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Abstract

This thesis explores the implementation of a control strategy that controls an electric boiler. The
controller needs to react to dynamic electricity prices and imbalance prices. Historical data from the
year 2024 is used in a simulation to see the of cost-savings profits that can be made by using such
control strategy.

The increasing share of variable renewable electricity in Europe requires electricity consumers
to be more flexible. This study evaluates whether a 100 kW electric boiler and 10 m³ thermal-
storage tank on a dairy farm can be operated economically through price-responsive control. Two
strategies are implemented in Python: a price-weighted linear–quadratic regulator (LQR) which uses
dynamic electricity prices to determine the boiler power output. And a Model Predictive Controller
(MPC) which uses both dynamic electricity prices and imbalance prices to reduce costs as much
as possible. Both strategies are tested with 2024 Dutch day-ahead and imbalance-price data under
realistic thermal constraints.

Findings indicate that predictive, price-driven control of electric boilers might be technically fea-
sible and financially attractive for industrial applications, particularly when imbalance price signals
are incorporated.

This report has been produced in the framework of an educational program at the University of Gronin-
gen, Netherlands, Faculty of Science and Engineering, Industrial Engineering and Management (IEM)
Curriculum. No rights may be claimed based on this report. Citations are only allowed with explicit
reference to the status of the report as a product of a student project.
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1 Introduction

The share of renewable energy in Europe is growing. As a result of commitments to the energy transition
and climate change, this growth is expected to continue to meet the 2050 EU goals regarding CO2
emissions [1], [2]. An increased share of renewable energy will introduce fluctuations in electricity
supply and demand, due to the varying nature of the weather conditions [3]. Batteries, electric water
heaters, and hot water tanks can be used to mitigate fluctuations in supply and demand by acting as
intermediate buffers. By storing energy in case of high supply and deploying energy in case of high
demand, the power grid will become more stable, while also increasing energy efficiency and cost-
effectiveness [4]. However, existing strategies to mitigate grid instability require changes in behaviour
patterns of users of the electricity grid [5]. This research aims to develop a control strategy for optimal
coordination between batteries, water heaters, and thermal energy storage (TES). It aims to improve
energy efficiency, reduce costs, and support grid stability.

Recent studies have explored control strategies for energy storage and demand-side management. Ra-
pucha et al. (2024) explore smart heat pump control in residential energy optimization, while Clift et al.
(2021) examine control strategies for photovoltaic (PV) powered energy storage systems [5] [6]. Zhang
et al. (2025) propose an integrated approach to optimize the operation of the battery and heat pump
with TES [4]. Despite these advancements, there is limited research on the operation of battery and heat
pump systems in combination with TES to balance the electricity grid. Due to the performance reduction
during the startup phase that heat pumps experience, FIRN energy wants to explore the use of e-boilers
instead of heat pumps, given their faster response time [7]. By using dynamic electricity contracts and
participating in the electricity imbalance market, grid stability could be improved, and profits can be
made [8]–[10].

This research fills the gap in the current research by developing a control strategy that coordinates an
electric boiler coupled with thermal energy storage as a flexible asset. Two different control strategies
will be explored: a Linear Quadratic Regulator and a Model Predictive Controller. The controller has
to schedule heating and discharging of the TES so that hot-water production is conducted in the lowest-
cost hours in the day-ahead market, or in times of favourable imbalance prices. If the 15-min imbalance
price is negative, the farm consumes more than scheduled, which means the boiler soaks heat, and the
transmission system operator pays the negative price for every extra kWh. When the price is positive,
the boiler will turn off, selling the kWh saved at the imbalance rate. Only this deviation is settled at
the imbalance price, so the day-ahead contract remains unchanged [9], [10]. Fast boiler response and
thermal storage make the strategy feasible without disrupting the fixed cleaning schedule.

The specific use case studied is a dairy farm that cleans their milking robots and the livestock stables.
The robots are rinsed every twelve hours with hot water. Additionally, stable cleaning is carried out once
a week on Monday morning, and a deep clean is performed on the first Saturday of each month. This
use case provides a strong indication of potential cost reductions by comparing the boiler controlled by
prices to an boiler that is solely controlled based on temperature.

The rest of this paper will be organized as follows: First, sections 2 and 3 present the problem statement
and research questions. In section 4, the gaps in the current knowledge are identified to help indicate
what exactly needs to be researched. Next, in section 6, all necessary materials are listed, as well as the
methods and validation for conducting the research. The system description in section 5 explains the
system that needs to be controlled and the corresponding equations. Next in section 7 the design choices
and the simulated use case for the simulation model of the boiler controller are explained. Simulation
setup is presented in section 8. The results from the simulations are explained in section 9. Finally, the
discussion and conclusion are formulated in sections 10 and 11.
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2 Problem Statement

Heat Pumps / E-boilers, and Thermal Energy Storage (TES) must be effectively coordinated to improve
energy efficiency, lower costs by at least 30%, and improve grid stability by balancing electricity supply
and demand in response to fluctuations in renewable energy production and dynamic pricing.

3 Research Questions

Central Question
What is the most optimal way to control an e-boiler or heat pump in combination with a Thermal Energy
Storage (TES) to reduce costs, improve energy efficiency and support grid stability in the BeNeLux
climate?

Knowledge Questions

1. What are the main challenges for the integration of E-boilers / Heat Pumps, BESS and TES for
energy management?

2. What control strategies have been explored in past research?

3. Which type of water heater is most suitable for a combined system, a heat pump, or an e-boiler?

Design Questions

1. Which decision-making algorithms are the most suitable for controlling combined systems?

2. What are the requirements for integrating the control strategy with FIRN Energy’s current software
and hardware?

Validation Questions

1. To what extent does the control technique enhance energy efficiency, cost savings, and grid stability
under real-world conditions compared to existing solutions?

2. Does the Python script meet the requirements and operational constraints of FIRN Energy’s exist-
ing software and hardware?
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4 Literature Review

Integrating electric boilers with thermal energy storage (TES) offers a promising solution for improving
flexibility, efficiency and improving grid stability. This literature review focuses specifically on the
coordination of these two components. The review is structured as follows: it starts with an overview
of the current integration strategies for boilers and TES, followed by recent developments in forecasting
methods relevant to system optimization. Next it discusses how grid services and market policies affect
boiler-TES operation. A critical comparison of control strategies is then presented, concluding with an
assessment of gaps in the current research.

The share of renewable energy in Europe is growing. As a result of commitments to the energy and the
energy transition, this growth is expected to continue until the 2050 EU emissions goals are satisfied [1],
[2]. Due to the varying nature of weather conditions, more fluctuations will be introduced into the energy
supply and demand [3]. These fluctuations can introduce more instability in the electricity grid.

The integration of electric boilers and TES is critical to making energy systems as efficient as possible
while also contributing to a more stable grid. Coordinating these components remains challenging. Heat
pumps are known to be highly efficient for heating and cooling. While electric boilers convert electric
energy into heat, heat pumps transfer energy rather than converting it [7]. The heat pump extracts energy
from a source such as surrounding air, and then amplifies and moves it to the place where it is needed
[7]. A major disadvantage that comes with using a heat pump is the significant reduction in performance
during its start up phase [11]. Therefore, heat pumps are not suitable for use cases where they need to
be turned on and off repeatedly. Additionally, there is minimal research on how to optimize the use of
heat pumps in combination with energy storage devices [5]. TES allows for flexibility by storing thermal
energy during low-demand periods for later use, as was indicated by Zhang et al. (2025)[4]. This allows
users to use this thermal energy in times of high demand, or in periods of high energy prices.

Effective coordination of water heaters and thermal energy storage could help for improving grid sta-
bility and reaching net-zero emissions, however there is still a gap in the research on integrated system
optimization. Rapucha et al. (2024) emphasized the relevance of smart control strategies for managing
electrical loads with heat pumps, but the integration with storage systems was not thoroughly investigated
[5]. Laugs et al. (2019) highlight the need for better coordination between renewable energy sources,
storage, and grid interactions. Clift and Suehrcke (2021) optimized control systems for PV-powered
storage and heat pump water heaters, but did not test a system that utilizes the heat pump or boiler to
minimize cost [6].

On the Dutch energy market, there are multiple types of energy contracts. One of these contract types
is a dynamic energy contract. In this type of contract, the prices of electricity are determined one day
ahead for 60 minute intervals. Prices can fluctuate based on supply and demand, which means they
sometimes become negative [12]. Dynamic electricity contracts stimulate demand-side management. By
strategically planning electricity consumption based on the day-ahead prices, costs can be minimized,
and in some cases get paid for using electricity. Another benefit of using the dynamic prices as a trigger
is that a consumer will contribute to grid stability by consuming or not consuming electricity based on the
electricity price. By consuming in times of high production and not consuming during times of shortage,
grid stability will be improved [8].

Strategically consuming electricity, and participating in the electricity imbalance market, allows for fur-
ther cost reduction. Once day-ahead positions are fixed, the transmission system operator publishes a
15-minute imbalance price that rewards deviations from those positions that support the system balance.
When there is excess production, this price often turns negative. By temporarily increasing electricity
consumption, a consumer is paid the negative tariff for every extra kilowatt-hour they consume. Con-
versely, during shortage intervals the price rises well above the day-ahead level. Reducing consumption
below the scheduled baseline yields a reward at this higher rate. Because only the deviation is settled at
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the imbalance price, the underlying day-ahead contract is unaffected [9], [10]. However, at this point in
time there is a high entry barrier for participation in the imbalance market. The potential of improving
grid stability would be significantly higher, if the regulations regarding entry on the imbalance market
would be less restrictive [13].

Imbalance prices are highly dependent on factors such as weather conditions and electricity consumption.
Therefore it is highly important to make a forecast for the imbalance prices if the objective is to make
as much profit as possible. Deng et al. (2024) highlights the importance of creating accurate forecasts
for imbalance prices in the UK. The only difference of the UK imbalance market compared to the Dutch
imbalance market is that the UK imbalance market has 30 minute settlement periods and the Dutch
market has 15 minute settlement periods [14], [15].

In the past Linear Quadratic Regulators have been used to control the induction heating of steel billets
[16]. It was used to regulate the core-temperature of the billets from 1000 °C to 1200 °C under different
inputs and weight, as well as different disturbances [16]. The dynamics of the system were transferred to
state-space to be able to control them using LQR. A similar type of LQR could be applied to control the
temperature of a Thermal Energy Storage that is heated by an electric boiler. Another type of controller
that has been explored to control a boiler is Model Predictive control. Zlatkovikj et al. (2022) designed
a feed forward MPC that controlled a bio-mass boiler. They found that an MPC controller was well
suited for controlling this type of boiler due to the ability to find the optimal trajectory over a future
time horizon [17]. This means that the boiler can look ahead and see when it needs to heat the water.
However, Zlatkovikj et al. (2022) did not test the MPC controller on an electric boiler.

