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Abstract

The Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)
protocol uses commutative group actions based on the theory of
complex multiplication. It is constructed from the Couveignes-
Rostovtsev-Stolbunov scheme by design choices that speed up the
group action computations significantly. We discuss the mathe-
matics behind the choices for Vélu’s equations and supersingular
Montgomery curves.
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1 Introduction

Research into quantum computing is progressing fast if we may believe the many press releases on the
website of Science Daily. It seems, therefore, that the invention of a stable large-scale quantum computer
is only a matter of time. On the one hand, many cryptographic applications can benefit from their
use, since they speed up calculations dramatically. On the other hand, however, many cryptographic
protocols in current digital infrastructure do not withstand attacks by large-scale quantum computers. In
order to combat this looming threat, the National Institute of Standards and Technology1 (NIST) has
funded research of global experts into finding cryptographic algorithms based on intractable problems for
both classical and quantum computers, called post-quantum cryptography (PQC). One of the proposals
in the domain of isogeny-based PQC that came about too late to be submitted for the first round, is
Commutative Supersingular Isogeny Diffie-Hellman (CSIDH). It was first introduced in 2018 by Wouter
Castryck, Tanja Lange, Chloe Martindale, Joost Renes and Lorenz Panny in the eponymous paper
[Cas+18]. The intractability of isogeny-based PQC remains to date.

CSIDH is a proposal for a post-quantum-secure key exchange protocol using the hardness of recovering
isogenies from the elliptic curves in their (co-)domain. Based on the Couveignes-Rostovtsev-Stolbunov
scheme, it is made substantially more efficient by a clever choice of parameters. With this master thesis,
we inform the reader of the reasons behind some design choices and discuss their mathematical foundation.

Let us outline the structure from beginning to end. We start by introducing the reader to cryptographic
group actions, the complex multiplication (CM) group action on elliptic curves that give rise to isogenies
and the resulting isogeny graphs. This introduction establishes the mathematics of the CRS scheme,
introduced by Couveignes [Cou06] and independently rediscovered by Rostovtsev, Stolbunov [RS06].
From that foundation we introduce the design choices that CSIDH is built on. In the next two chapters,
we highlight two of these design choices. We address the use of supersingular elliptic curves, and introduce
the reader to the properties of Montgomery curves: elliptic curves that can be defined by an equation of
the form By2 = x3 +Ax2 + x over a finite field. Throughout the text, we assume prior knowledge about
class group theory, commutative algebra and elliptic curves.

1.1 Contributions

This thesis is meant to be an overview of and introduction to the intricacies of CSIDH. It does therefore
not contain many new results. Contributions consist of enlightening Examples (e.g. Examples 2.6, 2.17,
3.2, 3.7) and the proof of Theorem 4.5 in [DG16, Equation (1) on page 426]. Moreover, we also include
improved versions of the proofs to Theorem 3.5 in [DG16, Theorem 2.7] and Proposition 3.6 in [Cas+18,
Proposition 8].

1NIST is an agency within the U.S. Department of Commerce.
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1.2 Notation

k: a perfect field.

Fq: the finite field of characteristic p such that q = pr for some r ∈ Z>0.

K: a number field.

O: an order of a number field K.

OK : the ring of integers of the number field K and the maximal order.

Ell(O): the set of isomorphism classes of ordinary elliptic curves defined over C with complex multiplication
by fractional O-ideals in an order O of a quadratic imaginary number field K.

EllFq
(O): the set of Fq-rational isomorphism classes of ordinary elliptic curves defined over Fq with complex

multiplication by fractional O-ideals in an order O in a quadratic imaginary number field K.

EllFq (O): the set of Fq-rational isomorphism classes of elliptic curves defined over Fq with complex multiplica-
tion by fractional O-ideals in an order O in a quadratic imaginary number field K.

h(O): the order of the class group Cl(O).

Endp(E): the Fp-rational endomorphism ring of an elliptic curve E over the prime field Fp. It is a subring of
the full endomorphism ring End(E).

Gk,L: the isogeny graph consisting of k-rational equivalence classes of ℓ-isogenies as edges, where ℓ ∈ L,
and k-isomorphism classes of supersingular elliptic curves with complex multiplication defined over
k.

∼=: isomorphism of [specified algebraic structure].

≈: approximation of a real number in decimal places.

≃: asymptotically equal, meaning equal in the limit.

Lq: logarithmic notation, or L-notation, see Definition C.7.

Õ: read: ‘soft O’, see Definition C.2.
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2 Preliminaries

2.1 Diffie-Hellman key exchange and cryptographic group actions

Consider the scenario in which two parties, commonly called Alice and Bob, would like to send each other
messages over an insecure channel. One of the methods they could use in order to keep the contents of
the messages secret, is to construct a common key to encrypt and decrypt the message in a symmetrical
process. The Diffie-Hellman key exchange [DH22] is a protocol to establish such a common key over an
insecure channel. This protocol uses abelian group actions, which is a group action where the group in
question is abelian.

Definition 2.1 (Group action). Let G be a group and X a nonempty set. A group action of (G,X, ⋆) is
a map ⋆ : G×X → X which we write as (g, x) 7→ g ⋆ x, satisfying

1. e ⋆ x = x for every x ∈ X (here e ∈ G is the unit element);

2. (gh) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and all x ∈ X.

The Diffie-Hellman key exchange protocol is then defined as follows.

Setup of public parameters: an abelian group action (G,X, ⋆) and fixed base point x0 ∈ X.

Key generation: the secret key gC randomly sampled from G. The public key xC := gC ⋆ x0.

Key exchange: Alice and Bob have key pairs (gA, xA) and (gB , xB) respectively. Upon the publication
of xB , Alice computes gA ⋆ xB . Similarly for Bob. They recover a shared secret key.

x0 xA

xB gA ⋆ xB = gB ⋆ xA

Alice

Bob Bob

Alice

In terms of practicality, xA and xB must be computationally easy to compute while recovering gA and
gB must be hard. The following conditions aim to provide these characteristics.

A Principal Homogeneous Space (PHS) for a group G is a set X with an action (G,X, ⋆) such that for
any x1, x2 ∈ X there exists a unique g in G such that g ⋆ x1 = x2. In other words, the map φx : G→ X
defined by g 7→ g ⋆x is a bijection for any x. A Hard Homogeneous Space (HHS) is a PHS where the group
action (G,X, ⋆) is computationally efficient, but inverting φx is difficult for any x. It was first introduced
in a seminal work by Couveignes in 1997, see [Cou06]. An example of an (assumed and classical) HHS is
the group G = (Z/pZ)∗ together with the set X = ⟨x0⟩ − {1} where x0 generates a group of order p, a
prime. The map φx sends each g to g ⋆ x = xg. Inverting φx is the Discrete Logarithm Problem (DLP).

In order for the group action to be suitable for implementation in a computer algorithm, we would like
for the group action to be effective according to the following definition, taken from [NP20, Definition
2]. This requires the representation of group- and set elements as bit strings, on which we perform
computations.

Definition 2.2 ([NP20], Definition 2). A group action (G,X, ⋆) is effective if the following properties
are satisfied:

1. The group G is finite and there exist efficient probabilistic polynomial time (PPT) algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.

(c) Sampling, i.e., to sample an element g from a distribution DG on G. We consider distributions
that are statistically close to uniform2.

2For the complex multiplication group action, this implies we assume that the distribution of small normed ideals in the
class group of an order are uniformly distributed.
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(d) Operation, i.e., to compute gh for any g, h ∈ G.

(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.

(b) Unique representation, i.e., given any arbitrary set element x ∈ X, compute a string x̂ that
canonically represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string representation
is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G and
any x ∈ X, outputs g ⋆ x.

A group action is called cryptographic if it is effective and defines a HHS. We recall an example of such a
cryptographic group action, where g ⋆x = xg with g ∈ G = (Z/pZ)∗ for p a prime and x ∈ X = ⟨x0⟩−{1}.
The algorithms for computing discrete logarithms for a generic group G and set X = ⟨x0⟩ − {1} require
O(

√
q) computations3, see [Jou09], and are optimal for generic groups G [Sho97]. This does not exclude

the existence of better attacks for specific group actions. However, no better classical algorithms are known
to exist when G is a subgroup of E(Fp), where E is an elliptic curve defined over Fp. This fact establishes
the robustness of4 the Elliptic Curve Diffie-Hellman (ECDH) protocol. In ECDH X = ⟨P ⟩ − {O} where
P is a Fp-rational point of order ℓ, where ℓ divides #E(Fp), on an elliptic curve E defined over Fp, and
G = (Z/ℓZ)∗. The maps ϕQ : (Z/ℓZ)∗ → ⟨P ⟩ − {1} are defined by n ⋆ Q = [n]Q, where [n] denotes the
multiply-by-n isogeny. The elliptic curve DLP is a computationally hard problem for classical computers
because of the unpredictability of scalar multiplication on an elliptic curve.

However, Shor’s quantum algorithm is expected to solve DLPs in polynomial time on a quantum computer
[Sho94]. Hence, Diffie-Hellman key exchange protocols based on the DLP, such as ECDH, are unsafe
against quantum adversaries. Since we expect quantum computers to become operable in the near future,
this motivates the search for new abelian group actions that withstand quantum attacks. In the seminal
work [Cou06], Couveignes introduces a specific HHS based on complex multiplication of elliptic curves
that is conjecturally post-quantum secure. This master thesis explores the mathematics behind the
protocol it inspired.

2.2 Elliptic curves with complex multiplication

For the theory on elliptic curves we refer the reader to Silverman’s The Arithmetic of Elliptic Curves,
see [Sil86]. We are specifically interested in elliptic curves E that have complex multiplication (CM). In
short, this means the endomorphism ring End(E) of E contains strictly more endomorphisms than the
multiplication-by-m endomorphisms. The following theorem fully characterizes the endomorphism ring of
E.

Theorem 2.3 (Deuring, [Sil86] Corollary III.9.4, [Koh96] and [Feo17] Theorem 53.). Let E be an elliptic
curve defined over a field k of characteristic p. The endomorphism ring End(E) is isomorphic to one of
the following:

• Z;

• An order O in a quadratic imaginary field; in this case we say that E has complex multiplication by
O;

• Only if p > 0, a maximal order O in the quaternion algebra Bp,∞; in this case we say that E has
quaternionic multiplication by O. This happens if and only if E is supersingular.

The theory of complex multiplication is an involved topic within mathematics. Some of its characteristics
yield a structure that turns out to be a possible candidate for cryptographic group actions. In order to
discern this structure, we first consider ordinary elliptic curves with CM defined over a number field.

3Here q is the largest prime divisor of p− 1. For e.g. 256-bit security, we choose G such that log2(q) ≈ 256.
4In the 1980’s suggested by Miller [Mil85] and Koblitz [Kob87].
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2.2.1 Elliptic curves with complex multiplication over a number field

Let us consider an ordinary elliptic curve E/C with complex multiplication by a maximal order OK , the
ring of integers of a quadratic imaginary number field K. We recall the uniformization theorem [Sil86,
Theorem VI.5.1] proving that for any such E/C there exists a full lattice Λ ⊂ C and an isomorphism

f : C/Λ ∼−→ E(C).

Let us therefore denote the elliptic curve corresponding to a lattice Λ by EΛ. We also recall from [Sil86,
p. VI.5.3] that

End(EΛ) ∼= {α ∈ C : αΛ ⊂ Λ}
as a ring. Indeed, each α satisfying αΛ ⊂ Λ yields an endomorphism [α] due to the commutativity of the
following diagram [Sil94, Page 97].

C/Λ C/Λ

EΛ EΛ

z 7→α·z

f f

[α]

We notice, see [Sil94, Chapter II], that a non-zero fractional OK -ideal5 a in a quadratic imaginary number
field K is a full lattice in C. Hence,

End(Ea) ∼= {α ∈ C : αa ⊂ a}
= {α ∈ K : αa ⊂ a} since a ⊂ K

= OK .

Therefore, any non-zero fractional OK-ideal a yields an elliptic curve Ea with complex multiplication by
OK . Moreover, since homothetic lattices6 yield isomorphic elliptic curves, we find that a and ca give rise
to isomorphic elliptic curves Ea

∼= Eca with complex multiplication by OK , see [Sil86, Corollary VI.4.1.1].
Therefore, there must exist a direct link between isomorphism classes of ordinary elliptic curves with CM
by OK and ideal classes in the ideal class group Cl(OK).

Definition 2.4 (Ideal class group). Let OK be the ring of integers of a number field K. Let I(OK) be
the group of invertible7 fractional OK-ideals, and let P(OK) be the group of principal ideals.

The ideal class group of OK is the quotient group

Cl(OK) = I(OK)/P(OK).

It is a finite abelian group; its order is called the class number of OK , and denoted by h(OK).

For a non-zero fractional OK-ideal a, let a denote its ideal class in Cl(OK). Let Ell(OK) be the set of
isomorphism classes of elliptic curves with CM by OK . We know that there is a map Cl(OK) → Ell(OK)
given by a 7→ Ea as above. Moreover, by [Sil94, Proposition II.1.2] there is a well-defined group action of
Cl(OK) on Ell(OK) determined by a ⋆ EΛ = Ea−1Λ.

Suppose a is an integral OK-ideal. We define the a-torsion subgroup EΛ[a] of EΛ/C by

EΛ[a] = {P ∈ EΛ(C) : [α]P = O for all α ∈ a}
∼= {z ∈ C/Λ: αz = 0 for all α ∈ a}
= {z ∈ C : αz ∈ Λ for all α ∈ a} /Λ
= {z ∈ C : za ⊂ Λ} /Λ
= a−1Λ/Λ

= ker(C/Λ → C/a−1Λ)

= ker(E → a ⋆ E),

5Where OK denotes the ring of integers of K.
6We know Λ1 and Λ2 are homothetic if there exists c ∈ C such that cΛ1 = Λ2.
7Recall that non-zero fractional ideals of a Dedekind ring are invertible. The ring of integers of a number field is a

Dedekind ring.
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where E → a ⋆ E defines an isogeny. So if a = mOK for an integer m, then E[a] is just E[m]. We
notice that the endomorphisms, such as the multiplication-by-m isogeny, must be defined by the non-zero
fractional principal OK-ideals.

The modular j-invariant of the lattice a is an algebraic integer j(a) such that K(j(a)) is the ring class
field of the order OK , see [Cox22, Theorem 11.1]. For a fixed order OK , all the j(a) are conjugate and
give rise to the splitting field K(j(a)), a ramified abelian8 extension of K. The following result highlights
the remarkable connection between the class group and the modular j-invariant, and thus also to elliptic
curves with complex multiplication.

Theorem 2.5 ([Sil94], Theorem II.4.3 and Proposition II.2.4). Let OK be the maximal order of an
imaginary quadratic number field K/Q, and let a1, . . . , ah(OK) be representatives of Cl(OK). Then:

(1) K (j (ai)) is an abelian extension of K;

(2) The j (ai) are all conjugate over K;

(3) The Galois group of K (j (ai)) is isomorphic to Cl(OK) via

F : Gal(K/K) → Cl(OK),

uniquely characterized by the condition Eσ = F (σ)⋆E for all σ ∈ Gal(K/K) and all E ∈ EllFq
(OK);

(4) [Q (j (ai)) : Q] = [K (j (ai)) : K] = h(OK);

(5) The j (ai) are integral, their minimal polynomial is called the Hilbert class polynomial of OK ;

(6) Cl(OK) acts freely and transitively on EllFq
(OK), in particular #EllFq

(OK) = h(OK).

Example 2.6. In this example we compute the group action of ideal classes on elliptic curves. However,
rather than choosing a starting curve, we start with the ring of integers of the number field Q(

√
−5).

Using Theorem 2.5, compute the elliptic curves defined by the invertible ideals that generate Cl(OQ(
√
−5)).

Let us consider the imaginary quadratic number field K = Q(
√
−5). Notice −5 ≡ 3 mod 4 and so

OK = Z[
√
−5]. Since ∆(Z[

√
−5]) = −20, we find that Cl(Z[

√
−5]) is generated by ideal classes of the

primes of norm at most
(
2
π

)√
20 < 3 due to Minkowski’s theorem. Then the unique prime p2 = (2, 1+

√
−5)

of norm 2 is non-principal and its square is generated by 2. Thus, Cl(Z[
√
−5]) ∼= Z/2Z meaning hK = 2.

Therefore, the Hilbert class polynomial must be quadratic. We compute it using Magma, see Appendix A.1,

where the ideal p2 is the complex lattice 2Z+ (1 +
√
−5)Z, meaning τ = 1+

√
−5

2 . It defines the number

field K = Q(
√
−5) and so ∆K = −20. Next, we use a functionality in Magma that takes the discriminant

∆K as input and yields the Hilbert class polynomial H(x) as output, see line 6 in Appendix A.1.

We find that the roots of H lie in the field extension L = Q(
√
5). One of the roots of H we denote

a = 320(1975− 884
√
5) ∈ L, the roots are given by a and −a+ 1264000. They are the j-invariants of two

elliptic curves,

E1 : y
2 = x3 − x2 +

1

2176
(−121a− 182435008)x+

1

2176
(7139a+ 41742920512)

E2 : y
2 = x3 − x2 +

1

2176
(121a− 335379008)x+

1

2176
(−7139a+ 50766616512)

defined over L. According to Theorem 2.5 (3), the class group Cl(OK) is isomorphic to Gal(K(
√
5)/K).

