
Generating synthetic images featuring cracks in

masonry surfaces using Unreal Engine 5

Internship Project Report

Vlad Muscoi, s4718267, v.n.muscoi@student.rug.nl,

Supervisors: Jǐŕı Kosinka, David Hidde Boerema, Ihsan Engin Bal

Abstract: Masonry structures constitute a significant portion of our architectural heritage.
Timely crack detection is essential to preserving their structural integrity. Current inspection
methods rely predominantly on manual assessments, which are time-consuming, expensive, and
subjective. Recent advances in deep convolutional neural networks (CNNs) have significantly
improved automated crack detection. However, the principal limitation remains the availability of
annotated data. To address this, a recent study has employed Blender’s 3D engine to procedurally
generate synthetic masonry datasets. While augmenting up to approximately 30% of a training
set with synthetic images yields a small drop in F1 score, further increases lead to a marked
decline in overall performance. This degradation is likely due to limited scene diversity in the
synthetic data.
In this study, we introduce a novel framework built in Unreal Engine 5 to enhance the build-

ing of virtual scenes for use in generating synthetic masonry datasets. By leveraging the engine’s
advanced features—including Nanite for high-fidelity displacement, Blueprints and Materials for
procedural crack generation, and the Procedural Content Generation (PCG) system for auto-
mated placement of scene clutter—we aim to improve both the realism and variability of synthetic
datasets. This framework offers a scalable and flexible approach to producing training data for
deep learning-based crack detection models.

1 Introduction

Masonry, from ancient cathedrals to modern brick
façades, comprises the bulk of our built heritage
but ages poorly under environmental loads and
seismic events. Detecting cracks early is crucial
to safeguarding both structural integrity and his-
toric value. Yet today’s standard of inspecting such
structures manually is slow, costly, and subjective
(Phares et al., 2004; Laefer et al., 2010). Inspectors
face access challenges on ornate or high façades,
and post-disaster scenarios only amplify the back-
log of urgent assessments.

Deep convolutional neural networks (CNNs) have
reshaped automated crack detection on uniform
surfaces like concrete and asphalt (Zhang et al.,
2018). By learning hierarchical features end-to-end,
these models now classify image patches at 95%
accuracy and segment cracks at nearly 80% F1
score even against complex backgrounds (Dais et

al., 2021). But the key bottleneck remains data:
CNNs crave thousands of pixel-perfect examples
of masonry—brick and mortar, weathering, occlu-
sions—to generalize reliably such that the model is
able to detect cracks within unseen data. Gathering
and annotating such rich datasets from protected
heritage sites is both impractical and expensive.

To advance crack segmentation performance, re-
cent work explored the use of Blender’s 3D engine
to procedurally generate synthetic masonry scenes
(Boerema et al., 2025). The proposed pipeline used
a surface-aware crack generation algorithm to trace
realistic trajectories along mortar joints, apply
them to displacement maps, and render diverse wall
textures under varying lighting conditions. Incorpo-
rating up to 1, 000 synthetic Blender-rendered im-
ages—approximately 30% of a 2, 434-patch training
set—allowed a substantial reduction in manual an-
notation effort with minimal performance loss (un-
der 2% drop in F1 score). However, when synthetic

1



data dominated the training set, segmentation per-
formance deteriorated significantly. Models trained
on over 2, 000 synthetic patches experienced a de-
cline of more than 40% in F1 score, primarily due to
reduced recall. These results highlight the need for
more representative and diverse synthetic data to
ensure generalization. Limitations such as limited
scene variability, simplistic crack modeling, and dis-
crepancies in image composition likely contributed
to the domain gap. Nonetheless, the study con-
firmed that synthetic data can meaningfully sup-
port model training when integrated wisely, point-
ing toward further refinement as a pathway for im-
proving segmentation outcomes.
In this study, we develop a custom framework

within Unreal Engine 5, a state-of-the-art game
development platform (VG Insights, 2025), to fa-
cilitate controlled generation of synthetic datasets.
Unreal Engine provides an extensive suite of tools
and features tailored for creating complex vir-
tual environments and dynamic interactions (Epic
Games, 2025). Key functionalities leveraged in
this work include high-fidelity geometry rendering
through Nanite and procedural environment con-
struction using the Procedural Content Generator
(PCG). By integrating these capabilities with Un-
real Engine’s visual scripting system and material
editor, we establish a framework capable of build-
ing varied and realistic virtual scenes featuring ma-
sonry surfaces with synthetic cracks. From these
scenes, RGB images and their corresponding pixel-
accurate labels can be extracted to construct syn-
thetic datasets, which can be used to augment real-
world training data. The design and implementa-
tion of this framework are detailed in the following
sections.
This study is guided by the following research

question, which aims to evaluate the feasibility,
quality, and usability of Unreal Engine 5 for gener-
ating synthetic crack datasets, in comparison to a
previously established pipeline based on Blender:
Can synthetic crack images generated using Un-

real Engine match or exceed those produced with
Blender in terms of visual realism and their ef-
fectiveness in improving crack segmentation perfor-
mance?
To address this question, datasets generated us-

ing the Unreal Engine framework are used to re-
train crack detection models previously trained on
Blender-generated data. The resulting performance

metrics are then compared to evaluate differences
in data quality and their impact on model segmen-
tation performance.

2 Theoretical framework

Building upon the prior work of Dais et al. (2021)
in crack detection using real masonry images,
Boerema et al. (2025) propose a novel framework
for the automatic generation of synthetic crack
datasets using 3D rendering in Blender. The moti-
vation lies in the difficulty of acquiring and annotat-
ing diverse, high-quality real-world masonry crack
images, which are essential for training effective
deep learning models. The framework of Boerema
et al. (2025) addresses this by automating the cre-
ation of realistic masonry environments and em-
bedding surface-aware crack patterns directly into
them.

