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Abstract

In this paper we analyse a sequence recurrence that is based on the Fibonacci recurrence.
We classify sequence behaviours with only convergence on the odd or even index subsequences.
These classifications give rise to the ‘Kirby fractal’ when viewed in the complex plane. We then
show that this Kirby fractal is bounded. We conclude by analysing the number of periodic
sequences on the boundary fractal.
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1 Introduction

In the field of dynamical systems an often studied subject is the iteration of maps[6]. One way
of analysing the iteration of maps is by colouring the space of initial values depending on the
iteration behaviour it generates[4]. To get a better grasp of the behaviour distinctions we will
make for our main recurrence, we will first have a look at an example: the iteration of the square
map on the complex plane[3]. Let S(z) := z2 be the square map and (an) be a sequence such
that an+1 = S(an). Then for any a0 ∈ C such that |a0| < 1, we have

lim
k→∞

|ak| = lim
k→∞

∣∣Sk(a0)
∣∣ = lim

k→∞
|a0|2

k

= 0.

For |a0| > 1, we have

lim
k→∞

|ak| = lim
k→∞

∣∣Sk(a0)
∣∣ = lim

k→∞
|a0|2

k

=∞.

If we plot this in the complex plane with initial values that converge to 0 in pink and initial values
that diverge to ∞ in light blue, we get Figure 1.

Figure 1: The Julia set of the square map, with convergence to 0 in pink and divergence to ∞ in
light blue.

Lastly for |a0| = 1, we get that

|ak| = |Sk(a0)| = |a0|2
k

= 1

for all integers k ≥ 0. If we let a0 = eθi, then the exponent gets doubled with each step. Therefore
the points on the unit circle will have the same behaviours as the doubling map. This means there
are periodic, preperiodic and chaotic points.

The behaviours we will classify in our main recurrence appear in the complex plane in a similar
way. We will have an inside and an outside with two fairly trivial behaviours, and a bordering set,
like the unit circle in the example, on which non-trivial behaviours exist.

The sequences (zn) which we will analyse in this paper satisfy the following recurrence relation:

zn+1 =
z2n−1

zn
+ zn−1 = (zn + zn−1) ·

zn−1

zn
, n ≥ 1, (1)

with initial values z0, z1 ∈ C. This recurrence is a variation on the Fibonacci recurrence. The
sequence behaviours this recurrence generates are rather interesting, having both converging and
diverging subsequences. Even though this is a recurrence in two variables, we can simplify the
space of initial values. This is because for any c ∈ C\{0}, we have

(c · zn−1)
2

c · zn
+ c · zn−1 = c ·

z2n−1

zn
+ c · zn−1 = c · zn+1, n ≥ 1.

Hence if a sequence (zn) satisfies (1), then so does (c · zn). Therefore we can multiply the initial
values with 1

z0
to get a sequence with the same behaviour, up to multiplying with a constant.
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This only fails for z0 = 0 as this causes division by 0. The sequences that z0 = 0 generates are
not very interesting however, so we will opt to ignore this case. For the rest of this paper we will
fix z0 = 1 and for each sequence generated by a choice of initial values we will only mention the
choice for z1 ∈ C. We will encounter other initial values that cause division by zero, which we will
not ignore. How we deal with division by zero in these sequences will be covered in section 2.

In section 3 we will plot and analyse the different sequence behaviours in the complex plane, which
will give us a fun shape that we will call the ‘Kirby fractal’, because it looks a bit like the video
game character Kirby. In section 4 we will look more closely at a subset of initial values in the
boundary of the Kirby fractal.

2 Division by zero

To avoid problems with division by zero later on, we will clear up the way we handle these cases now.
We will consider the function on the Riemann sphere S ∼= C∪{∞} so we can use∞ in a reasonable
way to denote when a number is without bound or equal to the so called “point at infinity”[7].
Let h : S× S→ S be such that

h(w, z) :=
w2

z
+ w.

Then we can write our main recursion as

zn+1 = h(zn−1, zn)

for all n ≥ 1. This function h is well defined for (w, z) ∈ C×C\{0}, however for the other cases we
have to do more work. In summary, for w, z ∈ C\{0} the special cases for the recurrence function h
will be defined as follows

h(∞, z) :=∞, h(w,∞) := w,

h(∞, 0) :=∞, h(0,∞) := 0,

h(w, 0) :=∞.

For all of these definitions we just equate the function to the evaluation of the limit on the Riemann
sphere at the given point:

|h(∞, z)| = lim
|w|→∞

∣∣∣∣w2

z
+ w

∣∣∣∣ =∞,

|h(∞, 0)| = lim
|w|→∞

lim
z→0

∣∣∣∣w2

z
+ w

∣∣∣∣ =∞,

h(w,∞) = lim
|z|→∞

w2

z
+ w = 0 + w = w,

|h(w, 0)| = lim
z→0

∣∣∣∣w2

z
+ w

∣∣∣∣ =∞,

h(0,∞) = lim
w→0

lim
|z|→∞

w2

z
+ w = 0.

There are two cases, namely h(0, 0) and h(∞,∞), that we will leave undefined as these do not have
unique limit evaluations. Fortunately our choice of initial values z0 = 1, z1 ∈ C, together with the
definitions of the special cases that we were able to define, prevent these cases from occurring in
a sequence. For instance, if zn = 0 and zn+1 = 0, then this can only be preceded by zn−1 = 0 as
the main recursion implies the inverse recursions

z2n−1 + zn · zn−1 − zn+1zn = 0 =⇒ zn−1 =
−zn ±

√
z2n + 4zn+1zn
2

.

Thus by induction this can only happen if z0 = z1 = 0. However we have fixed z0 = 1 ̸= 0, so this
does not happen. On the other hand zn =∞, zn+1 =∞ cannot be preceded by zn−1 ∈ C, as then
per our definition

zn+1 = h(zn−1,∞) = zn−1 ̸=∞.

Thus this case also cannot happen.