The latter contains the identity automorphism and the non-trivial action σ ∈ Gal(K(
√
5)/K) defined by

σ(
√
5) = −

√
5 and σ(

√
−5) =

√
−5 meaning σ(i) = −i. We use it to compute the complex multiplication

action via the map F : Gal(K/K) → Cl(OK). We know

Eσ
1 : y

2 = x3 − x2 +
1

2176
(−121σ(a)− 182435008)x+

1

2176
(7139σ(a) + 41742920512)

Eσ
2 : y

2 = x3 − x2 +
1

2176
(121σ(a)− 335379008)x+

1

2176
(−7139σ(a) + 50766616512)

and since σ(a) = 320(1975+884
√
5) = −a+1264000, we find Eσ

1 = E2 and Eσ
2 = E1. Thus, E2 = p2 ⋆E1

and E1 = p2 ⋆ E2. p

8Such that its Galois group is abelian.
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So far we only defined complex multiplication by a maximal order OK . However, curves with CM by a
maximal order also have CM by suborders using the fact that O has conductor9 f with respect to O.

Proposition 2.7 ([Cox22], Proposition 7.20). Let O be an order of conductor f in an imaginary quadratic
field K and OK its ring of integers.

(i) If a is an OK-ideal prime10 to f , then a ∩ O is an O-ideal prime to f of the same norm.

(ii) If a is an O-ideal prime to f , then aOK is an OK-ideal prime to f of the same norm.

(iii) The map a 7→ a ∩ O induces an isomorphism

IK(f) = {OK-ideals prime to f} ∼−→ {O-ideals prime to f} = I(O, f),

and the inverse of this map is given by a 7→ aOK .

We can therefore define Cl(O), with O not necessarily maximal, as follows.

Proposition 2.8 ([Cox22], Proposition 7.19 and Proposition 7.22). Let O be an order of conductor f in
an imaginary quadratic field K. Then there are natural isomorphisms

Cl(O) = I(O)/P (O) ∼= I(O, f)/P (O, f) ∼= IK(f)/PK,Z(f),

where I(O) is the set of proper fractional O-ideals and PK,Z(f) is the subgroup of IK(f) generated by
principal ideals of the form αOK , where α ∈ OK satisfies α ≡ a mod fOK for some integer a relatively
prime to f .

In the context of a cryptographic protocol, we do not care much for elliptic curves defined over number
fields. Rather, we want the elliptic curves to be defined over finite fields Fq where q = pn is a prime
power, because as a result the isogeny graph (see Chapter 2.3) is of finite size. In other words, the set and
group G,X we want to compute group actions on, are of finite size in this context. In the next section
we explore which properties of complex multiplication remain true when we shift our focus to elliptic
curves with CM defined over a finite field Fq.

2.2.2 Elliptic curves with complex multiplication over a finite field

The following result from [Feo17, Theorem 74] based on [Lan87, Chapter 10 §4] relates elliptic curves
with CM by an order O ⊂ K defined over a number field, to their reductions with CM by the same order
defined over a finite field. Moreover, depending on the splitting behavior of primes in K, it also tells us
whether the reduction is ordinary or supersingular.

Theorem 2.9 (Deuring, [Lan87] Chapter 10 §4). Let E be an elliptic curve over a number field L,
with complex multiplication by an order O ⊂ K. Let p be a place of L over p, and assume that E has
non-singular reduction modulo p, denoted by E(p). The curve E(p) is supersingular if and only if p has
only one prime of K above it (p fully ramifies or remains prime in K).

Suppose that p splits completely in K. Let f be the conductor of O, and write f = prf0, where p ∤ f0.
Then:

- E(p) has complex multiplication by the order in K with conductor f0.

- If p ∤ f , then the map ω 7→ ω(p) defines an isomorphism of End(E) and End(E(p)).

Example 2.10 ([Feo17], Examples 73,75). Let us consider the order Z[i] ⊂ Q(i). We know Z[i] is a PID
and thus the class group Cl(O) is trivial. We compute j(Z[i]) = 1728 viewing Z[i] as a lattice, see [Sil86,
Exercise 6.6]. From this j-invariant and the formula for the discriminant11 of an elliptic curve, we derive
that the elliptic curve is defined by a short Weierstrass equation where A = 1 and B = 0. Thus, the only
elliptic curve with complex multiplication by Z[i] is E/Q : y2 = x3 + x.

9An order O has conductor f with respect to OK if f is the smallest integer for which fOK ⊂ O.
10We say an O-ideal a is prime to an integer f if the norm N(a) of the ideal and f are coprime.
11See page 45 in [Sil86].
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Let us consider the reduction of E/Q at the places p ≡ 3 mod 4 where p ≥ 5. We know that p remains
prime in Z[i] and so by Theorem 2.12 the reduction E(p) must be supersingular. Next we consider
the reduction at a prime p ≡ 1 mod 4, let us fix p = 5. To determine whether E has non-singular
reduction modulo 5, we first determine ∆(E). Namely, we know from [Sil86, Pages 55, 56] that E(5) has
non-singular reduction if 5 does not divide ∆. Using the formula for ∆ in [Sil86, Page 45], we compute
∆ = −64 and so E(5) is non-singular. Note E(5) has complex multiplication by Z[i], the maximal order
of Q(i) and so it has conductor equal to 1. We know 5 = (2 + i)(2 − i) in Z[i], meaning 5 completely
splits. Then E(5) is ordinary. Since p = 5 does not divide the conductor, the map ω 7→ ω(5) defines an
isomorphism End(E) ∼= End(E(5)). It can be understood as reducing the coefficients of the coordinate
functions modulo 5. p

Theorem 2.11 (Complex multiplication, [Feo17] Theorem 77). Let Fq be a finite field, O ⊂ K an order
in a quadratic imaginary field, and EllFq

(O) the set of Fq-isomorphism classes of ordinary elliptic curves
with complex multiplication by O.

Assume EllFq
(O) is non-empty, then it is a principal homogeneous space for the class group Cl(O), under

the action
Cl(O)× EllFq

(O) −→ EllFq
(O)

(a, E) 7−→ a ⋆ E

defined above.

Proof. See Theorem 2.5 for O = OK . Moreover, in combination with Proposition 2.8, we find that
Theorem 2.5 also holds for non-maximal orders O. Indeed, let a1, . . . , ah(O) be representatives of Cl(O).
We know from [Cox22, Theorem 11.1 and Chapter 13] that the j(ai) are conjugate algebraic integers
with a minimal polynomial of degree h(O) called the class ‘equation’. Since the class equation is defined
over a field of characteristic 0, we notice that the j(ai) are pairwise distinct. Therefore, they gives rise
distinct Fq-isomorphism classes of elliptic curves with CM by O. N

Moreover, we can relate an elliptic curve E defined over Fq where q = pn a prime power back to a curve
over C, as long as its endomorphism ring is non-trivial12.

Theorem 2.12 (Deuring’s lifting theorem, [Lan87] Chapter 10 §4). Let E0 be an elliptic curve in
characteristic p, with an endomorphism ωo which is not trivial. Then there exists an elliptic curve E
defined over a number field L, an endomorphism ω of E, and a non-singular reduction of E at a place p of
L lying above p, such that E0 is isomorphic to E(p), and ω0 corresponds to ω(p) under the isomorphism.

In fact, we know that End(E) is never trivial whenever E is defined over a finite field Fq. The finite field
Fq is uniquely defined by the q-th power Frobenius automorphism, and the latter can be extended to an
endomorphism π of the elliptic curve E.

Definition 2.13 (Frobenius endomorphism). Let E be an elliptic curve defined over Fq in Weierstrass
form. Its q-th power Frobenius endomorphism π : E → E is the map that sends

(x, y) 7→ (xq, yq)

and O 7→ O.

We use the Frobenius endomorphism to identify the rational points in E(Fq). For example, we know
#E(Fq) = #ker(1− π) because the q-th power Frobenius π coincides with the identity on Fq-rational
points exactly. This fact can also be used in the proof of the following result.

Theorem 2.14 ([Sil86], Theorem V.2.3.1). Let E/Fq be an elliptic curve, π the q-th power Frobenius
endomorphism and

t = q + 1−#E(Fq), (1)

called the trace of the Frobenius. Then π satisfies π2 − tπ + q = 0 in End(E).

The above Equation 1 is often used to determine whether the curve E is ordinary/supersingular and to
determine the amount of Fq-rational points. Indeed, we know E is supersingular if and only if the trace

12Non-trivial meaning, strictly larger than Z.
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is 0 modulo q, see [Sil86, Exercise V.5.10]. We call X2 − tX + q the characteristic polynomial of π and
∆π the corresponding discriminant.

As was hinted at in Chapter 2.2.1, we know that the complex multiplication action on elliptic curves
defined over a number field yields isogenies of elliptic curves E → a ⋆ E. Due to Theorem 2.12, complex
multiplication is then also defined for the reductions that are defined over a finite field. We aim to
characterize the resulting isogenies more carefully, because they provide the hardness to the isogeny-based
Diffie-Hellman protocol. Recall that an elliptic curve is a smooth genus 1 curve.

Definition 2.15 ([Sil86], Definition on page 21). Let ϕ : C1 → C2 be a map of curves defined over L. If
ϕ is constant, we define the degree of ϕ to be 0. Otherwise we say that ϕ is a finite map and we define its
degree to be

deg ϕ = [L (C1) : ϕ
∗L (C2)] .

We say that ϕ is separable, inseparable, or purely inseparable if the field extension L (C1) /ϕ
∗L (C2) has

the corresponding property, and we denote the separable and inseparable degrees of the extension by
degs ϕ and degi ϕ, respectively.

We know from [Sil86, Theorem III.4.10] that the separable degree of an isogeny ϕ is equal to the number
of points in its kernel, i.e.

degs ϕ = #ker(ϕ).

Thus, if an isogeny is separable, then its degree is equal to the number of points in its kernel. Note that
the q-th Frobenius endomorphism is purely inseparable for elliptic curves E defined over Fq, because
aq = a for all a ∈ Fq(E) and so the polynomial13 Xq − u has only one root. Luckily, we can restrict our
attention to separable isogenies by factoring out π using the following result.

Corollary 2.16 ([Sil86], Corollary II.2.12). Every map ψ : C1 → C2 of (smooth) curves over a field of
characteristic p > 0 factors as

C1
π−→ C

(q)
1

λ−→ C2,

where q = degi(ψ), the map π is the q-th power Frobenius map, and the map λ is separable.

Due to Corollary 2.16, we are able to assume an isogeny ϕ is separable if and only if its degree is not
congruent to 0 modulo p. Since the degree of a separable isogeny is given by the order of its kernel, we
say two isogenies are equivalent if they have the same kernel. Unless the coordinate functions of the map
are specified, we take an isogeny to mean an equivalence class of isogenies in the remainder of this thesis.

We restrict our attention to separable isogenies φ of degree ℓ, a prime different from p. The kernel of
such an ℓ-isogeny φ is a cyclic subgroup of E[ℓ]. We call an isogeny with a cyclic kernel a cyclic isogeny.
We know from [Sil86, Corollary III.6.4(b)] that E[ℓ] ∼= Z/ℓZ × Z/ℓZ. The latter contains ℓ + 1 cyclic
subgroups. We say that an ℓ-isogeny φ is Fq-rational if π(ker(φ)) = ker(φ). This suggests that we look
at the restriction of π to E[ℓ] if we only want to work with Fq-rational isogenies. As the characteristic
polynomial and trace suggest, we know from [Sil86, Chapter III.7 The Tate Module] that π acts on
Z/ℓZ× Z/ℓZ as an element in GL2(Fℓ), up to conjugation. Therefore, π must have 0 to 2 Fℓ-rational
eigenvalues, i.e. elements λ in Fℓ for which π(P ) = λP where P generates a subgroup14 of order ℓ. This
yields the following possibilities, where K = Q(π) := Q(

√
∆π) is a quadratic number field.

Atkin: π has no eigenvalues in Fℓ, i.e. X
2 − tX + q is irreducible modulo ℓ; then E has no Fq-rational

ℓ-isogenies. Therefore,
(
∆K

ℓ

)
= −1 (using the Legendre symbol).

ramified: π has one eigenvalue of (geometric) multiplicity one in Fℓ, i.e. it is conjugate to a non-diagonal
matrix (

λ ∗
0 λ

)
,

then there is one Fq-rational ℓ-isogeny from E. Moreover,
(
∆K

ℓ

)
= 0.

13Where u ∈ Fq(E) is a uniformizer at some nonsingular point P ∈ E(Fq), see [Sil86, Proposition II.1.4].
14This subgroup defines the kernel of an ℓ-isogeny.
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ramified: π has one eigenvalue of multiplicity two in Fℓ, i.e. it acts like a scalar matrix(
λ 0
0 λ

)
,

then there are ℓ+ 1 Fq-rational ℓ-isogenies from E. Moreover,
(
∆K

ℓ

)
= 0.

Elkies: π has two distinct eigenvalues in Fℓ, i.e. it is conjugate to a diagonal matrix(
λ 0
0 µ

)
with λ ̸= µ; then there are two Fq-rational ℓ-isogenies from E. Then

(
∆K

ℓ

)
= 1.

Example 2.17. We try to discern the different cases using small prime (i.e. for both p and ℓ small)
examples.

Let us start with the supersingular elliptic curve model E : y2 = x3 + x defined over F11. We know from
[Sil86, Corollary III.6.4] that E[3] ∼= Z/3Z× Z/3Z, and so we look for a finite extension of F11 where all
these 3-torsion points are defined, using the code in Appendix A.6.

It turns out an extension of degree 2 does the trick, meaning E[3] ⊆ E(F121). We find that π11(P ) = P
and π11(Q) = P + 2Q. Therefore, if we assign the basis P → (1, 0)T and Q→ (0, 1)T we find that π11 is
conjugate to the matrix (

1 1
0 2

)
in GL2(F3). This checks out with the fact that π11 sends 2P to 2P and P +Q to 2P +2Q. Note that this
matrix is conjugate to a diagonal matrix with eigenvalues 1 and 2 in F3. We check if this corresponds to
the splitting behavior of the characteristic polynomial modulo 3. To this end, we determine the trace of
the Frobenius endomorphism π11 with respect to E/F11 using Trace(E,1). The trace t = 0 because E is
supersingular, see Example 2.10. We note that X2 + 11 mod 3 ≡ X2 + 2 ≡ (X + 1)(X − 1) and so we are
in the Elkies case, such that E has two 3-isogenies defined over F11. Using the above information (and
some further Magma calculations), we understand that the isogenies are defined by the cyclic subgroups
of E[3] generated by P and P + Q with eigenvalues 1 and 2 in F3 respectively. Lastly, we compute
∆K = −11 since 11 ≡ 3 mod 4. Thus,(

∆K

ℓ

)
=

(
−11

3

)
=

(
−1

3

)(
11

3

)
= 1

because 11 is a non-square residue modulo 3.

Next we explore the Atkin case, where we need the characteristic polynomial X2− tX+q to be irreducible
modulo ℓ. By trial and error, we are able to select an irreducible polynomial X2 + 7 ≡ X2 + 1 mod 3,
meaning we want to work with an elliptic curve E/F7 with trace t = 0 such that E[3] is contained in a
small extension of F7. Since 7 ≡ 3 mod 4, we know E : y2 = x3 + x has trace t = 0 over F7 because it is
supersingular, see Example 2.10. We derive from the code in Appendix A.7 that E[3] ⊂ E[F74 ].

We compute π7(P ) = P + 2Q, π7(Q) = 2P + 2Q. Therefore, if we assign the basis P → (1, 0)T and
Q→ (0, 1)T we find that π7 is conjugate to the matrix(

1 2
2 2

)
in GL2(F3). It is clear from the characteristic polynomial that π7 has no eigenvalues over F3. Lastly, we
know ∆K = −7 since 7 ≡ 3 mod 4. Therefore,(

∆K

ℓ

)
=

(
−7

3

)
=

(
−1

3

)(
7

3

)
= −1

because 7 is a non-square residue modulo 3. p
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We are interested in the so-called Elkies primes ℓ, i.e. the primes ℓ for which X2 − tX + q completely
splits. Indeed, if ℓ is Elkies, then there exist two Fp-rational ℓ-isogenies per elliptic curve E, which is the
maximal amount. This yields isogeny graphs, see the next chapter, in which any two nodes are connected
by a very short path. Such graphs are useful in cryptography because the probability distribution of
taking a walk (i.e. an isogeny) converges rapidly to the uniform distribution as the length of the walk
increases. Since recovering isogenies, and thus walks, provide the hardness factor to the scheme we aim
to study, it is essential that walks through isogeny graphs are sufficiently difficult to recover. For the
definition and basic properties of isogeny graphs, we start a new chapter.

2.3 Isogeny graphs

An isogeny graph is a graph in which the vertices are represented by isomorphism classes of elliptic curves
and the edges by the isogenies. In this chapter, we focus in particular on ordinary elliptic curves with
CM by orders in a number field K defined over a finite field Fq, and on Fq-rational ℓ-isogenies.

First of all, we can divide the graph up into segments by distinguishing vertices through their endomorphism
rings End(E), i.e. the orders that they have complex multiplication by. Indeed, we know all such orders
O contain the multiplication-by-m map, i.e. all of Z, and the q-th power Frobenius endomorphism π.
Therefore, they must all contain Z[π] := Z[

√
∆π] and have the same field of fractions K = Q(π). Thus,

Z[π] ⊂ O ⊂ OK and
∆π = [O : Z[π]]2[OK : O]2∆K .