Comparing current research reveals trade-offs. Studies like Clift and Suehrcke (2021) adopt rule based
controls for simplicity but lack responsiveness to dynamic price signals [6]. Such methods usually ne-
glect real-time data inputs and fail to optimize over time horizons. In contrast, model predictive con-
trollers as discussed by Zlatkovikj et al. (2022) offer better performance, but require more computational
power and accurate forecasts [17]. Malecki et al. (2022) focusses on achieving detailed modelling, but
does not take into account responses to electricity prices or grid interactions [11]. Furthermore, there
is limited research on operating electric boilers in combination with TES while responding to dynamic
pricing and imbalance market signals.

By addressing gaps in previous research and implementing a strategy that tries to minimize cost through
strategic consumption, this research will investigate whether such an approach will lead to a reduction in
cost and contribute to a more stable electricity grid.
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5 Use Case and System Description

The use case is based on a dairy farm that has a sustainable energy system with different components
that are controlled the FIRN energy controller. The farm has a PV installation, a Battery Energy Storage
System, a water heater and a Thermal Energy Storage. This research focusses on optimizing the usage of
the water heater and thermal energy storage of this farm. The rest of the components of the farms energy
system were not modelled to reduce model complexity.

The farm requires large volumes of hot water for cleaning purposes, such as sanitizing milking robots
and stables. The farm has a 10 m3 hot water storage tank, that is being heated by a 100 kW water heater.
It was assumed that all the water that is drawn from the tank is immediately replaced with new water.
Therefore, the water level in the tank will be exactly the same at all times. The inflowing water was
assumed to be ground water with a temperature of 10 degrees celsius [18].

A cleaning schedule was designed to simulate that hot water was being drawn from the tank. Every day
at 7:00 and at 19:00 the milking area would be cleaned with a water flow rate of 20 L/min for 30 minutes.
Every week on Saturday, the stable is cleaned for 120 minutes with a flow rate of 30 L/min. Finally, once
a month the stable is deep cleaned for 180 minutes at a flow rate of 40 L/min. This cleaning schedule
with the different flow rates and durations of cleaning causes fluctuations in the temperature of the water
tank. The control system is tasked with maintaining a desired water temperature while minimizing costs
by utilizing electricity pricing signals from both the day-ahead market and the imbalance market.

Figure 1 (Appendix A) displays the relations of all components in the system. In addition, the input
and output signals and energy flows are connected to the corresponding component. To model each
component, equations are needed to simulate the behaviour of these components. Heat pumps have a
significantly longer start-up time compared to E-boilers [11]. Being able to quickly ramp up to maximum
power is a key characteristic when needing to react to price signals from both the spot market and the
imbalance market. Therefore, an E-boiler was chosen to evaluate whether the smart control system can
reduce cost by participating on the dynamic and imbalance market. The focus on the E-boiler and TES
means that only the equations corresponding to these components will be modelled.

E-Boiler

The electric boiler is modelled by multiplying the input power with the efficiency coefficient:

Qboiler(t) = ηboiler Pboiler(t) (1)

Variable Explanations:

– Qboiler(t) [W]: Thermal power output of the electric boiler.

– ηboiler [–]: Efficiency coefficient (usually almost 1).

– Pboiler(t) [W]: Electrical power input to the boiler.
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Thermal Energy Storage (TES)

For a well-mixed storage (e.g., water tank), the energy balance is modelled by adjusting the energy
balance equation with the input from the boiler, output and loss coefficients [19]:

mTES cp
dTTES(t)

dt
= Qin,TES(t)−Quse(t)−hA

(
TTES(t)−Tenv

)
(2)

Variable Explanations:

– TTES(t) [°C]: Temperature of the thermal storage.

– mTES [kg]: Mass of the storage medium (e.g., water).

– cp [J/(kg·K)]: Specific heat capacity.

– Qin,TES(t) [W]: Thermal power input to the TES (from the heat pump or boiler).

– Quse(t) [W]: Thermal power extracted for use.

– hA [W/K]: Overall heat transfer coefficient that represents losses.

– Tenv [°C]: Ambient temperature.

Justification of Design Choices

• 10 m3 tank: Chosen to support multiple cleaning cycles and buffer heating during low electricity
prices.

• 100 kW boiler: Allows for fast recovery and cost-efficient operation in response to market signals.

• No battery and PV: Excluded for simplicity and FIRN energy prioritized the boiler-TES system.

• Perfect mixing: Assumed to simplify modelling of thermal dynamics.

• Ramp rate: Boiler is assumed to ramp instantaneously within 60-second time steps.

• Time step: ∆t = 60 seconds selected for sufficient temporal resolution.

This setup provides the basis for evaluating the performance of smart control algorithms that optimize
the operation of the E-boiler and TES in response to dynamic and imbalance electricity prices.

6 Materials and Methods

6.1 Materials

• Python (via PyCharm IDE)

• E-boiler

• Thermal Energy Storage

• Model of each component (E-boiler, TES), see section 5

• Dynamic electricity price data (day-ahead and imbalance)

9



• Ambient temperature data

Software environment

• Python 3.11

• packages: Numpy, CasADI, Matplotlib, SciPy

• LQR solver: Discrete-time Riccati solver using numpy

• MPC solver: CasADI with direct collocation and IPOPT

Hardware Specifications

• Intel Core i5-10600KF CPU

• 16GB 3600 MHz RAM

• 1 TB NVMe SSD

• Intel Arc B580 GPU

• Z490 motherboard

6.2 Methods and Validation

The research started with collecting data from various sources including dynamic electricity prices, Im-
balance prices, and ambient temperature data. This data will be cleaned and prepared for use in models.
Each component of the system (E-boiler, TES) will be modelled based on their real-world equivalent us-
ing Python. Key parameters such as thermal capacity, energy capacity and charging rates will be assigned
to each of the components.

Each component was modelled in Python to reflect real-world behaviour. Parameters such as heat capac-
ity, energy content, and charging and discharging dynamics were assigned based on physical standards
and values found in literature.

Two control strategies were implemented: A Linear Quadratic Regulator (LQR) Discrete-time LQR
controller designed using state-space representation. Which uses a Riccati equation solved via NumPy
[20], [21]. And a Model Predictive Controller (MPC) which was implemented in CasADi with direct
collocation, IPOPT solver, and rolling horizon framework [22].

Both controllers were designed to respond to day-ahead and imbalance price signals, and thermal de-
mand. Simulation experiments tested performance under different ambient temperatures and pricing
scenarios. The Key Performance Indicators used to assess the performance of the controllers were elec-
tricity consumption in kWh and cost savings in C.

Simulations were conducted under a baseline configurations of both controllers (flat rate) and compared
with both LQR and MPC strategies which used dynamic and imbalance price signals. Performance was
benchmarked over one-month periods with a set load schedule.

All data used in for this simulation is publicly available. No personal or sensitive information was
processed.
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7 Modelling

This section presents the detailed implementation of a control system designed to manage the heating
operations of an E-boiler in combination with a Thermal Energy Storage (TES). By using the equations
from section 5, the different components are modelled in python. Event-Driven Programming will be
used to model the complete system. By using this type of programming, the different components of the
system can react to certain triggers such as a signal telling the boiler to turn on or off [23].

For the LQR controller Ricatti was used to track the water temperature and adjust the boilers power
[20]. Ricatti LQR updates every minute to adjust the boilers power. However, due to the lack of hard
constraints the LQR controller may be less suited for this type of control. For the MPC contoller, a
framework from CasADI was used. CasADi is a symbolic framework for automatic differentiation and
numerical optimization[22]. It controls the boiler based on both spot prices and imbalance prices, with a
reference temperature that changes based on those prices.

Parameter Table

Component Parameter Value Unit
TES Volume 10 m3

TES Mixing Perfect Assumption
TES mTES 10,000 kg
TES cp 4180 J/kg·K
TES Tenv 10 °C
TES Tinit 60 °C
TES Tset 60 °C
TES hA (loss coeff.) 152.2 W/K
TES Tin 10 °C
Boiler Efficiency (η) 1 –
Boiler Pmax 100 kW
Time step ∆t 60 seconds

Table 1: Parameters for boiler and TES configuration.

Parameter Sources and Assumptions
All parameter values were selected based on industry practice or literature references. For example, the
heat loss coefficient hA = 79.5 W/K was calculated by using the surface of the tank k average value for
w/m2/k given by Allan et al. is 3.08 W/m2/K and multiply it by the tanks surface area of approximately
25.8m2 [24]. The tanks surface area was calculated as follows: V = πr2h, h = 2r for 1:1 height-width
ratio, which gives 10 = 2πr3 = 10, r3 = 10/2π = 1.59, r = 3

√
1.59 = 1.17m, h = 2r = 2.34m, A =

2πr2+2πrh= 2π(1.17)2+2π(1.17)(2.34)= 25.8m2. Boiler efficiency was assumed to be 1 for resistive
electric heating. Inflowing water (Tin) was assumed to be 10 °C to reflect the temperature of groundwater
in the Netherlands[18].

7.1 Price-Weighted Linear Quadratic Regulator Design

To allow the application of control methods, the model presented in Section 5 is rewritten in state-space
form. With T as the state variable and u = qin as the input, the system can be expressed as:

Ṫ = aT +bu+d(t), (3)
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where:

a =− hA
mcp

,

b =
1

mcp
,

d(t) =
hATenv(t)−quse(t)

mcp
.

The continuous model is discretized using the Forward Euler method with a timestep ∆t = 60 seconds:

Tk+1 = Tk +∆t(aTk +buk +dk). (4)

The matrices used in the discrete model are:

A = 1+−hA∆t
mcp

B =
∆t

mcp
.

LQR was chosen for its ability to produce a state-feedback law that balances temperature regulation
against energy cost. A deviation variable is introduced to allow tracking of a dynamic temperature
setpoint:

xk = Tk −Tsp(k), (5)

where Tsp(k) is a time-varying set-point defined as:

Tsp(k) =

{
Tsoak, if pk ≤ pth,

Tre f , otherwise,
(6)

with Tsoak set to 80°C and Tre f to 60°C. The deviation dynamics are:

xk+1 = Axk +Buk +wk, (7)

where wk = ∆Tsp(k)+∆tdk is treated as a known disturbance.

The LQR controller minimizes a quadratic cost function:

J =
N−1

∑
k=0

(
x⊤k Qxk +u⊤k Rkuk

)
+ x⊤N Q f xN , (8)

where:

• Q penalizes temperature deviations,

• Rk = R0 +α pk penalizes energy use, scaled by the real-time electricity price pk,

• Q f = Q for indefinite horizon approximation.

For a single-state system, the Discrete Algebraic Riccati Equation (DARE) simplifies to a scalar form.
Using SciPy’s solve discrete are, the optimal feedback gain Kk is computed as:

Kk =
BAP

Rk +B2P
, (9)

with P being the solution of the DARE [21].