The dataset generation pipeline consists of four
main steps:

1. Randomization - setting random parameters
for the steps to come;

2. Crack generation - generating a crack which
will be used within the scene;

3. Scene preparation - varies the objects
present in the scene for diversity as well as ap-
ply crack to wall surface;

4. Rendering - generating the images along side
their labels.

Each iteration of the pipeline begins with ran-
domizing camera positions, environmental lighting
and crackable surfaces. The core of the framework is
a surface-aware, based on semi-realistic behaviour,
crack generation algorithm, which models cracks as
shortest paths over a displacement-informed sur-
face map. Pivot points are randomly placed across
the surface, and the crack path is calculated by
blending gradient directions from the displacement
map with direction vectors toward the next pivot
point. Crack width is also dynamically varied along
the path. Figure 2.1 provides an overview of how
the pivot points are generated.

Once the crack path is generated, it is converted
into a 2D displacement map representing crack
depth using a Gaussian profile. This depth map

2



Figure 2.1: Overview of the pivot point genera-
tion. Image taken from Boerema et al. (2025).

is then integrated into the original surface’s dis-
placement texture. To avoid rendering artifacts, the
area surrounding the crack is slightly blurred. Af-
ter composing the scene with only relevant geome-
try visible, Blender’s path tracer is used to render
images. Labels are generated via a postprocessing
pipeline that isolates crack regions from rendered
images using compositing and morphological oper-
ations. The framework supports both single-image
and patch-based rendering for higher efficiency and
detail.

The authors generated a synthetic dataset con-
sisting of 4,058 images using Blender, applying
their framework to 3D scenes built from publicly
available assets. These scenes featured four crack-
able masonry walls and were illuminated with four
different environmental lighting to introduce vari-
ability.

To evaluate the effectiveness of the synthetic
data, several convolutional neural network (CNN)
architectures were tested: U-Net (Ros et al., 2016)
and Feature Pyramid Networks (FPN) (Lin et al.,
2017), each with MobileNet (Howard et al., 2017)
and InceptionV3 (Szegedy et al., 2016) as back-
bone networks. The models were trained on com-
binations of real and synthetic data, with the real
dataset (Dais et al., 2021) consisting of 4,058 la-
beled image patches. A filtered version of the real
dataset, containing 3,044 cleaner patches, was also
used in experiments.

Performance was assessed using F1 score, preci-
sion, and recall, with all models validated exclu-

sively on real data to test generalization. When us-
ing only synthetic data (0% real), models achieved
high training accuracy (F1 scores around 88.8%)
but it does not fully generalize to the real data.
However, blending synthetic data into real datasets
in small proportions improved training diversity
by allowing the augmentation of the dataset with
synthetic data without severely degrading perfor-
mance. For instance, the U-Net-MobileNet model
trained on the original real dataset (F1 = 70.4%)
experienced only a minor drop in F1 when 500 syn-
thetic samples were added (F1 = 68.9%, a decrease
of 1.47%). Similarly, using the filtered dataset with
500 synthetic samples resulted in a minimal F1 dif-
ference of just –0.92%.

Unfortunately, adding larger proportions of syn-
thetic data (e.g., a 1:1 or higher ratio of synthetic
to real) led to poor generalization, with F1 scores
dropping below 30% for mixed datasets containing
over 2000 synthetic samples.

Despite promising results, the data generated
by the framework has several limitations. It cur-
rently does not feature crack branching, includes
limited scene variation (e.g., no foliage or debris),
and exhibits framing inconsistencies between real
and synthetic data. These factors reduce general-
ization when synthetic data dominates training.

3 Methods

While recent work has demonstrated the value of
synthetic data generated using Blender for ma-
sonry crack detection, its limitations, including
scene diversity, generation speed, and integration
flexibility, raise questions about its scalability for
broader applications. To address these challenges,
this study explores the use of Unreal Engine 5,
a modern real-time rendering platform that offers
advanced capabilities such as procedural content
generation (PCG), dynamic material systems, and
high-fidelity scene rendering. By leveraging these
features, we propose a framework for efficiently gen-
erating realistic, labeled synthetic masonry scenes,
aiming to both reduce reliance on manual annota-
tion and improve model generalization.

The Unreal Engine (UE) framework developed
in this study consists of several interconnected
components. The following subsections provide an
overview of each key component, along with brief

3



descriptions of the tools and technologies employed
in their implementation.

3.1 General Overview

The framework developed in this study is struc-
tured around three core components, each fulfill-
ing a distinct role in the synthetic data generation
pipeline:

• Crack generator - The Brick Wall: An ac-
tor containing a static mesh component rep-
resenting a brick wall, to which a synthetic
crack texture is applied via displacement map-
ping. This component is primarily developed
using Unreal Engine’s visual scripting system,
Blueprints, in combination with the Material
Editor for procedural shader and displacement
logic as well as custom C++ code.

• Camera Blueprint - The Camera: A vir-
tual camera system responsible for captur-
ing rendered RGB frames and generating cor-
responding label images for use in training
crack detection models. Its functionality is im-
plemented predominantly through Blueprints,
leveraging Unreal Engine’s rendering capabili-
ties.

• Procedural environment generator -
PGC Planes: A system that populates the 3D
environment with predefined meshes according
to configurable spatial rules. This component
enhances scene variety and realism, and is im-
plemented using a combination of Blueprints
and Unreal Engine’s Procedural Content Gen-
eration (PCG) framework.

The three main components interact to form
a cohesive pipeline: the crack generator pro-
duces surface-level defects, the capture compo-
nent records labeled imagery, and the environment
generator ensures visual diversity by modifying
the scene layout procedurally. Figure 3.1 provides
an overview of how these components are placed
within the engine.

3.2 Crack generator

The crack generator is implemented as a Blueprint
that encapsulates a static mesh representing a brick

Figure 3.1: An annotated snapshot of the engine
viewport.

wall (modeled as a box), a Procedural Content Gen-
eration (PCG) component, and the logic required
to synthesize and apply cracks. The generation pro-
cess is initiated by a communication link with the
camera blueprint, which issues crack regeneration
commands during dataset capture.