Hence, we know that an order is maximal if its discriminant is square-free. Moreover, there can exist only
finitely many orders with field of fractions K. The following result from [Koh96, Proposition 21] sheds
more light on our approach.

Proposition 2.18 ([Koh96], Proposition 21). Let E,E′ be elliptic curves defined over a finite field.
Suppose that there exists an isogeny ϕ : E → E′ of prime degree ℓ, then End(E) contains End(E′) or
End(E′) contains End(E), and the index of one in the other divides ℓ.

Using terminology from [Koh96], we fix a prime ℓ and say an elliptic curve E lies on the surface if
vℓ([OK : End(E)]) = 0, where vℓ is the ℓ-adic valuation. We say E is at depth d if d = vℓ([OK : End(E)]).
The maximal depth is vℓ([OK : Z[π]]) and curves at that depth are said to lie on the floor of the graph.
Kohel calls an ℓ-isogeny horizontal if its codomain is an elliptic curve at the same depth. It is called
descending if its codomain lies at greater depth, ascending if its codomain lies at lesser depth. The
following result gives us the number of isogenies on each level of the graph.

Theorem 2.19 ([Koh96], Proposition 23). Let E/Fq be an ordinary elliptic curve, π its Frobenius
endomorphism, and ∆K the fundamental discriminant of K = Q(π).

1. If E is not at the floor, there are ℓ+ 1-many Fq-rational isogenies of degree ℓ from E, in total.

2. If E is at the floor, there are no descending Fq-rational ℓ-isogenies from E.

3. If E is at the surface, then there are
(
∆K

ℓ

)
+1-many Fq-rational horizontal ℓ-isogenies from E (and

no ascending Fq-rational ℓ-isogenies).

4. If E is not at the surface, there are no horizontal Fq-rational ℓ-isogenies from E, and one ascending
Fq-rational ℓ-isoqeny.

Note that the isogeny graphs in Figure 1 resemble a volcano. Therefore, we call each such graph an
isogeny volcano, following the example of [FM02]. To continue this analogy, we call the surface of an
Elkies isogeny volcano the crater. Next, we focus specifically on the horizontal ℓ-isogenies at the surface
(or crater) of an isogeny volcano. The horizontal ℓ-isogenies correspond directly to prime ideal classes in
Cl(O) via complex multiplication. The vertices on the surface are given by EllFq

(O), the Fq-isomorphism

classes of ordinary elliptic curves E/Fq with complex multiplication by fractional O-ideals prime to the
conductor of O. We fix a prime ℓ and depending on the cases from before, we obtain the following surfaces
of ℓ-isogeny volcanoes.
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Figure 1: Isogeny volcano types of 2-isogenies depending on
(
∆K

ℓ

)
. In the Atkin case, no Fq-rational

horizontal isogenies exist at the surface. In the ramified case only one such isogeny exists per vertex at
the surface. In the Elkies case, two Fq-rational isogenies per vertex at the surface exist. Taken from the
third version of [Feo17, Page 29].

Corollary 2.20. Let O be a quadratic imaginary order, and assume that EllFq
(O) is non-empty. Let ℓ

be a prime such that O is ℓ-maximal, i.e. such that ℓ does not divide the conductor of O. All ℓ-isogeny
volcanoes of curves in EllFq

(O) are isomorphic as graphs. Furthermore, one of the following is true.

(0) If the ideal (ℓ) is prime in O, then there are h(O) distinct ℓ-isogeny volcanoes of Atkin type, with
surface in EllFq

(O).

(1) If (ℓ) is ramified in O, i.e., if it decomposes as a square l2, then there are h(O)/2 distinct ℓ-isogeny
volcanoes of ramified type, with surface in EllFq

(O).

(2) If (ℓ) splits as a product l · l′ of two distinct prime ideals, then there are h(O)/n distinct ℓ-isogeny
volcanoes of Elkies type, with craters in EllFq

(O) of size n, where n is the order of l in Cl(O).

Let us focus on the crater of the graph in the Elkies case. This subgraph is generated by the isogenies on
the surface is 2-regular and finite, i.e. a cycle. We recall that the Frobenius endomorphism splits modulo
ℓ, meaning

0 ≡ π2 − tπ + q ≡ (π − λ)(π − µ) mod ℓ

where λ, µ ∈ Fℓ are distinct eigenvalues associated to the action of π on E[ℓ]. They correspond to the
ideal l = (ℓ, π − λ) and its inverse l′ = (ℓ, π − µ), that are both of norm ℓ. Then E[l] ∪ E[l′] = E[ℓ] and
[l′] is the dual of [l] because [ℓ] = [l] ◦ [l′] = [l′] ◦ [l]. In the crater, the isogenies [l] and [l′] yield opposite
directions as can be seen from Figure 2 underneath.

Figure 2: Isogeny cycle of arbitrary length for an Elkies prime ℓ, the edge directions associated with the
Frobenius eigenvalues λ and µ. Taken from the third version of [Feo17, Figure 9].

The set EllFq
(O) is partitioned into craters of size equal to the order of the ideal class of l = (ℓ, π − λ)

in Cl(O). This is a basic instance of a Caley graph of the class group Cl(O) with edge set S = {l, l′}.
Notice that we can enlarge S by adding the prime ideals belonging to different Elkies primes ℓ′ ̸= ℓ. The
union of different craters yields the end product and is used in the Couveignes-Rostovtsev-Stolbunov
(CRS) scheme. We introduce the latter in the next chapter.
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3 The origins of CSIDH

3.1 Couveignes-Rostovtsev-Stolbunov (CRS) scheme

?? The CRS scheme uses the correspondence between isogenies of ordinary elliptic curves with complex
multiplication by an imaginary quadratic order O, and ideals in the class group Cl(O). Since Cl(O) is
commutative, there exists an abelian group action of ideal classes in Cl(O) on elliptic curves over Fq with
CM by O that we can use to instantiate the DH protocol. This group action is a HHS due to the use of
modular equations Φℓ(X,Y ) = 0, see [Cox22, Chapter 11.C], in the group action computations.

In this chapter we first explain the CRS scheme for a Diffie-Hellman protocol using the modular equation.
Next, we compare it to computing the group action using Vélu’s equations, see Theorem 3.3.

Setup of public parameters: an ordinary elliptic curve E0/Fq with End(E0) = O and set of Elkies
primes {ℓ1, . . . , ℓn}.

Key generation: the secret key (e1, . . . , en) where each ei is sampled randomly from {−m, . . . ,m}
representing a = le11 . . . ln

en ∈ Cl(O), where li = (ℓi, π−λ). The public key j(EA), where EA := E0/E0[a].

Key exchange: Alice and Bob have key pairs (a, j(EA)) and (b, j(EB)). Upon the publication of
j(EB), Alice finds the chain of Fq-rational roots of the modular equation corresponding to each factor
of her secret key a. Similarly for Bob. They both recover the same j-invariant as the last links of their
chains, their shared secret key.

The security of this protocol stems from the hardness of recovering isogenies, an intractable problem. For
the origins of the CRS scheme, we quote from [Cas+18, Page 2].

“The first proposal of an isogeny-based cryptosystem was made by Couveignes in 1997 [Cou06]. It described
a non-interactive key exchange protocol where the space of public keys equals the set of Fq-isomorphism
classes of ordinary elliptic curves over Fq whose endomorphism ring is a given order O in an imaginary
quadratic field and whose trace of Frobenius has a prescribed value. .... His work was only circulated
privately and thus not picked up by the community; the corresponding paper [Cou06] was never formally
published and posted on ePrint only in 2006. The method was eventually independently rediscovered by
Rostovtsev and Stolbunov in 2004 (in Stolbunov’s master’s thesis, which was initially written in Russian
and later published on ePrint as [RS06] in 2006).”

This led to the abbreviation by which we know the CRS scheme.

3.1.1 Computing a group action using the modular equations

Let us first establish the mathematical foundations of the CRS scheme. We work in the context of
an order O such that its field of fractions K is an imaginary quadratic number field. If we consider
the Frobenius endomorphism π of Fq modulo ℓ, it has at most two roots λ, µ ∈ Z/ℓZ, where ℓ is any
prime integer ℓ ≠ p. We are interested in the Elkies case, where λ ≠ µ exist such that (ℓ)O = ll′ with
l = (ℓ, π − λ) and l′ = (ℓ, π − µ). The isogenies we are interested in are defined by the ideals l and their
inverses l′, which yields Fq-rational isogenies [l] and their duals [l′] on any ordinary elliptic curve over Fq

with complex multiplication by O.

These ideals are sampled from Cl(O) under the assumption that small15 Elkies prime ideals li have large
order and that their ideal classes are evenly distributed in Cl(O). Under these assumptions, we expect
that ideals of the form le11 . . . lenn , where ei ∈ Z>0, rarely lie in the same ideal class. Since the li are global
parameters, the costly process of selecting Elkies primes ℓi does not greatly affect the efficiency of the
protocol.

Next we would like to evaluate the group action of an ideal l = (ℓ, π − λ) in Cl(O) on an ordinary elliptic

15In terms of their norm.
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curve E0/Fq with CM by O. This amounts to finding the elliptic curve in the codomain of an isogeny.
Couveignes proposed the use of the modular equation Φℓ(X,Y ) = 0, where elliptic curves are represented
by their j-invariant.

If we compute the Fq-rational roots Yi of the modular polynomial Φℓ(j(E0), Y ), they correspond to the
j-invariants of the two neighboring curves16 of E0 in the ℓ-isogeny graph. In the first step from the
starting curve E0, we choose the neighbor corresponding to the action of l = (ℓ, π− λ). We can check this
by taking any non-zero point (x, y) satisfying the kernel polynomial17, and checking if π(x, y) = [λ](x, y)
modulo the kernel polynomial and on the curve. If the equality holds, the right choice was made. In any
consequent steps, we want to avoid backtracking. To this end it suffices to choose the j-invariant that
was not chosen in the previous step.

The output of this scheme is a j-invariant which corresponds to multiple elliptic curve Weierstrass models
and in particular at least two models that are both defined over Fq. They form a set Twist((E0, O)/Fq)
called the twists of the elliptic curve E0. If we work with ordinary elliptic curves, the twists can be
distinguished by their trace. Thus, in that case we are able to recover an elliptic curve E/Fq. For
more information about this algorithm, see [FKS18, Pages 9, 10, 11]. This method is based on [Cox22,
Proposition 14.11], which reads as follows.

Proposition 3.1 ([Cox22], Proposition 14.11). Let E and E′ be elliptic curves over C. Then there is a
cyclic isogeny α from E to E′ of degree ℓ if and only if Φℓ (j(E), j (E′)) = 0.

Note that Elkies primes l = (ℓ, π − λ) and l′ = (ℓ, π − µ) define dual isogenies, since (ℓ) = ll′. Moreover,
since deg([ℓ]) = ℓ2, we know that l and l′ must be separable because p ∤ ℓ. Thus, we know that
deg(l) = deg(̄l) = #ker(l). Therefore, ℓ = #ker(l), meaning l is a cyclic isogeny. Thus, l : E0 → E1 if
and only if Φℓ(j(E0), j(E1)) = 0 when we consider E0, E1 to be elliptic curves over C. Similarly for l′.
This proves the mathematical principals of the protocol.

An initial advantage of this method is that the degree of the field extension r = [Fqr : Fq] such that
ker(li) ⊆ Ej(Fqr ) does not influence the computation. We see this clearly demonstrated in the following
toy example.

Example 3.2. Consider the ordinary elliptic curve E0/F83 : y
2 = x3+x+1, we aim to find its horizontal

neighbors in the ℓ-isogeny graphs using the modular equation Φℓ(X, j(E)) ∈ F83[X] and for as many
different ℓ as we can. To this end, we need to find primes ℓ that are Elkies, because they define the
edges of the isogeny graph. We find them using the Magma code in Appendix A.2. We know that the
classical database of Magma only contains modular equations for the primes up to and including 41.
Therefore, we only need to check whether the first 40 primes are Elkies. Using Magma, we compute that
the trace of E/F83 is t = −6. Thus, the characteristic polynomial of the Frobenius endomorphism is
x2 + 6x+ 83. If this polynomial splits into distinct linear factors modulo a prime, then the primes is
Elkies. This yields the Elkies primes {3, 5, 11, 13, 23, 29, 31, 41} that satisfy this condition. We compute
that j0 := j(E0) = 65 mod 83 is the j-invariant of E0.

Let us start with the prime ℓ = 3. Consider the classical modular equation Φ3(X, j(E0)) over F83 and look
at its linear factors to derive the next j-invariant. In the first step, we find that Φ3(X, j0) has two linear
factors X +63 and X +48 modulo 83, see Appendix A.3 for the relevant code. Therefore, the neighboring
F83-isomorphism classes must have j-invariants −63 ≡ 20 mod 83 and −48 ≡ 35 mod 83. We choose
j2 ≡ 20 mod 83 for our first step. In the second step, we try to find the linear factors of Φ3(X, 35 mod 83).
This yields the original j-invariant j0 ≡ 65 mod 83 and a new j-invariant j4 ≡ 30 mod 83, so it only
makes sense to continue evaluating Φ3(X, 30 mod 83). In the fourth step we find j8 ≡ 35 mod 83 again,
we are able to conclude Φ3(X,Y ) generates a cyclic graph with 5 vertices.

Repeating this process for each ℓ ∈ {3, 5, 11, 13, 23, 29, 31, 41} and ji, we obtain the following union of
graphs, in which each vertex corresponds to the j-invariant obtained through evaluating the modular
equations. Hereby, the following colors correspond to the following subgraphs. Red corresponds to
ℓ = 5, 31, 41, orange corresponds to ℓ = 3, green corresponds to ℓ = 11 and blue corresponds to
ℓ = 13, 23, 29.

16See the Elkies case in Chapter 2.2.2.
17As described in the PhD thesis of Kohel, see [Koh96, Chapter 2.4]. If the kernel is viewed as a finite subgroup scheme

of the elliptic curve as a group scheme, it can be described by a polynomial in the coordinate x of the Weierstrass equation.
For multiplication-by-m endomorphisms, these are the m-th division polynomials, see [Sil86, Exercise 3.7].
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Next we look at an example of the CRS scheme with the modular equation Φ(X,Y ) = 0 in the Diffie-
Hellman protocol that we started this chapter with.

Setup of public parameters: consider the ordinary elliptic curve

E0/F83 : y
2 = x3 + x+ 1

with j-invariant j(E0/F83) = 65 and set of Elkies primes {3, 5, 11, 13}.

Key exchange: Let pℓ = (ℓ, π − λℓ) whose action works in the clockwise direction in above graph,
and where (π − λℓ)(π − µℓ) ≡ 0 mod ℓ. Alice picks the secret key (1,−2, 3, 0) representing the
ideal a = p3p

−2
5 p311 ∈ Cl(O). Similarly, Bob picks the secret key (0,−1, 1, 2) representing the ideal

b = p−1
5 p11p

3
13.

Alice computes her public key j(EA) as follows. She first determines the roots of Φ3(X, 65 mod 83) in
F83 belonging to the first prime in the ideal factorization of a. We observe from the graph above that
this yields j2 = 20. Next, she determines the roots of Φ5(X, 20 mod 83) in F83. This corresponds to
walking along the red edge out of 20, but rather in anti-clockwise direction because the exponent is
negative. Thus, we obtain j1 = 61. However, we need to compute this step twice and so we end up in
j0 = 65. Computing these steps for every factor yields her public key j2 = 20. In literature, her walk is
sometimes denoted bya (+,−,−,+,+,+). We notice that the order of steps does not matter.

Similarly, Bob computes the roots of Φ5(X, 65 mod 83) in F83 for the first (non-zero) factor of a. This
corresponds to walking along the red edge out of 65 mod 83 in anti-clockwise direction. At the final step,
one can check that he obtains the public key j5 = 73. His walk is sometimes denoted by (−,+,+,+).

Key exchange: Both Alice and Bob publish j(EA) = 20 and j(EB) = 73. They repeat the same
computations, but instead they take j(EB), j(EA) as their first inputs into Φℓ(X,Y ) respectively. We
check that they both obtain j4 = 30.

aThis walk contains a loop due to the scale of the example, meaning (1,−2, 3, 0) = (0, 0, 3, 0). Similarly for Bob’s walk:
(0,−1, 1, 2) = (0,−1, 0, 0).

This concludes the example. p

The most computationally expensive part of this scheme is to find the two linear factors of each modular
equation Φℓ(X, j(Ei)) ∈ Fq[X]. According to [FKS18], the fastest algorithm for finding these roots uses

principles from the Cantor-Zassenhaus algorithm which costs Õ(ℓ log q) operations18 in Fq. Therefore,

the algorithm executing this scheme costs Õ(ℓ log q) operations in Fq.

18We use the tilde to indicate certain logarithmic factors are ignored, see Definition C.2.
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3.1.2 Vélu’s equations

There exists another method for computing isogenies where we do not need modular polynomials and
thus avoid a costly root-finding process. It uses Vélu’s equations, see Theorem 3.3 underneath. They are
a simple and effective tool in computing isogenies [l], because we only need an ℓ-cyclic subgroup of E(Fq),
i.e. a subgroup of order ℓ consisting of Fq-rational points on the elliptic curve E. This method is based
on the following theorem in [Was08, Theorem 12.16].