To respect physical boiler constraints, the control input is contrained to make sure it does not exceed the
maximum power of the boiler:

uk = min(max(0,−Kkxk),Pmax) , (10)

and additionally zeroed out if Tk ≥ Tsp(k).
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7.2 Model Predictive Controller Design

To efficiently control the boiler, a two-layer control approach was chosen. The first layer consists of a
baseline MPC controller that determines a minimum-cost control sequence based solely on day-ahead
prices and system constraints. The second layer decides whether the system should deviate from this
baseline by introducing imbalance market considerations through a deviation-based MPC.

Both solvers share a common state-space model of the tank’s thermal dynamics, discretized using the
Forward Euler method. At each time step, the evolution of the water temperature is computed as:

Tk+1 = Tk +
∆t

mcp

[
uk −hA

(
Tk −Tamb

)
−Qdraw,k

]
(11)

where Tk is the current tank temperature, uk is the boiler power, Tamb is the ambient temperature, and hA
is the overall heat-loss coefficient.

Baseline Solver

The baseline controller computes a reference heating trajectory {uref,k}N−1
k=0 over a prediction horizon of

N = 15 minutes by minimizing the cost:

J =
N−1

∑
k=0

Qwt
(
Tk −Tsp,k

)2
+Rk u2

k (12)

where Tsp,k is the dynamic set-point (either comfort or soak temperature), and Rk is a price-weighted
regularization term that penalizes energy use depending on the electricity price:

Rk = R0 +α pk

This allows the controller to encourage higher energy use during low or negative price periods (e.g.,
when prices fall below −0.01 EUR/kWh) and reduce consumption during expensive hours.

Imbalance Solver

The second MPC layer extends the baseline by explicitly modelling deviation penalties or rewards based
on real-time imbalance prices. In this formulation, the cost function is augmented with a deviation term:

J =
N−1

∑
k=0

[
Qwt

(
Tk −Tsp,k

)2
+Rk u2

k −W pimb,k (uk −uref,k)
∆t

3600

]
(13)

Here, pimb,k denotes the imbalance price at time k, uref,k is the reference control from the baseline, and
W is a weight parameter governing sensitivity to imbalance deviations. The deviation term stimulates
positive deviation when imbalance prices are negative which indicate a power surplus, and discourages
unnecessary consumption during periods of shortage.

The weight values Q and R for both the LQR and MPC controllers were manually tuned using trial and
error to identify combinations that maintained thermal comfort while responding to price volatility. The
final weights were selected to minimize total cost over a time period of one month.
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8 Simulation

The simulation for both types of controllers begins with the loading and pre-processing of time series
data. These include hourly spot-market electricity prices, daily average ambient temperatures, and 15-
minute imbalance prices. All datasets are interpolated and resampled to 1-minute resolution to match the
simulation time-step (∆t = 60 s). Missing data is forward-filled to ensure a complete dataset.

Electricity prices are retrieved from a Dutch dynamic tariff dataset and subsequently scaled by a factor
of 1.21 to account for value-added tax (VAT) [25]. Daily average ambient temperatures are interpolated
to represent typical weather conditions at the site [26]. Imbalance prices are adjusted from units of
EUR/MWh to EUR/kWh by dividing by 1000 and treated as external input signals for control refinement
[27] (Not in LQR controller).

In parallel, a heating demand profile is constructed to simulate cleaning operations on the dairy farm.
These cleaning activities include scheduled flushing of milking parlours, stables, and deep cleaning rou-
tines. The exact schedule with the corresponding flow rates can be found in Section 5 The heat extraction
from the tank is computed as:

Qdraw = V̇ · cp ·
(
Tref −Tinlet

)
(14)

where V̇ is the water flow rate in L/min, cp is the specific heat capacity of water, and the temperature
difference reflects the heating requirement. This part of the simulation is the same for both types of
controllers. The water flow rate is determined by the cleaning schedule presented in Section 5. The
initial temperature of the water tank is assumed to be 60 °C based on the reference temperature that
needs to be tracked. The next subsection will explain the characteristics of both controllers separately.

8.1 LQR Simulation

The LQR controller loops over all valid time steps in the input dataset for a one-year period. Every minute
the Euler integration is updated and a value for boiler power uk is chosen to minimize the quadratic cost
function. It makes a trade-off between the deviation from the reference temperature and the cost of
energy. Instead of re-solving for every step, a single feedback gain Kk is computed at the start of every
hour and kept constant for the next 60 minutes. Additionally, the reference temperature is based on the
electricity price, and is also kept constant for these 60 minutes. Because the electricity price only changes
once every hour there is no need to recompute every minute. This will allocate more heating to the hours
with low prices and less in periods of high prices.

Finally, all relevant data are logged and accumulated to generate a table and a graph to have a numeric
and visual representation of the system performance.

8.2 MPC Simulation

The MPC controller loops over all valid time steps in the input datasets for a one-month period. Every 15
minutes, the spot-only loop computes a new baseline control sequence, which is then used to initialize
the imbalance optimization. In both loops, the reference temperature is determined based on whether
the electricity and the imbalance price are negative or positive. In case of negative prices, the reference
temperature is increased from 60 °C to 80 °C. The imbalance loop then looks at the current imbalance
price and decides if and by how much to deviate from the baseline control sequence. The optimal
boiler power uk is applied, while adhering to the boiler’s physical power limit (Pmax = 100 kW) and
current reference temperature. The tank temperature is updated using the dynamics presented in section
5, and all relevant data are recorded. For the simulation the IPOPT solver was configured as follows:
{’ipopt’:’print level’:0,’max iter’:30,’tol’:1e-3,’print time’:0}
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For each step, the cost and electricity consumption are logged and accumulated. Spot-market cost,
including the tiered energy tax and VAT is accumulated. Imbalance-market profit or penalty, depending
on the deviation is added or subtracted from the spot market cost. The flat-rate benchmark cost, assuming
a constant electricity price of C0.29/kWh is calculated exactly the same.

For a visual representation of the system performance, different plots are created. A Tank temperature
plot over time, which shows how well the set-points are followed and how effective the utilization of
low-price periods for energy storage is. Additionally, a boiler power profile is plotted, which captures
how the boiler responds to both spot and imbalance pricing signals.

9 Simulation Results

This section presents the outcomes of the simulations that compare the performance of two control
strategies applied to a diary farm equipped with an electric boiler coupled to thermal energy storage. A
linear quadratic regulator was tested with flat and dynamic electricity prices, while a model predictive
controller was tested using flat, dynamic and imbalance prices. All simulations use real-world data from
the 2024 Dutch electricity market, including hourly day-ahead prices and 15-minute imbalance prices
[25]–[27].

To have a baseline for comparison, both the LQR and MPC controllers were first operated under a
fixed electricity price of C0.29 per kWh. In this configurations the controllers tried to maintain the
reference temperature without looking at the time-varying price signals. This meant that the controllers
only optimized for thermal comfort. This approach ensures that all comparisons between the strategies
isolate the value added by market-aware behaviour rather than differences in algorithm complexity or
system modelling.

Under the fixed price scenario the LQR controlled boiler consumed 8116 kWh in January and 8003 kWh
in august, and incurred C2353.67 in January and C2320.76 in august. The MPC controller shows a
reduced energy consumption when using the same flat rate which could be caused by the MPC’s ability
to schedule pre-heating before cleaning events, or by mistakes in the modelling of the controllers. Under
the flat rate the MPC controlled boiler consumed 6913 kWh in January and 5894 kWh in august and
incurred C2004.81 in January and C 1709.40 in August (see table 2).

When the LQR controller was applied with the dynamic day-ahead prices the electricity consumption
was reduced by only 1.4% in January and actually increased by 0.08% in August, but the energy cost
was reduced by 33.4% and 33.0% respectively. Due to participation on the imbalance market, the MPC
controlled boiler achieved much better results. Even though it used more energy when reacting to price
signals, profit on the imbalance market meant that costs were reduced much more. The MPC controlled
boiler consumed 7285 kWh in January and 6797 kWh in august, and incurred C1053.99 and C952.85
respectively. This means that costs were reduced by 47.4% and 44.3% when responding to dynamic
day-ahead and imbalance prices. (see table 3)

When looking at the graphs 2 - 9 we can see that the LQR is not good at tracking the temperature,
and is constantly below the reference temperature of 60°C. In contrast, the MPC controlled boiler is
performing significantly better at being at or above the reference temperature, with only small dips below
the reference (see figures 14 - 17). In addition, the MPC controller consumes less energy in all scenarios,
while tracking the reference temperature more accurately. This might suggest that there is a mistake in
one of the two models.
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LQR results

Metric January August

Flat Rate Dynamic Rate Flat Rate Dynamic Rate

Energy [kWh] 8,116 8,101 8,003 8,010
Total Cost [C] 2,353.67 1,567.55 2,320.76 1,554.72

Table 2: Comparison of energy use and cost under flat and dynamic pricing for January and August.

MPC results

Metric January August

Flat Rate Dyn. + Imbalance Flat Rate Dyn. + Imbalance

Energy [kWh] 6,913 7,285 5,894 6,797
Spot-Market Cost [C] 2,004.81 1,420.38 1,709.40 1,159.87
Imbalance P&L [C] – 366.39 – 207.02
Net Cost [C] 2,004.81 1,053.99 1,709.40 952.85

Table 3: Comparison of energy and cost under flat rate and dynamic + imbalance control for January and
August.

10 Discussion

The results that were obtained confirm that using smart control strategies can provide significant oper-
ational and economic benefits when controlling boilers coupled to thermal energy storages in dynamic
electricity markets. Both the LQR and MPC managed to maintain the required thermal comfort while
adapting to price signals to reduce cost. The LQR controller useful but it needs more work to be suitable
for participation on the imbalance market. The MPC, with its ability to participate on the imbalance
market achieved even greater cost and energy consumption reductions, particularly during months where
imbalance prices were volatile.

The comparison between the controllers under fixed and dynamic pricing was central in this analysis. The
results highlighted that using dynamic and imbalance pricing signals did not result in a reduced energy
consumption, but did cause significant cost savings. The MPC’s performance in January highlights
the value of high-resolution predictive control when price signals are favourable. With the imbalance
prices occasionally turning negative, the controller scheduled the heating operations in these intervals of
negative pricing. The lower profit in August suggest that it might not always be possible to be profitable
on the imbalance market.

The model assumes full availability of imbalance signals and perfect execution of control actions. Real-
world systems may face latency, regulatory barriers, or actuation delays. Future work could incorporate
uncertainty modelling, battery integration, or real-time implementation on hardware-in-the-loop systems.
Additionally, the incorporation of imperfect or real-world forecasts of the imbalance price into the MPC
formulation would be a promising direction for future work.

In addition to financial performance, the control strategies also impact the systems interaction with the
electricity grid and its environmental footprint. The LQR controller managed to reduce energy con-
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sumption by only used a negligible amount. It is unlikely to have any impact on reducing stress on the
electricity grid. The MPC controller absorbed surplus energy in periods of negative imbalance prices,
which further contributes to a more stable grid. However, this did mean that the MPC controller con-
sumed more energy when using dynamic pricing compared to flat rates. Therefore, it will not result in a
reduction of CO2 emissions when using grid electricity.