Upon activation, the generator selects two points
on a designated face of the cube mesh to define the
trajectory of a new crack. The first point is ran-
domly sampled within the face boundaries, while
the second is determined by independently sam-
pling values from user-defined intervals along the
x and y axes, thus constraining the direction and
length of the crack.

A dynamic material instance is then created to
allow real-time updates to key parameters used in
rendering the crack. This material supports the fol-
lowing core properties:

• Mortar mask: Similar to the surface mask
used in the Blender approach, the mortar mask
is a precomputed binary 2D texture derived
from the displacement map of the brick wall,
where white pixels represent mortar lines and
black pixels denote brick regions. This mask
informs the crack generation algorithm about
surface structure.

• Crack Texture: A procedurally generated bi-
nary texture that encodes the shape of the
crack. It is positioned on the mesh using
two world-space vectors, which ensure proper
alignment between the crack and the mesh sur-
face.

• Emissive control: The material includes an
emissive channel that can be programmatically

4



toggled to emit light from pixels defined by the
crack texture or the mortar mask. This feature
is crucial for producing clean label images, as
it enables the capture of isolated crack masks
without interference from scene lighting.

Following material initialization, the crack gen-
erator prepares a render target to isolate and pro-
cess the portion of the mesh surface relevant to the
crack. A render target functions as a texture that
a scene capture component can write to, enabling
off-screen rendering of specific scene elements. In
this framework, it is used in combination with a
2D Scene Capture Component to extract the re-
gion of the mortar mask covering the selected start
and end points of the crack.
The resulting mortar mask, as well as the po-

sitions of the start and end point in local space,
serves as input for the crack path computation. A
modified version of the A* pathfinding algorithm
(Hart et al., 1968), tailored to operate on the binary
mortar map, computes the shortest path between
the two points. A* was selected due to its ease of
use and implementation, its flexibility in behavior
modification to suit the task, and its computational
efficiency. To introduce variability and reduce vi-
sual regularity, stochastic perturbations are added
at each decision step, encouraging the formation of
jagged, non-linear trajectories that better resemble
real-world cracks.
Once the path is determined, a Gaussian blur is

applied with a sigma value that changes by small
amounts each step to control the local intensity
of the blur to contribute to a more naturalistic
transition across crack edges. The final output is
a grayscale texture encoding the crack’s shape and
intensity, which is sent back to the dynamic ma-
terial. This texture modulates the mesh’s displace-
ment and emissive properties, and is used for gener-
ating both rendered images and corresponding la-
bel masks. Label masks are produced by first dis-
abling all light-emitting objects in the scene and
then configuring the material to render the crack
texture as a white emissive region against a black
background. This produces pixel perfect labels de-
scribing the exact position of the crack within the
scene including occlusions such as objects covering
the crack or the displacement of the wall.
Figure 3.2 depicts the crack texture generation

steps starting from the render target.

Upon completion of the crack generation process,
the generator triggers an event to notify the cam-
era blueprint that the scene is ready for capture.
Alongside this event, the generator transmits the
world-space coordinates of the crack’s center, al-
lowing the camera blueprint to orient itself accord-
ingly and ensure the crack remains the focal point
of the rendered image.

3.3 Camera Blueprint

The Camera Blueprint manages the overall dataset
generation workflow. Once both the crack and the
procedural elements have been successfully gener-
ated, the camera initiates the rendering process,
producing both an RGB image and its correspond-
ing label.

Structurally, the blueprint contains two camera
components: a CineCamera and a SceneCapture-
Component2D. The CineCamera simulates real-
world camera systems and provides fine control over
parameters such as focal length, aperture, and sen-
sor type, enabling realistic image synthesis. In con-
trast, the SceneCaptureComponent is used specif-
ically for generating label images through con-
trolled, lighting-independent captures.

The logic begins with the camera being placed
at a randomized location within a defined volume.
It then awaits a signal from the crack generator,
which includes the world-space coordinates of the
crack’s center. Using this information, the camera
is oriented to focus directly on the crack. After ori-
entation is complete, the camera waits for the PCG
system to finish populating the environment.

Since PCG objects are placed independently of
the camera position, occlusions may occur where
objects block the view of the crack. To address this,
a sphere trace is performed between the camera and
the crack location, detecting any intersecting com-
ponents. Undesired occluding elements are then se-
lectively hidden from view prior to image capture
creating direct line of site between the camera and
the crack.

Rendering proceeds in two stages. First, the
CineCamera captures the full-resolution RGB im-
age at 3840×2160 pixels, saving it to disk. Then, to
generate the label image, the SceneCaptureCompo-
nent disables all dynamic lighting in the scene and
activates the emissive property of the crack mate-
rial, causing only the crack to emit visible light.

5



Figure 3.2: Overview of the crack generation steps: (left) captured mortar mask, (middle) captured
mortar mask with the computed path in red, (right) final crack texture after Gaussian blur.

This results in a binary image where the crack ap-
pears as white on a black background. Once the
label is captured, the original lighting and material
properties are restored.

Finally, the camera checks whether the target
number of images has been reached. If not, it is-
sues a regeneration command, prompting the crack
generator, PCG components, and the camera itself
to reset and initiate a new iteration of the dataset
generation loop. Figure 3.3 shows a generated im-
age with its corresponding label.

3.4 Procedural environment genera-
tor

The Procedural Environment Generator is not im-
plemented as a singular, standalone blueprint but
rather as a collection of modular components em-
bedded within other actors in the scene. These com-
ponents collectively fulfill the role of introducing vi-
sual complexity, which is crucial for improving the
environmental variability of the generated dataset.