Theorem 3.3 ([Was08], Theorem 12.16). Let E be an elliptic curve given by the generalized Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with all ai in some field K. Let C be a finite subgroup of E(K). Then there exists an elliptic curve E′

and a separable isogeny α from E to E′ such that C = Kerα.

For a point Q = (xQ, yQ) ∈ C with Q ̸= ∞, define

gxQ = 3x2Q + 2a2xQ + a4 − a1yQ

gyQ = −2yQ − a1xQ − a3

vQ =

{
gxQ ( if 2Q = ∞)

2gxQ − a1g
y
Q ( if 2Q ̸= ∞)

uQ =
(
gyQ

)2
.

Let C2 be the points of order 2 in C. Choose R ⊂ C such that we have a disjoint union

C = {∞} ∪ C2 ∪R ∪ (−R)

(in other words, for each pair of non-2-torsion points P,−P ∈ C, put exactly one of them in R). Let
S = R ∪ C2. Set

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + xQvQ)

Then E′ has the equation

Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6

where
A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5v, A6 = a6 −
(
a21 + 4a2

)
v − 7w.

The isogeny is given by

X = x+
∑
Q∈S

(
vQ

x− xQ
+

uQ

(x− xQ)
2

)
,

Y = y −
∑
Q∈S

(
uQ

2y + a1x+ a3

(x− xQ)
3 + vQ

a1 (x− xQ) + y − yQ

(x− xQ)
2 +

a1uQ − gxQq
y
Q

(x− xQ)
2

)
.

Example 3.4. Let us apply Vélu’s equations to the example from before, the ordinary elliptic curve
E : y2 = x3 + x+ 1 over the finite field F83. Using the following code

1 L<a>:=GF(83 ,1);

2 E:= EllipticCurve ([L|1 ,1]);

3 T:= TorsionSubgroupScheme(E,3);

4 Points(T);

we find the 3-torsion points P = (3, 60) and −P = (3, 23) giving rise to a 3-isogeny with kernel ⟨P ⟩.
Filling out the formulas for C2 = ∅ and S = {P}, we end up with the following elliptic curve in the
codomain:

E′/F83 : y
2 = x3 − 279x− 101975

which has j-invariant 20. This checks out with the graph of 3-isogenies in Example 3.2. p
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We are able to construct ker[l] = ⟨P ⟩ where l = (ℓ, π − λ) according to [FKS18, Page 11], by finding a
non-trivial ℓ-torsion point P ∈ E(Fqr ), where r = order(λ mod ℓ). Indeed, let us first consider any point
Q in ker[l]. Therefore, ℓQ = O and πQ = λQ. We find that

πrQ = λrQ ≡ Q mod ℓ.

Since ℓQ = O, this implies πrQ = Q and so we find ker[l] ⊆ E(Fqr ), where π is the q-th power Frobenius
endomorphism. Next, we note 0 = π2 − tπ+ q ≡ (π−λ)(π−µ) mod ℓ, and so any Q ∈ E[ℓ](Fqr ) is in the
kernel of [l] or [l′] where l′ = (ℓ, π−µ). Thus, if order(µ mod ℓ) does not divide r, we find that necessarily
E[ℓ](Fqr ) = ker[l]. For this reason we select the eigenvalue λ such that order(λ mod ℓ) < order(µ mod ℓ).
Finding a non-trivial ℓ-torsion point P can then be done as follows. We multiply a random point R in
E(Fqr) by #E(Fqr)/ℓ and check if this yields a non-trivial ℓ-torsion point P := #E(Fqr)/ℓ · R. If we
do not succeed, we repeat the process by choosing another point R in E(Fqr). This of course requires
ℓ | #E(Fqr ), and so for a start we need to compute the order of E(Fqr ).

Note that #E(Fqr) can be computed from the trace t of π: we know #E(Fq) = q + 1 − t and so the
trace t is derived from the characteristic polynomial x2 − tx + q of π. By fixing the roots α, α ∈ C
we find t = α + α. If we denote π = πq the q-th power Frobenius endomorphism, we know πr

q = πqr

and so since α, α are eigenvalues of π, then #E(Fqr) = qr + 1− tr with tr = αr + αr. The recurrence
relation t0 = α0 + α0 = 2, t1 = t and tn+1 = t · tn − q · tn−1 is then proved by induction19. In this
way #E(Fqr) = qr + 1 − tr can be computed much faster depending on how large r is. Assuming
log#E(Fqr) ≃ r log q provided ℓ = O(log q), the costliest step in this algorithm is multiplication of a

point Q by #E(Fqr )/ℓ, which costs Õ(r2 log q) Fq-operations.

Comparing the two methods, we find that the modular method costs Õ(ℓ log q)-many Fq-operations while

Vélu’s method costs Õ(r2 log q). Therefore, if we can force r = 1, this saves a factor ℓ when we use Vélu’s
method. This is exactly what is done in CSIDH, a scheme based on the method we established in this
chapter.

3.2 The design choices of CSIDH

In this chapter we introduce CSIDH, the Commutative Supersingular Isogeny Diffie-Hellman characterized
by the following protocol.

Setup of public parameters: a supersingular elliptic curve E0/Fp : y
2 = x3 + x with Endp(E0) =

Z[
√
−p] and set of Elkies primes {ℓ1, . . . , ℓn} such that p = 4

∏n
i=1 ℓi − 1 ≡ 3 mod 8.

Key generation: the secret key (e1, . . . , en) where each ei is sampled randomly from {−m, . . . ,m}
representing a = le11 . . . ln

en ∈ Cl(Z[
√
−p]), where li = (ℓi, π − 1). The public key A, where EA :=

E/E[a] : y2 = x3 +Ax2 + x.

Key exchange: Alice and Bob have key pairs (a, A) and (b, B). Upon the publication of B, Alice
computes the chain of Fp-rational Montgomery coefficients corresponding to Vélu’s equations applied to
the kernel of each factor of her secret key a. Similarly for Bob. They both recover the same Montgomery
coefficient at the end of this chain, their shared secret key.

The protocol contains specific design choices that are explained in this chapter, where we regard CRS as
our point of departure.

The major drawback of CRS using Vélu’s equations by De Feo, Kieffer and Smith [FKS18] if we require
r = 1, is its inefficiency largely caused by the following selection process. They aim to find an ordinary

19Note that since αα = q,

ttn − qtn−1 = (α+ α)(αn + αn)− q(αn−1 + αn−1)

= αn+1 + αn+1 + ααn + ααn − qαn−1 − qαn−1

= αn+1 + αn+1

= tn+1.

21



elliptic curve E defined over Fq with Fq-rational points Pi of order ℓi for many different small primes ℓi.
We know that this is true if and only if #E(Fq) is congruent to 0 modulo ℓi for all i. Each non-trivial
point Pi yields a Fq-rational ℓ-isogeny, φi, with cyclic kernel ⟨Pi⟩ via Vélu’s equations.

Moreover, as described in [Cas+18, page], Childs, Jao and Soukharev [CJS14] showed in 2010 that
the CRS scheme could be broken with quantum algorithms that have a time complexity of Lq[1/2],
i.e. in subexponential time. This would be acceptable if it were not also true that CRS is incredibly
slow: it takes minutes to compute a single isogeny. One of the vulnerabilities the attack exploits is the
commutativity of the class group of the endomorphism ring of an ordinary elliptic curve, which is an order
in an imaginary quadratic number field. Therefore, supersingular elliptic curves were considered because
their endomorphism ring was a maximal order in a quaternion algebra and therefore not commutative.
This consideration resulted in the Supersingular Isogeny Diffie-Hellman, which was broken in 2022 in two
independent efforts using a theorem by Kani, see [CD23] and [MM22]. We note that this scheme does not
use the CRS scheme in which ordinary elliptic curves are substituted for supersingular ones. However,
this idea did inspire Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny and Joost Renes
to develop a scheme known as Commutative Supersingular Isogeny Diffie-Hellman. In this chapter we
introduce this scheme to the reader.

First of all, the choice for supersingular curves means that #E(Fq) = q+ 1, see [Sil86, Theorem V.4.1(a)],
guaranteeing the existence of an ℓ-cyclic subgroup in E(Fq) whenever ℓ | (q + 1). Next, we address

the other inefficiencies in the design of this scheme, by lowering the computation cost Õ(r2 log(q)) as
follows. We require q = p to be prime and r = 1 in order to reduce the cost. Thus, if λ ≡ 1 mod ℓ, then20

l = (ℓ, π − 1) and we know that ker(π − 1) ⊆ E(Fp) because the p-th power Frobenius π coincides with
the identity morphism exactly on Fp. Moreover, since we work with supersingular curves, we know that
the trace is always 0 and so the characteristic polynomial of the (p-th power) Frobenius morphism is21

x2 + p. Therefore, λ+ µ ≡ 0 mod ℓ and so µ ≡ −1 mod ℓ. Note that then l′ = (ℓ, π + 1) and the points
in ker(π + 1) are exactly those that satisfy π(x, y) = (x,−y), i.e. with x ∈ Fp and y ∈ Fp2 \ Fp. This all
checks out, since p = λ · µ ≡ −1 mod ℓ holds true for any ℓ | (p+ 1). Thus, if we can find a non-trivial
point P with x(P ) ∈ Fp and y(P ) ∈ Fp2 of order ℓ, we have found the kernel ⟨P ⟩ of a Fp-rational ℓ-isogeny
[l] or [l′] and we can use Vélu’s equations, see Theorem 3.3, to compute the group action.

Finding a point P of order ℓ is a computationally costly process because it involves many and potentially
large elliptic curve point multiplications, see [Cas+18] and [Sil86, Chapter XI.1]. Therefore, we prefer to
work with many small primes22 ℓi to lower the running time. For instance, in order to guarantee a key
space of 256 bits, the designers of CSIDH fix

p = 4

74∏
i=1

ℓi − 1, (2)

where ℓ1 = 3, ℓ2 = 5 . . . , ℓ73 = 373 are the smallest 73 odd primes, and ℓ74 = 587 in order to ensure p is a
prime itself. The exponents of these ideals are taken in a range {−5, . . . , 5} which indeed results in a
key-space size of

log2((2 · 5 + 1)74) ≈ 255.9979

bits. The amount of bits can be chosen smaller or larger by decreasing or increasing the prime p,
respectively.

The ℓ-isogenies we are interested in are Fp-rational if and only if the Frobenius endomorphism of the field
of definition stabilizes the respective kernels. This allows us to regard the vertices in the isogeny graph of
a supersingular elliptic curve as Fp-isomorphism classes. However, so far we have only determined the
structure of an isogeny volcano for ordinary elliptic curves. A similar structure also exists for supersingular
elliptic curves and it depends on the characteristic p of the prime field Fp as we can see from the following
result. Recall p ≡ 3 mod 4, which can be seen from Equation (2).

Theorem 3.5 ([DG16],Theorem 2.7). Let p > 3 be a prime and K = Q(
√
−p) with ring of integers OK .

(1) p ≡ 1 mod 4: There are h(OK)-many Fp-isomorphism classes of supersingular elliptic curves over
Fp, all having the same endomorphism ring OK = Z[

√
−p]. From every class, i.e. vertex, there is

20Recall, (ℓ)O = ll′ as fractional O-ideals.
21Hence, π = [

√
−p].

22In stark contrast with ECC.
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one outgoing Fp-rational horizontal 2-isogeny as well as two horizontal ℓ-isogenies for every prime
ℓ > 2 with

(−p
ℓ

)
= 1.

(2) p ≡ 3 mod 4: There are two levels in the supersingular isogeny graph. From each vertex there are
two horizontal ℓ-isogenies for every prime ℓ > 2 with

(−p
ℓ

)
= 1.

(a) If p ≡ 7 mod 8, on each level h(OK)-many vertices are situated. Surface and floor are connected
1 to 1 with 2-isogenies and on the surface we also have two horizontal 2-isogenies from each
vertex.

(b) If p ≡ 3 mod 8, we have h(OK)-many vertices on the surface and 3h(OK)-many on the floor.
Surface and floor are connected 1 to 3 with 2-isogenies, and there are no horizontal 2-isogenies.

Figure 3: Examples of Fp-volcanoes belonging to the cases 1, 2(a) and 2(b) (from left to right). The
vertical 2-isogenies are red, the horizontal isogenies on the floor are green and the horizontal isogenies on
the surface are blue.

Proof. See Chapter 4.4. N

In contrast to the CRS scheme where we look at the whole endomorphism ring End(E), in CSIDH we only
look at the Fp-rational endomorphisms for a supersingular elliptic curve E defined over the prime field Fp.
Denoted Endp(E), the Fp-rational subring is an order in an imaginary quadratic number field, see [Wat69,
Theorem 4.1 and Theorem 6.1]. It contains the p-th power Frobenius endomorphism π = [

√
−p] and

therefore Z[π] := Z[
√
−p] ⊆ Endp(E). Since p ≡ 3 mod 4, we know from Theorem 3.5 that the floor of the

isogeny graph corresponding to Z[
√
−p] contains the most vertices out of all levels. Therefore, we prefer

to work with Fp-isomorphism classes of elliptic curves situated on the floor of a volcano. We thus only
consider horizontal isogenies and Fp-isomorphism classes of elliptic curves with the same endomorphism
ring.

In the context of the Diffie-Hellman protocol, CSIDH has starting curve E0 : y
2 = x3 + x, which defines a

supersingular elliptic curve over Fp whenever p ≡ 3 mod 4, see Example 2.10. We also know x3 + x can
only have one Fp-rational root because

√
−1 /∈ Fp if p ≡ 3 mod 4. Therefore, only one subgroup of order

2 exists in E(Fp). By Theorem 3.5 this implies E0 must lie on the floor of the isogeny volcano. Therefore,
Endp(E) = Z[

√
−p]. Although this does no longer address the vulnerability from the Lq[1/2] quantum

attack due to Childs, Jao and Soukharev23, the resulting scheme proves to be much more efficient. It was
first published in 2018 [Cas+18].

Distinguishing vertices using the j-invariant is not possible in this scheme. We need another method to
identify the Fp-isomorphism classes. Namely, even though two elliptic curves are not isomorphic over
Fp, they might have the same j-invariant if they are isomorphic over Fp. In that case, they are each
other’s quadratic twist24. We can efficiently denote and distinguish Fp-isomorphism classes if we require
p ≡ 3 mod 8 and Endp(E) = Z[

√
−p] using the following proposition from [Cas+18].

Proposition 3.6 ([Cas+18], Proposition 8). Let p ≥ 5 be a prime such that p ≡ 3 mod 8, and let E/Fp

be a supersingular elliptic curve. Then Endp(E) = Z[
√
−p] if and only if there exists A ∈ Fp such that E

is Fp-isomorphic to the curve EA : y2 = x3 +Ax2 + x. Moreover, if such a A exists then it is unique.

Proof. See the end of Chapter 5.4. N

23The endomorphism ring we work with is a commutative ring, meaning the attack remains viable.
24This is not true if j = 0 or j = 1728.
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We explore the details and other perks of the Montgomery form By2 = x3 +Ax2 + x for elliptic curves in
Chapter 5.

Example 3.7. We aim to find all the vertices at the floor level of the isogeny volcano of the curve
E0/F419 : y

2 = x3 + x, with 419 = 4(3 · 5 · 7)− 1 and so 419 ≡ 3 mod 4. To this end we want to determine
the class group actions of p3 = (3, π − 1), p5 = (5, π − 1) and p7 = (7, π − 1) giving rise to the isogenies
making up the horizontal isogeny graph with E0. We find for i ∈ {3, 5, 7} that

E0[pi] =
{
P ∈ E0(F419) : α(P ) = 0 for all α ∈ pi

}
= E0[N(pi)] ∩ E0(F419)

and next we randomly choose a F419-rational point P in the kernel of [N(pi)] and check whether
(420/N(pi))P has order N(pi). If it has, then ⟨P ⟩ gives rise to a kernel of an N(pi)-isogeny which
we can compute using Vélu’s equations. We determine25 N((3, π − 1)) = 3, N((5, π − 1)) = 5 and
N((7, π − 1)) = 7. Using the functionalities .isogeny() and .montgomery_model() in Sage, we can compute
all the vertices of the isogeny volcano belonging to the order Z[π] and starting curve E0. For the relevant
code, we refer to Appendix B.1.

From here we can already construct the isogeny volcano(es), using [Feo17, Corollary 78], see Corollary
2.20. In the context of this example, O = Z[

√
−419] with conductor 2. The prime ℓ is one of {3, 5, 7}

and does therefore not divide the conductor. Hence, ℓ splits as a product of two distinct prime ideals,
(ℓ, π − 1) and (ℓ, π + 1) and so there are h(Z[

√
−419])/n distinct ℓ-isogeny volcanoes of Elkies type, with

craters in EllFq (Z[
√
−419]) of size n, where n is the order of (ℓ, π − 1) in Cl(Z[

√
−419]). We know from

Theorem 2.5 that h(O) is given by degree of the Hilbert class polynomial of Z[π] = Z[
√
−419]. Using

the Magma code in Appendix A.4, we find that h(Z[
√
−419]) = 27. Moreover, using the functionality

RingClassGroup() in Magma it is possible to determine Cl(O), which appears to be cyclic of order 27.

