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Abstract
Paul traps are devices widely used in physics, from mass spectrometry to quantum computing and
nanoparticle manipulation. This study investigates the optimal operational parameters, namely the
voltage amplitude and frequency of the power sources, for a dual-frequency Paul trap to stably con-
fine a charged nanoparticle. Using COMSOL Multiphysics, the electric field produced by the trap’s
electrodes and the particle dynamics are simulated under varying voltage and frequency conditions.
The simulations’ outcomes are compared to theoretical calculations to prove their reliability. Stable
confinement in the radial plane is achieved using two power sources: one of 100 V at 20 MHz and
the other in the range of 1000–1600 V at 3 kHz. Axial confinement is achieved using two endcaps
electrodes, which give successful results limited to a single voltage configuration. The simulations
also estimated the trap’s potential depth, reaching over 500 eV. These results support the trap’s use as
a backup mechanism for optical tweezers and a basis for future multi-species trapping experiments.
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4 Chapter 1 INTRODUCTION

1 Introduction

Since the early 1950s, many physicists have devoted their careers to studying and developing various
techniques aimed at isolating single molecules, ions, and nanoparticles from the surrounding envi-
ronment. Two pivotal inventions that have significantly advanced this field, facilitating remarkable
discoveries, are optical tweezers and the Paul trap.
Optical tweezers, first invented by Arthur Ashkin in the 1970s, operate by tightly focusing a laser
beam to create a high-intensity optical gradient force. When a dielectric particle is placed in the laser
focus, it experiences a force that pulls it toward the region of highest light intensity. This occurs
due to the interaction between the induced electric dipole in the particle and the spatial variation in
the light’s electric field [1]. Thanks to this invention, Ashkin was awarded the 2018 Nobel Prize in
Physics.
Conversely, a Paul trap utilizes an electric field generated by alternating and direct current voltages
to establish a quadrupole potential, confining charged particles within the trapping region [2]. This
technology, invented by Wolfgang Paul in 1954, earned him the Nobel Prize in Physics in 1989.

Nowadays, the control and manipulation of micro and nano objects are of considerable importance
across various sectors. In medicine, this technology is used for the study of individual proteins [3],
bacteria [4] and viruses [5]. In physics, the aforementioned traps are utilized for mass spectroscopy
[6], quantum information processing [7], and potentially as pivotal tools for the detection of mil-
licharged dark matter. These tools have been employed to levitate nanoparticles of hundreds of
nanometers in diameter and cool them sufficiently to be controlled at the quantum level, thereby
enabling the study of macroscopic quantum physics [8].

Although both techniques ultimately have the same purpose, they have been applied differently over
the years and have been refined to enhance accuracy and stability, adapting to various contexts. Due
to its underlying physical principles, a Paul trap offers deeper potential energy (1 keV) and a larger
trapping volume (1 cm3) [9] compared to optical tweezers (1 eV, 1 µm3) [10], making it more suitable
for certain applications, such as the simultaneous trapping of multiple particles or interactions among
different species [11] [12]. Recently, hybrid systems incorporating both traps have been developed to
leverage the advantages of each [13]. In these systems, optical tweezers serve as the primary trapping
mechanism, while the Paul trap functions as a safety net to retain the particle and reposition it at the
laser focal point if it escapes from the tweezers.