At the core of each generator component is a
plane mesh, typically subdivided into a grid of
vertices that serve as a sampling surface for the
PCG component. This component leverages a user-
defined PCG Graph to control the spatial distribu-
tion of objects within the environment. During exe-
cution, the PCG component transforms the plane’s
vertices into world-space sampling points, which
are then evaluated according to the logic defined
in the PCG Graph. These candidate points can be
filtered based on spatial constraints.

To prevent visual clutter or overlapping geome-
try, bounds-based conflict resolution can be applied
to ensure that spawned elements maintain mini-
mum spacing. Finally, the remaining valid points
are used to instantiate actors or static meshes
within the scene—such as debris, background el-
ements, or occluders—which contribute to greater
scene diversity and complexity.

Two distinct PCG graphs were developed to
serve different purposes within the procedural en-
vironment generation framework. The first graph is
dedicated to augmenting the brick wall surface and
is responsible for placing visual noise elements such
as windows, doors, and dirt decals. Elements that
can be placed by the PCG components are meshes,
actors and decals the sources of which are listed in
Appendix C

Some of the objects placed by the wall-face PCG
graph may partially overlap with the crack. To pre-
vent these elements from occluding critical parts
of the crack to an extent that would cause gener-
ated data to contain little to no crack surfaces, cus-
tom filtering logic is implemented. This logic eval-
uates object placement relative to the crack’s loca-
tion and enforces spatial constraints that ensure the
crack remains sufficiently visible, while still allow-
ing for the presence of realistic partial occlusions.

The second graph focuses on the broader envi-
ronment surrounding the target surface. It procedu-
rally distributes natural elements such as trees and
bushes, which not only diversify the scene composi-
tion but also introduce complex dynamic shadows
cast onto the crack surface.

6



Figure 3.3: Example pair of a generated RGB image with its corresponding label.

By leveraging PCG in this manner, the frame-
work supports the rapid generation of varied and
non-repetitive environments, essential for diverse
dataset generation. While the PCG graph allows
for rule-based control to enforce scene realism, the
current implementation relies on largely random
object placement, subject to basic constraints to
prevent visually implausible configurations—such
as floating doors or trees intersecting the wall ge-
ometry.

3.5 Experiments setup

To investigate the effectiveness of the synthetic
dataset, three distinct training configurations were
evaluated, each designed to quantify the impact of
synthetic data when used alone or in combination
with real data:

• 100% Synthetic Data: The model was
trained exclusively on a synthetic dataset com-
posed of 2,000 training images and validated
using 800 additional synthetic images. This
configuration served to evaluate the baseline
performance of models trained solely on pro-
cedurally generated data.

• 66% Real / 33% Synthetic Data: A mixed
dataset was created using 2,000 real train-
ing images supplemented with 1,000 synthetic
training images. The validation set consisted of
800 real images, allowing for an assessment of
how synthetic data augments real data during
training without influencing validation perfor-
mance directly.

• 50% Real / 50% Synthetic Data: This
configuration included an equal distribution of

2,000 real and 2,000 synthetic images in the
training set. Validation was again performed
using 800 real images to measure generaliza-
tion to real-world data.

The validation sets used for the 66%/33% and
50%/50% experiments contain different real im-
ages.

All experiments were conducted under identi-
cal conditions, with training performed over 300
epochs using consistent model architecture, learn-
ing rate of 0.0005, Weighted Cross Entropy loss and
optimization parameters Adam, with a batch size of
4. The model used is U-Net (Ros et al., 2016) with
Mobilenet (Howard et al., 2017) as its backbone.
These parameters have been chosen to be consis-
tent with the results obtained running the model on
the Blender dataset. It is important to note that,
since the collection of the blender data in the study
conducted by Boerema et al. (2025), the code-base
has undergone changes, thus the following results
should be compared with caution.

4 Results

The results of the experiments conducted in this
study, as well as relevant results from the study
conducted by Boerema et al. (2025), are presented
in Table 4.1. Due to technical issues and time limi-
tations, it was not possible to retrain the model on
the Blender dataset. As a result, the Blender-based
performance metrics presented here are those pre-
viously published in Boerema et al. (2025), which
allows for a relative evaluation of the performance
differences between the Unreal Engine and Blender
frameworks. However, it is important to note that

7



Table 4.1: Results of training the neural network on datasets composed of real, synthetic (Unreal
Engine / UE or Blender), or mixed data. Results from Blender datasets as well as on the Original
dataset taken from Boerema et al. (2025). Cells highlighted in gray indicate the better score
between the two frameworks within each experimental pairing.

Dataset Real : Synthetic F1 (%) Precision (%) Recall (%) F1 Diff
Real-Only Baseline

Original 2434:0 70.40 71.71 71.84 —
Synthetic-Only Datasets

(UE) Synthetic 0:2000 88.22 81.36 96.59 —
(Blender) Synthetic 0:2434 88.77 89.52 88.58 —

Mixed Datasets – Approx. 66/33 Split
(UE) Mix-66/33 2000:1000 63.35 63.71 69.32 -7.05
(Blender) Mixed-1000 2434:1000 68.54 78.06 63.76 -1.87

Mixed Datasets – Approx. 50/50 Split
(UE) Mix-50/50 2000:2000 63.05 59.85 75.21 -7.35
(Blender) Mixed-2000 2434:2000 28.84 92.09 18.41 -41.56

Figure 4.1: F1 score and Loss of the 66%/33% (top row) and 50%/50% (bottom row) datasets
over training and validation

8



this is not a direct comparison, and therefore, the
findings should be interpreted with caution.

The synthetic-only results show that both the
Unreal Engine (UE) and Blender frameworks
can generate high-quality data. Blender achieves
slightly better F1 (88.77%) and precision (89.52%),
while UE leads in recall (96.59% vs. 88.58%). This
suggests that UE-based data results in models that
are more sensitive to cracks, whereas Blender pro-
duces more conservative but precise predictions.

In the 66% real / 33% synthetic configuration,
Blender again outperforms UE in F1 score (68.54%
vs. 63.35%) and precision, while UE maintains
higher recall.

