galois representations.

Definition 3.39. Let K be a local field of characteristic 0 with valuation ring OK . Let M be a finite
module and let ρ : Gal(K/K) → Aut(M) be a Galois representation. We say that ρ is finite flat (over
OK) if there exists a finite flat group scheme G over OK such that G (K) is isomorphic to M as an
Gal(K/K)-module (where the Gal(K/K)-action on M is defined by ρ). ■

Let G be a finite commutative group scheme over a valuation ring OK of a local field K. Then any
K-point of G over OK gives a K-valued point over OK and vice versa. Therefore, for a representation ρ
acting on a finite moduleM to be finite flat is equivalent to asking thatM is isomorphic to the K-valued
points of the generic fiber of a commutative group scheme over OK .
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Example 3.40. 1. Let n be an integer and let K be a local field with ring of intgers OK . Then the
nth cyclotomic character χn : Gal(K/K)→ (Z/nZ)× is finite flat. Indeed, (Z/nZ)× is isomorphic to the
Gal(K/K)-module attached to µn,OK

.

2. Let G be a finite abelian group and let ρ : Gal(K/K) → Aut(G) be the trivial representation. Then
ρ is finite flat and is associated to the finite flat group scheme GOK

.

3. Let ρ1 : Gal(K/K)→ Aut(M) and ρ2 : Gal(K/K)→ Aut(N) be two finite flat Galois representations.
Then the Galois representation ρ1 ⊕ ρ2 : Gal(K/K)→ Aut(M ⊕N) given by sending

σ 7→
(
(m,n) 7→ (ρ1(σ)(m), ρ2(σ)(n)

)
is finite flat. Indeed, if ρ1 and ρ2 arise as the finite flat group schemes G1 and G2, respectively. Then
ρ1 ⊕ ρ2 arises as the finite flat group scheme G1 ×OK

G2. ■

The abelian group we are most interested in is of course the m-torsion of an elliptic curve. Finite flatness
of such groups is a deep question and is explored in the next section.

3.5 Finite flatness of m-torsion

Let E/K be an elliptic curve over a local field of characteristic 0 and let m be a positive integer. In this
section we write down some sufficient conditions on E/K which allows us to deduce that ρE,m is finite
flat. In order to do this we need the theory of the Néron model of an elliptic curve. We open this section
by introducing this model. We do this by following some results in [51, Section IV].

We have already seen minimal models for curves over the field of fractions of a Dedekind domain in
Section 2.3.1. We applied this theory to say something about the special fiber of a minimal model of
an elliptic curve. This study was completely geometric and nothing was said about how the group law
extended from an elliptic curve to its minimal model. We would like to have a model C for an elliptic
curve such that the group law extends to C in such a way that C is a group scheme. The following result
gives some idea of what we must require of such a model.

Proposition 3.41. [51, Theorem IV.5.3] Let K be a local field and let OK be its valuation ring. Let
E/K be an elliptic curve and choose a minimal Weierstrass equation for E. This equation defines a
scheme E ⊂ P2

OK
. Let E0 denote the largest sub-scheme of E such that E0 → SpecOK is smooth. Then

the addition and negation of E extend to OK-morphisms

E0 ×OK
E0 E0 and E0 E0

which define a group scheme structure on E0. ■

This result implies that we require some smoothness property for our model. We also do not want our
model C/OK of an elliptic curve E/K to be ‘too large’ compared to E. ‘Not too large’ in this case means
that we require the condition that E(K) = C(R). It turns out that the following definition captures this
idea perfectly.

Definition 3.42. Let R be a Dedekind domain with fraction field R and let E/K be an elliptic curve. A
Néron model for E/K is a smooth group scheme E /R whose generic fiber is E/K and for every smooth
scheme X over R with generic fiber X/K we have

HomK(X,E) = HomR(X,E ). ■

Via the standard argument, a Néron model is unique up to unique isomorphism. Recall from Proposition
2.22 that for an elliptic curve E/K and its minimal proper regular model C/OK we have that

C0(OK) = C(OK) = E(K)

where C0 is the largest subscheme of C such that C0 → SpecOK is smooth. Thus C0 satisfies the property
of a model which is ‘not too large’. In view of this intuition and of Proposition 3.41 the following Theorem
should make sense.
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Theorem 3.43. [12, Chapter VIII][51, Theorem IV.6] Let R be Dedekind domain and let K be its field
of fractions. Let E/K be an elliptic curve and let C/R be its minimal regular proper model. Let C0/R
be the largest subscheme of C which is smooth over R. Then C0/R is a Néron model for E/K. ■

Though motivated by intuition, the proof of Theorem 3.43 is not at all trivial and requires heaps of
abstract algebraic geometry. It turns out that, over a local field, if E has good reduction then a minimal
Weierstrass equation for E defines a Néron model [51, Corollary IV.6.3]. If an elliptic curve E does not
have good reduction, then it is far less obvious what the Néron model for E looks like. For example, the
special fiber of such a model can consist of several components as is evident by Theorem 2.24.

The Néron model of an elliptic curve gives us the following result. The proof we present here is adapted
from [10, Theorem 1.2].

Proposition 3.44. Let K be a local field of characteristic 0 with valuation ring OK . Let E/K be an
elliptic curve with good reduction and let E /OK be the Néron model for E/K. Then, for any positive
integer m, the group scheme E [m] is finite flat over OK . ■

Proof. We show that the multiplication by m map [m] : E → E is finite and flat. Then since these
properties are preserved under base extension, it then follows that ker[m] = E [m] is finite flat over OK .
Since E/K has good reduction, the special fiber of E → SpecOK is geometrically connected, hence E
has geometrically connected fibers. From this fact and from some deep results in algebraic geometry (see
[10, Theorem 1.2] for details) it follows that [m] is finite and flat.

From this result we would like to deduce that ρE,m is finite flat when E/K has good reduction. However,

it is not at all clear what the structure of E [m] is, let alone of E [m](K). We will show that ρE,m arises
from the generic fiber of E [m]. For this we need an intermediate result about group schemes.

Let R be a Dedekind domain with field of fractions K. Given group schemes G and H over R and a
morphism of group schemes f : G →H . Let η denote the generic fiber of SpecR. For a scheme X over
R, let the base change X ×R SpecK be denoted by Xη. Then we have an induced morphism of group
schemes

fη : Gη →Hη

defined to be f ×R 1. We have the following result.

Proposition 3.45. Let R be a Dedekind domain with field of fractions K. Let f : G →H be a group
scheme morphism. Then ker(f)η = ker(fη). ■

Proof. We have
ker(f)η = (G ×H SpecR)×R SpecK.

We show that ker(f)η satisfies the universal property of

ker(fη) = (G ×R SpecK)×Hη
SpecK.

Denote the projections maps

q1 : Hη →H

p1 : Gη → G

π1 : ker(f)η → ker(f)→ G

π2 : ker(f)η → SpecK.

Further, if ε : SpecR → H is the identity, then denote εη : SpecK → Hη the induced identity which is
such that q1εη is equal to the inclusion SpecK → SpecR followed by ε. For additional clarity, some of
the maps and their relations are recorded in the following commutative diagram

ker(f)η ker(f) G

SpecK SpecR H

Hη

π1

π2 f

εη

ε

q1

(3.7)
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Let ψ : ker(f)η → G ×R SpecK be the morphism induced by π1 and π2. So ψ satisfies p1ψ = π1. Then
we have a commutative diagram

ker(f)η SpecK

Gη Hη.

π2

ψ εη

fη

(3.8)

To see this, first note that the morphisms p1 and q1 are monomorphisms in the category of schemes. To
see this, note that p1 is a base change of the inclusion SpecK → SpecR and according to [54, Tag 01L1],
monomorphisms are stable under base-change. The map SpecK → SpecR is a monomorphism since it
is injective on points and the induced local morphism at η is the identity and in particular, surjective
(see [54, Tag 01L1]). Similarly, q1 is a monomorphism. We have

q1fηψ = fp1ψ = fπ1 = q1εηπ2

where the third equality follows from commutativity of (3.7). Since q1 is a monomorphism, commutativity
of (3.8) follows. We show that (3.8) is a pull-back diagram, from uniqueness it then follows that ker(f)η =
ker(fη). Let T be a scheme and let a : T → Gη and b : T → SpecK be morphisms such that fηa = εηπ2.
We aim to show that there is a unique morphism Φ: T → ker(f)η such that π2Φ = b and ψΦ = a. We
have

ker(f)η = (G ×H SpecR)×R SpecK = G ×H SpecK

Therefore, giving a map T → ker(f)η is the same as giving maps T → G and T → SpecK such that the
appropriate diagram commutes (i.e. the outermost square of (3.9)). We have a map p1a : T → G and
we have

q1εηb = q1fηa = fp1a

so we get a unique Φ: T → ker(f)η such that

T

ker(f)η SpecK

G H

Φ
b

p1a
π1 q1εη

f

(3.9)

commutes. Since (3.9) commutes, it follows that

p1ψΦ = π1Φ = p1a and π2Φ = b

and since p1 is a monomorphism, ψΦ = a. It follows that (3.8) is a pull-back diagram.

Proposition 3.46. Let K be a local field and let E/K be an elliptic curve with good reduction. Then
for every positive integer m, the Galois representation ρE,m is finite flat. ■

Proof. Let OK be the valuation ring ofK and let E /OK be the Néron model of E/K. Then by Proposition
3.44 E [m] is finite flat for all positive integers m. Let η denote the generic fiber of SpecOK , then Eη = E
and by Proposition 3.45,

E [m]η = Eη[m] = E[m].

The Galois structure of E[m] is (by definition) given by ρE,m and hence it follows that ρE,m is finite
flat.

If we go by the idea that finite flatness of a representation extends the idea of being unramified, then,
by the criterion of Néron-Ogg-Shavarevich, one should expect Proposition 3.46 to hold. Except, we get
something more here, namely, finite flatness of E[m] at integers m which are not co-prime to the residue
characteristic of K. In this sense, finite-flatness extends the idea of being unramified at good reduction.
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It can occur that for some integer m the representation ρE,m is not finite flat whilst E has bad reduction.
To see this, suppose that K is a local field with residue characteristic p and that E/K has potentially
multiplicative reduction. By Proposition 3.30 there is a trivial or quadratic twist E⊗ η of E by a Galois
character η such that E ⊗ η has split multiplicative reduction. By Theorem 3.20, there is some q ∈ K
such that E ⊗ η is K-isomorphic to the Tate curve Eq. Suppose that E is such that q is a pth power.
The p-torsion of Eq is generated by q1/p and ζp where ζp is a primitive pth root of unity. Then, since q
is a pth power, q1/p ∈ K and

ρEq,p ∼
(
χp 0
0 1

)
.

It follows that ρE,p arises as a finite flat group scheme, namely as

µp,OK
×OK

(Z/pZ)OK

where OK is the valuation ring of K. Since Eq and E ⊗ η are isomorphic over K, it follows that
ρEq,p ∼ ρE⊗η,p and from Proposition 3.18 it follows that

ρE,p ∼
(
χp · η 0
0 η

)
.