The generator of Cl(O) is the ideal class [(3π, 1 + π)] = [(3, π + 1)] = [p−1
3 ], so using the basis {1, π} and

the inverse of the map m : Cl(O) → {ideals in O}, we compute the relations [p5] = 12[p3] and [p7] = 5[p3].
Therefore, n = 27 for ℓ = 3, 7 and n = 9 for ℓ = 5 so we obtain one isogeny graph with 27 vertices for the
order Z[

√
−419]. Note that the action of p5 generates three disjoint cycles of each nine isogeny classes.

Using all of the information from above, we are able to construct the isogeny volcano of the order Z[
√
−419]

with starting curve belonging to the Montgomery coefficient 0, see Figure 4. Since the Montgomery
coefficients are unique (419 ≡ 3 mod 8), we denote each F419-isomorphism class of elliptic curves by its
Montgomery coefficient. See Appendix B.1 for the code.

25Since the extension of residue fields is of degree [Z[π]/(i, π − 1) : Fi] = 1 for each i ∈ {3, 5, 7}.
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Figure 4: The union of horizontal isogeny graphs GF419,3
in green, GF419,5

in blue and GF419,7
in red. The

Montgomery coefficients uniquely define the F419-isomorphism classes of elliptic curves.

It is also possible to generate such an isogeny graph for the order Z[(
√
−419 + 1)/2] of Q(

√
−419) using

Proposition 2.7 taken from [Cox22, Proposition 7.20]. Note that −419 ≡ 1 mod 4 and thus Z[
√
−419]

is not a maximal order because Z[
√
−419] ⊊ Z[(

√
−419 + 1)/2] as orders of Q(

√
−419). However,

Z[(
√
−419 + 1)/2] is maximal26 and thus the conductor27 f = 2. Notice that the prime ideals pi are

coprime to (2) in Z[
√
−419]. Thus, they remain prime in Z[(

√
−419 + 1)/2]. We compute their orders

and thus the isogeny graph Magma using the code in Appendix A.5.

We notice that m(G.1)= p−1
3 because {1, (π + 1)/2} is the basis of S= Z[(

√
−419 + 1)/2]. Therefore, [p3]

generates Cl(Q(
√
−419)), and therefore also [p5] and [p7]. Using the inverse of the map m : Cl(OK) →

{ideals in OK}, we obtain the relations [p5] = 3 [p3] and [p7] = 5 [p3]. Hence, n = 9 for ℓ = 3, 7, and
n = 3 for ℓ = 5. p

26Because

∆

(
Z[

√
−419 + 1)

2
]

)
= ∆

(
f
(
√
−419+1)/2

Q

)
= ∆

(
x2 − x+ 105

)
= −419

is square-free.
27Note

[
Z[(

√
−419 + 1)/2] : Z[

√
−419]

]
= 2 because n = 2 is the smallest positive integer satisfying nZ[(

√
−419 + 1)/2] ⊆

Z[
√
−419].
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4 Supersingular isogeny graphs

In Chapter 2.3 of the preliminaries we introduce the reader to isogeny graphs of ordinary elliptic curves.
However, in CSIDH exclusively supersingular elliptic curves are considered for a set of Elkies primes.
This yields isogeny graphs that admit structure as described in Theorem 3.5, see also the example in
Figure 3. Using the theory of (supersingular) elliptic curves, this chapter is a collection of important
results that help us in proving said theorem at the end of this chapter.

Let E be a supersingular elliptic curve defined over the finite field Fq where q = pn is a prime power
and p ≥ 5. Recall that #E(Fq) = q + 1 if the curve E is supersingular, see [Sil86, Theorem V.4.1(a)].
By combining this fact with the following result, we are able to generate an isogeny graph consisting
exclusively of (isomorphism classes of) supersingular curves and Fp-rational isogenies (up to equivalence28).

Proposition 4.1 ([Sil86], Exercise 5.4). Two elliptic curves E,E′ defined over a finite field Fq are
isogenous over Fq if and only if #E(Fq) = #E′(Fq).

Proof. From left to right, we notice E(Fq) = ker(1 − πE) where πE is the q-th power Frobenius endo-
morphism of E, an elliptic curve. By assumption there exists an Fq-rational isogeny f : E → E′. We
know that an isogeny f : E → E′ is defined over Fq if f ◦ πE = πE′ ◦ f , because the latter implies
its kernel is invariant under the action of the Frobenius. On that note, we may assume that f is
separable, because we can always factor the Frobenius endomorphism out. Note that the degree of a
composition of isogenies is equal to the product of the degrees. Moreover, 1− πE is a separable isogeny
for any E and so #ker(1− πE) = deg(1− πE). This concludes the proof since f ◦ πE = πE′ ◦ f implies
f ◦ (1− πE) = (1− πE′) ◦ f and so

deg(f) · deg(1− πE) = deg(1− πE′) · deg(f)
deg(1− πE) = deg(1− πE′)

#ker(1− πE) = #ker(1− πE′)

#E(Fq) = #E′(Fq).

For the direction from right to left, we notice that if #E(Fq) = #E′(Fq), then they must have the same
Frobenius endomorphism, because they have the same trace. We know from [Tat66, Theorem 1] that this
implies E,E′ are Fq-isogenous. In order to not leave the reader empty handed, we hint on this connection.
Waterhouse shows underneath Tate’s theorem in [Wat69, Chapter 2] that the algebra EndFq(E) ⊗Qℓ of
the elliptic curve E/Fq is completely determined by π. Moreover, it determines E up to Fq-isogeny. N

As a consequence, all elliptic curves in an isogeny graph must have the same trace. We fix the trace t = 0
and count the number of Fp-isomorphism classes with supersingular elliptic curves in order to determine
the structure of the Fp-isogeny graph, denoted GFp

. Instead of doing this directly using the results in
[Sch87] for example, we follow the structure in [DG16] which starts by looking at the full supersingular
isogeny graph GFp

⊃ GFp .

4.1 The number of j-invariants in a supersingular isogeny graph

Let GFp,ℓ
denote the full supersingular isogeny graph for a fixed Elkies prime ℓ. It is a directed irregular

graph in which the vertices are Fp-isomorphism classes of supersingular elliptic curves and the edges are
equivalence classes of ℓ-isogenies defined over Fp. The vertices are uniquely represented by the j-invariants
of the isomorphism classes, because Fp is algebraically closed by definition. Note that we may regard any
supersingular elliptic curve over Fp2 , because the j-invariant of a supersingular elliptic curve always lies
in Fp2 , see [Sil86, Theorem V.3.1(a)(iii)]. Let Sp2 denote the set of all supersingular j-invariants in Fp2 .

Proposition 4.2 ([Sil86], Theorem V.4.1(c)). There is one supersingular curve in characteristic 3, and
for p ≥ 5, the number of supersingular elliptic curves (up to Fp-isomorphism) is

28Two isogenies are equivalent if they have the same kernel.
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#Sp2 =
⌊ p
12

⌋
+


0 if p ≡ 1 mod 12

1 if p ≡ 5 mod 12

1 if p ≡ 7 mod 12

2 if p ≡ 11 mod 12

Next we focus on the graph GFp,ℓ where the vertices are Fp-isomorphism classes of elliptic curves and the
edges are Fp-rational ℓ-isogenies for a given prime ℓ. It is not a subgraph of the full supersingular isogeny
graph, because each vertex in the full supersingular isogeny graph may contain multiple Fp-isomorphism
classes. We note that GFp,L is not necessarily connected, since we ignore j-invariants that are contained
in Fp2 \ Fp. In order to obtain a connected graph, we need to find a set L = {ℓ1, . . . ℓn} such that the
union29

GFp,L =
⋃
ℓ∈L

GFp,ℓ

is connected.

Next, we aim to determine the number of vertices in a connected graph GFp,L, i.e. for sufficiently large L.
To this end, we fix the number of Fp-rational points on an elliptic curve. This is equivalent to fixing the
trace of the elliptic curves by Theorem 2.14. The following result from [Cox22, Theorem 14.18] helps us
determine the number of j-invariants in Fp. In order to understand it, we first introduce the Hurwitz
class number. Given an order O in an imaginary quadratic number field K, the Hurwitz class number30

is defined as

H(O) =
∑

O⊆O′⊆OK

2

|O′∗|
h (O′) .

We denote H(O) =: H(∆O).

Theorem 4.3 (Deuring, see [Cox22] Theorem 14.18). Let p ≥ 5 be prime. Then the number of elliptic
curves E over Fp which have #E (Fp) = p+ 1− t is

p− 1

2
H
(
t2 − 4p

)
,

where H is the Hurwitz class number.

In the context of supersingular curves, we know that t = 0 and thus −4p = ∆π the discriminant of the
order Z[π] in the number field K = Q(π) = Q(

√
−p). The order Z[π] plays an important role due to the

following result.

Theorem 4.4 ([Sch87], Theorem 4.3). Let E be a supersingular elliptic curve over Fp, where p ≥ 5. The
Fp-endomorphism ring of a supersingular elliptic curve is a complex quadratic order O of a number field
K = Q(

√
−p) with

Z[
√
−p] ⊂ O and p ∤ [OK : O] .

Depending on p mod 4, we can further characterize the number of supersingular elliptic curves over Fp,
up to Fp-isomorphism. To this end, we count the number of supersingular j-invariants in Fp and the
number of quadratic twists of an elliptic curve in this and the next two sub-chapters. The following result
is the first step in this process. It appears in [DG16] without proof, and we provide a proof in this thesis
that leans on the result and proof of Theorem 4.3 and in [Cox22, Theorem 14.18] respectively.

Theorem 4.5 ([DG16], Page 426). Let p ≥ 5 be prime. Then the number of supersingular j-invariants
in Fp is

h(OK)/2 if p ≡ 1 mod 4

h(OK) if p ≡ 7 mod 8

2h(OK) if p ≡ 3 mod 8,

where h(O) is the ideal class number of the order O.

29Not disjoint, but defined by taking the union of the respective vertex and edge sets.
30Taken from [Cox22, Page 319].
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Before we prove this theorem, let us consider the following results.

Lemma 4.6. The rational prime 2 splits in Z[(
√
−p + 1)/2] for p ≡ 7 mod 8 and remains inert in

Z[(
√
−p+ 1)/2] for p ≡ 3 mod 8.

Proof. Let us first consider p ≡ 7 mod 8. We note that p+1
4 must be even as a consequence. Therefore,

(2) =

(
2,

√
−p+ 1

2

)(
2,

√
−p− 1

2

)
into distinct prime ideals because

√
−p+ 1

2
·
√
−p− 1

2
=

−p− 1

4

is even. Next, consider p ≡ 3 mod 8. The minimal polynomial defining Z[(
√
−p + 1)/2] is given by

X2 −X + (p+ 1)/4. We find that X2 +X + (p+ 1)/4 is irreducible modulo 2 because (p+ 1)/4 is odd.
By the Kummer-Dedekind Theorem, this implies 2 is inert in Z[(

√
−p+ 1)/2], meaning (2) is prime in

the ring of integers. N

Lemma 4.7 ([Cox22], Theorem 7.24). Let O be the order of conductor f in an imaginary quadratic field
K. Then

h(O) =
h (OK) f

[O∗
K : O∗]

∏
q|f

(
1−

(
∆K

q

)
1

q

)
.

Furthermore, h(O) is always an integer multiple of h (OK).

Proof of Theorem 4.5. Let us first address the number of supersingular j-invariants in Fp regardless of
p mod 4, 8. We know by Deuring’s Lifting Theorem, see Theorem 2.12, that any elliptic curve E defined
over Fp is the (good) reduction at p of an elliptic curve over a number field. We are interested in the
primes p at which the latter has supersingular reduction. As is done in the proof of Theorem 4.3, we
consider to this end an order O in the imaginary quadratic number field K = Q(π), where π is the
Frobenius endomorphism for an ordinary elliptic curve, containing Z[π]. We also consider a proper O-ideal
a. Let L = K(j(a)) such that p splits completely in L by [Cox22, Theorem 9.4]. If p is a prime of L
dividing p, then OL/p ∼= Fp.

For j(a) ̸= 0, 1728 we let

k =
27j(a)

j(a− 1728)
.

We can then define a collection of elliptic curves by

Ec : y
2 = 4x3 − kc2x− kc3

for arbitrary c ∈ OL \ p. Reducing Ec at a prime p implies we take c in Fp \ {0} instead. This yields
p− 1 distinct reductions of Ec with the same j-invariant, because in the proof of [Cox22, Theorem 14.18]
it is shown that Ec has good reduction modulo p due to the fact that we take c ∈ OL \ p. A different
definition of k and Ec in the cases j(a) = 0, 1728 yields the same result.

We know that there exist exactly p(p − 1) distinct elliptic curves over Fp. Suppose a ∈ Z≥0 distinct
ordinary j-invariants occur, where a ≤ p. Then, the number of supersingular elliptic curves over Fp is
equal to p(p− 1)− a(p− 1) = (p− a)(p− 1). Moreover, we know from [Sil86, Proposition III.1.4(c)] that
for any j0 ∈ Fp there exists an elliptic curve over Fp with j(E) = j0. Thus, there exist p− a supersingular
j-invariants and exactly p − 1 distinct supersingular elliptic curves per j-invariant. Therefore, the
number of distinct j-invariants belonging elliptic curves E over Fp which have #E (Fp) = p+ 1 (i.e. the
supersingular elliptic curves) is

1

2
H (−4p) .

Next, suppose the Frobenius endomorphism π has trace t = 0 and p ≥ 5, so we focus on the supersingular
case. If p ≡ 1 mod 4, then Z[π] = OK is maximal and so

H(Z[π]) =
2

|Z[π]∗|
h(Z[π]).
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Note that π has characteristic polynomial X2 + p and so the number field Q(α) := Q[x]/(x2 + p) has one
complex embedding α 7→ ±

√
−p. Therefore, we know from Dirichlet’s unit theorem that no fundamental

unit exists in Z[π]. Moreover, since the extension K/Q is quadratic, the unit group Z[π]∗ = {±1}. Indeed,
we know that if Z[π]∗ = ⟨ζm⟩ with m the largest integer for which Q(ζm) ⊂ K, then [Q(ζm) : Q] should
divide [K : Q] = 2 and any odd prime factor of m should divide ∆K . We know ∆K = −4p if p ≡ 1 mod 4,
and so this only allows for the second, fourth and sixth roots of unity because they are the only ones that
give rise to an at most quadratic field extension. However, since ζ6 = (1± i

√
3)/2, we can discard the

sixth roots of unity because p ̸= 3. Similarly, we find that ζ4 /∈ Z[π]∗ because ζ4 = ±i /∈ K = Q(
√
−p).

Thus, |Z[π]∗| = 2 and so
H(Z[π]) = h(Z[π]) if p ≡ 1 mod 4.

In the case p ≡ 3 mod 4, we know Z[π] ⊊ OK = Z
[
π+1
2

]
⊂ K. If p ≥ 5, we find that similarly as before

|Z[π]∗| = 2 and |Z[(π + 2)/2]∗| = 2 since they have the same field of fractions. Therefore,

H(Z[π]) = h(Z[π]) + h(OK).

We aim to further simplify this expression by finding a relation between the ideal class groups of Z[π]
and OK = Z[(π + 1)/2]. To this end we use the results in Lemma 4.6 and Lemma 4.7. In the equation of
Lemma 4.7, (

∆K

q

)
denotes the Kronecker symbol, also called the Legendre symbol if the prime q is odd.

Since p ≥ 5, we immediately know that [O∗
K : Z[π]∗] = 1 from the arguments above. Next, we know that

f = 2 if p ≡ 3 mod 4. The only prime divisor of the conductor is therefore q = 2. Also, we know that
∆K = −p. It remains to determine the Kronecker symbol, which is tied to the question whether 2 splits
or remains inert in OK .

If p ≡ 3 mod 8, then we know from Lemma 4.6 that 2 stays inert in OK , and so(
−p
2

)
= −1,

which is in agreement with the definition given in [Cox22, Page 146]. We compute

h(Z[π]) = 2h(OK) ·
(
1 +

1

2

)
= 3h(OK).

If p ≡ 7 mod 8, then by Lemma 4.6 we find that 2 splits in OK and so(
−p
2

)
= 1,

again in accordance with the definition of the Kronecker symbol. Therefore,

h(Z[π]) = 2h(OK) ·
(
1− 1

2

)
= h(OK).

N

From this proof, we derive two facts that help us determine the structure of Fp-rational supersingular
isogeny graphs in Chapter 4.4.

Corollary 4.8. If p ≡ 3 mod 8, then h(Z[π]) = 3h(OK) and if p ≡ 7 mod 8, then h(Z[π]) = h(OK).
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4.2 The (quadratic) twist of an elliptic curve

An elliptic curve and its non-trivial31 (quadratic) twists give rise to distinct Fp-isomorphism classes. To
understand how many Fp-isomorphism classes exist, we consider the concept of a (quadratic) twist of an
elliptic curve over a perfect field k, taken from [Sil86, Proposition X.5.4]. Let Twist((E,O)/k) denote the
isomorphisms of the elliptic curve E in Weierstrass form defined over k.