In the future, PV forecasts should be taken into account in order to make a more accurate consumption
planning to benefit the most from negative electricity prices and imbalance prices. When combining the
boiler and TES with Battery Energy Storage Systems and PV installations, more gains could be made.
For example, by consuming excess solar energy instead of energy from the grid. In addition, forecasts
for the imbalance prices should also be included instead of using historical data. Additionally, real-
world experiments should be conducted to find out whether the control strategy works on FIRN energy’s
existing software and hardware. This would further validate the improvements in performance, when
compared to only running a simulation.

Together, these results indicate that smart control of water heating systems offers a practical and impact-
ful method for strategically consuming electricity, and increasing responsiveness to market dynamics.
When combined with PV installations and BESS, energy efficiency can be improved.

11 Conclusion

This research has explored the usage of LQR and MPC algorithms to optimise the operation of an electric
boiler and thermal energy storage system on a dairy farm. By using real 2024 electricity market data
and realistic physical constraints, the simulations showed that both controllers can significantly reduce
operational costs compared to traditional fixed-price, temperature optimized strategy.

The LQR controller managed to reduce the monthly electricity costs by 33.4% and 33.0% in the months
January and August 2024 respectively. It did this by shifting energy consumption to hours with cheap
electricity within the day-ahead market. However, thermal comfort and system constraints were never
sufficiently respected. Most of the cost saving was achieved by the lower average price of the dynamic
contracts. The issue with the LQR controller is that it is unable to accurately track the reference temper-
ature. This could be caused by multiple things. Such as, mistakes in the modelling or programming, or
due to a boiler that is not powerful enough.

The MPC controller, on the other hand achieved even higher reductions due to the participation in the
imbalance market. It achieved a cost reduction of 47.4% in January and 44.3% in August 2024, high-
lighting how participation on the imbalance market can result in further cost reductions. Another benefit
of participation in the imbalance market is that excess electricity is consumed, which means the grid will
become more balanced. The MPC controller did manage to accurately track the reference temperature,
with only minimal dips. In this particular case MPC would be the preferred algorithm.

However, the results also highlight the importance of context. In periods with lower volatility in im-
balance prices, like August, the MPC did not achieve the same amount of profit. Which suggests that
participation on the imbalance market may not always be profitable. In addition, the exact rules for
the Dutch imbalance market were not incorporated in the code. Only the submission of a consumption
schedule and deviation was included. If these rules had been included, the performance of the controller
would have been to be worse. Therefore, the rules should be embedded more explicitly in future research.

The assumption of perfect price forecasts was necessary for isolating the performance of the control
algorithms, but it remains a limitation. Future research should incorporate forecast uncertainty into the
controller design and assess performance across multiple years and use cases. Additionally, integrating
environmental and grid-side metrics more explicitly into the objective function could further align control
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outcomes with broader sustainability goals. Finally, this research was only using simulations, and not
real-world experiments. Therefore, it could not be determined if the algorithms could work together with
FIRN energy’s existing software and hardware. This is also something that should be explored in future
research.

In conclusion, this research has shown that model predictive control is a technically and economically
viable strategy for managing flexible heat demand in agriculture. Due to the ability to look ahead and
respond to price signals, MPC controllers are very well suited for controlling an electric boiler. Hav-
ing access to the right data and infrastructure, these systems can contribute energy cost reduction, and
improve grid stability in an increasingly volatile electricity market.
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A Figures

Figure 1: System Diagram

Figure 2: Tank temperature using LQR - flat rate for the month January
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Figure 3: Boiler power using LQR - flat rate for the month January

Figure 4: Tank temperature using LQR - flat rate for the month August
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Figure 5: Boiler power using LQR - flat rate for the month August

Figure 6: Tank temperature using LQR - dynamic rate for the month January
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Figure 7: Boiler power using LQR - dynamic rate for the month January

Figure 8: Tank temperature using LQR - dynamic rate for the month August
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Figure 9: Boiler power using LQR - dynamic rate for the month August

Figure 10: Tank temperature using MPC - flat rate for the month January
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Figure 11: Boiler power using MPC - flat rate for the month January

Figure 12: Tank temperature using MPC - flat rate for the month August
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Figure 13: Boiler power using MPC - flat rate for the month August

Figure 14: Tank temperature using MPC - dynamic and imbalance rate for the month January
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Figure 15: Boiler power using MPC - dynamic and imbalance rate for the month January

Figure 16: Tank temperature using MPC - dynamic and imbalance rate for the month August
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Figure 17: Boiler power using MPC - dynamic and imbalance rate for the month August
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B Python Code

Listing 1: Python LQR code - dynamic rate
1 import numpy as np
2 import pandas as pd
3 from datetime import datetime, timedelta
4 import sys
5 from scipy.linalg import solve_discrete_are
6 import matplotlib.pyplot as plt
7 import matplotlib.dates as mdates
8

9 # Constants
10 M = 10_000.0 # kg water
11 CP = 4_186.0 # J/(kg K) heat capacity
12 BOIL_MAX = 100_000.0 # W element
13 hA = 79.5 # W K heat loss
14 T_IN = 10.0 # C inlet
15 T_SP = 60.0 # C setpoint for storage
16 Q_SPACE = 1_000.0 # W base load
17 T_MIN = 50.0 # C minimum temperature
18 T_MAX = 85.0 # C maximum temperature
19 DT = 60.0
20

21 # Cleaning constants
22 FLOW_PARLOR = 20.0 # L/min for parlor cleaning
23 FLOW_STABLE = 30.0 # L/min for stable cleaning
24 FLOW_DEEP = 40.0
25 TIME_PARLOR = 30 # minutes for parlor cleaning
26 TIME_STABLE = 120 # minutes for full stable cleaning
27 TIME_DEEP = 180 # minutes for monthly deep cleaning
28

29 # Tariff settings
30 FLAT_RATE = 0.29 # /kWh
31

32 # Read dynamic electricity prices
33 try:
34 prices_df = pd.read_csv("C:/Users/julia/Downloads/

jeroen_punt_nl_dynamische_stroomprijzen_jaar_2024.csv",
35 sep=";", decimal=",")
36

37 # Flexible column detection
38 col_date = next(c for c in prices_df.columns if "datum" in c.lower() or

"time" in c.lower())
39 col_price = next(c for c in prices_df.columns if "prijs" in c.lower()

or "eur" in c.lower())
40

41 # Convert date and sort
42 prices_df[col_date] = pd.to_datetime(prices_df[col_date])
43 prices_df = prices_df.rename(columns={col_date: ’datum’, col_price: ’

prijs_excl_belastingen’})
44 prices_df = prices_df.sort_values(’datum’)
45

46 except FileNotFoundError:
47 sys.exit("Dynamic price file not found.")
48 except StopIteration:
49 print("Available columns:", prices_df.columns.tolist())
50 sys.exit("Could not find date/price columns in the price file.")
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51

52 # Read temperature data
53 temp_df = pd.read_csv("C:/Users/julia/Downloads/2024-tempavg-weerverleden

(1).csv")
54 temp_df[’DATUM’] = pd.to_datetime(temp_df[’DATUM’])
55 temp_df = temp_df.sort_values(’DATUM’)
56

57 def is_cleaning_time(h, d, m):
58 """
59 Determines if cleaning should occur based on hour, day, and month
60 """
61 parlor_cleaning = (h == 7 or h == 19)
62 stable_cleaning = (d == 0 and h == 9) # Monday at 9:00
63 deep_cleaning = (d == 5 and h == 8 and m <= 7) # First Saturday at

8:00
64

65 return {
66 ’parlor’: parlor_cleaning,
67 ’stable’: stable_cleaning,
68 ’deep’: deep_cleaning
69 }
70

71 def water_demand(h, d, m):
72 """Calculate water demand in L/min based on cleaning schedule"""
73 cleaning = is_cleaning_time(h, d, m)
74

75 if cleaning[’deep’]:
76 return FLOW_DEEP
77 elif cleaning[’stable’]:
78 return FLOW_STABLE
79 elif cleaning[’parlor’]:
80 return FLOW_PARLOR
81 else:
82 return 0.0
83

84 # Model matrices and weights
85 A = 1 - hA*DT/(M*CP)
86 B = DT/(M*CP)
87 Q = 5 # temperature weight
88 BASE_R = 1e-9 # baseline effort weight
89 ALPHA = 1e-8 # price effort weight ( /kWh)
90

91 # Control parameters
92 SOAK_PRICE = -0.01 # /kWh threshold to start soaking
93 SOAK_LIMIT = 80.0 # C maximum soak temperature
94 T_REF = 60.0 # C reference temperature
95

96 # Riccati matrices
97 A_mat = np.array([[A]])
98 B_mat = np.array([[B]])
99 Q_mat = np.array([[Q]])

100

101 def riccati_gain(r_now: float) -> float:
102 """Return optimal s t a t e feedback gain K for current R=r_now."""
103 R_mat = np.array([[max(r_now, 1e-15)]] ) # force R>0
104 P = solve_discrete_are(A_mat, B_mat, Q_mat, R_mat)
105 K = float(np.linalg.inv(R_mat + B_mat.T @ P @ B_mat) @ (B_mat.T @ P @

A_mat))
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106 return K
107

108 def get_ambient_temp(hour_index):
109 """Get ambient temperature for the given hour"""
110 day_index = hour_index // 24
111 return float(temp_df.iloc[day_index][’ETMAALGEMIDDELDE TEMPERATUUR’])
112

113 def get_price(hour_index, cumulative_usage_kwh, tariff_type=’dynamic’):
114 if tariff_type == ’dynamic’:
115 base_price = float(prices_df.iloc[hour_index][’

prijs_excl_belastingen’])
116 return calculate_total_price(base_price, cumulative_usage_kwh,

tariff_type)
117 else:
118 return FLAT_RATE
119

120 def lqr_control_dynamic(T, price, hour_index, hour, weekday, month_day):
121 """LQR control strategy optimized for dynamic pricing"""
122 if price <= 0:
123 r_now = BASE_R + ALPHA * price * 2 # Double the effect of negative

prices
124 else:
125 r_now = BASE_R + ALPHA * price
126

127 K = riccati_gain(r_now)
128 T_target = SOAK_LIMIT if price <= SOAK_PRICE else T_REF
129 err = T - T_target
130 u = np.clip(-K*err, 0.0, BOIL_MAX)
131 if T >= T_target:
132 u = 0.0
133 return u
134

135 def lqr_control_flat(T, hour_index, hour, weekday, month_day):
136 """LQR control strategy optimized for flat rate pricing"""
137 r_now = BASE_R + ALPHA * FLAT_RATE
138 K = riccati_gain(r_now)
139 err = T - T_REF # Always use T_REF as target for flat rate
140 u = np.clip(-K*err, 0.0, BOIL_MAX)
141 if T >= T_REF:
142 u = 0.0
143 return u
144