In this study, the functioning of a Paul trap is investigated. The trap is combined with an optical
tweezer and analyzed through numerical simulations. Particularly, its aim is to work as a safety mea-
sure for the optical tweezer. In fact, as aforementioned, the Paul trap offers a significantly deeper
potential well and a much larger trapping volume than an optical tweezer. When combined with the
latter, the Paul trap can effectively retrap nanoparticles that escape from the optical potential, thereby
ensuring system stability and enabling longer experimental runtimes. Furthermore, by driving the
trap electrodes with different RF sources, the Paul trap can be configured to simultaneously confine
different types of nanoparticles, enabling multi-species trapping for future experiments.
The trap’s geometry is adapted to align with the configuration of the optical tweezer, which serve as
the primary trapping instrument. Simulations of the electric field generated by the trap’s electrodes
are conducted using the software COMSOL Multiphysics , which also allows to simulate the particle
trajectory within the field.
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1.1 Research Question
This study seeks to determine the optimal operational parameters for a Paul trap that can be used
combined with an optical tweezer or alone for simultaneous trapping of two particles. Given these
goals, the research question for this study is: Using a daul-frequency RF Paul trap, what voltages and
frequencies should be applied to the electrodes to achieve stable confinement of a charged nanopar-
ticle?
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2 Theoretical Background

2.1 Principle of Paul Trap
To trap a particle in free space a dynamic electric potential has to be created. In fact, according to
Earnshaw’s theorem, ’Charged particles cannot be held in stable equilibrium by electrostatic forces
alone’ [14]. Furthermore, according to electrodynamics, any potential in free space has to satisfy the
Laplace’s equation ∇2Φ = 0 [14]. To satisfy these conditions, the potential created by a Paul trap has
the form:

Φ =
Φ0

2r2
0
(αx2 +βy2 + γz2), (1)

where Φ0 is the potential applied to the electrodes and r0 is the characteristic half-diagonal distance
between the electrodes of the Paul trap. Then, α+ β+ γ = 0 is the necessary condition to satisfy
∇2Φ = 0.
Among the various permissible combinations of coefficients that satisfy the governing conditions,
certain conventional choices are often adopted for practical applications. A commonly employed
set includes α = −β = 1 and γ = 0, which yields a potential of the form Φ = Φ0

2r2
0
(x2 − y2). This

configuration satisfies Laplace’s equation and is characteristic of the electric quadrupole field utilized
in Paul traps. As can be noted, this is a 2D potential and is effectively used to achieve in-plane
confinement (in this case in the xy-plane). Out-of-plane confinement is achieved by applying DC
voltages to two endacap electrodes which are placed along the z-direction. The trap’s geometry can
be seen in Figure 7.
In Equation (1), the applied potential is given by:

Φ0 =U +V cos(2π f · t), (2)

where U is a static DC voltage and V is the voltage amplitude oscillating with frequency f . The
electric field generated in the xy-plane is calculated from E = −dΦ

dx and E = −dΦ

dy . By multiplying
the field by the charge, the force acting on the particle can be found. Given the particle’s mass m and
charge Q, its equations of motion in the trap are given by:

ẍ+
Q

mr2
0
(U +V cos(2π f · t))x = 0, (3)

ÿ− Q
mr2

0
(U +V cos(2π f · t))y = 0. (4)

Since cosine is an even function, Equations (3), (4) can be generalized as:

ψ̈+(a+2qcos(2π f · t))ψ = 0, (5)

where ψ represents a generalized spatial coordinate (i.e. x-, y- or z-direction). Equation (5) has the
form of a Mathieu equation where:

a =
4QU

mr2
0(2π f )2

q =
2QV

mr2
0(2π f )2

, (6)

are the so called stability parameters. In addition, when substituting ψ with the x- and y-direction, the
following relations are obtained:
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qx =−qy ax =−ay. (7)

Proving the derivation and solving the Mathieu equation is a tedious process that goes beyond the
scope of this research. An exhaustive and detailed explanation can be found in [15]. Of primary
importance in the context of particle dynamics within a Paul trap are the stability parameters a and
q. These parameters determine the nature of the solutions to Equations (3) and (4), with the motion
either exhibiting infinite growth or remaining confined within the trap, depending on their values. The
stability regions corresponding to bounded solutions can be effectively visualized by plotting a graph
of a versus q, where each stable pair is represented, as illustrated in Figure 1.

Figure 1: Stability diagram of the Mathieu equation. The solutions are stable in the black and grey
areas for the x- and y-direction respectively.