In the 50/50 mixed setup, the performance
gap widens. Blender’s F1 score drops significantly
(28.84%), with very low recall (18.41%), despite
maintaining high precision. UE, on the other hand,
preserves a higher F1 (63.05%) and recall (75.21%),
showing greater robustness at high synthetic data
ratios.

Figure 4.1 shows that the training F1
score steadily increases toward 1.0, while the
training loss—computed using weighted cross-
entropy—consistently decreases. This indicates
effective learning on the training set.

For both the 66%/33% and 50%/50% mixed
datasets, the validation F1 score remains stable
around 0.6 around epoch 25, suggesting that model
generalization does not improve beyond this point.
Interestingly, the validation loss increases through-
out training, reaching values around 2.0.

Given the use of weighted cross-entropy, this
trend suggests that the model becomes increasingly
confident in its predictions, including incorrect ones
on underrepresented crack pixels. These misclassifi-
cations contribute disproportionately to the valida-
tion loss, despite stable segmentation performance
as reflected by the F1 score.

5 Discussion and Conclusions

This section begins by assessing the extent to which
the research questions outlined in Section 1 have
been addressed. It then discusses key observations
and limitations encountered during the study, and
concludes with suggested directions for future work.

5.1 Research question assessment

Can Unreal Engine produce synthetic crack
images that are comparable to or exceed the
visual and functional quality of those gen-
erated in Blender? Based on the experimen-
tal results presented in Section 4, synthetic images
generated using the Unreal Engine framework do
not yet achieve the same level of effectiveness as
those produced in Blender, particularly when com-
bined with real data in mixed datasets. Models
trained on Blender-generated data yielded higher
F1 scores and better precision across all tested con-
figurations. Additionally, the increasing validation
loss observed when training with Unreal Engine
data suggests issues with generalization, likely due
to overconfident predictions on weighted crack pix-
els. However, an important finding is that the F1
score for Unreal-based data remains relatively sta-
ble even as the proportion of synthetic data in-
creases, suggesting a degree of robustness that mer-
its further exploration. Future improvements to the
visual realism and diversity of cracks generated in
Unreal may help close this performance gap.

It is important to note that the Blender-based re-
sults used for comparison were obtained from pre-
viously published experiments and were not repro-
duced in parallel with the Unreal Engine evalua-
tions. As such, differences in training conditions
may introduce inconsistencies that limit the valid-
ity of direct, one-to-one comparisons.

Additionally, while the stability of the F1 score
observed in the Unreal Engine experiments may ini-
tially appear to reflect robustness, it may also be at-
tributed to the limited variability in the generated
dataset caused by lack of diverse crack behavior and
limited selection of textures and models used. This
lack of diversity may result in a plateau in model
performance, where additional synthetic data nei-
ther significantly improves nor degrades accuracy,
due to redundancy in the training signals. There-
fore, while the framework shows potential, its ca-
pacity to support effective learning at scale is con-
tingent on addressing these variability limitations.

5.2 Limitations

As this study focused on developing a functional
proof of concept using relatively new tools and
technologies, several components of the framework

9



remain limited in scope and refinement. The de-
velopment followed a ”minimum viable product”
approach, prioritizing core functionality over com-
pleteness or optimization. Consequently, the follow-
ing areas require further development to enhance
the framework’s performance, realism, and scala-
bility:

• Crack points selection: The current method
for selecting crack start and end points is de-
terministic and simplistic, leading to repet-
itive and predictable crack patterns. The
starting point is always positioned in the
upper-left quadrant relative to the end point,
reducing geometric diversity. A proposed
improvement—postponed due to time con-
straints—involves integrating point selection
directly within the crack generation script.
This would enable dynamic selection of points
based on the render target content, potentially
allowing more natural and varied crack trajec-
tories.

• Crack generating algorithm: The crack
path is generated using a modified A* al-
gorithm, where noise is introduced during
pathfinding to avoid overly linear and unnat-
ural paths. While this introduces some varia-
tion, the method remains limited in complex-
ity. It currently lacks features such as branch-
ing, curvature control, or adaptive trajectory
logic. Additionally, the Gaussian blur applied
to the path—used to simulate crack depth and
width—could benefit from improved control,
particularly in how the sigma value evolves
along the path. Enhancing both the path gen-
eration and post-processing steps would lead
to more realistic and diverse crack patterns.

• Limited Brick Textures: The framework
currently supports only a single brick texture
and its associated surface mask, due to lim-
itations in image processing experience. This
restricts variability across generated scenes.
While random hue shifts, brightness adjust-
ments, and surface decals (e.g., dust or grime)
are used to simulate variation, these techniques
are not a full substitute for genuinely different
surface types. However, the system is designed
for extensibility: once additional texture sets
and masks are created, they can be integrated

easily by instantiating new materials based on
the master brick shader.

• PCG conflicts: Issues have been observed
within the Procedural Content Generation
(PCG) system, particularly in the uneven dis-
tribution of objects. Certain meshes appear
disproportionately often due to the current
overlap-avoidance logic, which prevents ob-
jects from being placed in close proximity.
This logic is implemented per actor and does
not consider the global distribution of place-
ments. A more robust solution would involve
first identifying all valid spawn locations, then
distributing actors across these points using ei-
ther uniform or weighted sampling strategies
to achieve more balanced scene compositions.

• Occlusion avoidance: The framework in-
cludes logic to prevent occlusion of the crack
by PCG-placed objects. However, the exclu-
sion zone around the crack’s center is currently
a static value defined in the editor, regardless
of the crack’s actual size. As a result, smaller
cracks are disproportionately protected from
occlusion, often leaving the surrounding area
unnaturally empty. This limits scene realism
and reduces the likelihood of generating chal-
lenging training samples with partial crack oc-
clusion. An adaptive approach that scales the
occlusion buffer based on the crack’s length or
area would mitigate this issue and promote
greater variability in object placement near
cracks.