Now that our recursion is properly defined we can finally start examining the sequence behaviours
this recursion generates.
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3 Sequence behaviours

3.1 Convergent subsequences

We want to analyse the qualitative behaviours of the sequences that are generated by different
choices of z1 in the complex plane. Since our recursion is a variation on Fibonacci, let us first
have a look at the sequence for initial value z1 = 1 shown in the left-most column of table 1.
The subsequence of the odd indices of the sequence generated by z1 = 1 converges to an unknown

n zn zn zn zn
0 1 1 1 1
1 1 2 −3 1 −2i
2 2.0000 1.5000 0.6667 1.2000 +0.4000i
3 1.5000 4.6667 1.0500e+01 −2.2500 −4.2500i
4 4.6667 1.9821 0.7090 0.8990 +0.5418i
5 1.9821 1.5654e+01 1.6600e+02 −3.4523 +1.7748e+01i
6 1.5654e+01 2.2331 0.7120 0.9465 +0.5036i
7 2.2331 1.2538e+02 3.8868e+04 −3.0669e+02 +4.9625e+01i
8 1.2538e+02 2.2729 0.7120 0.9449 +0.5002i
9 2.2729 7.0419e+03 2.1217e+09 6.2085e+04 −6.5193e+04i
10 7.0419e+03 2.2736 0.7120 0.9449 +0.5003i
11 2.2736 2.1817e+07 6.3223e+18 −3.8693e+09 −6.5182e+09i
12 2.1817e+07 2.2736 0.7120 0.9449 +0.5003i
13 2.2736 2.0935e+14 5.6137e+37 −6.6988e+17 +5.3737e+19i
14 2.0935e+14 2.2736 0.7120 0.9449 +0.5003i

Table 1: The sequences generated by z1 = 1, z1 = 2, z1 = −3, and z1 = 1− 2i.

number 2.27363902874548 . . . , while the subsequence of the even indices diverges. This type of
sequence behaviour is very common for our recurrence, even more so when the parities are swapped,
some examples of which are given in the other three columns. Because of the frequency with which
we encounter these sequence behaviours, we will define them as follows.

Definition 3.1. If a sequence converges/diverges on the even/odd index subsequence, we will call
the sequence even/odd convergent/divergent respectively. If a sequence is even convergent
in C and odd divergent to∞, then we call the sequence solely even convergent. If a sequence is
odd convergent in C and even divergent to ∞, then we call the sequence solely odd convergent.
For convenience we will also refer to initial values as their corresponding sequence behaviour.

A natural question to ask is where these sequence behaviours occur in the complex plane. Numerical
computations give us Figure 2. We see that there is an island of initial values that generate
sequences with solely odd convergence, coloured pink, surrounded by a sea of initial values that
generate sequences with solely even convergence, coloured light blue. The boundary of this island
is fractal-like. Since looking at it sideways this shape looks a bit like the video game character
Kirby, seen in Figure 3, we will call this the Kirby fractal. This funny name is also slightly useful.
One can remember which type of convergence is on the inside of the Kirby fractal by remembering
the mnemonic “Kirby is an oddball”.

We also see that the Kirby fractal is symmetric across the real axis, which is because z0 = 1 = z̄0
and

z̄n+1 =
z2n−1

zn
+ zn−1 =

z̄2n−1

z̄n
+ z̄n−1.

Hence taking the complex conjugate of z1 only conjugates the whole sequence it generates and
does not change whether the sequence has solely even or solely odd convergence.

As we noted already the Kirby fractal seems to be surrounded by a sea of solely even convergence.
In section 3.2 we will show that all initial values with distance greater than 2 to the origin have
solely even convergence. Hence everything beyond the confines of Figure 2 is part of the sea.
However, before we can show this we need some tools which we will develop in this section. We
will first need some definitions and theorems from the book “Complex Analysis” by Elias M. Stein
and Rami Shakarchi [7].
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Figure 2: Solely even or solely odd convergence, respectively light blue and pink.

Definition 3.2. Let Ω be an open set in C and F a complex-valued function on Ω. The function F
is said to be holomorphic on Ω if for every point z ∈ Ω the quotient

F (z + t)− F (z)

t

converges to a limit when t→ 0.

We will use holomorphicity to create bounds on the absolute value of rational functions in parts
of the complex plane. The first proposition we will need is the following.

Proposition 3.3. Every rational function is holomorphic on open sets that do not contain the
poles of the function.

The second proposition we need will make our bounds easier to compute.

Proposition 3.4 (Maximum modulus principle). If F is a non-constant holomorphic function in
a connected open set Ω ⊂ C, then F cannot attain a maximum in Ω.

Lastly to show convergence we will use Cauchy sequences.

Definition 3.5. A sequence (an) is said to be a Cauchy sequence (or simply Cauchy) if

|an − am| → 0 as n,m→∞.

In other words, given ϵ > 0 there exists an integer N > 0 so that |an−am| < ϵ whenever n,m > N .

Proposition 3.6. Every Cauchy sequence in C has a limit in C.

With these preliminaries out of the way we can now start proving our own lemmas. One of the
facts that we will use in our proofs is that in our sequences the ratio of concurrent values is a
function of the previous ratio of concurrent values. Since we will be using these functions a lot, we
will give them formal definitions.
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Figure 3: Videogame character Kirby. (Image taken from Wikipedia)

Definition 3.7. For any natural number k, the ratio zn+k

zn
is called the k-step-ratio. We define f

to be the recurrence of 1-step-ratios of our sequences such that for all n ≥ 1

zn+1

zn
= f

(
zn

zn−1

)
.

We define g to be the recurrence of 2-step-ratios of our sequences such that for all n ≥ 2

zn+2

zn
= g

(
zn+1

zn−1

)
.

Lemma 3.8.

f(z) =
z + 1

z2
and g(z) = 1 +

1

z2 − z
.

The recurrence of 1-step-ratios can simply be found by dividing both sides of the main recurrence
by zn. Finding the recurrence of 2-step-ratios is a bit more involved, but only consists of some
algebra, which is shown in Appendix A. These recurrence formulas are incredibly useful, because
the behaviour of the sequence of 1-step-ratios

(
z1
z0

,
z2
z1

,
z3
z2

, . . . )

and the behaviour of the sequence of 2-step-ratios

(
z2
z0

,
z3
z1

,
z4
z2

, . . . )

individually determine the behaviour of the original sequence (zn). In fact for these ratio sequences
the behaviour of just the odd or just the even index subsequence of either is already enough to
determine what the behaviour is of all three sequences. This gives us Theorem 3.9.

Theorem 3.9. The following are equivalent:

1. (zn) is solely even convergent

2. (zn+1/zn) is solely odd convergent to 0

3. (zn+1/zn) is odd convergent to 0

4. (zn+1/zn) is even divergent to ∞

5. (zn+2/zn) is solely even convergent to 1

6. (zn+2/zn) is even convergent to 1

7. (zn+2/zn) is odd divergent to ∞

For simplicity we will divide the proof of this up into three parts. First the equivalences of the 1-
step-ratio sequence, second the equivalences of the 2-step-ratio sequence, and lastly the equivalence
of the three sequences. The first two Lemmas 3.10 and 3.11 will be quite trivial to prove. The
third Lemma 3.19 however has a final step that needs a lot of justification, namely Lemmas 3.12,
3.13, 3.14, 3.15, 3.16, and 3.17. Because of this that final step will be its own Theorem 3.18.
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Lemma 3.10.
(2) ⇐⇒ (3) ⇐⇒ (4)

Proof. By Definition 3.1 we have that (3) together with (4) is equivalent to (2). Thus we only need
to show that (3) ⇐⇒ (4).