Furthermore, by exploiting the symmetries outlined in Equation (7), it becomes evident that the sta-
bility region in the y-direction is the mirror image of the x-direction stability region across the origin.
Consequently, stable confinement of a particle in the xy-plane requires that the parameters a and q
lie within the intersection of the respective stable regions for both axes. For Paul traps, the usual
operating regime is for values close to the origin [12]. This intersection, representing the domain of
simultaneous stability, is depicted in Figure 2.
Consequently, to trap a particle with a given charge to mass ratio in the xy-plane of a Paul trap with
a specific characteristic distance r0, the applied voltages and their frequencies have to be chosen such
that the calculated stability parameters fall in the area highlighted in Figure 2.
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Figure 2: The region where the stable areas in both the x- and y-directions overlap represents the set
of solutions that are simultaneously stable in both directions. The highest q-value at which the two
graphs overlap is q = 0.900.

2.2 Conditions for Simultaneous Trapping of an Ion and a Nanoparticle
Conventional Paul traps are typically optimized to confine particles with a specific charge-to-mass
ratio. In such configurations, the DC and RF voltages are selected to ensure that only particles with
predetermined properties can be levitated within the trap when it is operational. While this setup is
relatively straightforward to implement, it inherently restricts the range of particle species that can be
effectively trapped.
To address this limitation, alternative configurations have been developed. In particular, a dual-
frequency Paul trap, powered by two independent RF voltage sources, has demonstrated the capa-
bility to simultaneously confine a silica nanoparticle and a calcium ion with charge-to-mass ratios of
six orders of magnitude difference [11].
This is achieved by driving the two RF sources at significantly different frequencies: one operating in
the kilohertz (kHz) range and the other in the megahertz (MHz) range. The resulting potential in the
xy-plane produced by such a system is described by:

Φ(x,y) = (Vslow cos(2π fslowt)+Vf ast cos(2π f f astt))
x2 − y2

2r2
0

, (8)

where fslow and f f ast are the frequencies of the sources (in units of Hertz) and Vslow and Vf ast their
amplitudes. A visual representation of this potential can be seen in Figure 3.



Chapter 2 THEORETICAL BACKGROUND 9

Figure 3: Average electric potential generated by the electrodes in the xy-plane. The ap-
plied voltages are Vslow=1000 V and Vf ast=100 V with frequencies of 3 kHz and 20 MHz
respectively.

When analyzing the motion of a nanoparticle within this trap, the electric field acting on the particle
in a given direction can be determined by computing the spatial derivative of the potential along that
direction. Once the directional component of the force is established, the corresponding equation of
motion can be derived. Along the x-axis, the resulting equation of motion is given by:

mnẍ =−Qn(Vslow cos(2π fslowt)+Vf ast cos(2π f f astt))
x
r2

0
, (9)

where mn and Qn are the mass and charge of the trapped nanoparticle. By neglecting the fast os-
cillating field, the nanoparticle’s oscillation frequency in the trap due to the slow voltage is given
by:

ωn| fslow =
2QnVslow

2
√

2mnr2
0 ·2π fslow

. (10)

Conversely, by neglecting the slow field, the oscillating frequency calculated in terms of ωn| fslow is
found to be:

ωn| f f ast =
2π fslowVf ast

2π f f astVslow
ωn| fslow. (11)

When substituting the appropriate values of the driving voltages and their frequencies in Equation
(11), it can be observed that the fast voltage acts only as a perturbation on the motion of a nanoparti-
cle.