The character η is unramified. If η is trivial then this fact is clear. If η is non-trivial, then E/K does not
have split multiplicative reduction. Let d ∈ K× \K×2 be such that η corresponds to K(

√
d). Then E/K

not having split multiplicative reduction is equivalent to d not being a square in the residue field of K.
If k denotes the residue field, then k(

√
d)/k is a degree 2 extension and hence K(

√
d)/K is unramified.

Thus, if IK denotees the inertia group G0(K/K) of K. Then

ρE,p|IK = ρEq,p|IK

which means that ρE,p|IK arises as the finite flat group scheme

µp,OKnr ×OKnr (Z/pZ)OKnr .

According to [16, Proposition 8.2] (note that this proof is for the special case K = Qp but relies on [41,
Corollaire 2.2.3] which holds for general local fields), this is enough for ρE,p to arise as a finite flat group

scheme over OK . The above example is in the particular case that q is a pth power. If ∆ denotes the
discriminant of E and v the normalized valuation of K, then a necessary condition for q to be a pth

power is that
v(∆) = v(q) ≡ 0 mod p.

Though not trivial, this is also a sufficient condition in a specific case which we introduce next.

Let K be a local field with residue characteristic p and let k/Fp be a finite field. Suppose that
ρ : Gal(K/K)→ GL2(k) is a Galois representation (where k has the discrete topology) of the form

ρ ∼
(
χpε1 ∗
0 ε2

)
where ε1 and ε2 are unramified Galois characters Gal(K/K)→ k× and χp is the p

th cyclotomic character
which we consider as a character to k× via the embedding Fp ↪→ k. Let Knr be the largest unramified
extension of K. Let G0 = G0(K/K) and G1 = G1(K/K) be the inertia group and wild inertia group,
respectively. Then there is a finite, totally ramified, extension L/Knr with Galois group ρ(G0). Let
Lt be the maximal tamely ramified extension of Knr in L, then Gal(L/Lt) = ρ(G1). The situation is
summarized in the following diagram

L

Lt

Knr.

ρ(G1)

ρ(G0)

ρ(G0)/ρ(G1)
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Since ε1 and ε2 are unramified, it follows that

ρ|G0
∼

(
χp ∗
0 1

)
and ρ|G1

∼
(
1 ∗
0 1

)
. (3.10)

From (3.10) it follows that Lt = Knr(ζp) where ζp is a primitive pth root of unity. Since ρ(G1) has the
form as in (3.10), it follows that every element in ρ(G1) has order p, so ρ(G1) is a finite product of copies
of Z/pZ. Then by Proposition 1.25,

L = Lt(x
1/p
1 , x

1/p
2 , . . . , x1/pm )

where xi ∈ (Knr)× \ (Knr)×p and m is such that [L : Lt] = pm. If the xi can be chosen such that they are
units in the valuation ring of Knr, then we say that ρ is un peu ramifiée. If v is the normalized valuation
of Knr, then ρ is un peu ramifiée if and only if v(xi) ≡ 0 mod p for all i.

Remark 3.47. The term ‘un peu ramifiée’ is introduced in [46] by Serre which is written in French.
In other literature written in English ([16], for example) the term is adopted. The above paragraph is
essentially a translation (with additional details) of Serre’s paper [46]. ■

We have the following result due to Edixhoven which he proves for the special case where K = Qp but
his proof extends to arbitrary local fields.

Proposition 3.48. [16, Proposition 8.2] Let K be a local field with residue characteristic p, let k/Fp
be a finite extension and let ρ : Gal(K/K)→ GL2(k) be a Galois representation of the form

ρ ∼
(
χpε1 ∗
0 ε2

)
where ε1 and ε2 are unramified. Then ρ is finite flat if and only if ρ is un peu ramifiée. ■

Corollary 3.49. Let K be a local field with residue characteristic p and normalized discrete valuation
v. Let E/K be an elliptic curve with potentially multiplicative reduction. Then the mod-p Galois
representation ρE,p is finite flat if and only if v(∆) ≡ 0 mod p. ■

Proof. As deduced above, it follows from Proposition 3.20 and Proposition 3.18 that there is some
unramified quadratic character η such that

ρE,p ∼
(
χpη ∗
0 η

)
.

Further, let Knr be the maximal unramified extension of K and let L be the finite extension of Knr

with Galois group ρE,p(G0) (with G0 the inertia subgroup of Gal(K/K)). Then, as seen above, L =

Knr(ζp, q
1/p) for some q ∈ K which satisfies v(q) = v(∆). Thus, ρE,p is un peu ramifiée if and only if

v(∆) ≡ 0 mod p. The result then follows from Proposition 3.48.

The condition that v(∆) ≡ 0 mod p is easy to check but the geometric intuition is lacking as to why
this should imply finite flatness. However, Ogg’s formula gives us some idea as to what is happening.
Let E/K be an elliptic curve over a local field of residue characteristic p and let ∆ denote the minimal
discriminant of E. Let E be a Néron model of E and let Ẽ denote its reduction (i.e. the special fiber of
E → SpecOK). If E/K has split multiplicative reduction, then Tate’s algorithm (see [51, Section IV.9])
shows that

Ẽ ∼= Gm,OK
×OK

(Z/nZ)OK

where n is the number of components of Ẽ . From this and Example 3.35 we see that the p-torsion

Ẽ [p] ∼=

{
µp,OK

×OK
(Z/pZ)OK

if p | n
µp,OK

if p ∤ n.

So in the case where p | n, we have that there is ‘enough room’ for the p-torsion of E to reduce, making
it ‘unramified’ in a sense (i.e. finite flat). Whilst when p ∤ n we get no such room. According to
Ogg’s formula (Theorem 2.27) we find that n is equal to the valuation of the discriminant ∆ (since
f(E/K) = 1). Therefore, if the valuation of ∆ is congruent to 0 modulo p we have ‘enough room’ for
reduction and hence finite flatness. Of course, this reasoning is mere intuition and by no means a proof
but this does give some geometric meaning as to where this divisibility condition comes from.
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3.6 Modular forms and modularity conjectures

In this section we very briefly cover some theory of modular forms and how they are conjecturally corre-
lated to Galois representations. The coverage done here is by no means a full introduction to the theory
of modular forms but merely serves as glossary of notation for the remainder of this thesis. For this
section we follow [64, Section 2] but we do not cover as much detail.

Let K be a number field with signature (r, s), let OK denote its ring of integers and let N be an ideal of
OK . There is an adelic locally symmetric space

Y0(N) = GL2(K)\
((

GL2(AfK)/U0(N)
)
× Y

)
.

For i ∈ {0, . . . , 2r + 3s} and a prime q of K coprime to N, there exists a linear endomorphism Tq of
the ith cohomology group Hi(Y0(N),C) called a Hecke operator. The collection of all of these Hecke
operators generate a commutative Z-algebra denoted by TiC(N) called the Hecke algebra. A weight 2
complex eigenform f over K of level N and degree i (or simply complex eigenform) is a ring homo-
morphism f : TiC(N) → C. The hecke operators Tq are such that f(Tq) are algebraic integers and the
collection of these generate a number field denoted by Qf. We say that a complex eigenform is trivial
if f(Tq) = Norm(q) + 1 for all primes q ∤ N. We say that two complex eigenforms f and g (of possibly
different degree and level) are equivalent if f(Tq) = g(Tq) for almost all primes q. A complex eigenform
is new if it is not equivalent to a complex eigenform of lower level.

Let p be a prime coprime to N. Then, similarly to the complex case, for every prime q ∤ N in K there
exists linear endomorphisms Tq of Hi(Y0(N),Fp) called Hecke operators. These generate the Hecke
algebra TiF̄p

(N) which is a commutative Z-algebra. A weight 2 mod p eigenform θ over K of level N and

degree i (or simply a mod p eigenform) is a ring homomorphism θ : TiF̄p
(N)→ Fp. We say that a mod p

eigenform θ lifts to a complex eigenform if there is a complex eigenform f of the same level and degree
as θ such that

f(Tq) mod p = θ(Tq)

for every prime q ∤ pN in K and every prime p in Qf extending p.

Let K be a number field and let ρ be a Galois representation of Gal(K/K). For every embedding
σ : K ↪→ R and extension τ : K ↪→ C we obtain a complex conjugation τ−1 ◦ · ◦ τ ∈ Gal(K/K) where ·
denotes usual complex conjugation of C. We say that ρ is odd ifK is totally complex or if the determinant
of ρ(c) is −1 for every complex conjugation c ∈ Gal(K/K).

Example 3.50. Let K be a number field such that ζp ̸∈ K. Then χp : Gal(K/K)→ F×p is odd. Indeed,

if c ∈ Gal(K/K) is a complex conjugation and ζp a primitive pth root of unity. Then c(ζp) = ζ−1p , which,
by definition, implies that χp(c) = −1. Thus

detχp(c) = det(−1) = −1 ■

The following is a special case of Serre’s modularity conjecture over number fields and concerns modu-
larity of mod-p Galois representations.

Conjecture 1. [19, Conjecture 4.1][64, Conjecture 3.1] Let ρ : Gal(K/K) → GL2(Fp) be and odd
and irreducible, representation with Serre conductor N such that det(ρ) = χp is the mod-p cyclotomic
character. Assume that p is unramified in K and that ρ|Gal(Kp/Kp)

is finite flat for every prime p|p.
Then there is weight 2, mod p eigenform θ over K of level N such that, for all primes q coprime to pN,
we have

Tr(ρ(Frobq)) = θ(Tq),

where Tq denotes the Hecke operator at q. ■

Next we discuss a second conjecture related to the Langlands program. To do this we first introduce
some terminology. A simple abelian surface A over a number field K whose K-endomorphism algebra
EndK(A)⊗Z Q is an indefinite division quaternion algebra Q is called a fake elliptic curve. Fake elliptic
curves are merely part of the conjecture and will not appear prominently in what follows.
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Conjecture 2. [64, Conjecture 4.1] Let f be a weight 2 complex eigenform over K of level N that is
nontrivial and new. If K has some real place, then there exists an elliptic curve Ef/K of conductor N
such that

#Ef(OK/q) = 1 + Norm(q)− f(Tq) for all q ∤ N. (3.11)

If K is totally complex, then there exists either an elliptic curve Ef of conductor N satisfying (3.11) or
a fake elliptic curve Af/K, of conductor N2, such that

#Af(OK/q) = (1 + Norm(q)− f(Tq))
2 for all q ∤ N. ■
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4 The modular method

Fermat’s Last Theorem is one of the most monumental results of twentieth-century mathematics. It
states that an + bn = cn has no nontrivial integer solutions for n ⩾ 3. The final step in the proof was
done by Wiles in 1995 in his paper [62]. Wiles stood on the shoulders of giants and the culmination of
the proof of Fermat’s last theorem started with an idea of the German mathematician Frey. In his paper
[21], he assumed existence of a non-trivial solution to an+bn = cn and constructed an elliptic curve E/Q
which depends on a, b and c and has bad reduction at all the primes dividing a, b and c. The conductor
of the Galois representation attached to E/Q is a priori supported on the primes dividing a, b and c. In
1990, Ribet [43] proved a ‘level lowering’ theorem [43, Theorem 1.1] which states that if a representation
ρ is modular of level N , then ρ is modular of level N/p for some prime p || N (under some technical
conditions). In his paper, Ribet also shows that his level lowering result, along with the conjecture that
every elliptic curve over Q is modular, implies that the representation attached to E is modular of level
2. This is a contradiction since there are no non-zero cusp forms of weight 2 and level 2. Wiles’ proof
in [62] showed the assumed conjecture in the case of semi-stable elliptic curves. This turned out to be
enough to prove the 350-year-old conjecture.