145 def simulate_year(control_type=’lqr’, tariff_type=’dynamic’):
146 start_date = datetime(2024, 8, 1)
147 days = 31
148 hours_per_day = 24
149 total_hours = days * hours_per_day
150

151 energy_used = 0.0
152 cost_total = 0.0
153 T = T_SP
154 T_log = np.zeros(total_hours)
155 U_log = np.zeros(total_hours)
156

157 for hour_index in range(total_hours):
158 current_date = start_date + timedelta(hours=hour_index)
159 hour = current_date.hour
160 weekday = current_date.weekday()
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161 month_day = current_date.day
162

163 # Get price based on tariff type and current usage
164 price = get_price(hour_index, energy_used, tariff_type)
165

166 # Use actual ambient temperature (daily average)
167 T_AMB = get_ambient_temp(hour_index)
168

169 flow = water_demand(hour, weekday, month_day)
170

171 if control_type == ’lqr’:
172 if tariff_type == ’dynamic’:
173 control = lqr_control_dynamic(T, price, hour_index, hour,

weekday, month_day)
174 else:
175 control = lqr_control_flat(T, hour_index, hour, weekday,

month_day)
176

177 Q_heat = flow * CP * (T_SP - T_IN) / 60.0 if flow > 0 else 0
178 Q_loss = hA * (T - T_AMB)
179 Q_total = Q_heat + Q_loss + Q_SPACE
180

181 Q_applied = min(control, Q_total)
182

183 dT = (Q_applied - Q_loss - Q_heat) / (M * CP) * 3600
184 T += dT
185

186 energy_hour = Q_applied * 1.0 / 1000.0 # Convert to kWh
187 energy_used += energy_hour
188 cost_total += energy_hour * price
189 T_log[hour_index] = T
190 U_log[hour_index] = control # Convert normalized control to actual

power (W)
191

192 return energy_used, cost_total, T_log, U_log
193

194

195 def calculate_total_price(base_price, cumulative_usage_kwh, tariff_type=’
dynamic’):

196 if tariff_type == ’flat’:
197 return FLAT_RATE # Flat rate already includes everything
198

199 # For dynamic pricing, add energy tax based on usage tier
200 if cumulative_usage_kwh <= 2900:
201 energy_tax = 0.10880
202 elif cumulative_usage_kwh <= 10000:
203 energy_tax = 0.10880
204 elif cumulative_usage_kwh <= 50000:
205 energy_tax = 0.09037
206 else:
207 energy_tax = 0.03943
208

209 # Total price = base + energy tax (no VAT for dynamic)
210 total = base_price + energy_tax
211

212 return total
213

214 # Run simulations for all combinations
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215 results = {}
216 strategies = [(’lqr’, ’dynamic’)]
217

218 for control, tariff in strategies:
219 energy, cost, T_log, U_log = simulate_year(control, tariff)
220 results[(control, tariff)] = (energy, cost)
221

222 # Print results
223 print("\n===== YEAR 2024 CLEANING SCHEDULE =====")
224 print("Daily: Parlor cleaning 2x (7:00 and 19:00)")
225 print("Weekly: Full stable cleaning (Mondays 9:00)")
226 print("Monthly: Deep cleaning (First Saturday 8:00)")
227

228 print("\n===== SIMULATION RESULTS =====")
229 for (control, tariff), (energy, cost) in results.items():
230 print(f"\n{control.upper()} control with {tariff} tariff:")
231 print(f"Energy Used: {energy:,.0f} kWh")
232 print(f"Total Cost: {cost:,.2f}")
233 print(f"Average Daily Cost: {(cost/31):,.2f}")
234

235 # Build time axis
236 start_date = datetime(2024, 1, 1)
237 dates = [start_date + timedelta(hours=i) for i in range(len(T_log))]
238

239 # Plot temperature
240 plt.figure()
241 plt.plot(dates, T_log, label="Tank Temperature")
242 plt.axhline(T_REF, linestyle=’--’, label="Setpoint (T_REF)")
243 plt.title("Tank Temperature")
244 plt.ylabel("Temperature ( C )")
245 plt.xlabel("Day of Month")
246 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
247 plt.show()
248

249 # Plot heater power
250 plt.figure()
251 plt.plot(dates, U_log, label="Heater Power")
252 plt.title("Boiler Power")
253 plt.ylabel("Power (W)")
254 plt.xlabel("Date")
255 plt.axhline(Q_SPACE, linestyle=’--’, label="Base Load")
256 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
257 plt.show()

Listing 2: Python LQR code - flat rate
1 import numpy as np
2 import pandas as pd
3 from datetime import datetime, timedelta
4 import sys
5 from scipy.linalg import solve_discrete_are
6 import matplotlib.pyplot as plt
7 import matplotlib.dates as mdates
8

9 # Constants
10 M = 10_000.0 # kg water
11 CP = 4_186.0 # J/(kg K) heat capacity
12 BOIL_MAX = 100_000.0 # W element
13 hA = 79.5 # W K heat loss
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14 T_IN = 10.0 # C inlet
15 T_SP = 60.0 # C setpoint for storage
16 Q_SPACE = 1_000.0 # W base load
17 T_MIN = 50.0 # C minimum temperature
18 T_MAX = 85.0 # C maximum temperature
19 DT = 60.0
20

21 # Cleaning constants
22 FLOW_PARLOR = 20.0 # L/min for parlor cleaning
23 FLOW_STABLE = 30.0 # L/min for stable cleaning
24 FLOW_DEEP = 40.0
25 TIME_PARLOR = 30 # minutes for parlor cleaning
26 TIME_STABLE = 120 # minutes for full stable cleaning
27 TIME_DEEP = 180 # minutes for monthly deep cleaning
28

29 # Tariff settings
30 FLAT_RATE = 0.29 # /kWh
31

32 # Read dynamic electricity prices
33 try:
34 prices_df = pd.read_csv("C:/Users/julia/Downloads/

jeroen_punt_nl_dynamische_stroomprijzen_jaar_2024.csv",
35 sep=";", decimal=",")
36

37 # Flexible column detection
38 col_date = next(c for c in prices_df.columns if "datum" in c.lower() or

"time" in c.lower())
39 col_price = next(c for c in prices_df.columns if "prijs" in c.lower()

or "eur" in c.lower())
40

41 # Convert date and sort
42 prices_df[col_date] = pd.to_datetime(prices_df[col_date])
43 prices_df = prices_df.rename(columns={col_date: ’datum’, col_price: ’

prijs_excl_belastingen’})
44 prices_df = prices_df.sort_values(’datum’)
45

46 except FileNotFoundError:
47 sys.exit("Dynamic price file not found.")
48 except StopIteration:
49 print("Available columns:", prices_df.columns.tolist())
50 sys.exit("Could not find date/price columns in the price file.")
51

52 # Read temperature data
53 temp_df = pd.read_csv("C:/Users/julia/Downloads/2024-tempavg-weerverleden

(1).csv")
54 temp_df[’DATUM’] = pd.to_datetime(temp_df[’DATUM’])
55 temp_df = temp_df.sort_values(’DATUM’)
56

57

58 def is_cleaning_time(h, d, m):
59 """
60 Determines if cleaning should occur based on hour, day, and month
61 """
62 parlor_cleaning = (h == 7 or h == 19)
63 stable_cleaning = (d == 0 and h == 9) # Monday at 9:00
64 deep_cleaning = (d == 5 and h == 8 and m <= 7) # First Saturday at

8:00
65
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66 return {
67 ’parlor’: parlor_cleaning,
68 ’stable’: stable_cleaning,
69 ’deep’: deep_cleaning
70 }
71

72

73 def water_demand(h, d, m):
74 """Calculate water demand in L/min based on cleaning schedule"""
75 cleaning = is_cleaning_time(h, d, m)
76

77 if cleaning[’deep’]:
78 return FLOW_DEEP
79 elif cleaning[’stable’]:
80 return FLOW_STABLE
81 elif cleaning[’parlor’]:
82 return FLOW_PARLOR
83 else:
84 return 0.0
85

86

87 # Model matrices and weights
88 A = 1 - hA * DT / (M * CP)
89 B = DT / (M * CP)
90 Q = 5 # temperature weight
91 BASE_R = 1e-9 # baseline effort weight
92 ALPHA = 1e-8 # price effort weight ( /kWh)
93

94 # Control parameters
95 SOAK_PRICE = -0.5 # /kWh threshold to start soaking
96 SOAK_LIMIT = 80.0 # C maximum soak temperature
97 T_REF = 60.0 # C reference temperature
98

99 # Riccati matrices
100 A_mat = np.array([[A]])
101 B_mat = np.array([[B]])
102 Q_mat = np.array([[Q]])
103

104

105 def riccati_gain(r_now: float) -> float:
106 """Return optimal s t a t e feedback gain K for current R=r_now."""
107 R_mat = np.array([[max(r_now, 1e-15)]]) # force R>0
108 P = solve_discrete_are(A_mat, B_mat, Q_mat, R_mat)
109 K = float(np.linalg.inv(R_mat + B_mat.T @ P @ B_mat) @ (B_mat.T @ P @

A_mat))
110 return K
111

112

113 def get_ambient_temp(hour_index):
114 """Get ambient temperature for the given hour"""
115 day_index = hour_index // 24
116 return float(temp_df.iloc[day_index][’ETMAALGEMIDDELDE TEMPERATUUR’])
117

118

119 def get_price(hour_index, cumulative_usage_kwh, tariff_type=’dynamic’):
120 if tariff_type == ’dynamic’:
121 base_price = float(prices_df.iloc[hour_index][’

prijs_excl_belastingen’])
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122 return calculate_total_price(base_price, cumulative_usage_kwh,
tariff_type)

123 else:
124 return FLAT_RATE
125

126

127 def lqr_control_dynamic(T, price, hour_index, hour, weekday, month_day):
128 """LQR control strategy optimized for dynamic pricing"""
129 if price <= 0:
130 r_now = BASE_R + ALPHA * FLAT_RATE * 2 # Double the effect of

negative prices
131 else:
132 r_now = BASE_R + ALPHA * FLAT_RATE
133

134 K = riccati_gain(r_now)
135 T_target = SOAK_LIMIT if price <= SOAK_PRICE else T_REF
136 err = T - T_target
137 u = np.clip(-K * err, 0.0, BOIL_MAX)
138 if T >= T_target:
139 u = 0.0
140 return u
141

142

143 def lqr_control_flat(T, hour_index, hour, weekday, month_day):
144 """LQR control strategy optimized for flat rate pricing"""
145 r_now = BASE_R + ALPHA * FLAT_RATE
146 K = riccati_gain(r_now)
147 err = T - T_REF # Always use T_REF as target for flat rate
148 u = np.clip(-K * err, 0.0, BOIL_MAX)
149 if T >= T_REF:
150 u = 0.0
151 return u
152