On the other hand, when considering the motion of the ion in the potential field, if the condition
fslow ≪ f f ast is satisfied, the ion sees the slow field as a slowly varying DC force. Its equation of
motion can be mapped into a Mathieu equation of the form:

ẍ+(a+2qcos(2π f f ast · t))x = 0. (12)
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The stability parameters in Equation (12) are respectively:

a =
4QiVslow

mir2
0(2π f f ast)2

q =
2QiVf ast

mir2
0(2π f f ast)2

, (13)

where mi is the mass of the ion and Qi its charge. Given the stability parameters in Equation (13),
simultaneous trapping of a nanoparticle and an ion is achieved when [11]:

q ≪ 1 |a|< q2

2
. (14)

2.3 Parametric Feedback Cooling
Once the particle is trapped, the center of mass motion motion has to be cooled enough to reduce its
oscillations to amplitudes of fractions of the diameter. In addition, if the trap is being used as a safety
net for the optical tweezers, the particle has to be placed back at the center of the Paul trap, which
corresponds to the focal point. To do so, parametric feedback cooling is utilized.
The principle of this cooling technique is to modulate the trap stiffness, depending on the particle
position and direction of movement. Particularly, the trap stiffness is increased when the particle is
heading away from the trap center, so that the potential wells the particle has to climb are steeper and
consequently the particle slows down and eventually moves back. Conversely, when the particle is
moving towards the trap center, the stiffness is decreased. This technique has also been used in optical
tweezer to cool the center of mass motion of a trapped nanoparticle in ultrahigh vacuum condition
[10]. A visualization of this process can be seen in Figure 4.

Figure 4: Time varying potential of the trap. The potential walls are increased
then the particle is moving away from the center (position 1) and are decreased
when the particle is moving towards the center (position 2).
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3 Trap Configuration & Simulation Details

3.1 Integration of the Paul Trap within the Optical Trapping System
As mentioned in the introduction, the Paul trap examined in this study is part of a larger experimental
framework involving the optical trapping of nanospheres with optical tweezers. The optical trapping
setup consists of several essential components: a trapping laser, a vacuum chamber, a microscope
objective, and a detection system. For the interested reader, a more detailed explanation of the optical
tweezers experimental setup can be found in [1]. In this configuration, the Paul trap must be precisely
aligned with the focal point of the laser beam, which is the location at which the nanoparticle is
optically confined.
Therefore, it is placed into the vacuum chamber, positioned between the microscope objective and the
aspheric collection lens. Figure 5 illustrates the components inside the vacuum chamber.
The four trap electrodes are fixed in place by a holder made of PEEK (Polyether Ether Ketone).
Regarding the physical geometry of the Paul trap itself, it consists of four cylindrical electrodes,
each measuring 0.875 mm in radius, with rounded tips. The electrodes are symmetrically arranged
about the origin, with a separation of 3.6 mm between the tips of opposing electrodes. This distance
corresponds to 2r0, as defined in Equation (1). Each electrode is inclined at an angle of 29◦ with
respect to the x-axis. The trap utilized can be seen in Figure 6. Throughout this work, the xy-plane
will be considered the radial plane, where the electrodes are located, while the z-direction will be
treated as the axial direction, orthogonal to the electrode plane.

Figure 5: Visualization of the components inside the vacuum chamber. From right
to left: the microscope objective, the electrode holder with four electrodes and the
collection lens.
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Figure 6: Visualization of the electrodes that compose the Paul trap and
respective mount.

3.2 Operation of the Paul Trap and Particle Properties

This study simulates a Paul trap powered by two distinct RF sources. Although the trap is currently
used to trap a single nanoparticle at a time, the use of two separate oscillating voltages lays the foun-
dation for future applications involving the simultaneous trapping of two different particle species as
outlined in the theory section above.
One pair of opposing electrodes, hereafter denoted as fast voltage, is supplied with a voltage oscil-
lating at a frequency of 20 MHz, while the other pair has a driving voltage oscillating at a frequency
of 3 kHz, which will be called slow voltage from now on. In order to analyze various aspects of the
Paul trap’s behavior and performance, the amplitude of the voltages supplied to these electrodes will
be varied. This adjustment of both the fast and slow voltages will allow to investigate their effects
on particle confinement, stability, and the overall trapping characteristics. Moreover, two additional
hollow ring electrodes are added in the simulations. These electrodes, named endcap electrodes, are
used to confine the particle along the z-direction and are powered by a DC voltage of 50 V, as similar
to another work [13].