Though a neat lesson in history, the above outlines a more general strategy for solving Diophantine
equations over a number field K which have a similar form. Namely equations which are of the form

Aap +Bbq = Ccr,

with A,B and C elements of the ring of integers OK of K. We say that the equation above is a signature
(p, q, r) equation. Suppose we have a signature (p, q, r) equation over K which we aim to show has no
solutions, proceed in the following three steps.

1. Construct an elliptic curve E/K associated to a putative solution P ∈ O3
K to the Diophantine

equation, named the Frey curve. The conductor of the Frey curve E depends on the putative
solution P of the Diophantine equation

2. Lower the level of E: construct an object related to E in some way with a ‘level’ which does not
depend on the solution P . In the case of Fermat’s last theorem this was the level lowering done by
Ribet where he obtained a Galois representation of level 2.

3. Use the object in 2 to get a contradiction.

This recipe proved effective for Darmon and Merel who proved in [13] that the equations

an + bn = 2cn, ak + bk = c2 and an + bn = c3

have no non-trivial primitive solutions over Z (primitive meaning that a, b and c are coprime) when n ⩾ 3
and k ⩾ 4. Some more general results for the non-existence of solutions to signature (n, n, 3) equations
over Q are given in [6]. A good introduction to solving Diophantine equations over Q is given by Siksek
in [50]. For general number fields, this method is employed for several signature (p, p, p) equations in
[15], [19] and [25]. In [64] and [65, 66] these equations are specifically studied over imaginary quadratic
number fields. A great survey article that gives a general idea of the methods employed to solve signature
(p, p, p) equations over number fields is [63]. In addition to a signature (p, p, p), [30] uses the method
above to show non-existence of solutions to a (p, p, 2) equation over totally real number fields. In [24] the
same problem is tackled over general number fields. Finally, in [23], [29] and [37] non-existence of solu-
tions to signature (p, p, 3) equations is shown, the latter two only over totally real number fields. These
last three sources serve as an inspiration for this section. There is a body of literature on equations with
signature (r, r, p), where r is fixed and p varies. This is not the type of equation we study in this thesis,
but a great introductory source for solving these equations is [18].

Let K be a number field and let
Aap +Bbp = Cc3 (4.1)

be an equation of signature only depending on p defined over the ring of integers of K. The case for
general number fields is special in the sense that we can always find a solution to (4.1) by taking K large
enough. The question then becomes: if we fix K, how large should the exponent p be for there to be no
solutions? Does such a size of p always exist? However, what if we want to say something about a whole
class of number fields K? In this case we must restrict K in some way. In this section we investigate
the following question: what restriction do we have to put on K for there to exist a positive constant
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V , depending only on K, A, B and C, such that for every p > V there is no solution to (4.1)? We do
this by following the three steps in the previous paragraph: ‘the modular method’. We start out quite
general for the first two steps of the method. In Section 4.3 and 4.4 we put different restrictions on K
and perform step 3 in two different ways, to get two types of asymptotic results.

4.1 Frey curve

The first step of the modular method is to construct a Frey curve. In this section we construct the Frey
curve, classify its reduction at primes and look at some properties of its Galois representation.

Let K be a number field with ring of integers OK . Let A,B,C ∈ OK be non-zero and let p ⩾ 5 be a
prime number. Suppose that (a, b, c) is a non-trivial, primitive solution to

Aap +Bbp = Cc3 (4.2)

such that P | ab for every prime P above 3 in K. Primitive here means that the ideal generated by a, b
and c is the unit ideal in OK . Define the Frey curve E = E(a, b, c)/K via a Weierstrass equation

E : y2 + 3Ccxy + C2Bbpy = x3. (4.3)

A swift calculation shows that its associated quantities are

c4 = 32C3c(32Aap +Bbp)

c6 = −33C4(33C2c6 − 2232Cc3Bbp + 23B2b2p)

∆ = 33C8AB3(ab3)p

and j = 33
Cc3(32Aap +Bbp)3

AB3(ab3)p
.

In particular, since the solution (a, b, c) was assumed to be non-trivial, it follows that ∆ ̸= 0 and hence,
by Proposition 2.2, E defines an elliptic curve. Define

TK = {P : P is a prime in K and P | 3ABC}

and for R ∈ OK the ideals

Rad3(R) =
∏
p|R
p∤3

p and Rad2,3(R) =
∏
p|R
p∤6

p

where the products run over prime ideals. The following proposition gives some data that regarding the
reduction of E.

Proposition 4.1. Suppose that p > vP(C) for all primes P in K above 3. Let E/K be as in (4.3). Then
E/K has semistable reduction outside of TK . If, in addition, we assume that (Aa,Bb,Cc) is primitive
and p > maxP|3{vP(C), 3vP(3)}. Then the conductor NE of E is given by

NE = Rad3(AaBb)Rad2,3(C)
2

 ∏
p|2 and p|C

pεp

∏
P|3

PδP


where εp ⩾ 2 for all primes p above 2 dividing C. Here, for every prime P above 3, δP = 1, if P | Aa,
vP(3) ⩾ 2, and vP(3) is even or if P | Bb. Otherwise 2 ⩽ δP ⩽ 2 + 3vP(3). ■

Proof. Let P ̸∈ TK . If P ∤ ∆ then by Proposition 2.11 it follows that E has good reduction at P.
If P | ∆, then, since P ̸∈ TK , P | ab. If P | a and P | b then Pp | Aap + Bbp = Cc3 and since
p > vP(C) we must have P | c. We also have that P | a and P | b so this is a contradiction with the
fact that (a, b, c) is primitive. It follows that either P | a or P | b. From this fact and the fact that
P ̸∈ TK , it follows that P does not divide c4 = 32C3c(32Aap+Bbp). Therefore, vP(c4) = 0 which shows
that the equation for E/KP is minimal and that E has multiplicative reduction at P by Proposition 2.11.
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Now suppose that, in addition, we assume that (Aa,Bb,Cc) is primitive and that p > maxP|3{vP(C), 3vP(3)}.
If P ∤ ∆ then E has good reduction at P. If P | ∆, we distinguish a few cases.
If P | Aa and P ∤ 3, then since (Aa,Bb,Cc) is primitive, P ∤ BbCc. We have

vP(c4) = 0 and vP(∆) > 0

It follows that the equation of E is minimal and has multiplicative reduction. A similar argument shows
that if P | Bb and P ∤ 3, then there is multiplicative reduction at P.
Suppose that P | C and P ∤ 3. By absorbing any cubes dividing C into c, we may assume that C is
cube-free. Thus vP(C) ∈ {1, 2}. We have

vP(c4) = 3vP(C) + vP(c)

vP(c6) = 4vP(C)

vP(∆) = 8vP(C)

If vP(C) = 1, then the equation for E/KP is minimal at P and vP(c4) > 0 so we have additive reduction
at P. If vP(C) = 2 then the equation is not minimal. Let πP be a uniformizer ofKP, then the coordinate
transformation

(X,Y ) = (π2
Px, π

3
Py)

gives a minimal Weierstrass equation for E/KP with coefficients c′4 and ∆′ such that vP(c4) > 0 and
vP(∆) > 0 and hence we obtain additive reduction at P.
Finally, suppose that P | 3, then, by assumption, either P | a or P | b. If P | a, then since (Aa,Bb,Cc)
is primitive, it follows that P ∤ BbCc. Then

vP(c4) = 2vP(3)

vP(c6) = 3vP(3)

vP(∆) = 3vP(3) + vP(Aap)

Suppose that vP(3) is even and let πP be a uniformizer of KP. The coordinate transformation

(x, y) =
((
π
vP(3)/2
P

)2
X,

(
π
vP(3)/2
P

)3
Y
)

gives a Weierstrass equation for E over KP with associated coefficients c′4, c
′
6 and ∆′ with

vP(c′4) = 2vP(3)− vP(π
2vP(3)
P ) = 0

vP(c′6) = 3vP(3)− vP(π
3vP(3)
P ) = 0

vP(∆′) = 3vP(3) + vP(Aap)− vP(π
6vP(3)
P ) = vP(Aap)− 3vP(3).

Since p > 3vP(3) it follows that vP(∆′) > 0 and hence the equation for E/KP is minimal and has
multiplicative reduction. If vP(3) is odd then similarly to the even case, the coordinate transformation
(X,Y ) = (π2k

P x, π3k
P y) makes E/KP minimal, where k is such that vP(3) = 2k + 1. The associated

coefficients c′4 and ∆′ of E/KP satisfy vP(c′4) = 1 and vP(Aap) > 0 and hence we have additive
reduction in this case.
Suppose instead that P | b. Then, since p > 3vP(3),

vP(c4) = 2vP(3) + min{2vP(3), vP(Bbp)} = 4vP(3)

vP(c6) = 3vP(3) + min{3vP(3), 2vP(3) + vP(Bbp), 2vP(Bbp)} = 6vP(3)

vP(∆) = 3vP(3) + 3vP(Bbp) > 12vP(3).

The coordinate transformation (x, y) = (π
2vP(3)
P X,π

3vP(3)
P Y ), makes E/KP minimal with vP(c′4) = 0

and vP(∆′) > 0 and hence we have multiplicative reduction at P in this case.
Considering the reduction types of E at the different primes dividing ∆, the exponents in the conductor
NE are determined by Theorem 2.25. For the primes P above 3 we have that the exponent of the
conductor δP is bounded by 2 + 3vP(3) by Theorem 2.26.

Remark 4.2. A closer inspection and usage of Tate’s algorithm can give the precise reduction type of
E/KP in the sense of Theorem 2.24. In the case K = Q this has been done in [6, Section 2]. This could
have been done in its full generality here, too. However, this would be needlessly complex and is not
necessary for our purposes. ■
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Let Gal(K/K) be the absolute Galois group of K and let ρE,p : Gal(K/K) → GL2(Fp) be the mod-p
Galois representation associated to E/K as in Example 3.2.1.