153

154 def simulate_year(control_type=’lqr’, tariff_type=’dynamic’):
155 start_date = datetime(2024, 8, 1)
156 days = 31
157 hours_per_day = 24
158 total_hours = days * hours_per_day
159

160 energy_used = 0.0
161 cost_total = 0.0
162 T = T_SP
163 T_log = np.zeros(total_hours)
164 U_log = np.zeros(total_hours)
165

166 for hour_index in range(total_hours):
167 current_date = start_date + timedelta(hours=hour_index)
168 hour = current_date.hour
169 weekday = current_date.weekday()
170 month_day = current_date.day
171

172 # Get price based on tariff type and current usage
173 price = get_price(hour_index, energy_used, tariff_type)
174

175 # Use actual ambient temperature (daily average)
176 T_AMB = get_ambient_temp(hour_index)
177
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178 flow = water_demand(hour, weekday, month_day)
179

180 if control_type == ’lqr’:
181 if tariff_type == ’dynamic’:
182 control = lqr_control_dynamic(T, price, hour_index, hour,

weekday, month_day)
183 else:
184 control = lqr_control_flat(T, hour_index, hour, weekday,

month_day)
185

186 Q_heat = flow * CP * (T_SP - T_IN) / 60.0 if flow > 0 else 0
187 Q_loss = hA * (T - T_AMB)
188 Q_total = Q_heat + Q_loss + Q_SPACE
189

190 Q_applied = min(control, Q_total)
191

192 dT = (Q_applied - Q_loss - Q_heat) / (M * CP) * 3600
193 T += dT
194

195 energy_hour = Q_applied * 1.0 / 1000.0 # Convert to kWh
196 energy_used += energy_hour
197 cost_total += energy_hour * price
198 T_log[hour_index] = T
199 U_log[hour_index] = control # Convert normalized control to actual

power (W)
200

201 return energy_used, cost_total, T_log, U_log
202

203

204 def calculate_total_price(base_price, cumulative_usage_kwh, tariff_type=’
dynamic’):

205 if tariff_type == ’flat’:
206 return FLAT_RATE # Flat rate already includes everything
207

208 # For dynamic pricing, add energy tax based on usage tier
209 if cumulative_usage_kwh <= 2900:
210 energy_tax = 0.10880
211 elif cumulative_usage_kwh <= 10000:
212 energy_tax = 0.10880
213 elif cumulative_usage_kwh <= 50000:
214 energy_tax = 0.09037
215 else:
216 energy_tax = 0.03943
217

218 # Total price = base + energy tax (no VAT for dynamic)
219 total = base_price + energy_tax
220

221 return total
222

223

224 # Run simulations for all combinations
225 results = {}
226 strategies = [(’lqr’, ’flat’)]
227

228 for control, tariff in strategies:
229 energy, cost, T_log, U_log = simulate_year(control, tariff)
230 results[(control, tariff)] = (energy, cost)
231
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232 # Print results
233 print("\n===== YEAR 2024 CLEANING SCHEDULE =====")
234 print("Daily: Parlor cleaning 2x (7:00 and 19:00)")
235 print("Weekly: Full stable cleaning (Mondays 9:00)")
236 print("Monthly: Deep cleaning (First Saturday 8:00)")
237

238 print("\n===== SIMULATION RESULTS =====")
239 for (control, tariff), (energy, cost) in results.items():
240 print(f"\n{control.upper()} control with {tariff} tariff:")
241 print(f"Energy Used: {energy:,.0f} kWh")
242 print(f"Total Cost: {cost:,.2f}")
243 print(f"Average Daily Cost: {(cost / 31):,.2f}")
244

245

246 # Build time axis
247 start_date = datetime(2024, 8, 1)
248 dates = [start_date + timedelta(hours=i) for i in range(len(T_log))]
249

250 # Plot temperature
251 plt.figure()
252 plt.plot(dates, T_log, label="Tank Temperature")
253 plt.axhline(T_REF, linestyle=’--’, label="Setpoint (T_REF)")
254 plt.title("Tank Temperature")
255 plt.ylabel("Temperature ( C )")
256 plt.xlabel("Day of Month")
257 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
258 plt.show()
259

260 # Plot heater power
261 plt.figure()
262 plt.plot(dates, U_log, label="Heater Power")
263 plt.title("Boiler Power")
264 plt.ylabel("Power (W)")
265 plt.xlabel("Date")
266 plt.axhline(Q_SPACE, linestyle=’--’, label="Base Load")
267 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
268 plt.show()

Listing 3: Python MPC code - dynamic rate and imbalance
1 import sys
2 from datetime import datetime, timedelta
3

4 import numpy as np
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 import matplotlib.dates as mdates
8

9 from casadi import SX, vertcat, integrator, nlpsol
10 import casadi as ca
11

12 # File paths & global params
13 PRICE_CSV = "C:/Users/julia/Downloads/

jeroen_punt_nl_dynamische_stroomprijzen_jaar_2024.csv"
14 TEMP_CSV = "C:/Users/julia/Downloads/2024-tempavg-weerverleden (1).csv

"
15 IMBALANCE_CSV = "C:/Users/julia/Downloads/Imbalance_202401010000

-202501010000.csv"
16
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17 START = datetime(2024,8,1)
18 DT = 60 # seconds per step (1 min)
19 HORIZON = 15 # prediction horizon (15 min)
20 STEPS = 31*24*60 # total minutes in period
21

22 # Tank & boiler properties
23 M = 10000.0 # kg water (10M3)
24 CP = 4186.0 # J/(kg K)
25 hA = 79.5 # W/K heat loss
26 BOIL_MAX = 100000.0 # W max input
27 T_REF = 60.0 # C comfort setpoint
28 T_SOAK = 80.0 # C soak limit
29 T_MIN, T_MAX = 50.0, 85.0 # C hard bounds
30 T_INLET = 10.0 # C inlet water
31 default_load = 1000.0 # W base space heating load
32

33 # Cleaning flows (L/min)
34 FLOW_PARLOR = 20.0
35 FLOW_STABLE = 30.0
36 FLOW_DEEP = 40.0
37

38 Q_WT = 0.5
39 PRICE_SOAK = -0.01
40 FLAT_RT = 0.29
41 TX1, TR1 = 10e3, 0.10880
42 TX2, TR2 = 50e3, 0.09037
43 TR3 = 0.03943
44 IMB_WEIGHT = 5.0
45

46 # Data loading
47

48 def load_price():
49 df = pd.read_csv(PRICE_CSV, sep=’;’, decimal=’,’)
50 tcol = next(c for c in df if ’datum’ in c.lower() or ’time’ in c.lower

())
51 pcol = next(c for c in df if ’prijs’ in c.lower() or ’eur’ in c.lower()

)
52 df[tcol] = pd.to_datetime(df[tcol])
53 hourly = df.set_index(tcol)[pcol].astype(float)
54 rng = pd.date_range(START, START+timedelta(days=366)-timedelta(hours=1)

, freq=’1h’)
55 hourly = hourly.reindex(rng).ffill()
56 return hourly.resample(’1min’).ffill().to_numpy()
57

58

59 def load_ambient():
60 df = pd.read_csv(TEMP_CSV, sep=’,’, decimal=’.’)
61 tcol = next(c for c in df if ’datum’ in c.lower() or ’date’ in c.lower

())
62 tmpc = next(c for c in df if ’gem’ in c.lower() or ’temp’ in c.lower())
63 df[tcol] = pd.to_datetime(df[tcol])
64 daily = df.set_index(tcol)[tmpc].astype(float)
65 rng = pd.date_range(START, START+timedelta(days=366)-timedelta(days=1),

freq=’D’)
66 daily = daily.reindex(rng).ffill()
67 return daily.resample(’1min’).ffill().to_numpy()
68

69
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70 def load_imbalance():
71 df = pd.read_csv(IMBALANCE_CSV, sep=’,’, decimal=’.’)
72 tcol = next(c for c in df if ’imbalance settlement period’ in c.lower

() or ’date’ in c.lower())
73 imbcol = next(c for c in df if ’imbalance price’ in c.lower())
74 df[tcol] = df[tcol].str.split(’ - ’).str[0]
75 df[tcol] = pd.to_datetime(df[tcol], format=’%d.%m.%Y %H:%M’)
76 # convert EUR/MWh to EUR/kWh and build series
77 qh = df.set_index(tcol)[imbcol].astype(float) / 1000
78 # drop duplicate timestamps to avoid reindex errors
79 qh = qh[˜qh.index.duplicated(keep=’first’)]
80 # create full 15-min index and forward-fill
81 rng = pd.date_range(START, START + timedelta(days=366) - timedelta(

minutes=15), freq=’15min’)
82 qh = qh.reindex(rng).ffill()
83 # up-sample to 1-min resolution by forward-fill
84 return qh.resample(’1min’).ffill().to_numpy()
85

86 price_min = load_price() * 1.21 # Add VAT to the electricity price
87 T_amb_min = load_ambient()
88 imb_min = load_imbalance()
89

90 def r_wrt_price(price):
91 return np.maximum(0, 1e-8 * price)
92

93 # Precompute cleaning load as heat draw (W)
94 Q_draw = np.zeros(STEPS)
95 for i in range(STEPS):
96 now = START + timedelta(minutes=i)
97 h, wd, day = now.hour, now.weekday(), now.day
98 flow = 0.0
99 if h in (7,19) and now.minute < 30: flow = FLOW_PARLOR

100 elif wd==0 and h==9 and now.minute<120: flow = FLOW_STABLE
101 elif wd==5 and day<=7 and h==8 and now.minute<180: flow = FLOW_DEEP
102 Q_draw[i] = flow * CP * (T_REF - T_INLET)/60 + default_load
103

104 # -- Build two MPC solvers once --#
105 # 1) Spot-only baseline solver
106 delta = SX.sym(’delta’) # placeholder to avoid unused warning
107 U_bas = SX.sym(’U_bas’, HORIZON)
108 X0 = SX.sym(’X0’)
109 Q_seq = SX.sym(’Q_seq’, HORIZON)
110 Tamb_seq = SX.sym(’Tamb_seq’, HORIZON)
111 R_seq = SX.sym(’R_seq’, HORIZON)
112 Spot_seq = SX.sym(’Spot_seq’, HORIZON)
113

114 J_bas = 0; g_bas = []
115 Xk = X0
116 for k in range(HORIZON):
117 dT = (U_bas[k] - hA*(Xk-Tamb_seq[k]) - Q_seq[k])/(M*CP)
118 Xk = Xk + dT*DT
119 tgt = ca.if_else(Spot_seq[k] <= PRICE_SOAK, T_SOAK, T_REF)
120 J_bas += Q_WT*(Xk-tgt)**2 + R_seq[k]*U_bas[k]**2
121 g_bas += [Xk - T_MIN, T_MAX - Xk]
122