Labeling observation: The original dataset of
real crack images includes labels that were manu-
ally annotated by human experts. While generally
accurate, these annotations are not always precise
at the pixel level, as illustrated in Figure 5.1. In
contrast, the Unreal Engine framework produces
pixel-perfect labels procedurally at runtime, ensur-
ing exact alignment between crack geometry and
its corresponding label. This discrepancy in anno-
tation quality introduces a source of inconsistency
when real and synthetic data are combined dur-
ing training. The model is exposed to two differ-
ent standards of label precision, which may lead
to confusion during learning and potentially hinder
convergence or generalization. The unreal engine

10



material designed to show the crack can be modi-
fied to allow for errors in labeling that, if modeled
correctly, can be similar to human made error.

Figure 5.1: The same real crack image with its
original label overlayed over it with red (left)
and with the model prediction overlayed with
green (right)

5.3 Future Direction

As outlined in Subsection 5.2, several components
of the framework remain underdeveloped and offer
opportunities for further enhancement. In addition
to those previously identified limitations, the fol-
lowing directions are proposed to expand the capa-
bilities and applicability of the framework:

• Increased Scene Diversity: The Procedu-
ral Content Generation (PCG) system can be
further leveraged to introduce greater environ-
mental variability. This includes incorporating
a wider range of noise objects such as vents,
signs, and surface attachments; applying addi-
tional decals to simulate surface imperfections
like stains or paint erosion; and populating the
surrounding environment with larger contex-
tual assets, such as vehicles, streetlights, and
vegetation.

• Advanced Lighting Scenarios: The frame-
work can be extended to support variable light-
ing conditions, including different times of day,
weather phenomena (e.g., overcast, fog, rain),
and artificial light sources such as streetlamps
or flash lighting. These additions would help
simulate realistic and diverse illumination con-
texts, thereby improving model robustness to
lighting variability.

• Enhanced Camera Simulation: Unreal En-
gine’s CineCamera component allows detailed
control over parameters such as focal length,
aperture, sensor size, and lens distortion. This
functionality can be exploited to emulate spe-
cific real-world camera and lens configurations,
which would improve the realism of synthetic
images and better align them with the charac-
teristics of real-world datasets.

5.4 Conclusions

This study explored the development and evalu-
ation of a synthetic dataset generation framework
for masonry crack detection using Unreal Engine 5.
The framework was designed to replicate key com-
ponents of a previously established Blender-based
pipeline, including crack generation, scene compo-
sition, and automated rendering. Despite platform-
specific challenges and limitations in available time
and domain expertise, a functional proof of concept
was achieved.

Experimental results demonstrated that while
Unreal Engine-generated images offer a viable al-
ternative to Blender for scenarios requiring large-
scale synthetic data generation—particularly when
real data is scarce or unavailable—they currently
do not match Blender’s performance in mixed real-
synthetic training configurations. Models trained
with Blender data achieved higher F1 scores and
precision, particularly in configurations with mod-
erate synthetic input. However, the Unreal-based
framework showed greater robustness at higher
synthetic data ratios and produced stable F1 scores
across training configurations, suggesting its poten-
tial for large-scale synthetic dataset generation in
low-data settings.

Moreover, the integration of Unreal Engine’s
Procedural Content Generation (PCG) system sig-
nificantly improved workflow scalability and scene
diversity, reducing the need for manual scene con-
struction. This procedural flexibility, combined
with real-time label rendering and camera configu-
ration, positions Unreal Engine as a promising tool
for further development in the domain of synthetic
image generation for visual inspection tasks.

The framework, while functional, presents sev-
eral limitations—including simplistic crack path
logic, limited surface texture variety, and rigid oc-
clusion avoidance—that impact the realism and di-

11



versity of the generated data. Nonetheless, these
constraints also identify clear directions for future
improvement. By incorporating more advanced
crack modeling techniques, expanding scene varia-
tion, and simulating real-world environmental and
camera conditions, the framework could be signifi-
cantly enhanced in both visual realism and utility.
Overall, this work provides a foundation for fur-

ther exploration into the use of modern game en-
gines for automated dataset generation, contribut-
ing to the broader goal of scalable, reproducible,
and realistic training data for computer vision tasks
in structural health monitoring.

6 Acknowledgments

The framework project used to generate the full-
resolution images, along with the data used to cre-
ate patches from those images, is available on Hug-
gingFace.
The model architecture used in this study is

available on GitHub.
We thank the Center for Information Technol-

ogy of the University of Groningen for their sup-
port and for providing access to the Hábrók high
performance computing cluster.
All assets used within this project are listed in

Appendix C.

References

Boerema, D. H., Bal, I. E., Smyrou, E., & Kosinka,
J. (2025). Towards Enhancing AI-Based Crack
Segmentation for Masonry Surfaces Through 3D
Data Set Synthesis. (Unpublished manuscript)

Dais, D., İhsan Engin Bal, Smyrou, E., &
Sarhosis, V. (2021). Automatic crack
classification and segmentation on masonry
surfaces using convolutional neural networks
and transfer learning. Automation in Con-
struction, 125 , 103606. Retrieved from
https://www.sciencedirect.com/science/

article/pii/S0926580521000571 doi:
https://doi.org/10.1016/j.autcon.2021.103606

Epic Games. (2025). Unreal engine features. Re-
trieved from https://www.unrealengine.com/

en-US/features (Accessed: 2025-06-18)

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968).
A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4 (2), 100–107.
doi: 10.1109/TSSC.1968.300136

Howard, A. G., Zhu, M., Chen, B., Kalenichenko,
D., Wang, W., Weyand, T., . . . Adam, H. (2017).
Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. CoRR,
abs/1704.04861 . Retrieved from http://arxiv