Corollary 4.3. Let E/K be as in (4.3). Then E has a K-rational point of order 3. The Serre conductor
NE of ρE,p is supported on the primes in TK . In particular, there is a finite amount of possible values
for NE . ■

Proof. The K-rational point of order 3 on E is (0, 0). A priori the Serre conductor of ρE,p is supported
on the primes dividing 3ABCab by the previous Proposition and Example 3.10. Suppose that P divides
ab and P ∤ 3, then p | vP(∆). Since there is multiplicative reduction at P (by Proposition 4.1), it follows
from Proposition 3.26 that ρE,p is unramified at P and hence P ∤ NE . Therefore NE is supported on
the primes in TK . The Serre conductor NE divides the Artin conductor NρE,p

which divides NE . By
Theorem 2.26, for every prime P ∈ TK we get

vP(NE) ⩽ vP(NE) ⩽ 2 + 3vP(3) + 6vP(2)

and hence NE belongs to a finite set.

At some point we want to invoke Conjecture 1 on the Galois representation ρE,p. To do this, we have to
check whether ρE,p satisfies the conditions of the conjecture. Most of the conditions are verified in the
next proposition.

Proposition 4.4. Let E/K be as in (4.3) and let ρE,p be its associated Galois representation. Let p

be large enough such that K does not contain a pth root of unity. Then det ρE,p = χp and ρE,p is odd.
Further, if we take p to be large enough such that p is unramified in K and such that no prime above p
in K divides 3ABC. Then, for every prime p above p in K we have that ρE,p|Gal(Kp/Kp)

is finite flat. ■

Proof. The first assertion follows from Proposition 3.13 and Example 3.50. For the second assertion,
suppose that p is a prime in K above p and suppose that p ∤ ∆. Then E/K has good reduction at
p (i.e. E/Kp has good reduction) and it follows from Proposition 3.46 that ρE,p|Gal(Kp/Kp)

is finite

flat. Conversely, suppose that p | ∆, then, by assumption, we have that p ∤ 3ABC so we must have
p | ab. According to Proposition 4.1, the curve E/K has multiplicative reduction at p. We also have
that p | vp(∆) so by Corollary 3.49 it follows that ρE,p|Gal(Kp/Kp)

is finite flat. In either case, the Galois

representation ρE,p|Gal(Kp/Kp)
is finite flat.

For a prime q of K, let Iq denote the inertia subgroup of Gal(K/K) as in Section 1.3. The following is
our main tool to detect when an elliptic curve has potentially multiplicative reduction. This Lemma is
often used when solving Diophantine equations using the modular method (e.g. [20, Lemma 3.4] or [23,
Lemma 2.5]), so we include a short proof.

Lemma 4.5. Let E/K be an elliptic curve with j-invariant jE . Let p ⩾ 5 be a rational prime and q ∤ p
a prime of K. Then p | #ρE,p(Iq) if and only if p ∤ vq(jE) and E has potentially multiplicative reduction
at q. ■

Proof. If p ∤ vq(jE) and E has potentially multiplicative reduction at q then by Proposition 3.22, ( 1 1
0 1 ) ∈

ρE,p(Iq). This element has order p in GL2(Fp) which shows that p | #ρE,p(Iq).
For the converse statement, we prove the contrapositive. Suppose that E does not have potentially
multiplicative reduction. Then E has potential good reduction at q. By restriction, we may assume that
ρE,p is a representation over the decomposition subgroup Gal(Kq/Kq) of Gal(K/K). By Proposition

1.17 we have that Iq = Gal(Kq/K
nr
q ). Since E has potentially good reduction, it follows from Proposition

2.14 that there is a finite extension L of Kq such that E attains good reduction over L. Suppose L is
the smallest such extension. Then by Example 3.8.1, the inertia group IL = Gal(L/Lnr) acts trivially
on E[p]. It follows that

ρE,p(Iq) = ρE,p(Gal(LKnr
q /K

nr
q )).

By [47, Theorem 2] it follows that Gal(L/Knr
q ) is a subgroup of the automorphism group of the reduced

curve Ẽ/kL where kL is the residue field of L. Then one can read off via the reduction of the minimal
regular proper model of E [39, Section 17] that the order of Gal(LKnr

q /K
nr
q ) is 2, 3, 4 or 6 (see also [45,

Section 5.6] and [28, Proposition 1]). It follows that p ∤ #ρE,p(Gal(LKnr
q /K

nr
q )).
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Define
SK = {q : q is a prime in K and q | 3}.

The Frey curve E/K in (4.3) has bad reduction at the primes in SK . The following lemma uses Lemma
4.5 to give a condition on p that allows us to constrain the structure of ρE,p(Iq) for q ∈ SK .

Lemma 4.6. Let E/K be the Frey curve in (4.3). Suppose that

p > max
q∈SK

{vq(32A), vq(B), vq(C), |vq(3) + vq(BA
−1)|, |3vq(3) + vq(AB

−1)|}.

Then for every q ∈ SK , we have p | #ρE,p(Iq). ■

Proof. Rewrite the j-invariant of E as

j = 33
Cc3(32Aap +Bbp)3

AB3(ab3)p
= 33

(Aap +Bbp)(32Aap +Bbp)3

AB3(ab3)p
.

We aim to apply Lemma 4.5. Let q be a prime in SK . As in the proof of Proposition 4.1, we have that
p > vq(C) implies that either q | a or q | b. Suppose that q | a. Then q ∤ b and, since p > vq(B),

vq(j) = 3vq(3) + vq(B) + 3vq(B)− vq(AB3)− pvq(a)
= 3vq(3) + vq(BA

−1)− pvq(a).

Since p > |3vq(3) + vq(BA
−1)| it follows that vq(j) < 0 and p ∤ vq(j).

If q | b, then q ∤ a and, since p > vq(3
2A),

vq(j) = 3vq(3) + vq(A) + 6vq(3) + 3vq(A)− vq(AB3)− 3pvq(b)

= 3
(
3vq(3) + vq(AB

−1)− pvq(b)
)

and since p > |3vq(3) + vq(AB
−1)| it follows that vq(j) < 0 and p ∤ vq(j). In both cases we have that

vq(j) < 0 and hence by Proposition 2.15 the elliptic curve E/K has potentially multiplicative reduction
at q. In both cases we also have p ∤ vq(j) and hence it follows from Lemma 4.5 that p | #ρE,p(Iq).

The only condition of Conjecture 1 that remains to be checked is whether the composition

Gal(K/K) GL2(Fp) GL2(Fp)
ρE,p

is irreducible. In other words, we have to check whether ρE,p is absolutely irreducible. According to
Proposition 3.6 it is sufficient to show that ρE,p is surjective. The following is Proposition 6.1 from [64]
and is used to prove the desired surjectivity of ρE,p.

Proposition 4.7. Let L be a Galois number field, and let Q be a prime of L. There is a constant BL,Q
such that the following is true. Let p > BL,Q be a rational prime. Let E/L be an elliptic curve that is
semistable at all p | p and having potentially multiplicative reduction at Q. Then ρE,p is irreducible. ■

Corollary 4.8. There is a constant D = D(K,A,B,C) depending only on K,A,B and C such that the
following holds. If E is the Frey curve (4.3) corresponding to a solution (a, b, c) ∈ WK with exponent
p > D. Then the mod-p Galois representation ρE,p is surjective. ■

Proof. By Proposition 4.1, E is semistable outside of TK by Proposition 4.1. Let L be the Galois closure
of K and let Gal(L/L) be the absolute Galois group of L. Let Q in be a prime in L above any prime in
SK , say, q. Let BL,Q be the constant from Proposition 4.7. If we let p be large enough such that no prime
in TK lies above p, say, p > c = c(K,A,B,C), then by Proposition 4.1, E is semistable at the primes
above p. Additionally, since E has potentially multiplicative reduction at q, it will have potentially
multiplicative reduction at Q by Proposition 2.14. If we enlarge p further such that p > BL,Q, it follows
from 4.7 that

ρE,p(Gal(L/L)) ↪→ GL2(Fp)

is irreducible. There are only finitely many primes Q in L above q and L depends only on K. So taking

D = max
Q|q
{BL,Q, c}
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gives us that ρE,p : Gal(L/L)→ GL2(Fp) is irreducible whenever p > D. Since Gal(L/L) is a subgroup

of Gal(K/K), it follows that ρE,p : Gal(K/K)→ GL2(Fp) is irreducible whenever, p > D. If necessary,

enlarge D so that, by Lemma 4.6, we have that p | #ρE,p(Gal(K/K)). For such p, there is some element

of order p in ρE,p(Gal(K/K)). By [17, Propositions 2.3 and 2.6], it follows that ρE,p(Gal(K/K)) contains
SL2(Fp). It now follows that ρE,p is surjective when det ρE,p is surjective. From Corollary 3.15 we have
that det ρE,p = χp which can be ensured to be surjective by taking D large enough so that ζp ̸∈ K.

Remark 4.9. Corollary 4.8 is very similar to Serre’s open image Theorem [45, Théorème 4.2.2] which
states that for almost all primes ℓ, the Galois representation ρE,ℓ is surjective. By using this theorem to
get a constant D as in Corollary 4.8 is not quite what we want as this constant would depend on E (and
hence on the solution (a, b, c)). The constant D we obtained does not depend on E, merely on A,B,C
and K. ■

4.2 Level lowering

The second step of the modular method is to find an object with ‘lower level’. In our case, this object
is another elliptic curve. This section uses conjectures 1 and 2 to construct the elliptic curve with ‘lower
level’. The ‘level’, here, is represented by the conductor of the elliptic curve. This approach closely
follows [23] and [64]. The Theorem below describes the elliptic curve with its ‘lowered’ conductor in
terms of its reduction and its relation to E.

Theorem 4.10. Let K be a number field satisfying Conjectures 1 and 2. Then there is a constant
V = V (K,A,B,C) depending only on K,A,B and C such that the following holds. Let (a, b, c) be a
non-trivial, primitive solution to (4.2) with prime exponent p > V such that P | ab for all primes P in
K above 3. Let E/K be the associated Frey curve (4.3). Then there is an elliptic curve E′/K such that
the following statements hold:
(i) E′ has good reduction away from TK ;
(ii) E′ has a K-rational point of order 3;
(iii) ρE′,p ∼ ρE,p;
(iv) E′ has potentially multiplicative reduction for all primes q ∈ SK . ■

Theorem 4.10 is proven in a few steps. The first step is to associate a modular form to the Galois
representation ρE,p where E/K is the Frey curve of Section 4.1.

The following results are very technical results relating eigenforms to elliptic curves. Not everything
is known about this connection (over general number fields) so this is where the conjectures come in.
The following Proposition is Proposition 2.1 from [64]. This result follows as a corollary from the lifting
lemmas of Ash and Stevens [4, Section 1.2] which state that every mod p eigenform of degree i lifts to a
complex one when Hi+1(Y0(N),Z) has no p-torsion (for some ideal N ⊂ OK).

Proposition 4.11. Let N be an ideal in OK There is an integer B(N) depending only on N, such that,
for any prime p > B(N), every weight-two, mod p eigenform of level N lifts to a complex one. ■

Proposition 4.11 allows us to prove the following result which plays a major role in the proof of Theorem
4.10.