(3) =⇒ (4): Let (zn+1/zn) be odd convergent to 0. Then

lim
k→∞

z2k+3

z2k+2
= lim

k→∞
f

(
z2k+2

z2k+1

)
= lim

z→0
f(z) = lim

z→0

z + 1

z2
=∞.

(4) =⇒ (3): Let (zn+1/zn) be even divergent to ∞. Then

lim
k→∞

z2k+2

z2k+1
= lim

k→∞
f

(
z2k+1

z2k

)
= lim

z→∞
f(z) = lim

z→∞

z + 1

z2
= 0.

This completes the proof.

For the 2-step-ratio sequence equivalences we use the same argument, but with the 2-step-ratio
recurrence formula.

Lemma 3.11.
(5) ⇐⇒ (6) ⇐⇒ (7)

Proof. By Definition 3.1 we have that (6) together with (7) is equivalent to (5). Thus we only need
to show that (6) ⇐⇒ (7).

(6) =⇒ (7): Let (zn+2/zn) be even convergent to 1. Then

lim
k→∞

z2k+3

z2k+1
= lim

k→∞
g

(
z2k+2

z2k

)
= lim

z→1
g(z) = lim

z→1
1 +

1

z2 − z
=∞.

(7) =⇒ (6): Let (zn+2/zn) be odd divergent to ∞. Then

lim
k→∞

z2k+4

z2k+2
= lim

k→∞
g

(
z2k+3

z2k+1

)
= lim

z→∞
g(z) = lim

z→∞
1 +

1

z2 − z
= 1.

This completes the proof.

In Lemma 3.19, which states that (1), (2), and (5) are equivalent, we will be using an important
equality that relates the 2-step-ratio to the 1-step-ratio:

zn+1

zn−1
=

1
zn

zn−1

+ 1.

It can be found by simply dividing our main recurrence by zn−1. Since the behaviour of our
sequences depends so much on the behaviour of the even or odd subsequence, we will be using the
following equations a lot as well.

f2(z) =
z4 + z3 + z2

z2 + 2z + 1
and g2(z) = z2 − z +

1

z2 − z + 1
.

The next six lemmas are all needed to prove Theorem 3.18 that is the final step of Lemma 3.19.
For the proof of Theorem 3.18 we will use the following lemma to create multiple bounds that are
only slightly different, however each bound we create is useful in their own right.

Lemma 3.12. If |z| < 1
2 , then ∣∣∣∣ z

z2 + z + 1

∣∣∣∣ ≤
√

16

27
.

Proof. The poles of the rational function z
z2+z+1 are

z2 + z + 1 = 0 =⇒ z± =
−1±

√
1− 4

2
= −1

2
±
√
3

2
i.

8



These poles have absolute value |z±| = 1, therefore they do not lie in the connected open set |z| < 1
2 .

By Proposition 3.3 we have that z
z2+z+1 is holomorphic in this region. Thus by Proposition 3.4 we

have that for |z| < 1
2∣∣∣∣ z

z2 + z + 1

∣∣∣∣ ≤ sup
|z|= 1

2

∣∣∣∣ z

z2 + z + 1

∣∣∣∣ = sup
|z|= 1

2

1∣∣z + 1 + 1
z

∣∣ = 1

inf
|z|= 1

2

∣∣∣∣z + 1 +
1

z

∣∣∣∣ .
Plugging z = 1

2e
θi into

∣∣z + 1 + 1
z

∣∣ we get∣∣∣∣12eθi + 1 + 2e−θi

∣∣∣∣ = ∣∣∣∣52 cos(θ) + 1− 3

2
sin(θ)i

∣∣∣∣ =
√(

5

2
cos(θ) + 1

)2

+
9

4
sin2(θ)

=

√
4 cos2(θ) + 5 cos(θ) +

13

4
.

The extremal points of p(θ) := 4 cos2(θ) + 5 cos(θ) + 13
4 are

p′(θ) = −8 sin(θ) cos(θ)− 5 sin(θ) = 0 =⇒ sin(θ) = 0 or cos(θ) = −5

8
.

Hence either cos(θ) = 1, cos(θ) = −1, or cos(θ) = − 5
8 . These extremal points evaluate to p(θ) = 49

4 ,
p(θ) = 9

4 , and p(θ) = 27
16 , hence the latter is the minimal value. Therefore∣∣∣∣ z

z2 + z + 1

∣∣∣∣ ≤ 1

inf |z|= 1
2

∣∣z + 1 + 1
z

∣∣ =
√

16

27
.

The next two lemmas are bounds that will be useful to show convergence once we apply them to
the 2-step-ratio sequence. Their proofs are very similar.

Lemma 3.13. If |z − 1| < 1
13 , then there exists α ∈ (0, 1) such that

|g2(z)− 1| ≤ α

∣∣∣∣1z − 1

∣∣∣∣ .
Proof. If |z − 1| = 0, then g2(z) = g2(1) = 1 and hence

|g2(1)− 1| = 0 = α

∣∣∣∣11 − 1

∣∣∣∣
for some α ∈ (0, 1).

Let 0 < |z − 1| < 1
13 . We first note the following equivalences

|g2(z)− 1| ≤ α

∣∣∣∣1z − 1

∣∣∣∣ ⇐⇒ ∣∣∣∣z2(z − 1)2

z2 − z + 1

∣∣∣∣ ≤ α

∣∣∣∣z − 1

z

∣∣∣∣ ⇐⇒ ∣∣∣∣ z3(z − 1)

z2 − z + 1

∣∣∣∣ ≤ α.

We will show the right most inequality. By the triangle inequality we have

|z| = |z − 1 + 1| ≤ |z − 1|+ 1 ≤ 1

13
+ 1 =

14

13
=⇒ |z|3 ≤

(
14

13

)3

. (2)

Let w := z − 1, then |w| < 1
13 < 1

2 and∣∣∣∣ z − 1

z2 − z + 1

∣∣∣∣ = ∣∣∣∣ w

w2 + w + 1

∣∣∣∣ .
Thus by Lemma 3.12, we have ∣∣∣∣ z − 1

z2 − z + 1

∣∣∣∣ ≤
√

16

27
≤ 4

5
. (3)

Applying inequalities (2) and (3), we get∣∣∣∣ z3(z − 1)

z2 − z + 1

∣∣∣∣ ≤ (14

13

)3

· 4
5
=

10976

10985
.

Taking α := 10976
10985 finishes the proof.
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Lemma 3.14. If |z − 1| < 1
2 , then

|g2(z)− 1| ≤ 9

5
|z − 1|2 .

Proof. If |z − 1| = 0, then |g2(1)− 1| = |1− 1| = 0 = 9
5 |1− 1|2.