.org/abs/1704.04861

Laefer, D. F., Gannon, J., & Deely, E.
(2010). Reliability of crack detection
methods for baseline condition assess-
ments. Journal of Infrastructure Systems,
16 (2), 129-137. Retrieved from https://

ascelibrary.org/doi/abs/10.1061/%28ASCE%

291076-0342%282010%2916%3A2%28129%29 doi:
10.1061/(ASCE)1076-0342(2010)16:2(129)

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Har-
iharan, B., & Belongie, S. (2017). Feature
pyramid networks for object detection. In 2017
ieee conference on computer vision and pattern
recognition (cvpr) (p. 936-944). doi: 10.1109/
CVPR.2017.106

Phares, B. M., Washer, G. A., Rolander,
D. D., Graybeal, B. A., & Moore, M.
(2004). Routine highway bridge inspection
condition documentation accuracy and re-
liability. Journal of Bridge Engineering ,
9 (4), 403-413. Retrieved from https://

ascelibrary.org/doi/abs/10.1061/%28ASCE%

291084-0702%282004%299%3A4%28403%29 doi:
10.1061/(ASCE)1084-0702(2004)9:4(403)

Ros, G., Sellart, L., Materzynska, J., Vazquez, D.,
& Lopez, A. M. (2016). The synthia dataset:
A large collection of synthetic images for se-
mantic segmentation of urban scenes. In 2016
ieee conference on computer vision and pattern
recognition (cvpr) (p. 3234-3243). doi: 10.1109/
CVPR.2016.352

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.,
& Wojna, Z. (2016). Rethinking the incep-
tion architecture for computer vision. In 2016
ieee conference on computer vision and pattern

12

https://huggingface.co/datasets/vluvl/UE-Synthetic-Masonry-Surfaces
https://huggingface.co/datasets/vluvl/UE-Synthetic-Masonry-Surfaces
https://github.com/DavidHidde/cracked-surface-generation/tree/d001a9a247451f12600717d929d5f755f0299577
https://www.sciencedirect.com/science/article/pii/S0926580521000571
https://www.sciencedirect.com/science/article/pii/S0926580521000571
https://www.unrealengine.com/en-US/features
https://www.unrealengine.com/en-US/features
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282010%2916%3A2%28129%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282010%2916%3A2%28129%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282010%2916%3A2%28129%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291084-0702%282004%299%3A4%28403%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291084-0702%282004%299%3A4%28403%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291084-0702%282004%299%3A4%28403%29


recognition (cvpr) (p. 2818-2826). doi: 10.1109/
CVPR.2016.308

VG Insights. (2025). The big game engines report
of 2025. https://vginsights.com/assets/

reports/The Big Game Engines Report of

2025.pdf. (Accessed: 2025-06-18)

Zhang, A., Wang, K. C. P., Fei, Y., Liu, Y.,
Tao, S., Chen, C., . . . Li, B. (2018). Deep
learning–based fully automated pavement crack
detection on 3d asphalt surfaces with an im-
proved cracknet. Journal of Computing in
Civil Engineering , 32 (5), 04018041. Retrieved
from https://ascelibrary.org/doi/abs/

10.1061/%28ASCE%29CP.1943-5487.0000775

doi: 10.1061/(ASCE)CP.1943-5487.0000775

13

https://vginsights.com/assets/reports/The_Big_Game_Engines_Report_of_2025.pdf
https://vginsights.com/assets/reports/The_Big_Game_Engines_Report_of_2025.pdf
https://vginsights.com/assets/reports/The_Big_Game_Engines_Report_of_2025.pdf
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000775
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000775


A AI usage

This study used Large Language Models for general
rephrasing and restructuring of general and rough
ideas into academic text. The model used is the free
version of GPT-4o. The outputs provided by the
model have been closely inspected and corrected if
factual errors were observed. Bellow, examples of
how the model has been used are provided:

Prompt: Rephrase the following paragraph to fit
into an academic report: The developed Unreal En-
gine (UE) framework is composed of multiple com-
ponents which interact with each-other. In the fol-
lowing subsections, an overview of each important
component developed for the UE framework as well
as brief introductions to the tools used for their de-
velopment will be provided.

Response: The Unreal Engine (UE) framework
developed in this study consists of several inter-
connected components. The following subsections
provide an overview of each key component, along
with brief descriptions of the tools and technologies
employed in their implementation.

Prompt: Rephrase the following paragraph: The
original dataset containing real images of cracks
also contains human annotated labels. Upon close
inspection, despite being accurate, the labels are
not always perfect as shown in Figure5.1. The fact
that the unreal engine framework generates pixel
perfect labels at runtime, there defiantly exists a
discrepancy between the accuracy of the human an-
notated labels compared to unreal’s labels. this can
cause the model to struggle while training as it re-
ceives different mixed signals.

Response: The original dataset of real crack im-
ages includes labels that were manually annotated
by human experts. While generally accurate, these
annotations are not always precise at the pixel level,
as illustrated in Figure 5.1. In contrast, the Un-
real Engine framework produces pixel-perfect la-
bels procedurally at runtime, ensuring exact align-
ment between crack geometry and its correspond-
ing label. This discrepancy in annotation quality
introduces a source of inconsistency when real and
synthetic data are combined during training. The

model is exposed to two different standards of la-
bel precision, which may lead to confusion during
learning and potentially hinder convergence or gen-
eralization. This highlights the importance of ac-
counting for label noise and structural alignment
when mixing datasets from different sources.

B Unreal engine workflow and
implementation details

The development of the framework relies on sev-
eral core Unreal Engine tools, which are briefly in-
troduced bellow to contextualize their application
within this work.

B.1 Brief introduction to Unreal En-
gine tools

Blueprints Blueprints are Unreal Engine’s vi-
sual scripting system, enabling the creation of
object-oriented logic through a node-based inter-
face. Functionally equivalent to traditional script-
ing languages, Blueprints offer full access to
engine-level operations, allowing non-programmers
to design complex behaviors. In this framework,
Blueprints were used to implement dynamic scene
logic, camera control, and actor coordination, form-
ing the backbone of all major components.