Lemma 4.12. There is a constant V = V (K,A,B,C) depending only on K,A,B and C such that
whenever p > V , the following holds. There is a nontrivial, new, weight-two complex eigenform f which
has an associated elliptic curve E′ = Ef of conductor N

′ dividing NE and ρE′,p ∼ ρE,p. ■

Proof. If we take p large enough (depending only on K, A, B and C), then by Corollary 4.8, ρE,p is
surjective and hence absolutely irreducible by Proposition 3.6. Take p even larger, if necessary, such
that p is unramified in K and such that, by Proposition 4.4, the Galois representation ρE,p is odd,
satisfies det ρE,p = χp and is finite flat at every prime p | p in K. Thus, ρE,p satisfies every condition
of Conjecture 1. Applying Conjecture 1 gives a weight-two mod p eigenform θ over K of level NE (the
Serre conductor of ρE,p), such that for all primes q coprime to pNE , we have

Tr(ρE,p(Frobq)) = θ(Tq). (4.4)

From Proposition 4.1, we know that there is only a finite amount of values of NE possible. Therefore,
by Proposition 4.11 we know that we can take p large enough so that for any of the possible values of
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NE there is weight-two complex eigenform f with level NE that is a lift of θ. There are only finitely
many such eigenforms f and they depend only on K,A,B and C, so any constant depending on f also
only depends on these invariants.

Next, we aim to apply Conjecture 2. We have that ρE,p is absolutely irreducible irreducible. It then
follows from (4.4) that f is nontrivial. If f is not new then we can replace f with an equivalent new
eigenform of level N′ dividing NE . Therefore we may assume that f is new of level N′|NE . By applying
Conjecture 2 we obtain that f is either associated to an elliptic curve Ef/K of conductor N′, or has
an associated fake elliptic curve Af/K of conductor N′2. By [64, Lemma 7.3], we can assume that we
are in the former case by taking p sufficiently large (p > 24, in fact). Denote E′ = Ef, then we have
ρE,p ∼ ρE′,p. To see this, from Conjecture 2, we have that for all primes q ∤ N′,

f(Tq) = 1 + Norm(q)−#E′(OK/q).

Reducing this mod p and using Proposition 3.28, we find

Tr(ρE′,p(Frobq)) = θ(Tq)
(4.4)
= Tr(ρE,p(Frobq)).

Since the set of elements of the form Frobq with q ∤ pNE are a dense subset of Gal(K/K) by Theorem
1.18, it follows that Tr(ρE,p) = Tr(ρE′,p) and since also det ρE′,p = χp = det ρE,p, it follows that
ρE′,p ∼ ρE,p.

The following Lemma will allow us to take p large enough so that E′ has a K-rational point of order 3.

Lemma 4.13. [23, Lemma 3.6] If E′ as in Lemma 4.12 does not have a nontrivial K-rational point
of order 3 and is not isogenous to an elliptic curve with a nontrivial K-rational point of order 3, then
p < CE′ where CE′ is a constant depending only on E′. ■

Proof. By [26, Theorem 2], there are infinitely many primes P such that #E′(OK/P) ̸≡ 0 mod 3. Fix
such a prime P ̸∈ TK . The conductor of E′ is supported on the primes in TK by Proposition 4.1 and
Lemma 4.12. Therefore, E′ has good reduction at P. By Proposition 4.1, E has semistable reduction at
P. Suppose that E has good reduction atP. Then, P ∤ N′, we have Tr(ρE,p(FrobP)) = Tr(ρE′,p(FrobP)),
or equivalently (by Proposition 3.28), #E(OK/P) ≡ #E′(OK/P) mod p. Since 3 | #E(OK/P), the
difference is nonzero. Since the difference is divisible by p, it belongs to a finite set. This gives a bound
on p. If E has multiplicative reduction at P, then we have

±(Norm(P) + 1) ≡ aP(E′) mod p.

By comparing the traces of Frobenius, we get that the difference belongs to a bounded set which gives
a bound on p.

With all the ingredients gathered, we can now prove Theorem 4.10.

Proof of Theorem 4.10. By assuring that p is large enough, we invoke Lemma 4.12 to get an elliptic
curve E′ = Ef. It remains to show that E′ satisfies (i)-(iv). The elliptic curve E′ has conductor N′

dividing NE , which is supported on the primes in TK . Thus, E′ has good reduction outside of TK giving
(i). Suppose that E′ does not have a K-rational point of order 3 and is not 3-isogenous to an elliptic
curve with a K-rational point of order 3. Then by Lemma 4.13, p < CE′ . Therefore, by taking p large
enough and replacing V by max{V,CE′} it follows that either E′ has a K-rational point of order 3 or
E′ is 3-isogenous to an elliptic curve E′′ with a K-rational point of order 3. In the latter case, we have
that for every prime ℓ ̸= 3, the isogeny induces an isomorphism E′[ℓ] ∼= E′′[ℓ] so ρE′,p ∼ ρE′′,p and
since ρE,p ∼ ρE′,p we obtain (ii) and (iii) after possibly replacing E′ by E′′. To show that (iv) holds,
let q ∈ SK . As we have ρE,p ∼ ρE′,p, we have that #ρE,p(Iq) = #ρE′,p(Iq) and from Lemma 4.6 it
follows that p | #ρE′,p(Iq) and by Lemma 4.5 it follows that vq(j(E

′)) < 0 and hence E′ has potentially
multiplicative reduction at q by Proposition 2.15. This gives (iv) and concludes the proof.

4.3 Non-existence of the lowered curve

In this section we carry out step 3 of the modular method. To do this we look at a certain class of
number fields K and show that for this class of number fields, the curve E′ does not exist. In this section
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we make use of class field theory and is greatly inspired by [19].

For a number field K with ring of integers OK . Let WK be the set of non-trivial primitive solutions
(a, b, c) ∈ OK to

ap + bp = c3 (4.5)

such that every prime in K above 3 divides b. So this is the situation of Section 4.1 and 4.2 with
A = B = C = 1 and SK = TK . The following result is essentially the same as [23, Theorem 1.1] except
the condition on the narrow class number of K is more relaxed.

Theorem 4.14. (Nomden) Let K be a number field satisfying conjecture 1 and 2. Suppose that there
is a unique prime λ in K above 3, that K contains a third root of unity ζ3 and that 2 ∤ h+K . Let WK be
as above. Then there is some V = V (K) depending only on K such that for p > V , the equation (4.5)
has no solutions in WK . ■

4.3.1 ℓ-extensions and ℓ-groups

Let ℓ be a (rational) prime. We say that a group G is an ℓ-group if it is finite and its order is a power
of ℓ. We say an extension of fields L/K is an ℓ-extension if it is a finite Galois extensions and [L : K]
is a power of ℓ. Hence if L/K is an ℓ-extension, then Gal(L/K) is a ℓ-group. The following result is
non-trivial but a standard result from group theory. A proof can be found as a Corollary of [56, Theorem
2.1.6].

Lemma 4.15. Let G be an ℓ-group. Then every maximal subgroup of G is normal of index ℓ. ■

The following Lemma is heavily inspired by [19, Theorem 9.b]

Lemma 4.16. Let ℓ be an odd prime. Further, let K be a number field containing ζℓ. Let L/K be an
ℓ-extension. Then for any prime λ in K above ℓ, λ is totally ramified in L. ■

Proof. Write G = Gal(L/K) and let Λ be a prime in L above λ. Let I = IΛ/λ denote the inertia subgroup
of Λ over K. We show that I = G. Suppose for a contradiction that I is a proper subgroup of G. Then
by Lemma 4.15 there is some normal subgroup H of G, containing I and of index ℓ in G. Then the
extension LH/K is Galois of degree ℓ with Galois group G/H. We have that the image of I under the
natural map G→ G/H is Iq/λ for some prime q in LH extending λ and which is a restriction of Λ. Since
I is contained in H, its image vanishes under G → G/H so Iq/λ = 0 and q/λ is unramified in LH/K.
Since LH/K is Galois it follows that all primes above λ are unramified. On the other hand, since ζℓ
is in K, it follows from Proposition 1.25 that LH = K( ℓ

√
a) for some a ∈ K× \K×ℓ. This extension is

always ramified above the primes above ℓ (here we use the fact that ℓ is odd) so we get a contradiction.
It follows that I = G which implies that λ is totally ramified in L.

4.3.2 Non-existence of elliptic curves with specific reduction

The following theorem is the same as in [19, Theorem 1] except condition (iii) is a more relaxed condition
on the narrow class number of K. The proof of the theorem is also similar to that of [19] except we use
Lemma 4.16 instead of [19, Theorem 9b].

Theorem 4.17. (Nomden) Let ℓ be a rational odd prime and let K be a number field such that
(i) ζℓ ∈ K;
(ii) K has a unique prime λ above ℓ;
(iii) gcd(h+K , ℓ− 1) = 1, where h+K is the narrow class number of K.
There is no elliptic curve E/K with a K-rational ℓ-isogeny, good reduction outside of λ and potentially
multiplicative reduction at λ. ■

The proof of Theorem 4.17 starts with a lemma, this lemma is proven analogously to the proof in [19,
Section 3] except we fill in some more details for additional clarity. In what follows we say that a
Galois representation ρ : Gal(K/K) → GLn(Fp) is unramified (resp. ramified) at the infinite places if
the corresponding extension K̄ker ρ/K is unramified (resp. ramified) at the infinite places.

Lemma 4.18. Let K be a number field as in Theorem 4.17. Let E/K be an elliptic curve with a
K-rational ℓ-isogney, good reduction outside of λ and potentially multiplicative reduction at λ. Then
there is a quadratic twist F/K of E such that K(F [ℓn])/K is an ℓ-extension for all n ⩾ 1 and F has
split multiplicative reduction at λ. ■
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Proof. Since E has a K-rational ℓ isogeny, the mod-ℓ representation is reducible by Proposition 3.4. So

ρE,ℓ ∼
(
φ ∗
0 ψ

)
(4.6)

where φ,ψ : Gal(K/K)→ F×ℓ are characters mod ℓ. By Theorem 2.18 and Example 3.8.2, the characters
φ and ψ are unramified outside of λ and the infinite places. On the other hand, by assumption, E/Kλ

has potentially multiplicative reduction. By Proposition 3.30, there is some trivial or quadratic character
η : Gal(Kλ/Kλ) → {±1} such that the quadratic twist E ⊗ η/Kλ has split multiplicative reduction. It
follows from Corollary 3.24 and Proposition 3.18 that

ρE,p|Gal(Kλ/Kλ)
∼ ρE⊗η,p|Gal(Kλ/Kλ)

⊗ η ∼
(
χℓ ∗
0 1

)(
η 0
0 η

)
=

(
χℓ · η ∗
0 η

)
(4.7)

where χℓ : Gal(Kλ/Kλ) → F×ℓ is the ℓth cyclotomic character. By assumption we have ζℓ ∈ K so χℓ is
trivial. Let Iλ ⊂ Gal(Kλ/Kλ) denote the inertia subgroup. Comparing (4.6) and (4.7) it follows that

φ|Iλ = ψ|Iλ = η|Iλ .