Let 0 < |z − 1| < 1
2 . We first note the following equivalences

|g2(z)− 1| ≤ 9

5
|z − 1|2 ⇐⇒

∣∣∣∣z2(z − 1)2

z2 − z + 1

∣∣∣∣ ≤ 9

5
|z − 1|2 ⇐⇒

∣∣∣∣ z2

z2 − z + 1

∣∣∣∣ ≤ 9

5

⇐⇒
∣∣∣∣1 + z − 1

z2 − z + 1

∣∣∣∣ ≤ 9

5
.

Let w := z − 1, then |w| < 1
2 and ∣∣∣∣ z − 1

z2 − z + 1

∣∣∣∣ = ∣∣∣∣ w

w2 + w + 1

∣∣∣∣ .
Thus by Lemma 3.12, we have ∣∣∣∣ z − 1

z2 − z + 1

∣∣∣∣ ≤
√

16

27
≤ 4

5
. (4)

Applying the triangle inequality and inequality (4), we get∣∣∣∣1 + z − 1

z2 − z + 1

∣∣∣∣ ≤ 1 +

∣∣∣∣ z − 1

z2 − z + 1

∣∣∣∣ ≤ 1 +
4

5
=

9

5
.

This finishes the proof.

We will use the following two lemmas together with the Lemma 3.14 to show that, if the 2-step-
ratio converges to 1, then its corresponding converging subsequence of (zn) can only converge to 0
if it reaches 0 in a finite amount of steps.

Lemma 3.15. For all integers k ≥ 6, we have

1−
(

9

10

)2k

> e−2−k

.

Proof. For k = 6, we have

1−
(

9

10

)26

= 0.9988 · · · > 0.9844 · · · = e−2−6

.

Let k ≥ 6 be such that

1−
(

9

10

)2k

> e−2−k

.

Then

e−2−(k+1)

= e−
1
2 ·2

−k

=

√
e−2−k

<

√
1−

(
9

10

)2k

.

We want to show that √
1−

(
9

10

)2k

< 1−
(

9

10

)2k+1

.

Define ak :=
(

9
10

)2k
. Then this is equivalent to

1− ak <
(
1− a2k

)2
= 1− 2a2k + a4k

⇐⇒ 2a2k < ak + a4k

⇐⇒ a3k − 2ak + 1 > 0.
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Let h(x) := x3 − 2x+ 1, then

h(x) = (x3−x2)+(x2−x)−(x−1) = (x− 1)
(
x2 + x− 1

)
= (x− 1)

(
x+

1 +
√
5

2

)(
x+

1−
√
5

2

)

and h(0) = 1 > 0. Since the roots of h are ordered as − 1+
√
5

2 <
√
5−1
2 < 1 and 0 ∈

(
− 1+

√
5

2 ,
√
5−1
2

)
,

we therefore have h(x) > 0 for all x ∈
(
− 1+

√
5

2 ,
√
5−1
2

)
. For all integers k ≥ 6, we have

√
5− 1

2
= 0.618 · · · > 0.001 · · · =

(
9

10

)26

≥ ak > 0 =⇒ ak ∈

(
−1 +

√
5

2
,

√
5− 1

2

)
.

Thus
h (ak) = a3k − 2ak + 1 > 0.

Hence

1−
(

9

10

)2k+1

>

√
1−

(
9

10

)2k

> e−2−(k+1)

.

Therefore by mathematical induction the inequality holds for all k ≥ 6.

We can now bound the following infinite product from below, which will also bound our sequences,
with 2-step-ratios convergent to 1, away from 0.

Lemma 3.16.
∞∏
k=0

(
1− 5

9

(
9

10

)2k
)

= r

for some real number r > 0.

Proof. First note that this product decreases monotonically. Hence to prove the statement we will
create a positive lower bound. Since − 5

9 > −1 and by applying Lemma 3.15 we have

∞∏
k=0

(
1− 5

9

(
9

10

)2k
)

>

5∏
k=0

(
1− 5

9

(
9

10

)2k
)
·

∞∏
k=6

(
1−

(
9

10

)2k
)

>

5∏
k=0

(
1− 5

9

(
9

10

)2k
)
·

∞∏
k=6

e−2−k

The exponent of the left most infinite product is a geometric series and therefore

∞∏
k=6

e−2−k

= exp

(
−

∞∑
k=6

1

2k

)
= exp

(
−

( 12 )
6

1− 1
2

)
= exp

(
− 1

32

)
.

We also have

1− 5

9

(
9

10

)2k

> 0 ⇐⇒ 1 >
5

9

(
9

10

)2k

,

which is true for all integers k ≥ 0. Thus

∞∏
k=0

(
1− 5

9

(
9

10

)2k
)

>

5∏
k=0

(
1− 5

9

(
9

10

)2k
)
· exp

(
− 1

32

)
> 0.

This finishes the proof.

We can now show that a sequence generated by our main recurrence is solely even convergent to 0
only if it reaches 0 in finite steps.

Lemma 3.17. If (zn+2/zn) is even convergent to 1, then (zn) is even convergent to 0 only if there
exists N ∈ N such that for all integers k ≥ N , we have z2k = 0.
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Proof. Let (zn+2/zn) converge to 1 on the even indices. Let wn := z2n. Then there exists an
integer N such that for all n ≥ N , we have∣∣∣∣wn+1

wn
− 1

∣∣∣∣ < 1

2
.

Therefore by Lemma 3.14, we have∣∣∣∣wn+2

wn+1
− 1

∣∣∣∣ = ∣∣∣∣g2(wn+1

wn

)
− 1

∣∣∣∣ ≤ 9

5

∣∣∣∣wn+1

wn
− 1

∣∣∣∣2
for all integers n ≥ N . By induction we get∣∣∣∣wN+m+1

wN+m
− 1

∣∣∣∣ ≤ (9

5

)2m−1

· 1

22m
=

5

9
·
(
9

5

)2m

· 1

22m
=

5

9
·
(

9

10

)2m

.

Therefore a lower bound for the 2-step-ratio is∣∣∣∣wN+m+1

wN+m

∣∣∣∣ ≥ 1− 5

9
·
(

9

10

)2m

.

Hence

lim
k→∞

|wk| = lim
k→∞

|wN | ·
k∏

m=0

|wN+m+1|
|wN+m|

≥ |wN | ·
∞∏

m=0

(
1− 5

9
·
(

9

10

)2m
)
.

Thus by Lemma 3.16, if wn ̸= 0 for all n ∈ N, then

lim
k→∞

|wk| > 0.

If wN = 0 for some N ∈ N, then wn = 0 for all integers n ≥ N . This finishes the proof.

With all this build up we have finally arrived at our ever so important Theorem 3.18, which provides
the connection from k-step-ratio sequences back to the original sequence.

Theorem 3.18. If (zn+2/zn) is even convergent to 1, then (zn) has solely even convergence.