123 nlp_bas = {’x’:U_bas, ’p’:vertcat(X0, Q_seq, Tamb_seq, R_seq, Spot_seq),
124 ’f’:J_bas, ’g’:vertcat(*g_bas)}
125 solver_bas = nlpsol(’solver_bas’,’ipopt’, nlp_bas,
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126 {’ipopt’:{’print_level’:0,’max_iter’:30,’tol’:1e-3},’
print_time’:0})

127

128 # 2) Imbalance deviation solver (reuses Q_seq, Tamb_seq, R_seq, Spot_seq)
129 U_seq = SX.sym(’U_seq’, HORIZON)
130 Imb_seq = SX.sym(’Imb_seq’, HORIZON)
131 U_ref = SX.sym(’U_ref’, HORIZON)
132 W_sym = SX.sym(’W’) # imbalance weight parameter
133

134 J_imb = 0; g_imb = []
135 Xk = X0
136 for k in range(HORIZON):
137 dT = (U_seq[k] - hA*(Xk-Tamb_seq[k]) - Q_seq[k])/(M*CP)
138 Xk = Xk + dT*DT
139 # dynamic target: soak when imbalance price is negative, otherwise use

spot-soak logic
140 tgt = ca.if_else(
141 Imb_seq[k] < 0,
142 T_SOAK,
143 ca.if_else(Spot_seq[k] <= PRICE_SOAK, T_SOAK, T_REF)
144 )
145 J_imb += Q_WT*(Xk-tgt)**2 + R_seq[k]*U_seq[k]**2
146 # deviation term: reward/penalty for imbalance deviations
147 dev = U_seq[k] - U_ref[k]
148 # weighted imbalance revenue
149 J_imb += -W_sym * Imb_seq[k] * dev * (DT/3_600_000)
150 g_imb += [Xk - T_MIN, T_MAX - Xk]
151

152 # pack parameters: include weight at end
153 nlp_imb = {
154 ’x’: U_seq,
155 ’p’: vertcat(
156 X0,
157 Q_seq, Tamb_seq, R_seq,
158 Spot_seq, Imb_seq, U_ref,
159 W_sym
160 ),
161 ’f’: J_imb,
162 ’g’: vertcat(*g_imb)
163 }
164 solver_imb = nlpsol(’solver_imb’,’ipopt’, nlp_imb,
165 {’ipopt’:{’print_level’:0,’max_iter’:30,’tol’:1e-3},’

print_time’:0})
166

167 # MPC loop
168 T_now = T_REF
169 kwh_tot = 0
170 cost_spot = 0 # cumulative spot-market cost
171 cost_imb = 0 # cumulative imbalance-market profit/penalty
172 cost_tot = 0 # net cost (spot + imbalance)
173 flat_cost = 0 # cost when using flat rate
174 T_log = np.zeros(STEPS)
175 U_log = np.zeros(STEPS)
176

177 valid_steps = min(STEPS-HORIZON, len(T_amb_min), len(Q_draw), len(imb_min))
178

179 # --- Initial baseline compute at i=0 ---
180 Q0 = Q_draw[0:HORIZON]
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181 Tamb0= T_amb_min[0:HORIZON]
182 R0 = r_wrt_price(price_min[0: HORIZON])
183 Spot0= price_min [0: HORIZON]
184 p0 = np.concatenate([[T_now], Q0, Tamb0, R0, Spot0])
185 # bounds
186 lbx0 = [0.0]*HORIZON; ubx0 = [BOIL_MAX]*HORIZON
187 n_constr0 = 2*HORIZON
188 lbg0 = [0.0]*n_constr0; ubg0 = [ca.inf]*n_constr0
189 sol0 = solver_bas(x0=np.zeros(HORIZON), p=p0, lbx=lbx0, ubx=ubx0, lbg=lbg0,

ubg=ubg0)
190 u_ref_seq = np.array(sol0[’x’]).flatten()
191 # Predefine deviation bounds and constraint bounds for imbalance solver
192 lbx_dev = [0.0] * HORIZON
193 ubx_dev = [BOIL_MAX] * HORIZON
194 n_constr = 2 * HORIZON
195 lbg_imb = [0.0] * n_constr
196 ubg_imb = [ca.inf] * n_constr
197

198 for i in range(valid_steps):
199 # Recompute baseline at market gate (every HORIZON steps)
200 if i % HORIZON == 0 and i != 0:
201 # new baseline for next block
202 Qb = Q_draw[i:i+HORIZON]
203 Tambb= T_amb_min[i:i+HORIZON]
204 Rb = r_wrt_price(price_min[i:i+HORIZON])
205 Spotb= price_min [i:i+HORIZON]
206 pb = np.concatenate([[T_now], Qb, Tambb, Rb, Spotb])
207 solb = solver_bas(x0=np.zeros(HORIZON), p=pb, lbx=lbx0, ubx=ubx0,

lbg=lbg0, ubg=ubg0)
208 u_ref_seq = np.array(solb[’x’]).flatten()
209

210 # -- deviation solve --
211 Q_h = Q_draw[i:i+HORIZON]
212 Tamb = T_amb_min[i:i+HORIZON]
213 R_h = r_wrt_price(price_min[i:i+HORIZON])
214 Spot = price_min[i:i+HORIZON]
215 Imb = imb_min[i:i+HORIZON]
216 p_imb = np.concatenate([
217 [T_now], Q_h, Tamb, R_h,
218 Spot, Imb, u_ref_seq,
219 [IMB_WEIGHT] # pass weight parameter W_sym
220 ])
221 # enforce control bounds and constraints (predefined)
222 sol_imb = solver_imb(
223 x0=u_ref_seq, p=p_imb,
224 lbx=lbx_dev, ubx=ubx_dev,
225 lbg=lbg_imb, ubg=ubg_imb
226 )
227 u_seq = np.array(sol_imb[’x’]).flatten()
228 u_cmd = u_seq[0]
229

230 # step & log
231 T_now += (u_cmd - hA*(T_now-T_amb_min[i]) - Q_draw[i])/(M*CP)*DT
232 T_log[i] = T_now
233 U_log[i] = u_cmd
234

235 # cost accounting
236 kwh = u_cmd * DT / 3_600_000
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237 kwh_tot += kwh
238 # spot-market cost
239 tax = TR1 if kwh_tot<=TX1 else TR2 if kwh_tot<=TX2 else TR3
240 spot_cost = kwh * (price_min[i] + tax)
241 cost_spot += spot_cost
242 # imbalance-market profit/penalty
243 imb_cost = imb_min[i] * (u_cmd - u_ref_seq[0]) * (DT/3_600_000)
244 cost_imb += imb_cost
245 # total
246 cost_tot += spot_cost - imb_cost
247

248

249 # Plotting & results
250 print(f"Energy: {kwh_tot:,.0f} kWh | Cost: {cost_tot:,.2f}")
251 print(f"Total spot-market cost: {cost_spot:.2f}")
252 print(f"Total imbalance-market P&L: {cost_imb:.2f}")
253 print(f"Net cost: {cost_tot:.2f}")
254 idx = np.arange(0, valid_steps, 15)
255 dates = [START+timedelta(minutes=int(i)) for i in idx]
256

257 # Plot tank temperature
258 plt.plot(dates, T_log[idx])
259 plt.axhline(T_REF, ls=’--’)
260 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
261 plt.title("Tank Temperature")
262 plt.ylabel("Temperature ( C )")
263 plt.xlabel("Day of Month")
264 plt.show()
265

266 # Plot boiler power
267 plt.plot(dates, U_log[idx])
268 plt.axhline(1000, ls=’--’)
269 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
270 plt.title("Boiler Power")
271 plt.ylabel("Power (W)")
272 plt.xlabel("Day of Month")
273 plt.show()

Listing 4: Python MPC code - flat rate
1 import sys
2 from datetime import datetime, timedelta
3

4 import numpy as np
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 import matplotlib.dates as mdates
8

9 from casadi import SX, vertcat, integrator, nlpsol
10 import casadi as ca
11

12 # File paths & global params
13 PRICE_CSV = "C:/Users/julia/Downloads/

jeroen_punt_nl_dynamische_stroomprijzen_jaar_2024.csv"
14 TEMP_CSV = "C:/Users/julia/Downloads/2024-tempavg-weerverleden (1).csv

"
15 IMBALANCE_CSV = "C:/Users/julia/Downloads/Imbalance_202401010000

-202501010000.csv"
16
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17 START = datetime(2024,8,1)
18 DT = 60 # seconds per step (1 min)
19 HORIZON = 15 # prediction horizon (15 min)
20 STEPS = 31*24*60 # total minutes in period
21

22 # Tank & boiler properties
23 M = 10000.0 # kg water (10M3)
24 CP = 4186.0 # J/(kg K)
25 hA = 79.5 # W/K heat loss
26 BOIL_MAX = 100000.0 # W max input
27 T_REF = 60.0 # C comfort setpoint
28 T_SOAK = 80.0 # C soak limit
29 T_MIN, T_MAX = 60.0, 85.0 # C hard bounds
30 T_INLET = 10.0 # C inlet water
31 default_load = 1000.0 # W base space heating load
32

33 # Cleaning flows (L/min)
34 FLOW_PARLOR = 20.0
35 FLOW_STABLE = 30.0
36 FLOW_DEEP = 40.0
37

38 Q_WT = 5
39 PRICE_SOAK = -0.01
40 FLAT_RT = 0.29
41 TX1, TR1 = 10e3, 0.10880
42 TX2, TR2 = 50e3, 0.09037
43 TR3 = 0.03943
44 IMB_WEIGHT = 5.0
45

46 # Data loading
47

48 def load_price():
49 df = pd.read_csv(PRICE_CSV, sep=’;’, decimal=’,’)
50 tcol = next(c for c in df if ’datum’ in c.lower() or ’time’ in c.lower

())
51 pcol = next(c for c in df if ’prijs’ in c.lower() or ’eur’ in c.lower()

)
52 df[tcol] = pd.to_datetime(df[tcol])
53 hourly = df.set_index(tcol)[pcol].astype(float)
54 rng = pd.date_range(START, START+timedelta(days=366)-timedelta(hours=1)

, freq=’1h’)
55 hourly = hourly.reindex(rng).ffill()
56 return hourly.resample(’1min’).ffill().to_numpy()
57

58

59 def load_ambient():
60 df = pd.read_csv(TEMP_CSV, sep=’,’, decimal=’.’)
61 tcol = next(c for c in df if ’datum’ in c.lower() or ’date’ in c.lower

())
62 tmpc = next(c for c in df if ’gem’ in c.lower() or ’temp’ in c.lower())
63 df[tcol] = pd.to_datetime(df[tcol])
64 daily = df.set_index(tcol)[tmpc].astype(float)
65 rng = pd.date_range(START, START+timedelta(days=366)-timedelta(days=1),

freq=’D’)
66 daily = daily.reindex(rng).ffill()
67 return daily.resample(’1min’).ffill().to_numpy()
68

69
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70 def load_imbalance():
71 df = pd.read_csv(IMBALANCE_CSV, sep=’,’, decimal=’.’)
72 tcol = next(c for c in df if ’imbalance settlement period’ in c.lower