Proposition 4.9 ([Sil86], Proposition X.5.4). Assume that Char(k) ̸= 2, 3, and let

n =


2 if j(E) ̸= 0, 1728,

4 if j(E) = 1728,

6 if j(E) = 0

Then Twist((E,O)/k) is canonically isomorphic to k∗/ (k∗)
n
. More precisely, choose a Weierstrass

equation
E : y2 = x3 +Ax+B

for E/k, and let D ∈ k∗. Then the elliptic curve ED ∈ Twist((E,O)/k) corresponding to D mod (k∗)
n

has Weierstrass equation

(i) ED : y2 = x3 +D2Ax+D3B if j(E) ̸= 0, 1728,

(ii) ED : y2 = x3 +DAx if j(E) = 1728 (so B = 0),

(iii) ED : y2 = x3 +DB if j(E) = 0 (so A = 0).

Using this proposition and given the number of Fp-rational points on an elliptic curve, we can determine
the number of Fp-rational points on the quadratic twist corresponding to D = −1 if p ≡ 3 mod 4 and on
the condition that j ̸= 0, 1728.

In the remainder of Chapter 4.2 we assume p ≡ 3 mod 4 and j ̸= 0, 1728.

Note F∗
p/(F∗

p)
2 is generated by32 −1 and thus D = −1 yields the unique non-trivial quadratic twist of E.

This inspires the following result.

Proposition 4.10. Assume p ≡ 3 mod 4 and consider an elliptic curve E : y2 = x3 + Ax + B with
j(E) ̸= 0, 1728 defined over Fp such that #E(Fp) = p+1−t. Then the elliptic curve E−1 ∈ Twist((E,O)/k)
satisfies #E−1(Fp) = p+ 1 + t.

Proof. We work in the context of a finite prime field k = Fp where p ≡ 3 mod 4 and aim to use Proposition
4.9. We know −1 is a non-quadratic residue modulo p and so D = −1 defines a non-trivial twist if
A,B ̸= 0. Then the map φ : E → E−1 is be defined by33 (x, y) 7→ (−x, iy) such that

E−1 : y
2 = x3 +Ax−B.

Note that the latter is Fp-isomorphic to

E′ : − y2 = x3 +Ax+B

via [−1] : E−1 → E′ where (x, y) 7→ (−x, y). Since −1 is a non-quadratic residue in Fp, we know that
for any x ∈ Fp, if x

3 + Ax + B is a non-quadratic residue modulo p, then −x3 − Ax − B must be a
quadratic residue. Thus, for any x ∈ Fp we find that if x3 + Ax+ B ̸= 0, then (x, x3 + Ax+ B) must
be a point in E(Fp) or E

′(Fp) exclusively. Note that each x ∈ Fp for which x3 + Ax+ B = 0 appears
exactly once in both E(Fp) and E′(Fp). Counting the point at infinity for both curves, this implies
#E(Fp) + #E′(Fp) = 2(p + 1). Since E′ ∼= E−1 over Fp, we know that #E′ = #E−1 by Proposition
(4.1), which yields #E−1(Fp) = p+ 1 + t. N

31A twist is trivial if it is Fp-isomorphic to the original curve.
32We know that an element a ∈ F∗

p is a square if and only if a
p−1
2 = 1. Note (−1)

p−1
2 = −1 since p ≡ 3 mod 4. Therefore,

a is a square if and only if −a is a non-square in F∗
p.

33Therefore, φ = [i].
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Thus, an ordinary elliptic curve E defined over Fp where p ≡ 3 mod 4 and j(E) ̸= 0, 1728 is never
Fp-isogenous to E−1 by Proposition 4.1, because p ∤ t. However, when E is supersingular then p | t and we
recall the bound on the trace |t| ≤ 2p from [Sil86, Theorem V.1.1]. If p ≥ 5, this implies t = 0. Therefore,
E and E−1 are Fp-isogenous in the supersingular case. They have the same j-invariant because they are
isomorphic via the multiplication-by-i map, an isomorphism. In Example (3.7), each j-invariant appears
at most twice on the floor of the supersingular graph GF419,L where L = {3, 5, 7}. Even for the curves
with j-invariants 0, 1728 in F419. We prove in Chapter 4.3 that this is no coincidence.

In the Diffie-Hellman protocol introduced in Chapter 3.2, it is no longer practical to use just the j-invariant
to uniquely represent vertices in the isogeny graph, because multiple vertices can have the same j-invariant.
Although one could additionally communicate the coefficients of the Weierstrass model to resolve this
issue, in practice there exists a more efficient and elegant solution using the Montgomery form. For the
details surrounding its use, we refer to Chapter 5. Importantly, it grants us a new method by which
we can efficiently denote Fp-isomorphism classes if p ≡ 3 mod 8. To determine the number of vertices
in a supersingular isogeny graph, we take a closer look at the amount of Fp-isomorphism classes per
j-invariant.

4.3 The number of Fp-isomorphism classes for a given j-invariant

The following theorem tells us the number of Fp-isomorphism classes of elliptic curves per supersingular
j-invariant in Fp. It displays commonalities with Proposition 4.9, which is not a coincidence. Indeed,
all elliptic curves that have the same j-invariant, are twists of one another. Note that the number
of Fp-isomorphism classes is equal to the number of non-trivial twists, i.e. the number of elements in
F∗
p/(F∗

p)
n where n ∈ {2, 4, 6} depending on the j-invariant. We can use this fact to prove the following

result.

Theorem 4.11 ([BS07], Theorem 2.2). Let p ≥ 5 and let j ∈ Fp. The number of elliptic curves (up to
Fp-isomorphism) with j-invariant j is:

(i) 4 if j = 1728 and p ≡ 1 mod 4;

(ii) 6 if j = 0 and p ≡ 1 mod 3;

(iii) 2 otherwise.

Proof. If j ̸= 0, 1728, suppose using the notation from Proposition 4.9 that there are two elliptic curves,
denoted E and ED where D is in F∗

p, with j = j(E) = j(ED). If E : y2 = x3 + Ax+ B, then we know
that E,ED are Fp-isomorphic if there exist a, b ∈ F∗

p such that

a4A = D2A and b6B = D3B.

Since A,B ̸= 0, this can only be true if D is a square in F∗
p. The number of Fp-isomorphism classes with

fixed j-invariant j ̸= 0, 1728 must then be equal to #F∗
p/(F∗

p)
2. Notice that the map φ2 : F∗

p → F∗
p defined

by x 7→ x2 has kernel ker(φ2) = {±1}. Since #ker(φ2) = #F∗
p/(F∗

p)
2, where im(φ2) = (F∗

p)
2, we can

conclude.

If j = 1728, we claim that the number of Fp-isomorphism classes equals the number of elements in
F∗
p/(F∗

p)
4. Indeed, elliptic curves with this j-invariant are of the form E : y2 = x3 + Ax and for any

D mod (F∗
p)

4 we have ED : y2 = x3 +DAx by Proposition 4.9. We know that E,ED are isomorphic over
Fp if and only if there exists a ∈ F∗

p with

DA = a4A.

Thus, it suffices to determine #F∗
p/(F∗

p)
4. First, consider p ≡ 1 mod 4. Since the map φ4 : F∗

p → F∗
p

defined by x 7→ x4 has ker(φ4) = {±i,±1} ⊂ F∗
p, we find that #F∗

p/(F∗
p)

4 = 4. However, if p ≡ 3 mod 4,
then ker(φ4) = {±1} and so #F∗

p/(F∗
p)

4 = 2.

If j = 0, we find analogously that the number of Fp-isomorphism classes equals the number of elements
in F∗

p/(F∗
p)

6. Indeed, elliptic curves with this j-invariant are of the form E : y2 = x3 + B and for any
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D mod (F∗
p)

6 we have ED : y2 = x3 +DB by Proposition 4.9. We know that E,ED are isomorphic over
Fp if and only if there exists b ∈ F∗

p with

DB = b6B.

Thus, it suffices to determine #F∗
p/(F∗

p)
6. First, consider p ≡ 1 mod 3. Since the map φ6 : F∗

p → F∗
p

defined by x 7→ x6 has ker(φ6) = {(±1±
√
−3)/2,±1} ⊂ F∗

p, we find that #F∗
p/(F∗

p)
6 = 6. However, if

p ≡ 2 mod 3, then ker(φ6) = {±1} and so #F∗
p/(F∗

p)
6 = 2. N

Proposition 4.12. Consider p ≥ 5 and let E be an elliptic curve over Fp. If j(E) = 1728, then E is
supersingular if and only if p ≡ 3 mod 4. If j(E) = 0, then E is supersingular if and only if p ≡ 2 mod 3.

In order to prove this result, we need a criterion by which we can check if an elliptic curve is supersingular.
To this end, we use the first part of [Sil86, Theorem V.4.1] as a lemma in our proof.

Lemma 4.13 ([Sil86], Theorem V.4.1). Let Fq be a finite field of characteristic p ≥ 3. Let E/Fq be an
elliptic curve given by a Weierstrass equation

E : y2 = f(x)

where f(x) ∈ Fq[x] is a cubic polynomial with distinct roots in Fq. Then E is supersingular if and only if
the coefficient of xp−1 in f(x)(p−1)/2 is zero.

Proof of Proposition 4.12. If j(E) = 1728, this means E : y2 = x3 + x, because E can be defined by
a short Weierstrass equation34 where A = 1 and B = 0. We claim that the coefficient of xp−1 in
(x3 + x)(p−1)/2 is equal to zero if and only if p ≡ 3 mod 4. Notice (p− 1)/2 is an odd integer, so choosing
(p − 1)/2 factors from {x3, x} never yields xp−1. On the other hand, if p ≡ 1 mod 4, then (p − 1)/2 is
even and so we can pick x3 and x an equal number of times, giving rise to xp−1.

If j(E) = 0, this means E : y2 = x3 + 1 by analogous reasoning. We claim that the coefficient of xp−1 in
(x3 + 1)(p−1)/2 is equal to zero if and only if p ≡ 2 mod 3. Notice (p− 1)/2 ≡ 2 mod 3, so there exists
k ∈ Z≥0 such that choosing (p− 1)/2 = 3k + 2 factors from {x3, 1} never yields xp−1 = x6k+4, because
this would imply there exists n ∈ Z≥0 such that

6k + 4 = 3(3k + 2− n)

3n = 3k + 2.

Since famously 3 ∤ 2, we conclude choosing (p − 1)/2 factors from {x3, 1} never yields xp−1. On the
other hand, if p ≡ 1 mod 3, then p− 1 is divisible by 3. Choosing x3 a number of (p− 1)/3 times yields
xp−1. N

4.4 The supersingular Fp-isogeny graph

Next, we determine the structure of GFp,L depending on p and such that L contains a sufficient number
of35 Elkies primes and 2. We need the following results in order to prove Theorem 3.5, which completely
determines the structure of GFp,L.

Lemma 4.14. Let p ≥ 5. The number of Fp-isomorphism classes of supersingular curves over Fp is

h(OK) if p ≡ 1 mod 4

2h(OK) if p ≡ 7 mod 8

4h(OK) if p ≡ 3 mod 8,

where h(O) is the ideal class number of the order O.

34A short Weierstrass equation is of the form y2 = x3 +Ax+B where j = 1728 4A3

4A3+27B2 , see page 45 in [Sil86].
35Sufficient in the sense that the resulting graph is connected, and such that the CSIDH protocol generates a key with

the desired number of bits.
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Proof. We notice from Theorem 4.11 and Proposition 4.12 that for any supersingular j-invariant in Fp

there exist exactly two Fp-isomorphism classes of elliptic curves. We combine this observation with the
results of Theorem 4.5 to finish the proof. N

Lemma 4.15 ([DG16], page 432). Let p ≡ 3 mod 4 where p ≥ 5, and let E be a supersingular elliptic
curve defined over Fp. Then

Endp(E) = Z
[
1 +

√
−p

2

]
if and only if E[2] ⊂ E(Fp).

Proof. See the excellent proof of the ePrint [Arp+21, Lemma 3.4]. N

Proof of Theorem 3.5. Due to Theorem 4.4, we notice that for any supersingular elliptic curve E in GFp,L

either Endp(E) = Z[
√
−p] or Endp(E) = OK . If p ≡ 1 mod 4 then Z[

√
−p] = OK and if p ≡ 3 mod 4 they

are distinct. Thus, the Fp-rational supersingular isogeny graph GFp,L has at most two layers. Vertical
isogenies can only occur if p ≡ 3 mod 4.

Next, we determine the occurrence of edges, i.e. Fp-rational isogenies of degree ℓ ∈ L, in GF,L such that
ℓ | (p + 1). Since E[ℓ](Fp) ∼= Z/ℓZ × Z/ℓZ for any prime ℓ, we know that every elliptic curve E gives
rise to (ℓ+ 1)-many ℓ-isogenies. We are interested in the isogenies that are Fp-rational. We know that
an isogeny is Fp-rational if its kernel is invariant under G(Fp/Fp). In the context of a finite field this
is equivalent to invariance under the action of the corresponding Frobenius. Thus, the occurrence of
an Fp-rational ℓ-isogeny between two vertices depends on the splitting behavior of the characteristic
polynomial X2 + p modulo ℓ. For odd ℓ, we refer back to the Atkin, ramified and Elkies case just above
Example 2.17.

Case 1 (p ≡ 1 mod 4): Let us first consider odd ℓ. In CSIDH, only primes ℓ that split in Q(
√
−p) (Elkies

case) are selected such that ℓ ∈ L. This yields two Fp-rational horizontal ℓ-isogenies. We know ℓ = 2
ramifies in Q(

√
−p) and so only one Fp-rational horizontal 2-isogeny exists. The graph is a cycle of length

h(OK) by Lemma 4.14.

Case 2 (p ≡ 7 mod 8): Similarly to the previous case, if ℓ is odd then selecting only Elkies primes ℓ
results in two Fp-rational horizontal ℓ-isogenies. No vertical Fp-rational ℓ-isogenies can occur due to
Proposition 2.18.

Note from Lemma 4.6 that 2 splits, and so this yields at most two Fp-rational horizontal 2-isogenies. We
know from 4.15 that E[2] ⊂ E(Fp) if E lies on the surface and so each elliptic curve isomorphism on the
surface has exactly one vertical Fp-rational 2-isogeny.

Thus, the surface is a cycle of length h(OK) connected one to one with the floor, which is also a cycle of
length h(OK) by Lemma 4.14 and Corollary 4.8.

Case 3 (p ≡ 3 mod 8): Similarly to the previous case, if ℓ is odd then selecting only Elkies primes ℓ
results in two Fp-rational horizontal ℓ-isogenies. No vertical Fp-rational ℓ-isogenies can occur due to
Proposition 2.18.

Note from Lemma 4.6 that 2 is inert, and so this yields no horizontal 2-isogenies. We know from 4.15 that
E[2] ⊂ E(Fp) if E lies on the surface and so each elliptic curve isomorphism on the surface has exactly
three outgoing Fp-rational 2-isogenies.

Thus, the surface is a cycle of length h(OK) connected one to three with the floor, which is also a cycle
of length 3h(OK) = h(Z[π]) by Lemma 4.14 and Corollary 4.8.

This concludes the proof.

N
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5 Montgomery curves

Montgomery curves and their arithmetic were introduced in 1987 by Peter L. Montgomery in Speeding
the Pollard and elliptic curve methods of factorization, see [Mon87]. It is an important paper, not only for
its original improvements to Lenstra’s ECM factorization methods, but for its wider use in cryptographic
applications concerning scalar multiplication on elliptic curves.

Montgomery curves are specific instances of elliptic curves that can be defined by an equation of the form
By2 = x3 +Ax2 + x. The scalar multiplication on a Montgomery curve is optimized to an efficient x-only
arithmetic. We only briefly address this important aspect of Montgomery curves in this chapter. Rather,
we establish the definition of Montgomery curves and describe which elliptic curves are Montgomery
with the help of a survey in tribute to Montgomery, Montgomery curves and their arithmetic, see [CS18].
Moreover, we prove Proposition 3.6, following the proof of [Cas+18, Proposition 8] with details added
where necessary. Last but not least, we discuss the role of Montgomery curves in public key validation.

5.1 Montgomery curves

An elliptic curve over a finite field Fq where q ≥ 5 is Montgomery if we can define it by an equation of
the form

EA,B : By2 = x3 +Ax2 + x. (3)

Notice that its projective equation with coordinates (X : Y : Z) where x = X/Z and y = Y/Z has the
same unique point O = (0: 1 : 0) where Z = 0 as elliptic curves in Weierstrass form. Moreover, we
immediately notice that B ̸= 0, otherwise the equation describes three lines in Fq defined by the equation
0 = x(x2 + Ax + 1). Similarly, A ̸= ±2 because if B < 0 and A = 2 or B > 0 and A = −2, then the
equation By2 = x(x± 1)2 has a node.

Since Montgomery curves are elliptic curves, there exists a group law ⊕ on its rational points EA,B(Fq).
One can find the equations that describe the group law in [CS18, Chapter 2.2]. We include them in this
chapter for the sake of readability.

Analogously to the equations for the Weierstrass form, the point O acts as the zero element and the
negation map ⊖(x, y) = (x− y) on all points on the affine plane Z ̸= 0 and ⊖(O) = O. If P = (xP , yP )
and Q = (xQ, yQ) are points in EA,B(Fq), then P ⊕Q = (x⊕, y⊕) where

x⊕ = Bλ2 − (xP + xQ)−A

y⊕ = λ(xP − x⊕)− yP

and

λ =

{
(yQ − yP )/(xQ − xP ) if P ̸= Q or P ̸= ⊖Q,
(3x2P + 2AxP + 1)/(2ByP ) if P = Q.