Proof. Let the sequence (zn+2/zn) converge to 1 on the even indices. Then there must exist N ∈ N
such that for all integers k > N , we have∣∣∣∣z2k+2

z2k
− 1

∣∣∣∣ < 1

13
.

By Lemma 3.13, we therefore have for some α ∈ (0, 1) that∣∣∣∣g2(z2k+2

z2k

)
− 1

∣∣∣∣ ≤ α

∣∣∣∣∣ 1
z2k+2

z2k

− 1

∣∣∣∣∣
for all integers k > N . This implies∣∣∣∣z2k+4

z2k+2
− 1

∣∣∣∣ ≤ α

∣∣∣∣ z2k
z2k+2

− 1

∣∣∣∣ =⇒ |z2k+4 − z2k+2| ≤ α |z2k − z2k+2|

=⇒ |z2k+4 − z2k+2| ≤ α |z2k+2 − z2k|

for all integers k > N for some α ∈ (0, 1). Therefore the even index subsequence of (zn) is a Cauchy
sequence. We conclude that the even index subsequence converges. By Lemma 3.17 either the even
index subsequence converges to a nonzero number, or the even index subsequence becomes zero
after a finite amount of steps. In the case that the even index subsequence becomes zero after
finite steps the tail of the main sequence becomes

(. . . , 0,∞, 0,∞, 0,∞, . . . ),

where even indices are zero and odd indices explode to infinity. Hence in this case the sequence (zn)
has solely even convergence. Since the even index 2-step-ratios converge to 1, we have

lim
k→∞

∣∣∣∣z2k+1

z2k

∣∣∣∣ = lim
k→∞

∣∣∣∣∣ 1
z2k+2

z2k
− 1

∣∣∣∣∣→∞.

Thus if the even index subsequence converges to a nonzero number, then the odd indices explode
without bound. Therefore the sequence (zn) has solely even convergence. This finishes the proof.

12



The proof of Lemma 3.19 is now quite simple.

Lemma 3.19.
(1) ⇐⇒ (2) ⇐⇒ (5)

Proof. (1) =⇒ (2): Let (zn) be solely even convergent. Then

lim
k→∞

z2k+1 =∞ and lim
k→∞

z2k = z

for some z ∈ C. Therefore
lim
k→∞

z2k+1

z2k
= lim

k→∞

z2k+1

z
=∞.

Thus the 1-step-ratio (zn+1/zn) is even divergent to ∞. By Lemma 3.10 we therefore have (2).

(2) =⇒ (5): Let (zn+1/zn) be solely odd convergent to 0. Then (zn+1/zn) is even divergent to ∞

lim
k→∞

z2k+2

z2k
= lim

k→∞

1
z2k+1

z2k

+ 1 = lim
z→∞

1

z
+ 1 = 1.

This implies that the 2-step-ratio (zn+2/zn) is even convergent to 1. Hence by Lemma 3.11 we
have (5).

(5) =⇒ (1): Let (zn+2/zn) be solely even convergent to 1. Then (zn+2/zn) is even convergent
to 1. Therefore by Theorem 3.18 we have (1).

This concludes the proof.

Lemmas 3.10, 3.11, and 3.19 together prove Theorem 3.9.

3.2 Bounding the Kirby fractal

Now that we have this more general tool for proving the behaviour of our sequences, we will
need more specific lemmas to prove that the initial values with magnitude greater than 2 are all
solely even convergent. The next lemma will be used to show even convergence of the 2-step-ratio
sequence.

Lemma 3.20. If z ∈ C such that |z − 1| < 1
2 , then there exists α ∈ (0, 1) such that

|g2(z)− 1| ≤ α|z − 1|.

Proof. If |z − 1| = 0, then |g2(z)− 1| = |1− 1| = 0 = α|1− 1| = α|z − 1| with α ∈ (0, 1).

Let 0 < |z − 1| < 1
2 . We first note the following

|g2(z)− 1| =
∣∣∣∣z2 − z +

1

z2 − z + 1
− 1

∣∣∣∣ = ∣∣∣∣ (z2 − z)2

z2 − z + 1

∣∣∣∣ .
Hence

|z|2

|z2 − z + 1|
≤ 2α =⇒ |z|2 · |z − 1|

|z2 − z + 1|
<

|z|2

2|z2 − z + 1|
≤ α =⇒ |g2(z)− 1| ≤ α|z − 1|.

Let w := z − 1, then |w| < 1
2 and

|z|2

|z2 − z + 1|
=

|w + 1|2

|w2 + w + 1|
=

∣∣∣∣1 + w

w2 + w + 1

∣∣∣∣ .
By the triangle inequality and Lemma 3.12, we have∣∣∣∣1 + w

w2 + w + 1

∣∣∣∣ ≤ 1 +

√
16

27
< 1 +

4

5
=

9

5
.

Taking α := 9
10 finishes the proof.

The lemma below helps show that ratios with magnitude greater than two stay greater than two
after an even amount of steps.
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Lemma 3.21. If |z| > 2, then |f2(z)| > 2.

Proof. Let z ∈ C be such that |z| > 2. Then

|f2(z)| =
∣∣∣∣z4 + z3 + z2

z2 + 2z + 1

∣∣∣∣ = |z|2 · ∣∣∣∣ z2 + z + 1

z2 + 2z + 1

∣∣∣∣ > 4

∣∣∣∣ z2 + z + 1

z2 + 2z + 1

∣∣∣∣ .
Let w := 1

z , then 0 < w < 1
2 and hence by Lemma 3.12 we have∣∣∣∣ z

z2 + z + 1

∣∣∣∣ = ∣∣∣∣ 1
w

1
w2 + 1

w + 1

∣∣∣∣ = ∣∣∣∣ w

1 + w + w2

∣∣∣∣ ≤
√

16

27
< 1.

The triangle inequality implies∣∣∣∣ z

z2 + z + 1

∣∣∣∣ < 1 =⇒
∣∣∣∣z2 + 2z + 1

z2 + z + 1

∣∣∣∣ ≤ 1 +

∣∣∣∣ z

z2 + z + 1

∣∣∣∣ < 2 =⇒
∣∣∣∣ z2 + z + 1

z2 + 2z + 1

∣∣∣∣ > 1

2

=⇒ |f2(z)| > 2.

This finishes the proof

We can now conclude by proving that the Kirby fractal we see in Figure 2 contains all initial values
that generate sequences with solely odd convergence.

Theorem 3.22. For all |z| > 2, the sequence (zn) has solely even convergence.

Proof. Let z ∈ C be such that |z| > 2. Then by inductively applying Lemma 3.21, we have that

|f2k(z)| > 2

for all k ∈ N. Note that ∣∣∣∣z2k+2

z2k
− 1

∣∣∣∣ = ∣∣∣∣ z2k
z2k+1

∣∣∣∣ = 1

|f2k(z)|
<

1

2
.