() or ’date’ in c.lower())
73 imbcol = next(c for c in df if ’imbalance price’ in c.lower())
74 df[tcol] = df[tcol].str.split(’ - ’).str[0]
75 df[tcol] = pd.to_datetime(df[tcol], format=’%d.%m.%Y %H:%M’)
76 # convert EUR/MWh to EUR/kWh and build series
77 qh = df.set_index(tcol)[imbcol].astype(float) / 1000
78 # drop duplicate timestamps to avoid reindex errors
79 qh = qh[˜qh.index.duplicated(keep=’first’)]
80 # create full 15-min index and forward-fill
81 rng = pd.date_range(START, START + timedelta(days=366) - timedelta(

minutes=15), freq=’15min’)
82 qh = qh.reindex(rng).ffill()
83 # up-sample to 1-min resolution by forward-fill
84 return qh.resample(’1min’).ffill().to_numpy()
85

86 price_min = np.full(STEPS, FLAT_RT)
87 T_amb_min = load_ambient()
88 imb_min = load_imbalance()
89

90 def r_wrt_price(price):
91 return np.maximum(0, 1e-15 * price)
92

93 # Precompute cleaning load as heat draw (W)
94 Q_draw = np.zeros(STEPS)
95 for i in range(STEPS):
96 now = START + timedelta(minutes=i)
97 h, wd, day = now.hour, now.weekday(), now.day
98 flow = 0.0
99 if h in (7,19) and now.minute < 30: flow = FLOW_PARLOR

100 elif wd==0 and h==9 and now.minute<120: flow = FLOW_STABLE
101 elif wd==5 and day<=7 and h==8 and now.minute<180: flow = FLOW_DEEP
102 Q_draw[i] = flow * CP * (T_REF - T_INLET)/60 + default_load
103

104 # -- Build two MPC solvers once --#
105 # 1) Spot-only baseline solver
106 delta = SX.sym(’delta’) # placeholder to avoid unused warning
107 U_bas = SX.sym(’U_bas’, HORIZON)
108 X0 = SX.sym(’X0’)
109 Q_seq = SX.sym(’Q_seq’, HORIZON)
110 Tamb_seq = SX.sym(’Tamb_seq’, HORIZON)
111 R_seq = SX.sym(’R_seq’, HORIZON)
112 Spot_seq = SX.sym(’Spot_seq’, HORIZON)
113

114 J_bas = 0; g_bas = []
115 Xk = X0
116 for k in range(HORIZON):
117 dT = (U_bas[k] - hA*(Xk-Tamb_seq[k]) - Q_seq[k])/(M*CP)
118 Xk = Xk + dT*DT
119 tgt = T_REF
120 dev = Xk-tgt
121 J_bas += Q_WT*dev**2 + R_seq[k]*U_bas[k]**2
122 g_bas += [Xk - T_MIN, T_MAX - Xk]
123

124 nlp_bas = {’x’:U_bas, ’p’:vertcat(X0, Q_seq, Tamb_seq, R_seq, Spot_seq),
125 ’f’:J_bas, ’g’:vertcat(*g_bas)}
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126 solver_bas = nlpsol(’solver_bas’,’ipopt’, nlp_bas,
127 {’ipopt’:{’print_level’:0,’max_iter’:30,’tol’:1e-3},’

print_time’:0})
128

129 # 2) Imbalance deviation solver (reuses Q_seq, Tamb_seq, R_seq, Spot_seq)
130 #U_seq = SX.sym(’U_seq’, HORIZON)
131 #Imb_seq = SX.sym(’Imb_seq’, HORIZON)
132 #U_ref = SX.sym(’U_ref’, HORIZON)
133 #W_sym = SX.sym(’W’) # imbalance weight parameter
134

135 #J_imb = 0; g_imb = []
136 #Xk = X0
137 #for k in range(HORIZON):
138 # dT = (U_seq[k] - hA*(Xk-Tamb_seq[k]) - Q_seq[k])/(M*CP)
139 # Xk = Xk + dT*DT
140 # # dynamic target: soak when imbalance price is negative, otherwise use

spot-soak logic
141 # tgt = ca.if_else(
142 # Imb_seq[k] < 0,
143 # T_SOAK,
144 # ca.if_else(Spot_seq[k] <= PRICE_SOAK, T_SOAK, T_REF)
145 # )
146 # J_imb += Q_WT*(Xk-tgt)**2 + R_seq[k]*U_seq[k]**2
147 # # deviation term: reward/penalty for imbalance deviations
148 # dev = U_seq[k] - U_ref[k]
149 # weighted imbalance revenue
150 # J_imb += -W_sym * Imb_seq[k] * dev * (DT/3_600_000)
151 # g_imb += [Xk - T_MIN, T_MAX - Xk]
152

153 # pack parameters: include weight at end
154 #nlp_imb = {
155 # ’x’: U_seq,
156 # ’p’: vertcat(
157 # X0,
158 # Q_seq, Tamb_seq, R_seq,
159 # Spot_seq, Imb_seq, U_ref,
160 # W_sym
161 # ),
162 # ’f’: J_imb,
163 # ’g’: vertcat(*g_imb)
164 #}
165 #solver_imb = nlpsol(’solver_imb’,’ipopt’, nlp_imb,
166 # {’ipopt’:{’print_level’:0,’max_iter’:30,’tol’:1e-3},’

print_time’:0})
167

168 # MPC loop
169 T_now = T_REF
170 kwh_tot = 0
171 cost_spot = 0 # cumulative spot-market cost
172 cost_imb = 0 # cumulative imbalance-market profit/penalty
173 cost_tot = 0 # net cost (spot + imbalance)
174 flat_cost = 0 # cost when using flat rate
175 T_log = np.zeros(STEPS)
176 U_log = np.zeros(STEPS)
177

178 valid_steps = min(STEPS-HORIZON, len(T_amb_min), len(Q_draw), len(imb_min))
179

180 # --- Initial baseline compute at i=0 ---
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181 Q0 = Q_draw[0:HORIZON]
182 Tamb0= T_amb_min[0:HORIZON]
183 R0 = r_wrt_price(price_min[0: HORIZON])
184 Spot0= price_min [0: HORIZON]
185 p0 = np.concatenate([[T_now], Q0, Tamb0, R0, Spot0])
186 # bounds
187 lbx0 = [0.0]*HORIZON; ubx0 = [BOIL_MAX]*HORIZON
188 n_constr0 = 2*HORIZON
189 lbg0 = [0.0]*n_constr0; ubg0 = [ca.inf]*n_constr0
190 sol0 = solver_bas(x0=np.zeros(HORIZON), p=p0, lbx=lbx0, ubx=ubx0, lbg=lbg0,

ubg=ubg0)
191 u_ref_seq = np.array(sol0[’x’]).flatten()
192 # Predefine deviation bounds and constraint bounds for imbalance solver
193 lbx_dev = [0.0] * HORIZON
194 ubx_dev = [BOIL_MAX] * HORIZON
195 n_constr = 2 * HORIZON
196 lbg_imb = [0.0] * n_constr
197 ubg_imb = [ca.inf] * n_constr
198

199 for i in range(valid_steps):
200 # Recompute baseline at market gate (every HORIZON steps)
201 if i % HORIZON == 0 and i != 0:
202 # new baseline for next block
203 Qb = Q_draw[i:i+HORIZON]
204 Tambb= T_amb_min[i:i+HORIZON]
205 Rb = r_wrt_price(price_min[i:i+HORIZON])
206 Spotb= price_min [i:i+HORIZON]
207 pb = np.concatenate([[T_now], Qb, Tambb, Rb, Spotb])
208 solb = solver_bas(x0=np.zeros(HORIZON), p=pb, lbx=lbx0, ubx=ubx0,

lbg=lbg0, ubg=ubg0)
209 u_ref_seq = np.array(solb[’x’]).flatten()
210 u_cmd = u_ref_seq[0]
211

212 # -- deviation solve --
213 # Q_h = Q_draw[i:i+HORIZON]
214 # Tamb = T_amb_min[i:i+HORIZON]
215 # R_h = r_wrt_price(price_min[i:i+HORIZON])
216 # Spot = price_min[i:i+HORIZON]
217 # Imb = imb_min[i:i+HORIZON]
218 # p_imb = np.concatenate([
219 # [T_now], Q_h, Tamb, R_h,
220 # Spot, Imb, u_ref_seq,
221 # [IMB_WEIGHT] # pass weight parameter W_sym
222 # ])
223 # enforce control bounds and constraints (predefined)
224 # sol_imb = solver_imb(
225 # x0=u_ref_seq, p=p_imb,
226 # lbx=lbx_dev, ubx=ubx_dev,
227 # lbg=lbg_imb, ubg=ubg_imb
228 #)
229 #u_seq = np.array(sol_imb[’x’]).flatten()
230 #u_cmd = u_seq[0]
231

232 # step & log
233 T_now += (u_cmd - hA*(T_now-T_amb_min[i]) - Q_draw[i])/(M*CP)*DT
234 T_log[i] = T_now
235 U_log[i] = u_cmd
236
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237 # cost accounting
238 kwh = u_cmd * DT / 3_600_000
239 kwh_tot += kwh
240 # spot-market cost
241 #tax = TR1 if kwh_tot<=TX1 else TR2 if kwh_tot<=TX2 else TR3
242 spot_cost = kwh * (price_min[i]) #+ tax)
243 cost_spot += spot_cost
244 # imbalance-market profit/penalty
245 #imb_cost = imb_min[i] * (u_cmd - u_ref_seq[0]) * (DT/3_600_000)
246 #cost_imb += imb_cost
247 # total
248 cost_tot += spot_cost #- imb_cost
249 #cost_flat = kwh * FLAT_RT
250 #flat_cost += cost_flat
251

252 # Plotting & results
253 print(f"Energy: {kwh_tot:,.0f} kWh | Cost: {cost_tot:,.2f}")
254 #print(f"Total spot-market cost: {cost_spot:.2f}")
255 #print(f"Total imbalance-market P&L: {cost_imb:.2f}")
256 #print(f"Net cost: {cost_tot:.2f}")
257 #print(f"Cost when using flat rate ( 0 .28/KWh): {flat_cost:.2f}")
258 idx = np.arange(0, valid_steps, 15)
259 dates = [START+timedelta(minutes=int(i)) for i in idx]
260

261 # Plot tank temperature
262 plt.plot(dates, T_log[idx])
263 plt.axhline(T_REF, ls=’--’)
264 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
265 plt.title("Tank Temperature")
266 plt.ylabel("Temperature ( C )")
267 plt.xlabel("Day of Month")
268 plt.show()
269

270 # Plot boiler power
271 plt.plot(dates, U_log[idx])
272 plt.axhline(1000, ls=’--’)
273 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(’%d’))
274 plt.title("Boiler Power")
275 plt.ylabel("Power (W)")
276 plt.xlabel("Day of Month")
277 plt.show()
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