The simulated nanoparticle has a mass of 2.77 fg and a total charge of 5e. These values are based
on the actual mass and charge of typical silica (SiO2) nanoparticles which are captured in the opti-
cal tweezers experiment [1]. This ensures the simulation realistically represents the properties of a
particle that could be trapped with the Paul trap.

3.3 COMSOL Configuration for Simulations

To investigate the behavior of the trap and analyze the trajectory of a nanoparticle under different
voltages and frequencies applied, computational simulations are performed using the software COM-
SOL Multiphysics (version 6.2). This software enables the modeling of the electric field generated by
the electrodes when subject to specific voltages, which can be set by the user. Additionally, it allows
for the simulation of a charged particle’s motion within the computed electric field, which can be
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dynamically visualized through real-time animation.

The simulation is conducted using two physics interfaces: Electrostatic to simulate the electric field
produced by the electrodes and Charged Particle Tracing to simulate the dynamics of the nanoparti-
cle subjected to this electric field. Prior to running the simulation, the geometry of the Paul trap must
be constructed. This is accomplished directly in COMSOL using the geometry section in the toolbar.
In this study, the trap built has the following parameters:

Name Value Description
Theta 29° Angle between electrodes
R electrode 8.75·10−4 m Radius of electrodes’ tip
R inner 0.0036 m Ring electrodes’ inner radius
R outer 0.0053 m Ring electrodes’ outer radius
H ring 0.00044 m Ring electrodes’ height

Table 1: List of parameters used in COMSOL to build the trap’s geometry. The parameters are used to
automate the building process. If a value is changed, then all the geometry will change accordingly.

To simplify the building process, the 2D cross section of the top left electrode is drawn in the xy-
plane using the Work Plane tool in COMSOL. This 2D profile is then revolved 180° about its axis to
generate the full 3D electrode structure.
Given the symmetry of the trap with respect to both the x-axis and the y-axis, it is sufficient to model
one electrode. The remaining three electrodes are then generated by applying mirror operations across
the x-axes and y-axes. The endcaps electrodes are built using as an inner radius, outer radius and
height the parameters R inner, R outer and H ring given in Table 1 respectively. These values are
chosen to ensure that the endcaps provide optical access for the optical tweezer’s laser beam.
Moreover, the vacuum chamber in which the trap is placed must also be modeled, as it represents
the environment where the nanoparticle will move. To do so, a cylinder with a radius of 15 mm and
a height of 25 mm encapsulating the entire Paul trap is created. The final geometry as created in
COMSOL is visualized in Figure 7.
Next, materials are assigned to each component. All electrodes are made of copper, while the vacuum
chamber is assigned the ’Perfect Vacuum’ material available in the material library.

The ’Electrostatics’ module is configured to simulate the desired electric field. Three Terminal
boundary conditions are applied: two are assigned to the opposing pairs of electrodes, and the third to
the endcap electrodes. The opposing electrodes are supplied with time-varying voltages of the form
V = Vf ast · sin(2π f f astt) and V = −Vslow · sin(2π fslowt) for the fast voltage and slow voltage respec-
tively. The endcaps electrodes are supplied with a static DC voltage of 50 V.
To track the motion of the nanoparticle within the vacuum chamber, the ’Charged Particle Tracing’
module is used. To couple the particle’s motion to the electric field, the boundary condition Electric
Force is selected. In its settings, the Electrostatics module is specified as the origin of the force. This
ensures that COMSOL applies the previously defined electric field as the acting force on the nanopar-
ticle within the vacuum chamber. Furthermore, a Release from Grid feature is added to define the
initial position and velocity of the nanoparticle at the start of the simulation. In all the simulations
performed, the particle’s initial position corresponds with the trap’s center, hence the (0x̂,0ŷ,0ẑ) coor-
dinates. A Particle Properties node is also included to assign the particle’s mass and charge.
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(a) (b)

Figure 7: Trap geometry visualized in COMSOL. (a) Side view of the trap. (b) Top view
of the trap. The cylindrical enclosure has been omitted to enhance the visibility of the
electrodes. The coordinate system is shown in the bottom-left corner of each view.