Therefore by Lemma 3.20, we get for some α ∈ (0, 1)∣∣∣∣z2k+4

z2k+2
− 1

∣∣∣∣ = ∣∣∣∣g2(z2k+2

z2k

)
− 1

∣∣∣∣ ≤ α

∣∣∣∣z2k+2

z2k
− 1

∣∣∣∣
for all k ∈ N. This implies

lim
k→∞

z2k+2

z2k
= 1.

Therefore by Theorem 3.9 the sequence (zn) has solely even convergence.

4 Periodic points of the 1-step-ratio recurrence

We now want to have a closer look at the 1-step-ratio recurrence f(z) = z+1
z2 . Let us define

rn :=
zn

zn−1
.

One of the first things to note is that we can telescope zn
z0

to get

zn
z0

=
zn

zn−1

zn−1

zn−2
· · · z1

z0

= rnrn−1 · · · r1
= fn−1(r1)f

n−2(r1) · · · f(r1)r1.

Since we fixed z0 = 1 and r1 = z1
z0
, we get the formula

zn =

n−1∏
k=0

fk(z1), n ≥ 1. (5)

We want to find the periodic points of f , because for a k-periodic point fk(z1) = z1 we can
determine the behaviour of (zn) from the magnitude of m(z1) := |z1 · f(z1) · · · fk−1(z1)|. From
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equation (5) we can see that the sequence (zn) diverges to ∞ if m(z1) > 1 and converges to 0
if m(z1) < 1. Lastly if m(z1) = 1 the modulus of the sequence (zn) remains bounded between
two positive numbers. Since all of these sequence behaviours are not solely odd nor solely even
convergent, all these points z1 must lie on the boundary of the fractal.

With our interest in periodic points of f justified, we will define the following terms.

Definition 4.1. A point z is a fixed point of the function F if and only if F (z) = z. A point z
is called k-periodic if and only if F k(z) = z. A point z has period k if and only if F k(z) = z
and F p(z) ̸= z for all p < k.

The fixed points of f are solutions of the polynomial

r = f(r) =
r + 1

r2
⇐⇒ r3 − r − 1 = 0.

This means that the ‘Plastic number’ ρ = 1.32471795724474602596 . . . and its algebraic conjugates

x3 − x− 1

x− ρ
= x2 + ρx+

1

ρ
= 0 =⇒ x1,2 = −1

2
ρ± 1

2

√
3ρ2 − 4 · i

are the fixed points of f [5]. Note that∣∣∣∣−1

2
ρ± 1

2

√
3ρ2 − 4 · i

∣∣∣∣ =
√

1

4
ρ2 +

1

4
(3ρ2 − 4) =

√
ρ2 − 1 =

√
1

ρ
< 1.

Hence |ρ| > 1, while |x1,2| < 1. Plugging these fixed points z1 into equation (5), we then get the
analytic solution zn = zn1 . Hence we see that z1 = ρ generates a sequence that diverges to infinity,
while z1 = x1,2 generate sequences that converge to 0.

The 2-periodic points of f are

r = f2(r) =
r+1
r2 + 1(
r+1
r2

)2 =
r2 · (r + 1) + r4

(r + 1)2
⇐⇒ r · (r + 1)2 = r4 + r3 + r2

⇐⇒ r3 + 2r2 + r = r4 + r3 + r2

⇐⇒ r4 − r2 − r = 0

⇐⇒ r = 0 or r3 − r − 1 = 0.

However, since r = 0 causes division by zero, we exclude this option and are left with only the
fixed points.

We would like to have a general formula for fk(r). Let Pk, Qk be polynomials in r such that

fk(r) =
Pk

Qk
.

Then we have

fk+1(r) = f

(
Pk

Qk

)
=

Pk

Qk
+ 1(

Pk

Qk

)2 =
PkQk +Q2

k

P 2
k

=
Pk+1

Qk+1
.

We can define {
Pk+1 := PkQk +Q2

k,

Qk+1 := P 2
k ,

for all k ≥ 1, with P0 = r,Q0 = 1.

Note that any k-periodic point of f must satisfy

fk(r) =
Pk

Qk
= r ⇐⇒ Pk −Qk · r = 0.

Let us define Rk := Pk−Qk · r. If Pk and Qk share a factor (r− t), then t is a root of Rk. However
evaluating fk(t) causes division by zero, hence this would not be an actual periodic point of f . We
will show that this kind of error does not happen.

Lemma 4.2. We have that gcd(Pk, Qk) = 1 for all k ≥ 0.
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Proof. For k = 0 it holds, since gcd(P0, Q0) = gcd(r, 1) = 1.

Let gcd(Pk, Qk) = 1 for some k ≥ 0. Assume for contradiction that gcd(Pk+1, Qk+1) = g, where g
is a polynomial in r of positive degree. Then there exists a degree 1 polynomial d in r, such that
d | g. Therefore

d |Qk+1 = P 2
k =⇒ d |Pk,

d |Pk+1 = PkQk +Q2
k =⇒ d |Pk +Qk or d |Qk

=⇒ d |Qk.

Hence d | gcd(Pk, Qk) = 1, which is not possible for a degree 1 polynomial, thus we have reached
a contradiction. We conclude that no such polynomial g exists and hence gcd(Pk+1, Qk+1) = 1.
Therefore by mathematical induction we have that gcd(Pk, Qk) = 1 for all k ≥ 0.

The degree of Rk will help us understand the amount of k-periodic points, by providing an upper
bound. To that end, let us first calculate the degree of Pk.

Lemma 4.3. The degree of Pk is of the form

deg(Pk) =

{
2k if k is even,

2k − 2
k−1
2 if k is odd.

Proof. The statement holds for k = 0, as

deg(P0) = deg(r) = 1 = 20, deg(P1) = deg(r + 1) = 1 = 21 − 2
1−1
2 .

Assume the statement holds for all k ∈ {0, 1, . . . , n}, then

deg(Pn+1) = deg(PnP
2
n−1 + P 4

n−1)

= deg(P 2
n−1) + deg(Pn + P 2

n−1).

If n is even, then deg(Pn) = 2n and deg(P 2
n−1) = 2 deg(Pn−1) = 2 · (2n−1 − 2

n−1−1
2 ) = 2n − 2

n
2 ,

hence deg(Pn) ̸= deg(P 2
n−1).

If n is odd, then deg(Pn) = 2n − 2
n−1
2 and deg(P 2

n−1) = 2 deg(Pn−1) = 2 · 2n−1 = 2n, hence
deg(Pn) ̸= deg(P 2

n−1).

Hence deg(Pn) ̸= deg(P 2
n−1) in both cases, which implies

deg(Pn+1) = deg(P 2
n−1) + max(deg(Pn), deg(P

2
n−1))

= 2 deg(Pn−1) + max(deg(Pn), 2 deg(Pn−1)).