Since η is quadratic or trivial, it follows that

φ

ψ

∣∣∣
Iλ

= 1 and φ2|Iλ = 1.

Therefore, φ/ψ and φ2 are characters which are unramified away from the infinite places. Then by
Example 3.8.2, φ/ψ and φ2 correspond to abelian extensions of K which are unramified away from the
infinite places and have degree #im (φ/ψ) and #im (φ2), respectively. Since φ/ψ and φ2 map to F×ℓ ,
these degrees divide ℓ − 1. By assumption, h+K is coprime to ℓ − 1. The quantity h+K is the degree of
the maximal abelian extension of K which is unramified away from the infinite primes (see Section 1.4).
It follows that φ/ψ = 1 and φ2 = 1 are trivial. And hence φ = ψ are quadratic or trivial characters of
Gal(K/K). Let F/K be the quadratic twist E⊗φ/K of E, then F/K has split multiplicative reduction
at λ and good reduction outside λ. Further, according to Proposition 3.18, the Galois representation
ρF,ℓ : Gal(K/K)→ GL2(Fℓ) of F/K is given by

ρF,ℓ = ρE,ℓ ⊗ φ =

(
φ ∗
0 φ

)
·
(
φ 0
0 φ

)
=

(
1 ∗
0 1

)
and hence ρE,ℓ(Gal(K/K)) has order 1 or ℓ and is therefore an ℓ-group. Finally, we show that the image

of the mod-ℓn representation ρE,ℓn(Gal(K/K)) is an ℓ-group for all n ⩾ 1. We have a commutative
diagram

Gal(K/K) GL2(Z/ℓnZ)

GL2(Fℓ)

π

where π is the projection. From this we obtain an exact sequence

1 ρF,ℓn(Gal(K/K)) ∩ kerπ ρF,ℓn(Gal(K/K)) ρF,ℓ(Gal(K/K)) 1

Since ρF,ℓ(Gal(K/K)) is an ℓ-group, it follows that ρF,ℓn(Gal(K/K)) is an ℓ-group whenever kerπ is.
Indeed,

kerπ =

{(
a b
c d

)
∈ GL2(Z/ℓnZ) : a ≡ d ≡ 1 and b ≡ c ≡ 0 mod ℓ

}
has order ℓ4

n−4. By Example 3.2.1, the Galois extension K(F [ℓn])/K has Galois group ρF,ℓn(Gal(K/K))
so K(F [ℓn])/K is an ℓ-extension for all n ⩾ 1.

Theorem 4.17 now follows from the previous lemma along with a famous result from Serre.
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Proof of Theorem 4.17. Let E/K be an elliptic curve with aK-rational ℓ-isogeny, good reduction outside
λ and potentially multiplicative reduction at λ. By Lemma 4.18, it follows that there is some quadratic
twist F/K of E such that K(F [ℓn]/K) is an ℓ-extension and such that F has multiplicative reduction at
λ. It follows from Proposition 2.15 that vλ(j(F )) < 0, where j(F ) is the j-invariant of F . It then follows
from Proposition 2.9 that F/K has no complex multiplication. By Serre’s irreducibility theorem [44,
Theorem 2.1], it follows that the ℓ-adic representation ρF,ℓ : Gal(K/K) → Tℓ(E) is irreducible. On the
other hand, we have that ζℓ ∈ K and K(F [ℓn]) is an ℓ-extension and λ a prime above ℓ, it follows from
Lemma 4.16 that λ is totally ramified in K(F [ℓn]). The inertia group of λ in the extension K(F [ℓn])/K
is equal to ρF,ℓn(Iλ) and since λ is totally ramified, it follows that

ρF,ℓn(Gal(K/K)) = ρF,ℓn(Iλ).

Taking the inverse limit it follows that ρF,ℓ(Gal(K/K)) = ρF,ℓ(Iλ). Since F has has split multiplicative
reduction at λ, it follows from Corollary 3.24 that ρF,ℓ(Iλ) is reducible, a contradiction.

4.3.3 Elimination

We are now ready to prove Theorem 4.14. Most of the work has already been done; the result follows
from Theorem 4.10 and Theorem 4.17.

Proof of Theorem 4.14. Let K be a number field which satisfies conjectures 1 and 2 with narrow class
number h+K which is coprime to 2, a unique prime λ above 3 and which contains a primitive 3rd root of
unity. Let (a, b, c) ∈WK be a solution to (4.5). Then λ | b and hence it follows from Theorem 4.10 that
there is an elliptic curve E′/K such that E′ has good reduction away from λ, E′ has a K-rational point
of order 3 and E′ has potentially multiplicative reduction at λ. Let P ∈ E(K) be a K-rational point
of order 3, then E → E/⟨P ⟩ is a K-rational 3-isogeny. This is a contradiction with Theorem 4.17 for
ℓ = 3.

4.4 S-unit equations and elliptic curves

In this section we give a different method to carry out step 3 of the modular method. To do this we ask
K to satisfy another condition in terms of S-units. This condition in combination with the reduction
properties of E′ will give a contradiction. This section introduces S-units, proves an asymptotic result
and delves deeper in the case where K is a quadratic imaginary number field. Our results are very
comparable to [37] and [29].

4.4.1 S-units and S-unit equations

The notion of an S-unit generalizes the idea of a unit and the idea of localization at elements.

Definition 4.19. Let K be a number field and let S a finite set of primes in K. The ring of S-integers
is defined to be

OS = {x ∈ K : vp(x) ⩾ 0 /∈ S for all p ̸∈ S}.

The unit group O×S is called the S-units and is characterized as

O×S = {x ∈ K : vp(x) = 0 for all p ̸∈ S}. ■

Example 4.20. 1. If S = ∅, then every x ∈ OS satisfies vp(x) ⩾ 0 for every prime p in K and hence
OS ⊂ OK . The converse inclusion OK ⊂ OS is always true so it follows that OK = OS and O×K = O×S .

2. Let OK be the ring of integers of K and suppose that K has class number 1. A finite set of primes S
can be considered as a finite set of prime elements of OK . Write S = {p1, . . . , pk} where we view the pi
as elements of OK . Then

OS = OK [ 1
p1
, . . . , 1

pk
].

The ring on the right hand side is the localization of OK at {pni : i = 1, . . . , k and n ∈ Z}. Via this
point of view, S-integers generalize the idea of localization at elements. The S-units are given by
O×S = O×K × ⟨p1⟩ × . . .× ⟨pk⟩. ■
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In Example 4.20.2 we saw that if K has class number 1, then O×S has rank equal rank(O×K) + #S. By
Dirichlet’s unit Theorem it follows that rank(O×K) = r+ s− 1 where r is the number of real embeddings
K ↪→ R and s is the amount of conjugate pairs of embeddings K ↪→ C that are not contained in R. The
tuple (r, s) is called the signature of K.

Proposition 4.21. (Dirichlet) Let K be a number field of signature (r, s) and let S be a finite set of
primes in K. Then O×S has rank r + s+#S − 1. ■

Proof. For every p ∈ S do the following. There is an element ap in OK with positive p-adic valuation
and such that vq(ap) = 0 for all primes q ̸= p. Indeed, if h denotes the class number of K, then ph is
a principal ideal and we can take a generator of ph to be ap. Since such an ap exists, there exists an
element πp ∈ OK which satisfies vq(πp) = 0 for all q ̸= p and minimizes vp. It then follows that

O×S = O×K ×
∏
p∈S
⟨πp⟩.

Then the result follows from Dirichlet’s unit theorem.

By [5, Proposition 5.6] we have that the localization of an integrally closed ring is integrally closed. The
S-units generalize the idea of localization and is not far off from a localization, thus we expect OS to be
integrally closed.

Proposition 4.22. Let K be a number field and S a finite set of primes in K, then OS is integrally
closed. ■

Proof. The field of fractions of OS is K. Let x ∈ K and suppose there exists, an−1, . . . , a0 ∈ OS such
that

xn + an−1x
n−1 + . . . a1x+ a0 = 0.

There is an element s ∈ OK such that vp(s) = 0 for all p ̸∈ S and such that sai ∈ OK for all i. To see
this, take s to be a product of sufficiently large powers of the πp in the proof of Proposition 4.21. We
have

(sx)n + san−1(sx)
n−1 + . . .+ sn−1a1(sx) + sna0.

Since OK is integrally closed, it follows that sx ∈ OK . For every prime p ̸∈ S we have

vp(x) = vp(s) + vp(x) = vp(sx) ⩾ 0

which shows that x ∈ OS .

The S-units are often studied, mainly due to the following equation. In this thesis we study a similar
equation but the results relating to the S-unit equation are still relevant.

Definition 4.23. Let K be a number field, S a finite set of primes of K and a, b ∈ K×. The S-unit
equation is the equation

ax+ by = 1 for x, y ∈ O×S . ■

Theorem 4.24. (Siegel) Let K be a number field, S be a finite set of primes of K and a, b ∈ K×, then
the S-unit equation ax+ by = 1 has finitely many solutions in O×S . ■

The original proof is by Siegel who studied curves of genus ⩾ 1, his proof can be found in [49]. An alter-
nate geometric proof can be found in [31, Theorem 8.3.1]. These two geometric proofs do not explicitly
give these finite solutions. However, De Weger developed an effective algorithm in his famous thesis [14]
for K = Q. These algorithms were generalized to general number fields in, for example, [53]. A robust
algorithm, which has been implemented in Sage [60], has been developed by Alejandra Alvarado, Angelos
Koutsianas, Beth Malmskog, Christopher Rasmussen, David Roe, Christelle Vincent, Mckenzie West in
[3].

We end this section by extending the notion of the class group to S-integers.

Definition 4.25. Let K be number field and let S be a finite set of primes of K. For a prime p in K
let [p] denote the class of p in Cl(K). The S-class group ClS(K) is defined to be

ClS(K) = Cl(K)/⟨[p]⟩p∈S . ■
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Since the extension of prime ideals p ∈ S become unit ideals under the inclusion OK → OS it makes sense
to define ClS(K) this way as it sets these ideals equal to 0 in the class group. Following this intuition,
we see that if a fractional ideal I in OK is such that Ik is principal for some k ∤ #ClS(K) and I does
not extend to the unit ideal under the inclusion OK → OS , then I is principal. We call a fractional ideal
I which extends to the unit ideal under OK → OS an S-ideal. Equivalently, an S-ideal is an ideal only
divisible by ideals in S.

4.4.2 Asymptotic result from S-units

Let K be a number field with ring of integers OK and let A,B,C ∈ OK . LetWK be the set of non-trivial
primitive solutions (a, b, c) ∈ O3

K to
Aap +Bbp = Cc3 (4.8)

such that every prime q above 3 divides ab. So this is the exact situation as in Sections 4.1 and 4.2. As
in these sections, define

TK = {P : P is a prime in K and P | 3ABC}.