Finally, two studies are set. The first is used to run the simulation of the electric field, while the second
one is used to track the particle motion in the vacuum chamber. Throughout this study, a time range
going from 0 µs to 1000 µs in steps of 20 µs is used for the simulations as it is observed to be the best
trade of between computational time and resolution of the results.
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4 Results

4.1 Analysis of Particle Stability in the xy-Plane
The first thing done in the analysis of the Paul trap is to verify that the condition stated in Equation
(11) holds true. Therefore, the values for which the trap is operated are substituted in the equation.
The following result is derived:

ωn| f f ast =
3000 ·100

20 ·106 ·1000
ωn| fslow = 2.5 ·10−6

ωn| fslow. (15)

This shows that the fast frequency is only a fraction of the slow frequency. Consequently, when only
a nanoparticle is trapped, the fast voltage can be considered as a DC force and its amplitude can be
plugged in the stability parameters given by Equation (6) as U .

To determine if the particle remains confined in the xy-plane, the stability parameters defined in
Equation (6) are calculated for various values of Vslow, keeping the driving frequencies and Vf ast con-
stant. The results are summarized in Table 2. Each pair of values is then plotted in the stability graph
visible in Figure 8 to check whether they lie in the stability zone.

To verify the theoretical prediction, 2D simulations are run over a time interval of 4800 µs. The
particle’s motion is visualized through animations. Additionally, graphs of the x- and y-position
against time are plotted to show when the particle escapes the trapping region. Two of these graphs,
which correspond to the limit cases, are presented in Figure 11 and Figure 12 given in the Appendix.

Vslow(V) V f ast(V) a q Particle Trapped
1000 100 0.100 0.502 Yes
1100 100 0.100 0.553 Yes
1200 100 0.100 0.603 Yes
1300 100 0.100 0.653 Yes
1400 100 0.100 0.703 Yes
1500 100 0.100 0.753 Yes
1600 100 0.100 0.803 Yes
1700 100 0.100 0.854 No
1800 100 0.100 0.904 No
1900 100 0.100 0.955 No

Table 2: Theoretically calculated stability parameters corresponding to various
applied slow voltages. The slow and fast driving frequencies are fixed at 3 kHz
and 20 MHz, respectively. The last column states whether the particle was ob-
served to be trapped or not in the simulations.
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Figure 8: The colored points represent the calculated a and q values for different values of slow
voltage while the fast voltage is kept the same.

4.2 Axial Confinement and Estimation of Trap Depth
To check stable confinement along the z-direction, 3D simulations are run. Due to a longer computa-
tional time, these simulations span a time range of 700 µs, such that two periods of the slow voltage
are included. To analyze the particle’s motion, animations are observed and graphs of the z-position
over time are plotted. As an example, Figure 9 shows the obtained plot for applied Vslow=1100 V and
Vf ast=100 V.

Figure 9: Graph of the z-position of the particle as a function of time. The two
horizontal dashed lines represent the z-limit of the trapping region.

From Figure 9 it is observed that the particle remains trapped throughout the whole simulation, with
small displacement from the center along the z-direction. However, the particle does not remain
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trapped in the z-direction for all applied voltages. The graphs for the rest of the voltages are reported
in Figure 13 given in the Appendix.