If n+ 1 is even, then

deg(Pn+1) = 2 · 2n−1 +max(2n − 2
n−1
2 , 2 · 2n−1)

= 2n +max(2n − 2
n−1
2 , 2n)

= 2n + 2n

= 2n+1.

If n+ 1 is odd, then

deg(Pn+1) = 2 · (2n−1 − 2
n−2
2 ) + max(2n, 2 · (2n−1 − 2

n−2
2 ))

= 2n − 2
n
2 +max(2n, 2n − 2

n
2 )

= 2n − 2
n
2 + 2n

= 2n+1 − 2
n+1−1

2 .

This finishes the proof.

We can now calculate the degree of Rk.
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Theorem 4.4. For k > 0, the degree of Rk is of the form

deg(Rk) =

{
2k if k is even,

2k + 1 if k is odd.

Proof. We apply Lemma 4.3 multiple times to prove this statement. Since Qk = P 2
k−1, we have

that

deg(Qk) = 2 · deg(Pk−1)

=

{
2 · 2k−1 if k − 1 is even,

2 · (2k−1 − 2
k−1−1

2 ) if k − 1 is odd,

=

{
2k − 2

k
2 if k is even,

2k if k is odd.

If k is even, then

deg(Pk) > deg(Qk · r) ⇐⇒ 2k > 2k − 2
k
2 + 1 ⇐⇒ 2

k
2 > 1 ⇐⇒ k ≥ 2.

Therefore deg(Pk) > deg(Qk · r) for all even k > 0.

If k is odd, then

deg(Pk) < deg(Qk · r) ⇐⇒ 2k − 2
k−1
2 < 2k + 1 ⇐⇒ −2

k−1
2 < 1.

Hence deg(Pk) < deg(Qk · r) for all odd k.

Since k > 0, we therefore have

deg(Rk) = deg(Pk −Qk · r)
= max(deg(Pk), deg(Qk · r))

=

{
deg(Pk) if k is even,

deg(Qk · r) if k is odd,

=

{
2k if k is even,

2k + 1 if k is odd.

This finishes the proof.

For the next theorem we will need the Möbius inversion formula, which uses the Möbius function[2].

Definition 4.5. For k ∈ N the Möbius function µ(k) is defined to be

µ(k) =


1 if k = 1,

(−1)n if k is the product of n distinct primes,

0 otherwise.

Lemma 4.6. For all positive integers k, we have∑
d|k

µ

(
k

d

)
= 1{x=1}(k).

Proof. The formula holds for k = 1:∑
d|1

µ

(
1

d

)
= µ(1) = 1 = 1{x=1}(1).

Let k > 1 and write it as its unique prime decomposition k = pe11 · · · penn . In the sum
∑

d|k µ(d) the
only nonzero terms come from d = 1 and from those divisors of k which are products of distinct
primes. Thus∑

d|k

µ(d) = µ(1) + µ(p1) + · · ·+ µ(p1p2) + · · ·+ µ(pn−1pn) + · · ·+ µ(p1p2 · · · pn)

= 1 +

(
n

1

)
(−1) +

(
n

2

)
(−1)2 + · · ·+

(
n

n

)
(−1)n = (1− 1)n = 0 = 1{x=1}(k).
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Note that we can replace d with k
d as this will also iterate through all divisors of k exactly once.

This finishes the proof.

Lemma 4.7 (Möbius inversion formula). For functions F,G : N→ N such that

F (k) =
∑
d|k

G(d) for all k ∈ N,

we have that

G(k) =
∑
d|k

µ

(
k

d

)
· F (d) for all k ∈ N.

Proof. Plug the formula for F into the formula for G and apply Lemma 4.6.

Lemma 4.8. For all positive integers k, we have∑
d|k

µ

(
k

d

)
(−1)d = −1{x=1}(k) + 2 · 1{x=2}(k).

Proof. Let k be a positive integer. Then we see (−1)k = 1 if k is even and (−1)k − 1 if k is odd.
Because every integer is divisible by 1 and only even numbers are divisible by 2, we see that∑

d|k

−1{x=1}(k) + 2 · 1{x=2}(k) = −1 + 2 · 1{2|x}(k) = (−1)k.

Applying the Möbius inversion formula gives our result.

It is now possible to calculate an upper bound for the number of k-periodic points of f .

Theorem 4.9.

#points of f with period k ≤


3 if k = 1,

1 if k = 2,∑
d|k µ(d) · 2

k
d if k ≥ 3.

Proof. Let

Tk :=
Rk∏

d|k,d̸=k Td
, k ≥ 1,

tk := deg(Tk), k ≥ 1,

such that tk counts the roots of Rk that have not appeared in previous Rj with j ∈ {1, 2, . . . k−1}.
Then

tk = deg(Rk)−
∑

d|k,d̸=k

td =⇒ deg(Rk) =
∑
d|k

td.

By applying the Möbius inversion formula, we get

tk =
∑
d|k

µ

(
k

d

)
deg(Rd).

Note that we can rewrite

deg(Rd) =

{
2d if d is even,

2d + 1 if d is odd,

= 2d +
1− (−1)d

2
.
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Using Lemmas 4.6 and 4.8, we get

tk =
∑
d|k

µ

(
k

d

)
2d +

1

2

∑
d|k

µ

(
k

d

)
− 1

2

∑
d|k

µ

(
k

d

)
(−1)d

=
∑
d|k

µ

(
k

d

)
2d +

1

2
· 1{x=1}(k)−

1

2
(−1{x=1}(k) + 2 · 1{x=2}(k))

=
∑
d|k

µ

(
k

d

)
2d + 1{x=1}(k)− 1{x=2}(k)

=


3 if k = 1,

1 if k = 2,∑
d|k µ(d) · 2

k
d if k ≥ 3.

Since
#points of f with period k ≤ tk,

this finishes the proof.

We conclude that the number of points of f with period k is bounded above by the sequence

(3, 1, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, . . . ).

5 Discussion

For our main recurrence there are two very common behaviours. When we plot these behaviours
in the complex plane we obtain the Kirby fractal. We created some tools to analyse the behaviour
of our sequence by looking at the behaviours of the sequences of k-step-ratios. We used these
behaviours to confirm that the Kirby fractal is contained in the disk of radius 2. We noticed
that points on the boundary of this fractal are very closely connected to periodic points of our
1-step-ratio recurrence. We then proved a bound on the number of points with period k that our
1-step-ratio recurrence can have.

There are a lot of things left out of this paper that warrant further research. For instance, the area
of the Kirby fractal is approximately 4.4493. Is there an exact formula for this number? What is
the dimension of the boundary of the Kirby fractal?