Materials Materials define the visual and phys-
ical surface properties of objects in the scene. Us-
ing a node-based system, they describe interactions
with light such as color, roughness, and displace-
ment. In this project, Materials are employed not
only for surface appearance but also for simulating
geometry deformation through Nanite-compatible
displacement mapping, enabling cracks to appear
as physically embedded features rather than tex-
ture overlays.

Procedural Content Generator The PCG
framework supports rule-based generation of scene
elements such as assets, geometry, or entire biomes.
Within this framework, PCG is used to procedu-
rally populate scenes with occluding or contex-
tual meshes—such as debris, clutter, or secondary
structures—to enhance variability in the synthetic
dataset. This ensures that crack detection models

14



are exposed to a wide range of visual scenarios and
potential obstructions.

C Meshes and texture sources

The following is a list of the sources of models and
textures used within this study:

• Hinged door:https://www.fab.com/
listings/630481aa-f86c-439b-9aca

-3e6dcfbdee2f

• Gray wooden door: https://www.fab.com/

listings/e056d79e-e98b-4226-a953

-47af2271057a

• Window: https://sketchfab

.com/3d-models/window

-2811eb28fa7a49b4adb86b948f75ff37#

download

• Brick facade: https://www.fab.com/

listings/efa35b96-cb00-48b1-9402

-fd35ede9dcf6

• Fake interior cubemap: https://

www.fab.com/listings/62e0fe0f-3fd7

-4d40-993a-cae13e8199f4

• Diverse foliage: https://www.fab.com/

listings/11cc2abb-126c-4452-9fe4

-6f2381d96544

• Misc noise items: https://www.fab.com/

listings/2e5835c8-6e4b-4cae-aab9

-85396e68401c

• Mud decal texture: https://www.fab.com/

listings/0a461105-d696-4e2a-834d

-a271f9ce67f9

• Mud decal texture:https://www.fab.com/
listings/2719f132-39b3-4156-a1d5

-953c64ea048c

• Mud decal texture: https://www.fab.com/

listings/243aaaab-02e3-4424-a74c

-c4f54d689d19

• Mud decal texture: https://www.fab.com/

listings/d943a805-9e06-435c-9691

-06890fc8cb12

15

https://www.fab.com/listings/630481aa-f86c-439b-9aca-3e6dcfbdee2f
https://www.fab.com/listings/630481aa-f86c-439b-9aca-3e6dcfbdee2f
https://www.fab.com/listings/630481aa-f86c-439b-9aca-3e6dcfbdee2f
https://www.fab.com/listings/e056d79e-e98b-4226-a953-47af2271057a
https://www.fab.com/listings/e056d79e-e98b-4226-a953-47af2271057a
https://www.fab.com/listings/e056d79e-e98b-4226-a953-47af2271057a
https://sketchfab.com/3d-models/window-2811eb28fa7a49b4adb86b948f75ff37#download
https://sketchfab.com/3d-models/window-2811eb28fa7a49b4adb86b948f75ff37#download
https://sketchfab.com/3d-models/window-2811eb28fa7a49b4adb86b948f75ff37#download
https://sketchfab.com/3d-models/window-2811eb28fa7a49b4adb86b948f75ff37#download
https://www.fab.com/listings/efa35b96-cb00-48b1-9402-fd35ede9dcf6
https://www.fab.com/listings/efa35b96-cb00-48b1-9402-fd35ede9dcf6
https://www.fab.com/listings/efa35b96-cb00-48b1-9402-fd35ede9dcf6
https://www.fab.com/listings/62e0fe0f-3fd7-4d40-993a-cae13e8199f4
https://www.fab.com/listings/62e0fe0f-3fd7-4d40-993a-cae13e8199f4
https://www.fab.com/listings/62e0fe0f-3fd7-4d40-993a-cae13e8199f4
https://www.fab.com/listings/11cc2abb-126c-4452-9fe4-6f2381d96544
https://www.fab.com/listings/11cc2abb-126c-4452-9fe4-6f2381d96544
https://www.fab.com/listings/11cc2abb-126c-4452-9fe4-6f2381d96544
https://www.fab.com/listings/2e5835c8-6e4b-4cae-aab9-85396e68401c
https://www.fab.com/listings/2e5835c8-6e4b-4cae-aab9-85396e68401c
https://www.fab.com/listings/2e5835c8-6e4b-4cae-aab9-85396e68401c
https://www.fab.com/listings/0a461105-d696-4e2a-834d-a271f9ce67f9
https://www.fab.com/listings/0a461105-d696-4e2a-834d-a271f9ce67f9
https://www.fab.com/listings/0a461105-d696-4e2a-834d-a271f9ce67f9
https://www.fab.com/listings/2719f132-39b3-4156-a1d5-953c64ea048c
https://www.fab.com/listings/2719f132-39b3-4156-a1d5-953c64ea048c
https://www.fab.com/listings/2719f132-39b3-4156-a1d5-953c64ea048c
https://www.fab.com/listings/243aaaab-02e3-4424-a74c-c4f54d689d19
https://www.fab.com/listings/243aaaab-02e3-4424-a74c-c4f54d689d19
https://www.fab.com/listings/243aaaab-02e3-4424-a74c-c4f54d689d19
https://www.fab.com/listings/d943a805-9e06-435c-9691-06890fc8cb12
https://www.fab.com/listings/d943a805-9e06-435c-9691-06890fc8cb12
https://www.fab.com/listings/d943a805-9e06-435c-9691-06890fc8cb12

	Introduction
	Theoretical framework
	Methods
	General Overview
	Crack generator
	Camera Blueprint
	Procedural environment generator
	Experiments setup

	Results
	Discussion and Conclusions
	Research question assessment
	Limitations
	Future Direction
	Conclusions

	Acknowledgments
	AI usage
	Unreal engine workflow and implementation details
	Brief introduction to Unreal Engine tools

	Meshes and texture sources