Furthermore, the trapped particle’s kinetic energy is analyzed to estimate the potential trap’s depth.
For each applied voltage that results in stable confinement, the maximum particle’s kinetic energy
calculated by COMSOL are reported in Table 3. For these measurements, Vf ast is also varied to
investigate its influence on the trap depth. These values are plotted in a graph of the energy against
the slow voltage, visible in Figure 10, to determine the voltage combinations that yield the deepest
trapping potential.

Vslow(V) Kinetic Energy (eV) Kinetic Energy (eV) Kinetic Energy (eV)
for Vf ast = 85V for Vf ast = 100V for Vf ast = 115V

1000 237.5 277.5 154.6
1100 359.1 256.0 166.5
1200 419.4 406.2 229.5
1300 310.9 371.8 145.6
1400 494.4 274.2 252.0
1500 384.3 375.3 209.8
1600 437.5 552.1 390.2

Table 3: Maximum kinetic energies computed in the simulations.

Figure 10: Values of the maximum particle’s kinetic energy for different values of Vslow and
Vf ast . The frequencies are still fixed at 3 kHz and 20 MHz respectively.
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5 Discussion

The aim of this project was to investigate the functioning of a Paul trap, such that it can be used to
retrap a nanoparticle in the eventuality it escapes from the trapping potential of the optical tweezer.
The entire analysis was conducted computationally, using simulation tools to determine optimal op-
erational parameters without the need for physical experimentation.

Through theoretical formula and finite element simulations, the required voltages to confine a nanopar-
ticle in the xy-plane of the trap were determined, given fixed frequencies of 3 kHz and 20 MHz.These
voltage values are consistent with those reported in similar study [11], although they are specific to
the trap geometry and particle type used in this research.
Moreover, the strong agreement between the theoretical predictions and the simulations’ results vali-
dates the computational model as a reliable tool. This makes it an effective method to investigate the
Paul trap.

Despite successful radial confinement, the solution used to achieve axial confinement was proven
insufficient. The simulation data show that the particle almost never remained trapped for longer
than 500 µs, except for values of Vslow=1100 V and Vf ast=100 V. The design adopted for the endcap
electrodes was chosen to avoid interference with the light beam used in the optical trap, which likely
limited the strength of the axial field. In a similar work, where a Paul trap is combined with an optical
trap, axial confinement was achieved by applying a DC voltage to the optic’s lens holders, located a
distance 1.6 mm away from the trapcenter. The endcaps were supplied with a voltage of 70 V [13].
A possible solution to achieve axial confinement could be implementing parametric feedback cooling
to the endcap electrodes. As described in the ’Theoretical Background’ section, modulating the end-
caps’ potential in response to the particle’s position could stabilize its motion along the z-axis.
In addition, implementing parametric feedback cooling to all the electrodes could enhance overall
control over the particle, keeping its oscillation within a few micrometers from the trap center. This
would facilitate re-trapping with the optical tweezer in the event of a drop.

Furthermore, in this study the maximum kinetic energy of the trapped nanoparticle was measured as a
function of the slow voltage and for three different fast voltage. From the simulation data, it is found
that the highest trap potential depth is achieved for a slow voltage of 1600 V and a fast voltage of 100
V. However, as previously stated, stable confinement along the three directions was not achieved for
this configuration. For the case where 3D stable trapping was achieved, the nanoparticle’s maximum
kinetic energy is 256.0 eV. This suggests that the trap potential depth is at least higher than this value,
otherwise the particle would have escaped the trapping region. This is in accordance with other works
where the Paul trap’s potential depth is measured to be around 1 keV [9].