Another observation is that the bound we showed for the number of points of period k is probably
the optimal bound. This is because consulting the Online Encyclopedia of Integer Sequences
givfig:evenoddconves us a connection between the number of periodic points and the sequence
A027375: Number of aperiodic binary strings of length n[1]. The function f has two inverses, say
inverse zero and inverse one. Numerical testing has shown that an aperiodic composition of n of
these inverses will be a function that, when iterated on the top half of the complex plane, converges
to a unique period n point of f , if the amount of zeros and ones are even. If the amount of zeros
or the amount of ones is odd, then iterating the composition an even amount of times converges
to a unique period 2n point of f .

Here is list of some other conjectures.

Conjecture 5.1. The number 2.27363902874548 . . . is transcendental.

This is only a hunch based on the fact that the number is approached rapidly by our sequence,
where an accuracy of n digits in the current step results in an accuracy of 2n digits in the next
step.

Conjecture 5.2. The set of solely odd convergence and the set of solely even convergence are
open. The boundaries of these sets are equal and each set is connected.

We have a basic framework of a proof for the first part, but some details still need to be worked
out before this can be released. The second part seems reasonable from Figure 2, but remains
unproven.

We showed that all initial values outside of the bound of distance 2 to the origin are solely even
convergent. We conjecture the following is the best bound.
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Conjecture 5.3. For all |z| > ϕ, the golden ratio, the sequence (zn) has solely even convergence.

If this is true, then the outer most points on the boundary of the Kirby fractal are

−1

2
± 1

2

√
5 + 2

√
5i,

which are period 4 points of both the 1-step-ratio and the main recurrence itself.

Lastly, there could be chaotic behaviour of the iteration of f on the boundary fractal, just like
there is chaotic behaviour on the boundary circle of the Julia set of the square map. Numerically
speaking this conjecture is difficult to show an example of. At least, using the recurrence in the
forward direction. This is because, however close you start to the boundary fractal, each iteration
of f seems to push the points further and further away from the boundary fractal. We still reason
that there is chaos analytically speaking as we can start anywhere in the complex plane and just
randomly applying the inverses of f . This seems to always get closer and closer to the boundary
with each iteration, while never converging to a single point. So it is not a stretch to believe that
points on the boundary can behave just as randomly in the forward direction.
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A Expressions of the 2-step-ratio recurrence

Note that

zn+1 =
z2n−1

zn
+ zn−1 =⇒ zn+1

zn−1
=

1
zn

zn−1

+ 1 =
1

f
(

zn−1

zn−2

) + 1 =
1

f

(
1

zn
zn−2

− 1

) + 1.

This implies by definition of g that

g(z) :=
1

f

(
1

z − 1

) + 1 =
1

1
z−1 + 1

( 1
z−1 )

2

+ 1 =
1

z − 1 + (z − 1)2
+ 1 = 1 +

1

z2 − z
.

g2(z) = 1 +
1(

1 + 1
z2−z

)2
−
(
1 + 1

z2−z

) = 1 +
(z2 − z)2

(z2 − z + 1)
2 − ((z2 − z)2 + z2 − z)

= 1 +
(z2 − z)2

z4 − 2z3 + 3z2 − 2z + 1− z4 + 2z3 − z2 − z2 + z

= 1 +
(z2 − z)2

z2 − z + 1
= 1 +

(z2 − z)2 + (z2 − z)− (z2 − z)

z2 − z + 1
= 1 + z2 − z +

−(z2 − z)

z2 − z + 1

= z2 − z +
z2 − z + 1− (z2 − z)

z2 − z + 1
= z2 − z +

1

z2 − z + 1
.
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B Polynomials

The following polynomials were computed with a program.

P0 = r

P1 = 1 + r

P2 = r2 + r3 + r4

P3 = 1 + 4r + 7r2 + 7r3 + 5r4 + 3r5 + r6

P4 = r4 + 6r5 + 18r6 + 35r7 + 50r8 + 56r9 + 53r10 + 44r11 + 33r12 + 21r13 + 11r14 + 4r15 + r16

P5 = 1 + 16r + 124r2 + 620r3 + 2251r4 + 6342r5 + 14490r6 + 27729r7 + 45572r8 + 65604r9

+ 84018r10 + 96911r11 + 101709r12 + 98004r13 + 87431r14 + 72783r15 + 56927r16 + 42036r17

+ 29343r18 + 19298r19 + 11859r20 + 6723r21 + 3458r22 + 1581r23 + 626r24 + 207r25 + 54r26

+ 10r27 + r28

Q0 = 1

Q1 = r2

Q2 = 1 + 2r + r2

Q3 = r4 + 2r5 + 3r6 + 2r7 + r8

Q4 = 1 + 8r + 30r2 + 70r3 + 115r4 + 144r5 + 145r6 + 120r7 + 81r8 + 44r9 + 19r10 + 6r11 + r12

Q5 = r8 + 12r9 + 72r10 + 286r11 + 844r12 + 1972r13 + 3803r14 + 6240r15 + 8922r16 + 11332r17

+ 12978r18 + 13542r19 + 12953r20 + 11386r21 + 9202r22 + 6832r23 + 4651r24 + 2890r25

+ 1625r26 + 814r27 + 355r28 + 130r29 + 38r30 + 8r31 + r32

R0 = 0

R1 = 1 + r − r3

R2 = −r − r2 + r4

R3 = 1 + 4r + 7r2 + 7r3 + 5r4 + 2r5 − r6 − 3r7 − 2r8 − r9

R4 = −r − 8r2 − 30r3 − 69r4 − 109r5 − 126r6 − 110r7 − 70r8 − 25r9 + 9r10 + 25r11

+ 27r12 + 20r13 + 11r14 + 4r15 + r16

R5 = 1 + 16r + 124r2 + 620r3 + 2251r4 + 6342r5 + 14490r6 + 27729r7 + 45572r8 + 65603r9

+ 84006r10 + 96839r11 + 101423r12 + 97160r13 + 85459r14 + 68980r15 + 50687r16 + 33114r17

+ 18011r18 + 6320r19 − 1683r20 − 6230r21 − 7928r22 − 7621r23 − 6206r24 − 4444r25 − 2836r26

− 1615r27 − 813r28 − 355r29 − 130r30 − 38r31 − 8r32 − r33
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C Algorithms

Algorithm used to generate Figure 2:

function h(w, z)
if w = 0 or w =∞ or z =∞ then

return w
if z = 0 then

return ∞
return w2

z + w

image ← width× height matrix
for x← 1 to width do

for y ← 1 to height do
a ← 1
b ←

(
−2 + 4 · x

width

)
+
(
2− 4 · y

height

)
· i

n ← 2
while True do

c ← h(a, b)
if |a− c| < 10−10 then

if n is even then
image[x, y] ← light blue

else
image[x, y] ← pink

break
a ← b
b ← c
n ← n+ 1
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