It is not yet the x-only arithmetic that spark cryptographic interest in Montgomery curves. This x-line
arithmetic follows optimized equations in terms of the projective coordinates and can be found in [CS18,
Chapter 3]. We address how we can use this x-only arithmetic in CSIDH to reduce the computation time
in Chapter 5.5.

Every Montgomery curve is an elliptic curve, but not necessarily vice versa. We explore this relation in
terms of the coefficients of the Weierstrass and Montgomery form in the next chapter.

5.2 Relation between Weierstrass and Montgomery form

We limit ourselves to the prime field Fp. In this chapter we study which elliptic curves in Weierstrass form
are Montgomery. One of the sufficient conditions is a specified j-invariant. To this end, let us compute
the j-invariant of Equation 3.

34



In order to get Equation (3) into Weierstrass form, we apply the transformation (x, y) 7→ (u, v) =
(x, 2

√
By). This yields the Weierstrass form v2 = 4u3 +4Au2 +4u. Using the equations on page of [Sil86],

we compute that

j(EA,B) = 256
(A− 3)3

A2 − 4
. (4)

Any elliptic curve with a j-invariant of this form is Montgomery. This does not give us a clear relation in
terms of the Weierstrass coefficients of an elliptic curve, and so we first discuss properties of Montgomery
curves that help us find such a relation.

Proposition 5.1 ([OKS00], Proposition 1). Let p ≥ 5. A Weierstrass-form elliptic curve E : v2 =
u3 + au+ b is transformable to the Montgomery-form if there exist α, β in Fp such that

1. α3 + aα+ b = 0,

2. 3α2 + a = β2.

Proof, following the proof of Proposition 1 in [OKS00]. Let us try to determine for which short Weier-
strass equations v2 = u3 + au + b there exists a transformation (u, v) 7→ (x, y) = (s(u − α′), t(v − β′))
to Montgomery form. We observe that elliptic curves in Montgomery form must all contain the point
T = (0, 0). Therefore, any Montgomery curve defined by a short Weierstrass equation v2 = u3 + au+ b
must have a Fp-rational point (α, 0) of order two on it that is sent to T under the transformation. Thus,
α′ = α and β′ = 0, where α3 + aα+ b = 0.

The transformation (u, v) 7→ (x, y) = (s(u− α), tv) to By2 = x3 +Ax2 + x implies

Bt2v2 = s3(u− α)3 +As2(u− α)2 + s(u− α).

Substituting v2 = u3 + au+ b yields

Bt2(u3 + au+ b) = s3(u− α)3 +As2(u− α)2 + s(u− α),

and so comparing the coefficients of the u3-term yields Bt2 = s3. Substituting the latter and dividing by
s results in the equation

s2(u3 + au+ b) = s2(u− α)3 +As(u− α)2 + (u− α).

Next, we compute the derivative with respect to u and consequently assign u = α. Then

s2(3α2 + a) = 1.

Therefore, in order for this transformation to exist, we need some β = 1/s in Fp such that 3α2+a = β2. N

Let B = 1/β and t = 1/β such that Bt2 = s3. Then the transformation is defined by

(u, v) 7→ (x, y) = ((u− α)/β, v/β). (5)

It maps the Weierstrass equation v2 = u3+au+ b to the Montgomery equation By2 = x3+Ax2+x where
A = 3α/β and B = 1/β. With this information, we can rewrite the transformation in Equation (5) in terms
of A,B and compute its inverse. This results in the transformation36 (x, y) 7→ (u, v) = ((x+A/3)/B, y/B).
It maps the Montgomery equation By2 = x3 +Ax2 + x to a short Weierstrass equation

v2 = u3 +
(3−A2)

3B2
u+

A(2A2 − 9)

27B3
.

Applying the inverse map defined by (u, v) 7→ (x, y) = (Bu − A/3, Bv) to elliptic curves satisfying
Proposition 5.1 yields the Montgomery form By2 = x3 +Ax2 + x.

36It differs to the transformation in [CS18] by a sixth power of B.
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5.3 The group structure of EA,B(Fp)

We notice that Equation (3) admits at least one Fq-rational point of order 2, i.e. T = (0, 0) ∈ EA,B [2](Fq).
Thus, we can conclude EA,B [2] ⊂ EA,B(Fq) if and only if A2 − 4 is a quadratic residue in Fp. It turns out
that we can say more about the structure of EA,B(Fp) depending on the coefficients A,B.

To this end, we observe that the j-invariant, see Equation (4), does not depend on B. Taking a closer look
explains this property. Indeed, an isogeny φB′ : EA,B → EA,B′ defined by taking (x, y) 7→ (x,

√
B/B′y) is

defined over Fp exactly when B/B′ is a quadratic residue in Fp. We call EA,B′ a quadratic twist of EA,B .
The map φB′ defines an isomorphism over Fp2 for any B′ ̸= 0. Note that all non-trivial quadratic twists of
EA,B for fixed B are Fp-isomorphic. Indeed, if both B/B′ and B/B′′ are non-quadratic residues belonging
to the non-trivial quadratic twists EA,B′ and EA,B′′ respectively, then B′/B′′ must be a quadratic residue
in Fp.

Proposition 5.2. Let EA,B be a Montgomery curve defined over the prime field Fp where p ≥ 5. Then
4 | #EA,B(Fp).

Proof. Recall A2 − 4 ̸= 0 and B ̸= 0 such that EA,B describes an elliptic curve.

Case 1: (both A±2 are (non-)quadratic residues) In this case A2−4 is a quadratic residue, so x2+Ax+1
splits completely in Fp. Therefore,

Z/2Z× Z/2Z ∼= EA,B [2] ⊆ EA,B(Fp).

Since EA,B(Fp) has a subgroup of order 4, this implies the group order must be divisible by 4 and so we
conclude.

Case 2: (A+ 2 is quadratic residue, A− 2 is not) Since T = (0, 0) is the only Fp-rational point of order
2, we aim to prove that there exists P = (α, β) ∈ EA,B(Fp) such that 2P = T . Using the group law, this
means the equations

λ =
3α2 + 2Aα+ 1

2Bβ

0 = Bλ2 − 2α−A

0 = λα− β

must have Fp-rational solutions for α, β. Since λ
2 = (A+ 2α)/B, this means there needs to exist α ∈ Fp

such that (A + 2α)/B is a quadratic residue, which also depends on B. If B is quadratic residue, we
check that α = 1 defines the Fp-rational points

P± = (1,±
√

(A+ 2)/B) ∈ EA,B(Fp)

of order 4. If B is a non-quadratic residue, we check that α = −1 defines the Fp-rational points

P± = (−1,∓
√
(A− 2)/B) ∈ EA,B(Fp). Therefore, EA,B(Fp) has a subgroup of order 4 such that its

order must be divisible by 4.

Note that the non-trivial quadratic twist EA,B′ contains both P± of order 4 in the cases where ‘B a
quadratic residue and α = −1’ and ‘B a non-quadratic residue and α = 1’, because B′ is a quadratic
residue when B is not and vice versa.

Case 3: (A − 2 is a quadratic residue, A+ 2 is not) Analogous to the previous case, except if B is a
quadratic residue then α = −1 defines the points of order 4, and if B is a non-quadratic residue then
α = 1 does. N

5.4 Supersingular Montgomery curves

Suppose EA,B is supersingular, so #EA,B(Fp) = p+ 1. By Proposition 5.2, this implies p ≡ 3 mod 4. As
we have seen before, this means −1 is a non-quadratic residue in F∗

p. Consequently, we observe from our
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discussion of the quadratic twist of a Montgomery curve that we may take B = 1 and B′ = −1 such that
EA,1 has non-trivial quadratic twist EA,−1. They define distinct Fp-isomorphism classes. Moreover, we
know from Theorem 4.11 and Proposition 4.12 that they are the only two such classes that have the same
j-invariant. We write EA := EA,1.

Moreover, we notice EA,−1 : − y2 = x3 +Ax2 + x is Fp-isomorphic to the Montgomery curve E−A : y2 =
x3 + Ax2 + x via the isomorphism (x, y) 7→ (−x, y). Thus, every supersingular Montgomery curve is
of the form37 EA and has non-trivial quadratic twist E−A. Next, we take a closer look at the group
structure depending on A± 2.

Case 1: (both A±2 are (non-)quadratic residues) As we saw in the proof of Proposition 5.2, if both A±2
are (non-)quadratic residues, then EA(Fp) and E−A(Fp) contain the full 2-torsion subgroup Z/2Z×Z/2Z.

If A ± 2 are both square residues, this implies Z/2Z × Z/4Z ⊆ EA(Fp). We list the elements in
Z/2Z× Z/4Z ↔ (i.e. corresponding to) the points in EA(Fp) of order at most 4.

(0, 0) ↔ O, (0, 2) ↔ T = (0, 0),

(1, 0) ↔ S =
(
(−A+

√
A2 − 4)/2, 0

)
, (1, 2) ↔ R =

(
(−A−

√
A2 − 4)/2, 0

)
,

(0, 1) ↔ P = (1,
√
A+ 2), (1, 1) ↔ Q = (−1,

√
A− 2),

(0, 3) ↔ 3P = (1,−
√
A+ 2), (1, 3) ↔ 3Q = (−1,−

√
A− 2).

If A±2 are both non-quadratic residues, then Z/2Z×Z/4Z ⊆ E−A(Fp) instead since −1(A±2) = −A∓2
must be square residues.

Case 2: (A+ 2 is a quadratic residue, A− 2 is not) First of all, A2 − 4 = (−A)2 − 4 is non-quadratic
and so both EA(Fp) and E−A(Fp) contain at most one point of order 2, namely T = (0, 0). However,
Z/4Z ⊆ EA(Fp) since the points P = (1,

√
A+ 2) and 3P = (1,−

√
A+ 2) are of order 4 in EA(Fp). Since

−1(A−2) = −A+2 is square, also Z/4Z ⊆ E−A(Fp) because P
′ = (1,

√
−A+ 2) and 3P ′ = (1,−

√
−A+ 2)

are of order 4 in E−A(Fp).

Case 3: (A− 2 is a quadratic residue, A+ 2 is not) Analogously to the previous case both EA(Fp) and
E−A(Fp) contain at most point of order 2. However, EA(Fp) contains the points Q = (−1,

√
A− 2) and

3Q = (−1,−
√
A− 2) of order 4. Note E−A(Fp) must then contain the points Q′ = (−1,

√
−A− 2) and

3Q′ = (−1,−
√
−A− 2) of order 4.

The results are summarized in [CS18, Table 1]. From them, we are able to determine which case(s) we
work with depending on p mod 8. Indeed, if p ≡ 3 mod 8, then neither #EA(Fp) nor #E−A(Fp) can
contain Z/2Z× Z/4Z. Thus, A2 − 4 cannot be a quadratic residue and at most one Fp-rational point T
of order 2 exists in both Mordell-Weil groups. Therefore, we find by Theorem 3.5 or Lemma 4.15 that
if p ≡ 3 mod 8 and EA a Montgomery curve, then Endp(EA) = Z[π]. This proves one direction in the
result of Proposition 3.6, because Fp-isomorphic curves have the same Fp-rational endomorphism ring.

The proof of Proposition 3.6 can also be found in [Cas+18, Chapter 5] in less detail. We explore the
latter in the proof underneath.

Proof of Proposition 3.6. We already proved that an elliptic curve E that is Fp-isomorphic to a Mont-
gomery curve EA : y2 = x3 +Ax2 + x must have Endp(E) = Z[π]. Therefore, suppose Endp(E) = Z[π]
where E is a supersingular elliptic curve defined over Fp.

We know from [Cas+18, Theorem 7], that the class group Cl(Z[π]) acts freely and transitively on the set
EllFp

(Z[π]). This set is non-empty because it contains E0 : y
2 = x3 + x if p ≡ 3 mod 8. Indeed, we notice

that the only point of order 2 on E0 is T = (0, 0), because x2 + 1 = 0 is irreducible in Fp[x]. Therefore,
there exists a ∈ Cl(Z[π]) such that a ⋆ E0 = E.

Since we take L = {ℓ1, . . . , ℓn} large enough such that GFp,L is connected and ℓi < p because p =
4
∏n

i=1 ℓi−1, there exists an ideal class a, with the desired properties, containing an integral representative

37Ironically, we work with Weierstrass form again, albeit not short Weierstrass form.
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of norm coprime to p. Therefore, the action of a defines a separable Fp-rational isogeny φa : E0 → E.
Moreover, it must have odd degree if p ≡ 3 mod 8, because both E0 and E have Fp-rational endomorphism
ring Z[π]. Thus, we find from Theorem 3.5 GFp,L does not contain horizontal isogenies with even degree.

As a result, the kernel ker(φa) does not contain T = (0, 0, ), the 2-torsion point in E0(Fp). By [Ren18,
Proposition 1], there exists A ∈ Fp such that ker(φa) gives rise to an isogeny ψ : E0 → EA. We know from
[Sil86, Exercise III.3.13(e)] that Fp-rational isogenies with a given kernel are unique up to post-composition
with Fp-isomorphisms. Therefore, E is Fp-isomorphic to EA.

Next, we aim to prove that if Endp(E) = Z[π] such that E ∼=Fp
EA, then A is unique. To this end,

consider any B ∈ Fp such that EA
∼=Fp EB. Note that both EA, EB are in Weierstrass form. We know

from [Sil86, Proposition III.3.1(b)] that there exists a linear change of variables

x = u2X + r, y = u3Y + su2X + t (6)

where u ∈ F∗
p, s, t, r ∈ Fp and the Montgomery curves

EA : y2 = x3 +Ax2 + x, EB : Y 2 = X3 +BX2 +X.

Let f(x, y) = x3 + Ax2 + x − y2 = 0 and F (X,Y ) = X3 + BX2 + X − Y 2 = 0. We know from the
proof of [Sil86, Proposition III.3.1(a)] that x,X have a pole of order 2 and y, Y have a pole of order 3
at O = (0: 1 : 0). The elliptic curve equations f(x, y) = 0 and F (X,Y ) = 0 are the linear relations of
the spanning sets {1, x, y, x2, xy, y2, x3} and {1, X, Y,X2, XY, Y 2, X3} respectively, that keep them from
being bases of the vector space L(6O) over Fp, which is of dimension ℓ(6O) = 6.

We are able to exclusively use the functions {1, X, Y,X2, XY, Y 2, X3} due to the linear transformations in
Equation (6). We obtain another redundancy by computing f(u2X+r, u3Y +su2+su2X+t)−u6F (X,Y ) =
0 in the function field Fp(EB). This yields the linear relation,

(u2X + r)3 +A(u2X + r)2 + u2X + r − (u3Y + su2X + t)2

−u6X3 − u6BX2 − u6X + u6Y 2 = 0

⇒ (2su5)XY + (3ru4 − u6B + u4A− s2u4)X2 + (2tu3)Y

+(3r2u2 + u2 − u6 + 2Aru2 − 2stu2)X + (r3 +Ar2 + r − t2)1 = 0,

rewritten in terms of the functions {1, X, Y,X2, XY } over Fp. We know that they span L(5O) over Fp,
see the definition in [Sil86, Page 34]. We claim that they are a basis for L(5O).

To this end, we know EB has genus g = 1 because it is an elliptic curve. By [Sil86, Corollary II.5.5(b)] this
implies deg(KEB

) = 0. Thus, deg(KEB
−5O) < 0 and so ℓ(KEB

−5O) = 0 by [Sil86, Proposition II.5.2(a)].
Therefore, ℓ(5O) = deg(5O)− 1 + 1 = 5 by Riemann-Roch, see [Sil86, Theorem II.5.4]. Therefore, L(5O)
must be of dimension 5. This proves the claim, and so the coefficient of each function must be zero in Fp.
This yields the equations

XY : 0 = 2su5

X2 : 0 = (3r +A− s2 −Bu2)u4

Y : 0 = 2tu3

X : 0 = (3r2 + 1− u4 + 2Ar − 2st)u2

1: 0 = r3 +Ar2 + r − t2.

We find from the coefficients of XY and Y that s = t = 0 since u ∈ F∗
p. This simplifies the constant

term to r3 +Ar2 + r = 0, a familiar expression. Since Endp(EA) = Z[π], we know from Lemma 4.15 that
EA has only one Fp-rational root of order 2, namely T = (0, 0). Therefore, r = 0 is the only solution.
Then from the coefficient of X we have u4 = 1. By assumption p ≡ 3 mod 8 and so u = ±1 are the only
solutions. Therefore, u2 = 1. Substitution in the coefficient of X2 yields A = B. N

5.5 Key validation and x-only arithmetic

Let us first briefly address the x-only arithmetic Montgomery curves are famous for. As is described in
[Cas+18, Page 26] and [CS18], we can simplify the group action computation using Vélu’s equations if we
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work with Montgomery curves by ignoring the y-coordinate of points in a cyclic subgroup ⟨P ⟩ or order
ℓ, where P = (x, y) such that x ∈ Fp with ℓ ̸= p an odd prime. This reduces the computation time by
about half according to [Cas+18]]. However, in order to determine which kernel, ker([l]) or ker([l′]), an
ℓ-torsion point P generates, we need some information about the y-coordinate. This requires an extra
step in computing the class-group action; checking whether x3 +Ax2 + x is a quadratic residue in Fp. If
it is, then y ∈ Fp and so ⟨P ⟩ = ker([l]) where l = (ℓ, π − 1). Since ℓ is odd, y ≠ 0 and so if x3 +Ax2 + x
is a non-quadratic residue in Fp, then y ∈ Fp2 \ Fp meaning ⟨P ⟩ = ker([l′]) where l′ = (ℓ, π + 1).