A critical aspect encountered while doing the simulation was the computational time. Using the set-
ting as described in the ’COMSOL Configuration for Simulations’ section, each simulation took over
six hours to compute, despite the FEM analysis was conducted using the coarsest mesh possible. This
resulted in a delay in the data collection process, which ultimately reduced the available data. In
future works, this problem can be overcome by adequately refining the mesh. The area of interest
(i.e. the trapping region) should have a much finer mesh, while the surrounding space should have
a coarser mesh, since this area is not of interest for the research. This adjustment could reduce the
computational time while at the same time provide more accurate results.
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The next phase of this research will explore the dual-frequency nature of the Paul trap to support
experiments with multiple trapped particles. Such a configuration opens the door to investigating
charged particle interactions. It also enables sympathetic cooling, where one particle species dis-
sipates energy from another species, resulting in lower temperatures for both [16]. Furthermore,
trapping ions together under this scheme can serve as a foundation for qubit implementation. In an
another work, mixed-species ions where trapped simultaneously, where one species acts as a memory
qubit and another as a communication qubit [17].
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6 Conclusion
In this study, a dual-frequency RF Paul trap has been analyzed through computational simulations.
The aim of the research was to find the optimal voltages and frequency to apply to the trap’s elec-
trodes, such that a charged nanoparticle of few hundreds of nanometer size could be trapped. This
system is intended to serve both as a standalone trap and as a supplementary mechanism to optical
tweezers, especially for recapturing particles that escape from optical confinement. Through a com-
bination of theoretical analysis and finite element simulations in COMSOL Multiphysics, the optimal
values of the voltage amplitudes and frequencies have been determined.

Stable confinement in the radial (xy) plane is achieved for an applied fast voltage of 100 V at a fre-
quency of 20 MHz and values of the slow voltage in the range of 1000 V to 1600 V, oscillating at
a frequency of 3 kHz. These conditions produced stability parameters within the bounded region
predicted by the Mathieu stability diagram, demonstrating strong agreement between theory and sim-
ulation.
For axial (z-direction) confinement, a DC voltage of 50 V was applied to a pair of endcap electrodes.
However, this solution only worked successfully for a slow voltage of 1100 V, and for a time interval
of 700 µs. This highlights a limitation of the current electrode geometry and suggests that enhanced
electrode design or active control methods are necessary to achieve reliable three-dimensional trap-
ping over longer timescales.

The simulations also allowed for the estimation of the potential depth of the trap by analyzing the
maximum kinetic energy of the confined nanoparticle. The deepest trap configuration corresponded
to a slow voltage of 1600 V and a fast voltage of 100 V, with a maximum kinetic energy exceeding
550 eV. This aligns with reported values from experimental literature, where Paul traps are known to
offer deep potential wells on the order of 1 keV.

In future experiments, the trap can be improved by implementing parametric feedback cooling to
stabilize the particle motion along the three directions. Due to its dual-frequency nature, the Paul trap
investigated could also be used for experiments that involve trapping different species of particles,
such as an ion and a nanoparticle. These experiments can have multiple applications, especially in
quantum computing technologies, sympathetic cooling and fundamental particle interactions.
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Appendix

A Particle’s Motion Graphs

Figure 11: Graph of the particle’s motion in the x- and y-direction for Vslow=1600 V. The trapping
area’s limits are ±2.34 mm in the x-direction and ±1.29 mm in the y-direction. Since the particle
never goes beyond these limits, it is trapped. For values of Vslow smaller than 1600 V, the particle
shows similar dynamics.

Figure 12: Graph of the particle’s motion in the x- and y-direction for Vslow=1700 V. The trapping
area’s limits are represented by the dashed lines. Since the particle goes beyond these limits, it is not
trapped. For values of Vslow bigger than 1700 V, the particle shows similar dynamics.
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Figures of the particle’s z-motion over a time range interval of 700 µs obtained from 3D simulations.

(a) Particle’s motion for Vslow=1000 V. (b) Particle’s motion for Vslow=1200 V.

(c) Particle’s motion for Vslow=1300 V. (d) Particle’s motion for Vslow=1400 V.

(e) Particle’s motion for Vslow=1500 V. (f) Particle’s motion for Vslow=1600 V.

Figure 13: Particle motion in z-direction for various Vslow values.
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