The main result of this section is as follows.

Theorem 4.26. (Nomden) Let K be a number field with ClTK
(K)[3] = 1 and satisfying Conjectures 1

and 2. Further suppose that for every solution (α, β, γ) ∈ O×TK
×O×TK

×OTK
to α+ β = γ3, there exists

a prime q in K above 3 such that
|vq(αβ−1)| ⩽ 3vq(3).

Then there is a constant V = V (K,A,B,C) > 0 depending only on K, A, B and C such that for p > V ,
the equation (4.8) has no solutions in WK . ■

Theorem 4.26 generalizes Theorem 2.5 of [29] in the sense that [29] restricts to totally real number fields.
What allows this generality in our case is the slightly modified level lowering technique from Section 4.2
which is also used in [23, Section 3]. A slight downside of this method is that we need to assume two
conjectures instead of one. In the totally real case only one is assumed due to the level lowering result
[20, Theorem 7] of Freitas and Siksek for elliptic curves. The restriction of K regarding TK-units in the
assumptions of Theorem 4.26 are due to Mocanu [37], we will be employing the methods used by her in
this section. These methods are also used in [29].

Mocanu’s method makes use of a few lemmas, we will make use of these too. The following result is a
summary of Lemma 15.ii, 16.ii and 17.ii of [37] and is stated here for convenience.

Lemma 4.27. [37, Section 2.1] Let E/K be an elliptic curve with a K-rational point of order 3. Then
E has a model of the form

E : y2 + cxy + dy = x3.

Further, if S is a finite set of primes in K including the primes above 3 and E has good reduction outside

of S. Then λ := c3

d is such that λOK = I3J where I and J are fractional ideals and J is an S-ideal. ■

We are now ready to prove Theorem 4.26. The following reasoning is essentially the same as in [37,
Section 4.4] and [29, Section 2.5].

Proof of Theorem 4.26. Let (a, b, c) ∈ WK be a solution to (4.8). Then by Theorem 4.10 there is an
elliptic curve E′/K such that E′ has a K-rational point of order 3. Then, by Lemma 4.27, E′ has a
model of the form

E′ : y2 + exy + dy = x3

for some d, e ∈ K. Then the j-invariant jE′ of E is equal to

jE′ =
e3(e3 − 24d)3

d3(e3 − 27d)
.

By Theorem 4.10, E′ has good reduction away from TK . From this and Proposition 2.15 it follows that

vP(jE′) ⩾ 0 for all P ̸∈ TK . In other words, jE′ ∈ OTK
. Set λ := e3

d and µ := λ− 27. Then

jE′ =
λ(λ− 24)3

λ− 27
=

(µ+ 27)(µ+ 3)3

µ
= µ3(1 + 27µ−1)(1 + 3µ−1)3. (4.9)
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Rearranging the equations above and using the fact that jE′ ∈ OTK
, we see that λ and µ satisfy monic

polynomials with coefficients in OTK
. Since OTK

is integrally closed by Proposition 4.22, it follows that
λ and µ are elements in OTK

. Using the right hand side of (4.9) we then see that µ−1 also satisfies a
monic polynomial with coefficients in OTK

. It then follows that µ−1 ∈ OTK
and hence µ ∈ O×TK

. By

Lemma 4.27, the prinicipal ideal (λ) is equal to I3J for some fractional ideal I and TK-ideal J . Since J
is a TK-ideal, we have [I]3 = 1 in ClTK

(K). By assumption, ClTK
(K) has no 3-torsion so we find that

I = γĨ for some TK-ideal Ĩ and γ ∈ OK . So

(λ) = γ3ĨJ ⇔
( λ
γ3

)
= ĨJ.

The right hand side of the latter is a TK-ideal so it follows that u := λ/γ3 ∈ O×TK
. Recall that we have

µ+ 27 = λ. Dividing this equation by u gives

α+ β = γ3

where α = µ/u and β = 27/µ which are both elements of O×TK
. By assumption, there is some q ∈ SK

such that
|vq( µ27 )| = |vq(αβ

−1)| ⩽ 3vq(3).

This is equivalent to saying that 0 ⩽ vq(µ) ⩽ 6vq(3). We show that these bounds on vq(µ) imply that
vq(jE′) ⩾ 0. From the expression in (4.9) in µ we find that

vq(jE′) = vq(µ+ 27) + 3vq(µ+ 3)− vq(µ) (4.10)

We distinguish three cases. First suppose that 0 ⩽ vq(µ) ⩽ vq(3). Then vq(µ + 27) = vq(µ) and
vq(µ+ 3) ⩾ vq(µ). Then (4.10) implies that vq(jE′) ⩾ 0.
If vq(3) < vq(µ) ⩽ 3vq(3) then vq(µ + 27) ⩾ vq(µ) > vq(3) and vq(µ + 3) = vq(3). Then (4.10) implies
that vq(jE′) > 0.
Finally, if 3vq(3) < vq(µ) ⩽ 6vq(3), then vq(µ + 27) = 3vq(3) and vq(µ + 3) = vq(3). Then vq(jE′) =
6vq(3)− vq(µ) ⩾ 0. In all cases, this contradicts with the fact that vq(jE′) < 0 by Theorem 4.10.iv and
Proposition 2.15.

As in [37], under some stricter conditions on K, A, B and C, we may replace the S-unit equation in the
statement of Theorem 4.26 by a simpler one. The proof of this Theorem is again similar to that of [37,
Theorem 11] and [29, Proposition 2.7].

Theorem 4.28. Let K be a number field such that there is only one prime q above 3. Suppose that q is
principal and that 3 ∤ hKhK(ζ3). Let A,B and C be elements in OK supported only on q. Let SK = {q}
and suppose that for every solution (α, γ) ∈ O×SK

× OSK
to

α+ 1 = γ3 (4.11)

with vq(α) ⩾ 0 satisfies vq(α) ⩽ 3vq(3). Then there is a constant V = V (K,A,B,C) such that the
equation Aap +Bbp = Cc3 with exponent p > V has no asymptotic solutions in WK . ■

Proof. With notation as in Theorem 4.26, we have TK = {q} Note that since 3 ∤ hK , by Theorem
4.26, it suffices to show that for every solution (α, β, γ) ∈ O×SK

× O×SK
× OSK

to α + β = γ3 satisfies

|vq(αβ−1)| ⩽ 3vq(3). Let (α, β, γ) be such a solution. Scale this solution by cubic powers (this is where
the assumption that q is principal comes in) and swap α and β if necessary so that vq(β) = 0, 1 or 2 and
0 ⩽ vq(β) ⩽ vq(α). We consider several cases.
Case 1: Suppose that vq(β) = 1 or 2. If vq(α) ̸= vq(β), then vq(α) > vq(β) and

vq(γ
3) = vq(α+ β) = vq(β)

which contradicts since vq(β) is not a multiple of 3. Therefore, vq(α) = vq(β). It follows that
|vq(αβ−1)| = 0 ⩽ 3vq(3).
Case 2: Suppose that vq(β) = 0 and that β is not a cube. Suppose for a contradiction that vq(α) >
3vq(3) so that 33 = q3vq(3) | α. The field L = K(ζ3,

3
√
β) is an abelian extension of degree 3 of K(ζ3). We
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show that L/K(ζ3) is unramified above q. The element θ =
γ2+γζ3

3
√
β+ζ23

3
√
β

3 ∈ L has minimal polynomial
over K

fθK(X) = X3 +
γ(γ3 − β)

3
X2 − γ2X − (γ3 − β)2

27

= X3 +
γα

3
X2 − γ2X − α2

27
.

Since 33 | α and vq(γ) =
1
3vq(α+ β) = 0, the polynomial fθK belongs to OK [X] and has discriminant

∆(fθK) = −2γ3α3

35
− 4γ3α5

39
+
γ6α2

32
− 4γ6 − α4

33
.

Since 33 | α and vq(γ) = 0, it follows that ∆ ≡ −4γ6 mod q. We have ∆ ̸≡ 0 mod q since vq(γ) = 0
and hence L/K(ζ3) is unramified at q. The other primes where L/K(ζ3) may ramify are the primes
dividing β. However, since β ∈ O×SK

, it follows that β is supported on q. It follows that L/K(ζ3)
is unramified above all places (also the infinite ones since K(ζ3) and L have the same signature) and
hence 3 | hK by Proposition 1.20 which contradicts with our assumption. Therefore, vq(α) ⩽ 3vq(3) and
|v(αβ−1)| = vq(α) ⩽ 3vq(3).
Case 3: Suppose that vq(β) = 0 and β is a cube. By dividing the equation α + β = γ3 by β, we may
assume that β = 1. We get an equation of the form (4.11) and by assumption we get that vq(α) ⩽ 3vq(3)
and hence |vq(αβ−1)| = vq(α) ⩽ 3vq(3). In all possible cases we find that |vq(αβ−1)| ⩽ 3vq(3). The
result then follows from Theorem 4.26.

The proofs of Theorems 4.26 and 4.28 requires a lot of machinery and still, if we want to find out whether
a number field K has no asymptotic solutions in WK to (4.8), we would need to find solutions to the TK
unit equation α + β = γ3 or, at least, have a sufficient amount of information on the solutions of this
equation. A priori this means that we simply translated our problem of finding a triple in OK which
satisfies a relation to finding a triple in O×TK

×O×TK
×OTK

satisfying a relation. Luckily, the result below
shows that there is a major difference between the two problems.

Let K be a number field and S a finite set of primes in K. We say that two solutions (α1, β1, γ1) and
(α2, β2, γ2) in O×S × O×S × OS to α+ β = γ3 are equivalent if there is some ε ∈ O×S such that

α1 = ε3α2, β1 = ε3β2 and γ1 = εγ2.

Write (α1, β1, γ1) ∼ (α2, β2, γ2) when these two solutions are equivalent. The result is then as follows

Proposition 4.29. [37, Theorem 39] Let K be a number field and let S be a finite set of primes in K.
The equation

α+ β = γ3 with α, β ∈ O×S and γ ∈ OS

has a finite number of solutions up to the equivalence ‘∼’. Moreover, these are effectively computable. ■

This result is due to Mocanu, we copy her proof here as it highlights an algorithm as to how to compute
non-equivalent solutions to α+ β = γ3.

Proof of Proposition 4.29. Suppose that
α+ β = γ3 (4.12)

with α, β ∈ O×S and γ ∈ OS . By Proposition 4.21, the quotient O×S /O
×3
S is finite. Let {β1, . . . , βℓ} be a

full set of representatives for O×S /O
×3
S . We can scale (α, β, γ) and obtain an equivalent solution to (4.12)

so that β ∈ {β1, . . . , βℓ}. This shows that (up to equivalence) β is contained in a finite set. Now fix β,
we show that there is a finite amount of possible solutions for α. Rewrite (4.12) as

(γ − 3
√
β)(γ − ζ3 3

√
β)(γ − ζ23

3
√
β) = α (4.13)

over L = K(ζ3,
3
√
β). Define

S′ = {P : P is a prime in L such that P | p for some p ∈ S}.
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If β ̸= −1, define x := γ − 3
√
β and y := γ − ζ3 3

√
β. Then, by examining (4.13), it follows that x and y

are S′-units in L. Further, x and y satisfy

1

(ζ3 − 1) 3
√
β
x− 1

(ζ3 − 1) 3
√
β
y = 1.