Next, we address the key validation in the CSIDH protocol. However, rather than working with a näıve
Diffie-Hellman protocol, we extend it to an Elgamal encryption scheme such that the latter includes the
encryption and decryption of the plain- and ciphertext respectively, see [PPG24, Chapter 8.5]. It reduces
the number of total messages by one38 and it reveals the need for key validation.

Key validation is an extra step in Elgamal based on CSIDH that Alice takes before computing the shared
secret key (or masking key) in order to make sure that the published public key B is of the right format.
In the context of CSIDH, the expected format is a Montgomery coefficient B that defines a supersingular
elliptic curve EB with Endp(EB) = Z[π], conform Proposition 3.6. Upon taking note of B, Alice counts
the number of points in EB(Fp), where p ≡ 3 mod 8, as is done in [Cas+18, Algorithm 1]. If this amount
is p+ 1, then B defines a supersingular elliptic curve and so the public key B is of the right format. This
extra step serves a specific purpose.

We assume under Kerckhoff’s principle, see [PPG24, Definition 1.3.1], that adversaries know all the details
about a cryptosystem such as the encryption and decryption algorithms, except for the secret key(s).
Thus, key validation does not protect an Elgamal based on CSIDH protocol from a man-in-the-middle
attack, in which e.g. an adversary Eve poses as Bob to obtain the plaintext. Rather, it is a safety measure
for a chosen cipher attack (CCA), where adversaries posing as Bob choose a public key in the wrong
format such that it reveals the private key chosen by Alice if she computes the shared secret key with it.

This concludes the many purposes Montgomery curves serve in the CSIDH protocol.

38Relative to a näıve Diffie-Hellman and encryption+decryption approach.
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6 Future research

The CSIDH protocol, although mathematically interesting, cannot compete with lattice-based PQCDH
in terms of running time. Indeed, a study from 2024 into optimizations and practical use [Cam+24]
concludes that with a running time of tens of seconds, CSIDH is only practical in cases that require very
small key-sizes. Choosing a 512-bit prime p the public keys have size 64 bytes and private keys can be
stored in 32 bytes, see [Cas+18, Chapter 8.1]. However, only in this year, a hybrid post-quantum key
exchange (HPQKE) paper was published proposing a protocol in which CSIDH and ECDH are combined,
see [QC25].

One of the author’s recommendations for future research is the choice of Elkies primes ℓi in constructing

p = 4

n∏
i=1

ℓi − 1.

On the one hand, small ℓi reduce the computation time spent on elliptic curve scalar multiplication. On
the other hand, for a supersingular E with Endp(E) = Z[π], we know from Appendix D that E(Fp) is
cyclic and so choosing a random point P ∈ E(Fp) such that (p + 1/ℓi)P has order ℓ has a chance of
succeeding equal to 1− 1/ℓi. Thus, in constructing a prime p the choice for the first n− 1 odd primes
ℓ1 = 3, ℓ2 = 5, . . . is not necessarily straightforward. This requires programming since it is heavily focused
on implementation.

We conclude that the CSIDH protocol is a grateful subject for future work.
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A Magma code

A.1 Complex multiplication over a number field

1 Q:= RationalField ();

2 P<x>:= PolynomialRing(Q);

3 K:= NumberField (2*x^2-2*x+3);

4 R:= RingOfIntegers(K);

5 D:= Discriminant(R);

6 H<x>:= HilbertClassPolynomial(D);

7 L<a>,Roots := SplittingField(H);

8 Roots;

9 E1:= MinimalModel(EllipticCurveWithjInvariant(Roots [1]));

10 E2:= MinimalModel(EllipticCurveWithjInvariant(Roots [2]));

A.2 Finding Elkies primes

1 ElkiesPrimes :=[];

2 for i:=1 to 50 do

3 p:= NthPrime(i);

4 R<x>:= PolynomialRing(GF(p));

5 f:=x^2+6*x+83;

6 //If both the multiplicity and degree of the first factor is 1, we know f splits

completely modulo p

7 if Factorization(f)[1][2] ne 2 and Degree(Factorization(f)[1][1]) ne 2 then

8 ElkiesPrimes := Append(ElkiesPrimes ,p);

9 end if;

10 end for;

11 ElkiesPrimes;

A.3 Modular polynomial group action

1 l:=3;

2 R<x,y>:= PolynomialRing(GF(83) ,2);

3 //We define the elliptic curve E:y^2=x^3+x+1 over the finite field F_83

4 E0:= EllipticCurve ([GF(83)!1,GF(83) !1]);

5 //The j-invariant of E denotes the vertex in the graph from which we start

6 j0:= jInvariant(E0);

7 A:=R!ClassicalModularPolynomial(l);

8 // Factorizing B=Phi_3(X,j_0) modulo 83 yields two linear factors and their zeroes are

the j-invariants of the neighboring curves

9 B:= Evaluate(A,[x,j0]);

10 C:= Evaluate(A,[x,GF(83) !( -63)]);

11 D:= Evaluate(A,[x,GF(83) !( -53)]);

12 E:= Evaluate(A,[x,GF(83) !( -40)]);

13 j0; Factorization(B); Factorization(C); Factorization(D); Factorization(E);

A.4 Class group of Z[
√
−419]

1 Q:= RationalField ();

2 P<x>:= PolynomialRing(Q);

3 // Define the order Z[pi]

4 R:= EquationOrder(x^2+419);

5 //m is a map from the ring class group to a representative small normed ideal

6 G,m:= RingClassGroup(R);

7 G;

8 //G is cyclic with generator G.1, and m(G.1)=(pi+1,3pi)=(3,pi+1)

9 m(G.1);

10 //The basis R.1=1 and R.2=pi

11 Basis(R);

12 I:=ideal <R|3,R.2-1>;
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13 Inverse(m)(I);

14 J:=ideal <R|5,R.2-1>;

15 Inverse(m)(J);

16 M:=ideal <R|7,R.2-1>;

17 Inverse(m)(M);

A.5 Class group of Z[(1 +
√
−419)/2]

1 Q:= RationalField ();

2 P<x>:= PolynomialRing(Q);

3 S:= MaximalOrder(x^2+419);

4 G,m:= ClassGroup(S:Proof:="Full");

5 G;

6 m(G.1);

7 Basis(S);

8 I:=ideal <S|5,2*S.2+3>;

9 Inverse(m)(I);

10 J:=ideal <S|7,2*S.2+5>;

11 Inverse(m)(J);

A.6 Splitting behavior Elkies case

1 F:=GF(11);

2 L<a>:=GF(11 ,2);

3 P<x>:= PolynomialRing(F);

4 f:= MinimalPolynomial(a,F);

5 f;

6 Roots(f,L);

7 E:= EllipticCurve ([L|1 ,0]);

8 G,m:= pPowerTorsion(E,3);

9 G;

10 P:=m(G.1);

11 Q:=m(G.2);

12 P;

13 Q;

14 2*P;

15 2*Q;

16 2*P+2*Q;

17 P+2*Q;

18 2*P+Q;

19 FrobeniusMap(E,1)(P);

A.7 Splitting behavior Atkin case

1 F:=GF(7);

2 //F_ {7^4} is the smallest finite field for which the full 3-torsion group is contained

in E(F_ {7^4})

3 L<a>:=GF(7,4);

4 P<x>:= PolynomialRing(F);

5 f:= MinimalPolynomial(a,F);

6 f;

7 Roots(f,L);

8 E:= EllipticCurve ([L|1 ,0]);

9 // Compute the abstract group G of 3-torsion points that are defined over L, where m is a

map from G to the group of L-rational points on E

10 G,m:= pPowerTorsion(E,3);

11 G;

12 P:=m(G.1);

13 Q:=m(G.2);

14 P;

15 Q;

16 2*P;

17 2*Q;
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18 2*P+2*Q;

19 P+2*Q;

20 2*P+Q;

21 //Using the Frobenius map of L on the set of 3-torsion points , we determine the

subspaces of the corresponding matrix

22 FrobeniusMap(E,1)(P);

B Sage code

B.1 Isogeny steps

The following code needs (at least) Sage 10.3.

1 def phi(E,l):

2 p=E.base_field ().characteristic ()

3 assert E.order() == p+1 and mod(p,4) == 3

4 D=divisors ((p+1)/4)

5 assert l in D

6 P=((p+1)//l)*E.gens()[0]

7 assert P.order() == l

8 Ephi=E.isogeny(P).codomain ().montgomery_model ()

9 return Ephi

10

11 p=419

12

13 #Compute the 3-isogeny steps

14 E=EllipticCurve(GF(p) ,[0 ,418 ,0 ,102 ,275]).montgomery_model ()

15 print(E,’\n’,’with j-invariant ’,E.j_invariant (),’and Montgomery coefficient ’,E.a2())

16 for i in range (27):

17 E=phi(E,3)

18 print(E,’\n’,’with j-invariant ’, E.j_invariant (),’and Montgomery coefficient ’,E.a2()

)

19 print()

20

21 #Compute the 5-isogeny steps

22 E=EllipticCurve(GF(p) ,[0 ,418 ,0 ,102 ,275]).montgomery_model ()

23 print(E,’\n’,’with j-invariant ’,E.j_invariant (),’and Montgomery coefficient ’,E.a2())

24 for i in range (9):

25 E=phi(E,5)

26 print(E,’\n’,’with j-invariant ’, E.j_invariant (),’and Montgomery coefficient ’,E.a2()

)

27 print()

28

29 #Compute the 7-isogeny steps

30 E=EllipticCurve(GF(p) ,[0 ,418 ,0 ,102 ,275]).montgomery_model ()

31 print(E,’\n’,’with j-invariant ’,\

32 E.j_invariant (),’and Montgomery coefficient ’,E.a2())

33 for i in range (27):

34 E=phi(E,7)

35 print(E,’\n’,’with j-invariant ’, E.j_invariant (),’and Montgomery coefficient ’,E.a2()

)

36 print()

C Bachmann-Landau notation

In order to objectively measure the amount of time39 f(n) an algorithm takes to compute on a given input
n, Bachmann-Landau notation was designed. It is used to study the asymptotic efficiency of algorithms,
i.e. how fast f(n) grows with n in the limit40. The information in this appendix is mainly taken from
Chapter I.3 in [Cor+22]. We start by giving an example in pseudo-code.

39Note that f(n) actually denotes the number of bit operations depending on the input n, because external factors
determine the amount of time each such operation takes.

40Meaning, as n → ∞.
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SumOfSquares(n)

1 s=0 //c_1

2 i=1 //c_2a

3 while(i \leq n) //c_2b

4 j=i*i //c_3

5 s=s+j //c_4

6 i=i+1 //c_2c

7 return s //c_5

We label each operation in order to do the following computation:

f(n) = c1 + c2a + c5 + (n+ 1)c2b + n(c3 + c4 + c2c)

= (c2b + c2c + c3 + c4)n+ c1 + c2a + c2b + c5

= An+B,

i.e. f(n) grows linearly with the input n. Therefore, there exists a linear function g(n) and an input n0
such that for any n greater than n0 there is an non-strict upper bound cg(n) for f(n), where c is some
fixed constant. More formally,

lim sup
n→∞

f(n)

n
<∞.

We denote this by f(n) = O(n).

Definition C.1.

O(g(n)) = {f(n) : ∃c > 0 and ∃n0 such that ∀n > n0 we have |f(n)| ≤ c · g(n)} ,

see graph (a) in Figure 5.

By convention, all constants and lower order terms of g(n) are ignored when we write O(g(n)) (read
‘big O’). For example if g(n) = 2n2 + 3n, then O(2n2 + 3n) = O(n2). Also, if f(n) is constant then
f(n) = O(1). It is particularly useful as a worst-case scenario estimate for the running time of protocols
and their respective attacks in order to guarantee security.

In some papers Õ is meant to denote O-notation in which certain logarithmic factors are ignored [Cor+22,
Page 63].

Definition C.2.

Õ(g(n)) =
{
f(n) : ∃ c, k, n0 > 0 such that 0 ≤ f(n) ≤ cg(n) logk(n) for all n ≥ n0

}
.

In other cases, one might rather want to know the shortest running time of a piece of code.

Definition C.3.

Ω(g(n)) = {f(n) : ∃c > 0 and ∃n0 such that ∀n > n0 we have |f(n)| ≥ c · g(n)} ,

see graph (b) in Figure 5.

Last but not least, if f(n) is in both O(g(n)) and Ω(g(n)), we say that it is also in Θ(g(n)).

Definition C.4.

Θ(g(n)) = {f(n) : ∃c1 > 0, ∃c2 > 0 and ∃n0 such that ∀n > n0 we have c1g(n) ≤ f(n) ≤ c2g(n)} ,

see graph (c) in Figure 5.

Note that all these notations yield non-strict (asymptotic) bounds on the elements in their respective
sets. The next definitions give similar sets of functions, however the bounds that the relations impose are
strict this time. In other words: g(n) grows faster than the functions f(n) in the set after a certain n0.
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Figure 5: Where n0 denotes the minimal possible input value. Taken from [Cor+22, Chapter I.3].

Definition C.5.

o(g(n)) = {f(n) : ∀c > 0, ∃n0 such that 0 ≤ f(n) < c · g(n)∀n ≥ n0}

yields a strict upper bound on the f(n).

On the other hand, there exists the set of functions respecting a strict (asymptotic) lower bound of g(n).

Definition C.6.

ω(g(n)) = {f(n) : ∀c > 0, ∃n0 such that 0 ≤ c · g(n) < f(n)∀n ≥ n0} .

In general, we know that logarithmic < polynomial < exponential. In the context of the thesis, we are
most interested in so called ‘L-notation’. The next definitions are taken from a section written by Arjen
K. Lenstra in the Encyclopedia [TJ14, Pages 709 and 710].

Definition C.7. For t, γ ∈ R with 0 ≤ t ≤ 1, we use Lx[t, γ] to describe any function of x equal to

e(γ+o(1))(log(x))t(log(log(x)))1−t

for x→ ∞

with natural logarithms and o(1) denoting any function of x that goes to 0 as x→ ∞.

The L-notation function has the following properties:

1. Lx[t, γ] + Lx[t, δ] = Lx[t,max(γ, δ)],

2. Lx[t, γ] · Lx[t, δ] = Lx[t, γ + δ],

3. Lx[t, γ] · Lx[s, δ] = Lx[t, γ] if t > s,

4. For any fixed k:

(a) Lx[t, γ]
k = Lx[t, kγ],

(b) γ > 0 then (log x)kLx[t, γ] = Lx[t, γ],

5. π (Lx[t, γ]) = Lx[t, γ] where π(y) is the number of primes ≤ y.

If Lx[t, γ] is used to indicate running times for fixed γ, we notice that if t = 0 it describes a polynomial
time function in log(x), if 0 < t < 1 it describes a sub-exponential time function in log(x) and if t = 1 it
describes an exponential time function in log(x).
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D Extra results

There exists an important relationship between the Fp-rational endomorphism ring Endp(E) and the
group structures E(Fp) and E(Fp2) of a supersingular elliptic curve E. Suppose Endp(E) = O is an order
containing Z[π]. Hendrik W. Lenstra Jr. has shown that the group structure of E (Fp) is isomorphic to
O/(π − 1), see [Len96, Theorem 1(a)]. Using this fact, we are able to prove the following result.

Proposition D.1. If E/Fp is a supersingular elliptic curve such that EndFp
(E) = Z[π], then

E (Fp) ∼= Z/(p+ 1)Z and E(Fp2) ∼= Z/(p+ 1)Z× Z/(p+ 1)Z.

Proof. Using [Len96, Theorem 1(a)], let us first consider E(Fp) ∼= Z[π]/(π − 1). Since E is supersingular,
π =

√
−p and so

Z[π]/(π − 1) ∼= (Z[X]/(X2 + p))/((X − 1, X2 + p)/(X2 + p))

∼= (Z[X]/(X2 + p))/((X − 1, p+ 1)/(X2 + p))
∼= Z/(p+ 1)Z[X]/(X − 1)
∼= Z/(p+ 1)Z.

Similarly,

Z[π]/(π2 − 1) ∼= (Z[X]/(X2 + p))/((X2 − 1, X2 + p)/(X2 + p))

∼= (Z[X]/(X2 + p))/((X2 − 1, p+ 1)/(X2 + p))

∼= Z/(p+ 1)Z[X]/(X2 − 1)
∼= Z/(p+ 1)Z[X]/(X + 1)× Z/(p+ 1)Z[X]/(X − 1)
∼= Z/(p+ 1)Z× Z/(p+ 1)Z.

N

Let ℓ be a prime dividing p+ 1. Note that this implies that there exists exactly ℓ+ 1 cyclic subgroups of
order ℓ in E(Fp2) if E is supersingular and EndFp(E) = Z[π]. Indeed, the generators of these subgroups
correspond directly with points in P1(Fℓ), via the map

{elements of order ℓ in Z/(p+ 1)Z× Z/(p+ 1)Z} → P1(Fℓ)

(a, b) 7→ ℓ

p+ 1
(a, b).

These subgroups give rise to cyclic ℓ-isogenies defined over Fp2 . Whether they also are defined over
the prime field Fp depends on the splitting behavior of the Frobenius modulo ℓ, as we have seen in the
preliminaries.
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