Thus, by Siegel’s Theorem (Theorem 4.24), there is a finite amount of pairs (x, y) such that this equation
is satisfied. Further, by the discussion below Theorem 4.24, these solutions are effectively computable.
Finally, noting that,

α = xy(y − ζ3(ζ3 − 1) 3
√
β)

shows that there is a finite possible solutions α and these are effectively computable. If β = −1 take
instead L = K(ζ3), x = γ + 1 and y = γ + ζ3 and repeat the argument above.

The proof of Proposition 4.29 gives a method for finding all equivalence classes of solutions (α, β, γ) ∈
O×S × O×S × OS α+ β = γ3. This is done in the following steps

1. Determine a full set of representatives {β1, . . . , βℓ} for O×S /O
×3
S .

2. For every β ∈ {β1, . . . , βℓ}, let L = K(ζ3,
3
√
β) and define

S′ = {P : P is a prime in L such that P | p for some p ∈ S}.

Then solve the S′-unit equation

1

(ζ3 − 1) 3
√
β
x− 1

(ζ3 − 1) 3
√
β
y = 1 (4.14)

in L.
3. For every solution (x, y) computed in 2 check whether x+ 3

√
β and y + ζ3

3
√
β are equal and elements

of K. In the case they are equal, define γ to be the common value.
4. For every x and y which satisfy the condition in 3, compute α = xy(y − ζ3(ζ3 − 1) 3

√
β).

Note that, in step 2, since β ∈ OS , we find that 3
√
β ∈ OS′ . If we are in the special case where ζ3−1 ∈ O×S′

then the map (x, y) 7→ (x̃, ỹ) = (x/(ζ3 − 1),−y/(ζ3 − 1)) is a bijection between solutions of the S′-unit
equation (4.14) and solutions to the S′-unit equation

x̃+ ỹ = 1. (4.15)

The equation (4.15) can be solved using Sage [60] thanks to the work done in [3]. If we try to solve (4.11)
to check the condition in Theorem 4.28 then we may simply set β = 1 in every step. In [38] this recipe
is implemented for number fields of the form Q(

√
−d) where d ⩾ 2 is a square-free integer such that

d ≡ 1 mod 3. Running this implementation for several values of d, one may suspect that the solutions
are independent of d. This is explored more in the next section.

4.4.3 Imaginary quadratic number fields

Let K = Q(
√
−d) where d ⩾ 2 is a square-free integer such that d ≡ 1 mod 3 and let OK be the ring of

integers of K. The condition that d ≡ 1 mod 3 means that the prime 3 is inert in K (see, for example,
[55, Corollary 3.11]). Let A,B and C be elements of OK which are only supported on 3. In this section
we show using Theorem 4.28 that the equation

Aap +Bbp = Cc3 (4.16)

has no asymptotic solutions (a, b, c) in WK , with WK as in Section 4.4.2. Let S = {(3)}. As seen in
Section 4.4.2 solving the equation (4.16) over WK comes down to solving the S-unit equation α+β = γ3

with α, β ∈ O×S and γ ∈ OS . The following result solves this S-unit equation. Some parts of the proof
are inspired by [37, Section 4.6].

Proposition 4.30. (Nomden) Let d ⩾ 2 be a positive square-free integer such that d ≡ 1 mod 3. Let
K = Q(

√
−d) and let S be the set of primes in K above 3. The only solutions to the S-unit equation

α+ 1 = γ3 with (α, γ) ∈ O×S × OS are (−1, 0) and (−9,−2). ■
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Proof. Let (α, γ) ∈ O×S ×OS be a solution to α+1 = γ3. The condition that d ≡ 1 mod 3 is precisely the
condition that 3 is inert in K. Therefore S = {(3)} and OS = OK [ 13 ] and O×S = {±1} × ⟨3⟩. It follows
that α = ±3n for some n ∈ Z. First suppose that n ⩽ 0. Then ±3n = ± 1

3k
where k = |n|. It follows

that

γ3 =
±1 + 3k

3k
. (4.17)

Therefore, 3v3(γ) = −k which shows that k is divisible by 3 and that γ = c
3k/3 for some c ∈ OK . Then

(4.17) shows that c3 = ±1 + 3k. We have

±1 = c3 − 3k =
(
c− 3

k
3
)(
c2 + 3

k
3 + 3

2k
3
)
.

This is an equality in OK and hence it follows that c − 3
k
3 ∈ O×K = {±1}. It follows that c = ±1 + 3

k
3

and

c3 = ±1 + 3
k
3+1 ± 3

2k
3 +1 + 3k ⇐⇒ c3 − 3k = ±1 + 3

k
3+1 ± 3

2k
3 +1.

The left hand side of the last equation is equal to 1 or −1 which forces k = 0 and hence n = 0. We
conclude that n ⩾ 0. Next, suppose for a contradiction that n > 2. Since γ3 = ±3n + 1 it follows that
v3(γ) = 0 and hence γ ∈ OK . Write

±3n = (γ − 1)(γ − ζ3)(γ − ζ23 )

in L := K(ζ3). Define

x = γ − 1, y = γ − ζ3 and z = γ − ζ23 .

Then x − y = ζ3 − 1 and y − z = ζ3(ζ3 − 1). Let σ ∈ Gal(L/K) be the generator of Gal(L/K) i.e. σ
is the element of Gal(L/K) such that σ(ζ3) = ζ23 . Let p = (ζ3 − 1) be the prime above 3 in L. Then
σ(p) = p and since σ(z) = y we have that vp(z) = vp(y) =: r. We have

1 = vp(ζ3(ζ3 − 1)) = vp(y − z) ⩾ r.

We claim that r is equal to 1. Suppose for a contradiction that r ⩽ 0. We have

vp(x) ⩾ vp(xyz) = vp(3
n) > 4

Using this, it follows that

1 = vp(ζ3 − 1) = vp(x− y) = min{vp(x), vp(y)} = r ⩽ 0,

a contradiction. We conclude that r = 1. It follows that 2n = vp(xyz) = vp(x) + 2 and hence vp(x) > 2.
Using this fact, define

u =
x

ζ3 − 1
∈ OL and v =

−y
ζ3 − 1

∈ O×L .

We have that p2 = (3) | u and since u + v = 1 it follows that v ≡ 1 mod 3. Let τ be the generator of
Gal(L/Q(ζ3)). Then, since τ(p) = p, it follows that (3) | τ(u) and hence also τ(v) ≡ 1 mod 3. It follows
that NL/Q(ζ3)(v) = τ(v)v ≡ 1 mod 3. Since v ∈ O×L we also have that NL/Q(ζ3)(v) ∈ O×Q(ζ3)

= ⟨−ζ3⟩.
Combining these two facts it follows that NL/Q(ζ3)(v) = 1. Let F := Q(

√
3d) denote the unique totally

real subfield of L. Suppose that v ∈ O×L \ O
×
F = ζ3O

×
F . Then NL/Q(ζ3)(v) is a multiple of ζ3 which

contradicts NL/Q(ζ3)(v) = 1. It follows that v ∈ O×F and hence u = v − 1 ∈ OF . Since x ∈ OK and u is a
quotient of x and ζ3 − 1, one readily verifies that this is a contradiction. We conclude that n ∈ {0, 1, 2}.
It follows that

±3n + 1 ∈ {0, 2, 4,−2, 10,−8}.

The only cubes in this set are 0 and −8. This concludes the proof.

Corollary 4.31. (Nomden) Let d ⩾ 2 be a square-free integer such that d ≡ 1 mod 3 and let K =
Q(
√
−d). Let A, B and C be elements of OK supported only on the primes above 3 in K. Suppose that

3 ∤ hKhK(ζ3) and that K satisfies conjectures 1 and 2. Then there is a constant V = V (d,A,B,C) such
that the equation Aap +Bbp = Cc3 has no solutions in WK when p > V . ■
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Proof. Let S = {(3)} consist of the only prime above 3 in K, from Proposition 4.30 it follows that the
solutions to α + 1 = γ3 in O×S × OS are (−1, 0) and (−9,−2). The result then follows from Theorem
4.28.

Due to a recent result by Caraiani and Newton, by adding an additional assumption on K in Corollary
4.31 we may dispose of one of the assumed conjectures. To state this condition, recall that the modular
curve X0(15) is an elliptic curve over Q with rank 0 over Q. The theorem is then as follows.

Theorem 4.32. [9, Theorem 1.1] Let F be an imaginary quadratic field such that the Mordell–Weil
group X0(15)(F ) is finite. Then Conjecture 2 holds for F . ■

Theorem 4.32 then gives the following, altered, form of Corollary 4.31.

Corollary 4.33. Let d ⩾ 2 be a square-free integer such that d ≡ 1 mod 3 and let K = Q(
√
−d). Let

A, B and C be elements of OK supported only on the primes above 3 in K. Suppose that 3 ∤ hKhK(ζ3),
that K satisfies Conjecture 1 and that X0(15)(K) is finite. Then there is a constant V = V (d,A,B,C)
such that the equation Aap +Bbp = Cc3 has no solutions in WK when p > V . ■
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Mathématiques de l’IHÉS, Volume 21 (1964), 5–128.

[40] Ogg, A.P. Elliptic curves and wild ramification. American Journal of Mathematics, Volume 89
(1967), 1–21.
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[66] Ţurcaş, G.C. On serre’s modularity conjecture and fermat’s equation over quadratic imaginary
field of class number one. Journal of Number Theory, Volume 209 (2020), 516–530.

62

https://www.birs.ca/workshops/2012/12ss131/files/samirnotes.pdf
https://stacks.math.columbia.edu
https://websites.math.leidenuniv.nl/algebra/ant.pdf
https://websites.math.leidenuniv.nl/algebra/ant.pdf
math.uni.lu/wiese/notes
math.uni.lu/wiese/notes

	Introduction
	Algebraic number theory
	Inverse limits
	Finite Galois theory
	Infinite Galois theory
	Class field theory

	Elliptic curves
	Basic definitions
	Reduction of Elliptic curves
	The conductor of an elliptic curve
	Minimal proper regular model for curves
	The conductor


	Galois representations
	Definitions
	Galois characters
	Galois representations from elliptic curves
	Group schemes
	m-torsion
	Modular forms and modularity conjectures

	The modular method
	Frey curve
	Level lowering
	Non-existence of the lowered curve
	l-extensions
	Non-existence of elliptic curves with specific reduction
	Elimination

	S-unit equations
	S-unit equations
	Asymptotic Results
	Imaginary quadratic number fields



